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Abstract

Estimating the relative camera pose from n > 5 corre-
spondences between two calibrated views is a fundamen-
tal task in computer vision. This process typically involves
two stages: 1) estimating the essential matrix between the
views, and 2) disambiguating among the four candidate rel-
ative poses that satisfy the epipolar geometry. In this pa-
per, we demonstrate a novel approach that, for the first
time, bypasses the second stage. Specifically, we show
that it is possible to directly estimate the correct relative
camera pose from correspondences without needing a post-
processing step to enforce the cheirality constraint on the
correspondences. Building on recent advances in certifi-
able non-minimal optimization, we frame the relative pose
estimation as a Quadratically Constrained Quadratic Pro-
gram (QCQP). By applying the appropriate constraints, we
ensure the estimation of a camera pose that corresponds
to a valid 3D geometry and that is globally optimal when
certified. We validate our method through exhaustive syn-
thetic and real-world experiments, confirming the efficacy,
efficiency and accuracy of the proposed approach. Code is
available at https://github.com/javrtg/C2P.

1. Introduction

Finding the relative pose between two calibrated views is
crucial in many computer vision applications. This task is
particularly relevant, among others, in Structure from Mo-
tion (SfM) [44, 53], and Simultaneous Localization And
Mapping (SLAM) [13, 46, 47]. In SfM, it serves to geo-
metrically verify the correspondences as well as to provide
pairwise constraints for pose averaging schemes [27, 40]. In
SLAM, besides correspondence verification, it is also used
for bootstrapping the odometry of the camera and comput-
ing an initial estimate of the 3D map.

The relative pose problem has five observable degrees
of freedom: three for the relative rotation between the
cameras, and two for the direction of the relative transla-
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Figure 1. Relative pose directly from matches, without poste-
rior disambiguation and pure rotation checks. Traditionally,
estimating the relative pose involves two steps: 1) Estimating
the essential matrix E using an approximate or globally-optimal
solver, and 2) disambiguating the unique geometrically valid pose
among four candidate relative poses, with an additional step to
determine if the motion is purely rotational. In this paper, we in-
troduce C2P, a globally-optimal and certifiable approach that, for
the first time, solves the relative pose problem in a single step.

tion. The standard approach for its computation [29] be-
gins by considering a set of n pixel correspondences be-
tween the two images. These correspondences can be es-
tablished through matching the descriptors of keypoints ex-
tracted from the images [1, 16, 41, 43], or more recently by
estimating a (semi)dense 2D mapping between the views
[17, 58, 61]. The pose is then computed by minimizing
epipolar errors [29], requiring at least five correspondences.
Solvers that handle n = 5 correspondences are termed min-
imal [48, 54] and those able to handle all the correspon-
dences are called non-minimal [10, 69].

This paper focuses on non-minimal solvers. In a practi-
cal setup in which input correspondences may contain out-
liers, these solvers are essential within RANSAC [19, 49]
and Graduated Non-Convexity (GNC) [66]. In RANSAC,
non-minimal solvers are used to improve the accuracy of
the so-far-best and final models (initially computed with
minimal solvers) thanks to noise cancellation of the inliers
[49]. In GNC, globally-optimal non-minimal solvers serve
as fundamental building blocks to robustly solve a weighted
instance of the problem in an iterative fashion.

Since the seminal paper by Longuet-Higgins [42] in
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1981, computing this non-minimal estimate of the rela-
tive pose, involves two key steps: 1) estimating the es-
sential matrix—which models the epipolar geometry of the
problem—yvia an approximate (minimal or local optimiza-
tion) method, or a certifiably globally-optimal method, and
2) disambiguating the true relative pose from those satisfy-
ing the same epipolar geometry. This ambiguity arises from
ignoring the cheirality constraints which enforce a valid 3D
geometry (mainly that the 3D points observed in the image
must be in front of the camera), resulting in a additional
overhead that scales with the number of points.

In this paper, we demonstrate that this two-step ap-
proach, gold standard for more than 40 years, is not a must,
and present a method that, for the first time directly esti-
mates the relative pose without requiring posterior disam-
biguation. For this purpose, we leverage convex optimiza-
tion theory and demonstrate that we can obtain a certifiably
globally-optimal solution that is geometrically valid. Ad-
ditionally, our method can determine if the motion between
the images is purely rotational. This information is relevant,
since the translation vector is undefined under pure rotation
and its estimation should not be trusted. Current methods
require a posterior verification for the same purpose. We
present a visual overview of both current approaches and
our method in Figure 1. Our main contributions are: 1) We
provide a non-minimal certifiably globally-optimal method
that, for the first time, solves the relative pose problem with-
out the need of disambiguation. We derive the sufficient
and necessary conditions to recover the optimal solution, 2)
for this purpose, we also derive a novel characterization of
the normalized essential manifold that is needed to enforce
a geometrically valid solution, and 3) besides our theoreti-
cal contributions, we show experimentally that our method
scales better than the alternatives in the literature.

2. Related Work

Non-minimal epipolar geometry. Initial methods for
estimating the essential matrix (or fundamental matrix in
the uncalibrated case) [26, 42] rely on linear relaxations,
which do not account for the nonlinearities arising from
the constraints of the problem. As a result, these meth-
ods provide an approximate solution that needs to be pro-
jected onto the appropriate space. While several methods
[21, 22, 30, 59, 60] refine an approximate estimate through
local optimization on the manifold of the essential matrix,
they, despite being certifiable [21, 22], cannot guarantee the
global optimality of the solution. To achieve global optimal-
ity, various methods [28, 36, 68] employ Branch and Bound
(BnB) techniques to explore the feasible parameter space
and eliminate regions that are guaranteed not to contain the
optimal solution. However, these methods can exhibit ex-
ponential time complexity in the worst case. More recently,

the use of relaxed Quadratically Constrained Quadratic Pro-
grams (QCQP) onto Semidefinite Programs (SDP) via the
Shor’s relaxation [2, 6], has enabled methods to provide,
and certify, globally-optimal solutions [10, 23, 34, 69, 70].
Briales et al. [10] adopt an eigenvalue formulation of the
problem [36] and show that a tight relaxation of this non-
convex formulation can be achieved through redundant con-
straints. Zhao [69] achieves a significant increase in perfor-
mance by optimizing with respect to a more efficient for-
mulation, resulting in a reduced set of constraints and pa-
rameters. In addition, Garcia-Salguero et al. [23] derive re-
dundant constraints to improve the general tightness of the
work by Zhao [69]. Finally, Karimian and Tron [34] show
that, under moderate levels of noise, a faster solution can be
achieved using the Riemannian staircase algorithm [5, 11].
In this paper, we address a common limitation of all previ-
ous approaches. We demonstrate that it is possible to avoid
the posterior disambiguation of the four relative poses that
satisfy their solutions. We achieve this also by relaxing a
QCQP formulation of the problem. We design and intro-
duce the constraints that take into account the 3D geometric
meaning of the estimates, and provide a fast globally opti-
mal solution for the geometrically correct relative pose.

Related certifiably globally optimal methods. Similar
relaxations to those used in previous methods are also ap-
plied in various closely related areas of computer vision.
For example, applications of Shor’s relaxation are found in
tasks such as of solving Wahba’s problem [65], pointcloud
and 3D registration [8, 67] and multiview triangulation [25].
Similarly, the Riemannian staircase algorithm, coupled with
local manifold optimization, is used in tasks exploiting the
low-rank nature of their solutions, including rotation aver-
aging [15] and pose synchronization [9, 50].

3. Non-minimal solver for the relative pose

In this work, we assume a central camera model, making
our method suitable for, e.g., pinhole, fisheye and omnidi-
rectional cameras. We consider that each correspondence,
i, is parameterized by unit bearing vectors fy;, f; ; € S2.
Given a set of n > 5 correspondences {fy ;,f ;}7;, our
goal is to directly estimate the relative pose, which we pa-
rameterize with a rotation matrix R € SO(3) and a unit-
norm translation vector t € S2. These parameters define
the manifold of normalized essential matrices [30, 69]:

Mg ={E|E=[t|xR, R€S0@3), teS*}' . (1)

However, Eq. (1) does not account for the geometric pecu-
liarities and symmetry of the epipolar constraints [59, 60],
which motivates us to investigate a necessary and sufficient
characterization for directly estimating the relative pose. In

"'Where [t] « denotes the skew-symmetric matrix corresponding to t.
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Figure 2. Necessary geometric conditions. When removing the
rotational flow between the bearing vectors [37], i.e. considering
fo and Rf;, they must exhibit the same (counter-)clockwise turn
w.r.t. the translation (Eq. (3)). Otherwise, the rotation must be a
reflected version, R, of the true rotation, R. Considering the cor-
rect rotation, fo must have greater projection onto the translation
than Rf; (Eq. (5)). Otherwise, the bearings would not meet along
the direction of their beams (-, ), implying that the translation
is flipped (—t) w.r.t. the correct one, t. Therefore, besides avoid-
ing triangulation, these constraints completely disambiguate the
relative pose and are generally applicable to central camera mod-
els since they do not rely on traditional positive-depth constraints.

Sec. 3.1, we derive such characterization with a focus on
making it amenable for a QCQP formulation (Sec. 3.3). We
demonstrate that the relaxed QCQP yields a tight and certifi-
ably globally optimal solution for the relative pose (Sec. 4).

3.1. Necessary and sufficient constraints

It is well known in the literature [29, Sec. 9.6] that four rel-
ative poses satisfy the same epipolar geometry. However,
only one of these poses is geometrically valid, in the sense
that it leads to an estimation of the 3D points being in front
of the cameras’. A common approach to circumvent this
involves triangulating the points and checking for the posi-
tive sign of their depths [29, 48], a posteriori. Preliminary
experiments showed that enforcing this positive-depth con-
straint during the optimization is challenging and costly due
to the complexities associated with the use of rotation ma-
trices [10, 12], even after imposing convex hull constraints
of SO(3) [51, 52]. Consequently, we propose using sim-
pler and more efficient constraints to disambiguate the pose
during the optimization and visualize them in Figure 2.

Rotation disambiguation. As shown in [37], regardless of
the sign of the translation t, the two normals of the epipolar

2In practice, issues such as noise and small-scale translation relative to
the observed scene can cause some 3D points to appear behind the cameras,
despite a correct pose estimate. Consequently, cheirality is often verified
for all points and then aggregated to robustly select the correct pose [7, 53].

plane of a correspondence (fy, f1): t xfy and t x Rf; satisfy:
(tXf0)~(tXRf1)>0, 2)

Intuitively, considering fy and Rf; in the same coordinate
system, the smallest in-plane rotations required to align fj
with t and Rf; with t must be both clockwise or counter-
clockwise. This condition is not met when the 3D point
does not lie along one of the bearing vectors’ beams, which
is the case for the (incorrect) reflected rotation matrix. How-
ever, besides involving R, Eq. (2) is cubic on the unkowns,
requiring a re-formulation with additional parameters to
adapt it for a QCQP. A more straightforward solution arises
upon realizing that t x Rf; = [t]«Rf; = Ef}, leading to:

(Efy) - ([t]«fo) = £ ET[t]fo >0, (3)

which now depends quadratically on the unknowns and is
thus suitable for a QCQP formulation.

Translation disambiguation. Building on the previous in-
tuition that both f; and Rf; require a (counter-)clockwise
in-plane rotation to be aligned with t, it follows that:

£/t — (Rf))"t>0. 4)

If this condition is not met, the bearing vectors would not in-
tersect along their beams, implying that the translation vec-
tor is the (incorrect) negative of t. The impact of this con-
straint on restricting the space of possible unit translations
is shown in Fig. 3. However, Eq. (4) again involves globally
optimizing R. A more efficient approach is to optimize the
rotated translation vector q := R't, qcS?, resulting in:

ft—fq>0. 5)

which is linear in the unknowns and can be incorporated in a
QCQP with an homogenization variable [10, 24]. However,
this introduces the challenge of ensuring that ¢ = R "t still
holds without optimizing R. We address this next by deriv-
ing a novel definition of the normalized essential manifold.

Manifold constraints. To ensure that @ = R Tt holds dur-
ing the optimization, we need to mutually constrain t and q.
Previous definitions of the normalized essential manifold,
such as those involving the left, right and quintessential ma-
trix sets [23, 34, 69], do not include this kind of constraints.
The most suitable constraints for our purposes are the ones
involving the adjugate matrix of E: Adj(E) = qt ', used
in [23] as redundant constraints. We show in Th. 3.1 that
these, along with norm constraints, suffice to define Mg,
and to perform an efficient joint optimization of E, t and q.

Theorem 3.1. A real 3 x 3 matrix, E, is an element of Mg
if and only if it satisfies:
(i) to(EET)=2 and (i) Adj(E)=qt', (6)

for two vectors t,q € S? and where Adj(E) represents the
adjugate matrix [32] of E.


https://en.wikipedia.org/wiki/Adjugate_matrix

noise = 0 pix.

R

noise = 5 pix.

R R +

noise = 20 pix.

cost

—N T —T T

Figure 3. Automatic disambiguation of the relative pose. Our method restricts the set of possible rotations and translations (unit vectors,
due to scale ambiguity) for solving the relative pose, by incorporating cheirality constraints in the optimization. We visualize this for the
translation with cost maps of squared epipolar errors in the tangent space at the ground-truth translation, 7¢S?, and for different levels of
noise. Elements in 7;S? are mapped to the sphere along geodesics using the exponential map, which is a bijective mapping for ||v| < 7
with v € T:S? [4]. This enables us to show, on the right, the space not satisfying the constraint of Eq. (5) with lower opacity, named R.
As can be seen, the global minimum corresponding to t, always lies within the unrestricted space, named U/, while it excludes the global
minima corresponding to —t. Therefore the solver is able to automatically select the translation with the correct sign as the solution.

Proof. For the if direction, assume Adj(E) = qt' and
tr(EET) = 2. The outer product gt is a rank-1 ma-
trix, implying that rank(E) = 2. Thus, the singular
value decomposition (SVD) of E is E = UDVT, with
D = diag(og, o1, 0), 09,01 € RT and U,V € O(3).
The adjugate of E can then be expressed as’:

Adj(E) = Adj(UDV ") , (7)
= Adj(V") Adj(D) Adj(U), ®)
= +V diag(0, 0, gpo1)U ", 9)
= ji0'00'1V2u; , (10)

where v, and us are the third columns of V and U, re-
spectively. Since the vectors involved in both outer prod-
ucts, vzu2T and th, are unit vectors, this implies that
ooo1 = 1. Furthermore, since tr(EET) = 2, it follows*
that 03 + 07 = 2. These two equations lead to the bi-
quadratic equations:

o} —207+1=(0;—1)*(o;+1)* =0, ie€{0,1}, (A1)
which have o; = 1 as positive roots, meaning that E has
two non-zero singular values, both equal to 1. Hence, E is
an essential matrix that belongs to Mg.

For the only if direction, assume E is an essential matrix
in Mg. Thus, condition (i) is satisfied, and there exist two

unit vectors q,t € S? and a rotation matrix R € SO(3),
satisfying that E = [t]xR = RJ[q]x and ¢ = RTt. We

3We use the adjugate matrix property Adj(AB) = Adj(B) Adj(A),
for any A, B € R™*™. We also use that Adj(Q) = det(Q)Q' =
(£1)QT for any orthogonal matrix Q € O(n).

4Since EET UD2UT, it follows that tr(EET) =
tr(UD?UT) = tr(D?U T U) = tr(D?) = 03 + 03.

can show then that

Adj(E) = Adj([t|]xR) , (12)

= Adj(R) Adj([t]x) , (13)

=R"tt' =qt’. (14)

Thus, condition (ii) is also satisfied. O]

3.2. Recovery of the rotation

Assuming tight solutions for E € Mg and t, q € S?, we
can directly recover the rotation R € SO(3) without dis-
ambiguation. A (normalized) essential matrix E = [t]x R,
depends linearly on R and since rank(E) = 2, this pro-
vides six independent equations for solving R (its nine el-
ements). Thus, three additional independent equations are
needed. Notably, t lies in the nullspace of [t]«, allowing us
to find the remaining equations in the definition ¢ = R "t.
Hence, R can be determined as the solution to this linear
system. Since our method is empirically tight, our estimates
E, t and q belong to their respective spaces, implying that
the resulting R belongs to SO(3). While not theoretically
necessary, for better numerical accuracy, we can: 1) project
the resulting R onto SO(3) by classical means [31], and 2)
consider the linearly dependent equations stemming from
the equivalent definitions: E = [t]xR = R[q]x,q =Rt
and t = Rq. The corresponding normal equations have as
their LHS and RHS terms 2Ly and 2tq " —[t]« E—E|[q]«,
respectively (with the RHS expressed in vectorized form).
Thus, R can be solved in closed-form as

R=tq’ - ((.E+E.). (13
3.3. QCQP

The quadratic nature of our constraints motivates us to for-
mulate the relative pose problem as a Quadratically Con-



strained Quadratic Program (QCQP). Since we parameter-
ize the problem using the essential matrix E (along with
t,q), we draw inspiration from the efficient optimization
strategy in [69]. We optimize the same cost function. How-
ever, we differentiate from [69] in that our approach auto-
matically disambiguates the pose during the optimization,
thanks to efficiently constraining the parameter space.

Quadratic optimization In a noise-free scenario, an essen-
tial matrix E, satisfies the epipolar constraints: f(I JEf; =
0, for any correspondence ¢ [29]. In practice, this does not
happen and we instead optimize E by minimizing the sum
of squared normalized epipolar errors [37, 39, 45]:

mmZ(fOTZ.Efl,i)2 . (16)

i=1
Since Vec(fOT’iEfl,i) =(fo,;® flﬂ-)T vec(ET) [62], this im-
plies that Eq. (16) can be reformulated as:

mine' Ce, (17)

e = VGC(ET), C = Z(fo,i X fl,i)(fo,z' [ flﬂ;)T 3 (18)

where ® is the Kronecker product [62] and e € R? repre-
sents the vector resulting from stacking the rows of E.

Problem QCQP. We formulate the relative pose problem
as the following QCQP:

g};ifé e Ce, (19)
st. tr(EET) =2, Adj(E)=qt', (20
t't=1, q'q=1, (1)

fIE [t]«fo —s2=0, (22)

ht)t —hfq—s? =0, (23)
h?=1. (24)

Both the minimization term and the constraints are
quadratic. Egs. (20) and (21) correspond to the constraints
presented in Theorem 3.1, and Egs. (22) to (24) to those pre-
sented at the beginning of Sec. 3.1. Thus, we have d = 18
parameters and m = 15 constraints. As commented in
Sec. 3.1, these constraints are necessary and sufficient to
disambiguate the relative pose during optimization.

Introduction of inequalities. To transform the proposed
inequalities of Eqs. (3) and (5) into compact quadratic
equalities that facilitate the use of off-the-shelf SDP solvers
(Sec. 4), we use two techniques: 1) we multiply Eq. (23)
with an homogenization variable h, restricted to the values
{—=1,1}. This introduces a spurious (negative) solution if
h = —1, but this is trivially checked and corrected [10, 24].
2) we introduce slack variables [20] s2,s? € R. Since s2

T
and s% are non-negative, this ensures the fulfillment of the

inequalities. Additionally, s? offers an interesting advan-
tage, as we show in Sec. 5, since it enables the detection of
pure rotational motions. Finally, note that we have adopted
a modified notation for the bearings: f;, to denote that in-
stead of selecting a random correspondence, we average
at runtime the scalar coefficients from Egs. (22) and (23),
stemming from all the correspondences. This approach is
motivated to average potential inlier noise in the correspon-

dences. We detail this averaging in Supplementary A.1.

4. SDP relaxation and optimization

Generally, optimizations of QCQPs like the one in Prob.
(QCQP) are (nonconvex) NP-hard. However, semidefinite
programming (SDP) relaxations, have shown to be a pow-
erful tool to tackle global optimization in computer vision
[14]. We draw inspiration from this, and relax the QCQP to
an SDP. First, we write Prob. (QCQP) in general form as:

min XTCOX , (25)
xER4

st. x'Agx=0b;, i€{l,..,m}, (26)

where x = [e",t",q",h,s,,5]", Cp is the adaptation
of C in Eq. (18) to the formulation in Eq. (25), i.e. Cy €
815 is a block-diagonal matrix whose only nonzero block
is C,and A; € S? are symmetric matrices formed by the
reformulation of Egs. (20) to (24) to the form of Eq. (26)°.

To relax the QCQP, we use the cyclic property of
the trace to realize that tr(x' Cox) = tr(Coxx') =
tr(CoX), where X := xx' € S constitutes a lifting of
the parameters from R? to S¢. Doing similarly for Eq. (26),
allows us to define the following SDP:

Problem SDP

min  tr(CoX), 27
Xesd

S.t. tI‘(AiX) =b;,, 1€ {1, .. ,m} s 28)
X*>=0. (29)

SDPs are convex, being solvable globally-optimally in prac-
tice [63]. The relaxation comes from not imposing any con-
straint on X that ensures that the feasible set of Prob. (SDP)
matches that of Prob. (QCQP). If the global minimum of
Probs. (SDP) and (QCQP) match, then we say that the re-
laxation is tight. To obtain the solution estimate x* we need
to recover it from the globally optimal X*. Interestingly,
unlike other SDP relaxations in the literature [25, 65], in
the relative pose problem we cannot assume that tightness
is achieved when rank(X*) = 1, i.e., that x* can be recov-
ered by the factorization X* = x*(x*)T. Several works

SWe denote as Sff the set of d X d positive semidefinite (PSD) matrices.

6In practice, off-the-shelf solvers like SDPA [64] allow the use of a
sparse representation of the constraints and only store the nonzero values
of our constraints and minimization term.



have noted this empirically [10, 34, 69]. For instance, the
formulation of [69] can be tight when rank(X*) = 2. We
prove this in Supplementary B. Inspired by [23], to increase
the overall tightness of our solutions, we also include the
following redundant quadratic constraints in our method:

[xlall . (30)

We will refer to our method as C2P, and as C2P-fast when
the redundant constraints of Equation (30) are not used.

EE™ = [t]«[t]., ETE=

X

4.1. Relative pose recovery

Given the optimal SDP solution, X*, our goal is to recover
the optimal relative pose. We define X§, ¢ , = X715 1.1¢)
as the top-left 16 x 16 submatrix of X*. Empirically,
XE tq,n exhibits three nonzero singular values of varying
magnitudes, while others are close to zero (~ 107%). This
observation aligns with our parameterization, existing three
linearly independent vectors that equally minimize Eq. (19)
(shown in Theorem 4.1). However, only the vector corre-
sponding to the largest singular value meets the proposed
cheirality constraints (Sec. 3.1). The reasoning for this is
as follows: X* being a PSD matrix, can be decomposed
(ignoring the singular values close to 0) as Xg ¢, =
Zf’ o;v;v; when tight, and with (o;,v;) being a singular
value-vector pair. This implies that 1) Each v; minimizes
Eq. (19) (see Theorem 4.1), and 2) to satisfy the cheirality
constraints, the singular vector v; corresponding to the cor-
rect solution, must have the biggest singular value in order
to satisfy Egs. (22) and (23). If we are strict, we should take
into account the norms of E, t and q to see which singu-
lar pair contributes more positively in Eqs. (22) and (23).
However, in practice, the solution is consistently found in
the dominant singular vector (with biggest ;). We show
some experiments corroborating this in Figure 4. Given
the dominant vector v, we extract the parameters from its
decomposition vo = [(e*) T, (t*)T,(q*)T,h]T. We then
appropriately scale them, and follow the rotation recovery
approach of Sec. 3.2. The complete method is outlined in
Algorithm 1. For more details, please refer to Supp. A.

Sufficient and necessary condition for global optimal-
ity. To alleviate the notation in the following proof, let
us define the following auxiliary variables:

Xe = [*1;9,1:9] ;o Xiq X[1o 15,10:15) - 3D)
E,tq,h = X[*1:16,1:16] v Viq = [tT7q ] ) (32)
where X[*” ;-] Tepresents the submatrix of X* extracted

by selecting the rows and columns ranging from index 7
through index j.

Theorem 4.1. The semidefinite relaxation of Prob. (QCQP)
is tight if and only if rank(Xg ¢, ) € [1, 3] and its subma-
trices X3, X34 are rank-1.

Proof. For the only if part, assume the relaxation is tight.
Then, X* is contained in the convex hull of the linearly
independent rank-1 solutions to the relative pose prob-
lem [10]. We can form at most three feasible linearly-
independent solutions that minimize the cost equally’, e.g.:

e e e
X0 = |Viq|, X1 = | —Viq|, X2 = | —Viq| , (33)
h h —h

Note that t and g must share the same sign to be feasible.
Thus, the convex combination (oy; € RT,>" . a; =1, i €
{0,1,2}) that forms the globally optimal matrix can be ex-
pressed as:

* T T T
XE’thL = qpXoXy + o1X1X; + aXoXs , (34)
ee! aoevtT01 airhe
T T
= |agvige ViqViq 2hViq| (35)
arhe’ aghv;rq 1
where ag = (g — a1 — @2), a1 = (g + a1 — ag),

az = (ag — a1 + az). Therefore, rank(Xg ¢ 1) € [1,3]
and rank(Xy) = rank(Xg,) = 1.

For the if part, we build upon [69, Theorem 2]. Since
X* is a positive semidefinite (PSD) matrix, Xg and X{,
are also PSD as they are principal submatrices of X* [55].
Given that X7 and X§,, are both rank-1 matrices, it follows
that there exist two vectors e* € R? and v§, € RO that ful-
fill the primal problem’s constraints and satisfy e*(e*) T =
X3 and v (vig) | = Xiqo

Regarding the rank of X% . 5, since it is PSD, it can
be factorized as X, , = LL", where L € R'®*" and
r = rank(X} ta, h) Thus, to satisfy the rank-1 property
of Xg and Xg,, each column & of L must be given by:
[are’ bkvtq,ckh]T for some scalars ay, by, ¢, € R. This
constraint limits the rank of X ¢, to at most 3, as any
additional column in L would be a linear combination of
the existing ones. Therefore, since X ¢, , must be feasi-
ble, this implies that rank(Xg ¢ 1) € [1,3] and that it is a
convex combination of the three linearly independent solu-
tions, stemming from our parameterization of the problem,
and thus the relaxation is tight. O

5. Experiments

To solve Prob. (SDP), we use SDPA [20, 64], a solver for
general SDPs based on primal-dual interior-point methods.
For the experiments we use an Intel Core i5 CPU at 3.00
GHz. For comparison with non-minimal works, we con-
sider the globally optimal methods of [23, 69].

TRecall that the correct solution, besides minimizing the cost term, sat-
isfies the cheirality constraints, and is the singular vector associated with
the highest singular value, as commented in Sec. 4.1.
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Figure 4. The solution is found in the dominant singular vector.
We show, across different levels of noise and number of correspon-
dences (we repeat each experiment 100 times), boxplots for the ra-
tios oso1/00 (left box), os1/o1 (middle box), o1 /o2 (right box).
ool corresponds to the singular value whose vector contains the
estimate closest to the ground-truth. oo, 01, o2 represent, in order
(00 > o1 > 02) the top-three singular values (the rest are close to
zero). As can be seen, the solution vector consistently corresponds
to the dominant singular vector i.e. og1/00 = 1. Therefore, we
can directly select the dominant vector to recover the solution.

Algorithm 1 C2P: Relative pose without disambiguation

Input: List of correspondences {fy;,f1;}" ;, threshold

e, € RT, optional weights {w; }_;
Output: E* € Mg, geometrically correct relative pose
(R* € SO(3),t* € 8?), certif, is_pure_rot
# Precomputed constraint elements in Eq. (28) form
{(A;, b;) 17';_12 < Egs. (20), (21), (24) and (30)
# Cost matrix and data-dependent constraint matrices
C,A,,A; + Egs. (18), (22) and (23)
# Solve SDP and recover geometrically-valid rel. pose
X* ¢+ SDP(C,{(A;, b))} 72 A, Ay)  H#eg [64]
E*, t*, q*, s; + E1G(X*) # Sec. 4.1 and Supp. A.2
# Global-optimality and (near) pure-rotation certificates
certif < BOOL(X* meets Th. 4.1 rank conditions)
is_pure_rot < BOOL(s? < &)
: # Improve numerical accuracy—if needed (Supp. A.3)
. if s? < 1074 then

E*, t*, g* + SIGNEDEIG( E157:15]) # Supp. A.3
end if
: R* + RECOVERROTATION(E*, t*,q*)  # Sec. 3.2
: return E*, R*, t*, certif, is_pure_rot
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Synthetic data. Following [10, 23, 34, 69] we test our
method with synthetic experiments. To simulate the scenes
and cameras, we follow the procedure of [69]. Specifically,
we set the absolute pose of one camera to the identity. For
the other camera, the direction of its relative translation is
uniformly sampled with a maximum magnitude of 2, and
the relative rotation is generated with random Euler angles

10°
Runtime [3] Zhao + T
107!
-1 Zhao + M
/,//
/ C2P (ours)
e —~*| C2P-fast (ours)
1072 s;::’.--‘ """ -7
w0 10° 10°

# Correspondences

Figure 5. Run time vs number of correspondences. We compare
the execution time (in sec.) of C2P against Zhao [69] and Garcia-
Salguero et al. [23]. Unlike C2P, [23, 69] need a post-processing
step to disambiguate the four valid candidate poses. For this, we
use two methods: (T) the classic cheirality check [29], that trian-
gulates the points and checks for positive-depths, and (M) A faster
alternative, that avoids triangulation and instead checks Eq. (36).
C2P-fast and [69] + M, are the fastest when the number of cor-
respondences is low, and there exist small difference (< 2 ms) if
we use redundant constraints (C2P). However, for n > 10% (com-
mon in dense matchers [17, 18, 61]) the disambiguation step starts
dominating the runtime of [69] + M, while both versions of our
method (C2P and C2P-fast) present up to 4x and 35x times bet-
ter runtimes w.r.t. the fastest, and slowest alternative, respectively.

bounded to 0.5 radians in absolute value. This generates
random relative poses as they would appear in practical situ-
ations. We uniformly sample point correspondences around
the origin with a distance varying between 4 and 8 and then
transform each to the reference frames of the cameras to
obtain the unit bearing vectors. We add noise to the bear-
ings assuming a spherical camera i.e. we extract the tangent
plane of each bearing and add uniformly distributed random
noise expressed in pixels inside this plane.

Real data. Following [23, 69], we additionally consider the
six sequences from the dataset [56]. We generate 97 wide-
baseline image pairs by grouping adjacent images. For each
image pair, we extract correspondences with SIFT features
[43]. Then, we use RANSAC to filter out wrong corre-
spondences. These results are consistent with the synthetic
scenarios and we provide them in Supplementary D due to
space limitations.

Execution time Although our main contributions are theo-
retical, our method has the advantage of scaling better with
the number of correspondences, thanks to not requiring pos-
terior disambiguation. We compare our runtimes with those
of [23, 69] in Fig. 5 for varying number of points. Since
[23, 69] need to disambiguate the four candidate poses sat-
isfying the same epipolar geometry, we consider two tech-
niques: (T) classic triangulation of the correspondences,
followed by a positive-depth check [29] (we use OpenCV’s
recoverPose [7] for this) and, for fairer comparison, we
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Figure 7. s? as pure rot. metric. As the translation magnitude
decreases, the accuracy of the estimated t, declines due to its di-
minished impact on the cost function. Our slack variable, sf, al-
lows us to directly identify when the magnitude of t is < 10™2 of
relative to the scene’s scale through simple thresholding on s3.

also consider a method (M) that avoids triangulation and
is based on checking the estimated sign of the norms com-
puted with the midpoint method [3, 38]. Specifically, we
select the camera pose that satisfies the most:

(Rfy x fo) - (fo xt) >0, (Rfy xfy) - (Rfy xt) >0, (36)
for all correspondences. A geometric derivation of Eq. (36)
is found in [38]. In Supplementary C we provide an alge-
braic derivation. As can be seen, C2P-fast and [69] + M, are
the fastest methods when the number of correspondences is
low. Additionally, there exist small difference (< 2 ms)
w.r.t. C2P which includes redundant constraints. However,
for n > 103 (common in dense matchers [17, 18, 61]) the
disambiguation starts dominating the runtime of [69] + M,
while both C2P and C2P-fast present better scaling.

Accuracy vs number of correspondences We first test the
accuracy of the methods w.r.t. the number of correspon-
dences (n). To better visualize their behavior, we consider
two regimes: R1) n € [12,30] and R2) n € [102,10%]). We
fix the noise to 1 pixel (the same conclusions hold at dif-
ferent noise levels, as shown in Supp. D). For both regimes
we repeat the experiments 1000 times. We set the step size
of n to 1 in R1 and 400 in R2. In Fig. 6, we report the
mean rotation: arccos(0.5(tr(R,,., R) — 1)) and transla-

tion errors arccos(tt?uet) in degrees, where Ryye, tiye 1s the

ground-truth pose. From this experiment, we conclude that
redundant constraints help to improve the accuracy when n
is low, as in R1), both C2P and [23], outperform [69], while
our C2P is faster (Fig. 5). In R2) all methods are equally
accurate, while C2P and C2P-fast start becoming the fastest
methods. In practice, we can easily switch between C2P
and C2P-fast based on n, thus achieving a good balance in
speed and accuracy when compared to the alternatives.

Pure rotations In this experiment, we verify our method’s
efficacy under near-pure rotational motions, which is known
to be challenging [10, 37]. Besides, the slack variable sf,
corresponding to Eq. (23), enables the detection of such
motions through simple thresholding. Intuitively, Eq. (23)
corresponds to Eq. (4) and this inequality becomes 0 under
pure rotations (fy = Rf; in this case). In this experiment,
we vary the translation magnitude and do 1000 repetitions
for each, setting the noise to 0.5 pixels. Results in Sup-
plementary D, show that the rotation accuracy is unaffected
by the translation magnitude, but as this decreases, the es-
timate t worsens since the minimization of the epipolar er-
rors become more insensitive to t. C2P behaves similarly
as [23, 69], while C2P has the advantage of directly identi-
fying near-pure rotations by just checking s?, thus avoiding
extra steps such as the required in [69] (see Fig. 7).

6. Conclusion and Limitations

In this paper, we introduced C2P, a novel method for esti-
mating the relative pose that, for the first time in the litera-
ture, does not need posterior disambiguation. Our approach
efficiently constrains the parameter space during optimiza-
tion using the necessary and sufficient geometric and man-
ifold constraints, resulting in better runtime with more cor-
respondences and a better balance between accuracy and
efficiency compared to the alternatives. Additionally, our
method is certifiably globally optimal and can directly de-
tect near-pure rotational motions. C2P, however, as of now,
cannot deal with outliers, which is left for future work.

Acknowledgements. This work was supported by the Ministerio de Uni-
versidades Scholarship FPU21/04468, the Spanish Government (PID2021-

127685NB-100 and TED2021-131150B-100) and the Aragén Government
(DGA T45.23R).



References

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

Pablo Alcantarilla, Jesus Nuevo, and Adrien Bartoli. Fast
explicit diffusion for accelerated features in nonlinear scale
spaces. In BMVC. British Machine Vision Association, 2013.
1

Xiaowei Bao, Nikolaos V Sahinidis, and Mohit Tawar-
malani.  Semidefinite relaxations for quadratically con-
strained quadratic programming: A review and comparisons.
Mathematical programming, 129:129-157, 2011. 2

Paul A Beardsley, Andrew Zisserman, and David William
Murray. Navigation using affine structure from motion. In
ECCV. Springer, 1994. 8, 3

Nicolas Boumal. An introduction to optimization on smooth
manifolds. Cambridge University Press, 2023. 4

Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira.
The non-convex burer-monteiro approach works on smooth
semidefinite programs. In NeurIPS. Curran Associates, Inc.,
2016. 2

Stephen P Boyd and Lieven Vandenberghe.
mization. Cambridge university press, 2004. 2
G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 3,7

Jesus Briales and Javier Gonzalez-Jimenez. Convex global
3d registration with lagrangian duality. In CVPR, 2017. 2
Jesus Briales and Javier Gonzalez-Jimenez. Cartan-sync:
Fast and global se(d)-synchronization. [EEE RA-L, 2(4):
2127-2134, 2017. 2

Jesus Briales, Laurent Kneip, and Javier Gonzalez-Jimenez.
A Certifiably Globally Optimal Solution to the Non-Minimal
Relative Pose Problem. In CVPR, 2018. 1,2,3,5,6,7,8
Samuel Burer and Renato DC Monteiro. A nonlinear pro-
gramming algorithm for solving semidefinite programs via
low-rank factorization. Mathematical programming, 95(2):
329-357,2003. 2

Samuel Burer and Kyungchan Park. A strengthened sdp re-
laxation for quadratic optimization over the stiefel manifold.
Journal of optimization theory and applications, pages 1-20,
2023. 3

Carlos Campos, Richard Elvira, Juan J. Gémez Rodriguez,
José M. M. Montiel, and Juan D. Tardés. Orb-slam3: An
accurate open-source library for visual, visual—inertial, and
multimap slam. /EEE T-RO, 37(6):1874-1890, 2021. 1
Diego Cifuentes, Sameer Agarwal, Pablo A Parrilo, and
Rekha R Thomas. On the local stability of semidefinite re-
laxations. Mathematical Programming, pages 1-35, 2022.
5

Frank Dellaert, David M Rosen, Jing Wu, Robert Mahony,
and Luca Carlone. Shonan rotation averaging: Global opti-
mality by surfing so (p)" n so (p) n. In ECCV, pages 292-308.
Springer, 2020. 2

Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In CVPRW, 2018. 1

Johan Edstedt, Ioannis Athanasiadis, Marten Wadenbick,
and Michael Felsberg. DKM: Dense Kernelized Feature
Matching for Geometry Estimation. In CVPR, 2023. 1, 7,
8

Convex opti-

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]
(27]
(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

Johan Edstedt, Qiyu Sun, Georg Boékman, Marten
Wadenbick, and Michael Felsberg. RoMa: Revisiting Ro-
bust Lossses for Dense Feature Matching. arXiv preprint
arXiv:2305.15404,2023. 7, 8

Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381-395, 1981. 1

Katsuki Fujisawa, Masakazu Kojima, Kazuhide Nakata, and
Makoto Yamashita. Sdpa (semidefinite programming algo-
rithm) user’s manual—version 6.2. 0. Department of Math-
ematical and Com-puting Sciences, Tokyo Institute of Tech-
nology. Research Reports on Mathematical and Computing
Sciences Series B: Operations Research, 2002. 5, 6
Mercedes Garcia-Salguero and Javier Gonzalez-Jimenez.
Fast and robust certifiable estimation of the relative pose
between two calibrated cameras. Journal of Mathematical
Imaging and Vision, 63(8):1036-1056, 2021. 2

Mercedes Garcia-Salguero, Jesus Briales, and Javier
Gonzalez-Jimenez. Certifiable relative pose estimation. Im-
age and Vision Computing, 109:104142, 2021. 2

Mercedes Garcia-Salguero, Jesus Briales, and Javier
Gonzalez-Jimenez. A tighter relaxation for the relative pose
problem between cameras. Journal of Mathematical Imag-
ing and Vision, 64(5):493-505, 2022. 2,3,6,7,8, 1,4
Matthew Peter Giamou. Semidefinite Relaxations for Ge-
ometric Problems in Robotics. PhD thesis, University of
Toronto (Canada), 2023. 3, 5

Linus Hérenstam-Nielsen, Niclas Zeller, and Daniel Cre-
mers. Semidefinite relaxations for robust multiview trian-
gulation. In CVPR, 2023. 2, 5

R.I. Hartley. In defense of the eight-point algorithm. /EEE
TPAMI, 19(6):580-593, 1997. 2

Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong
Li. Rotation averaging. IJCV, 103:267-305, 2013. 1
Richard I Hartley and Fredrik Kahl. Global optimization
through rotation space search. IJCV, 82(1):64-79, 2009. 2
R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004. 1, 3, 5, 7

Uwe Helmke, Knut Hiiper, Pei Yean Lee, and John Moore.
Essential matrix estimation using gauss-newton iterations on
a manifold. IJCV, 74:117-136, 2007. 2

Nicholas J Higham. Matrix nearness problems and applica-
tions. Applications of matrix theory, 22, 1989. 4

Roger A Horn and Charles R Johnson. Matrix Analysis.
Cambridge university press, 2012. 3

M. J. Todd K. C. Toh and R. H. Tiitiincii. SDPT3 — A Mat-
lab software package for semidefinite programming, Version
1.3. Optimization Methods and Software, 11(1-4):545-581,
1999. 2

Arman Karimian and Roberto Tron. Essential matrix estima-
tion using convex relaxations in orthogonal space. In ICCV,
pages 17142-17152, 2023. 2,3, 6,7

Laurent Kneip and Paul Furgale. Opengv: A unified and gen-
eralized approach to real-time calibrated geometric vision. In
IEEE ICRA, pages 1-8, 2014. 3



(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

(44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

Laurent Kneip and Simon Lynen. Direct optimization of
frame-to-frame rotation. In /CCV, 2013. 2

Laurent Kneip, Roland Siegwart, and Marc Pollefeys. Find-
ing the exact rotation between two images independently of
the translation. In ECCV, pages 696-709. Springer, 2012. 3,
5,8

Seong Hun Lee and Javier Civera. Triangulation: Why opti-
mize? In BMVC, 2019. 8

Seong Hun Lee and Javier Civera. Geometric interpre-
tations of the normalized epipolar error. arXiv preprint
arXiv:2008.01254, 2020. 5

Seong Hun Lee and Javier Civera. Hara: A hierarchical ap-
proach for robust rotation averaging. In CVPR, pages 15777—
15786, 2022. 1

Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Polle-
feys. Lightglue: Local feature matching at light speed. In
ICCV,2023. 1

H Christopher Longuet-Higgins. A computer algorithm for
reconstructing a scene from two projections. Nature, 293
(5828):133-135, 1981. 1,2

David G Lowe. Distinctive image features from scale-
invariant keypoints. 1JCV, 60:91-110, 2004. 1,7, 3

Pierre Moulon, Pascal Monasse, Romuald Perrot, and Re-
naud Marlet. OpenMVG: Open multiple view geometry. In
International Workshop on Reproducible Research in Pattern
Recognition, pages 60—74. Springer, 2016. 1

Dominik Muhle, Lukas Koestler, Nikolaus Demmel, Flo-
rian Bernard, and Daniel Cremers. The probabilistic normal
epipolar constraint for frame-to-frame rotation optimization
under uncertain feature positions. In CVPR, 2022. 5

Rail Mur-Artal and Juan D. Tardés. Orb-slam2: An open-
source slam system for monocular, stereo, and rgb-d cam-
eras. IEEE T-RO, 33(5):1255-1262, 2017. 1

Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardés. Orb-
slam: A versatile and accurate monocular slam system. /EEE
T-RO, 31(5):1147-1163, 2015. 1

D. Nister. An efficient solution to the five-point relative pose
problem. IEEE TPAMI, 26(6):756-770, 2004. 1, 3

Rahul Raguram, Ondrej Chum, Marc Pollefeys, Jiri Matas,
and Jan-Michael Frahm. Usac: A universal framework for
random sample consensus. /[EEE TPAMI, 35(8):2022-2038,
2012. 1

David M Rosen, Luca Carlone, Afonso S Bandeira, and
John J Leonard. Se-sync: A certifiably correct algorithm for
synchronization over the special euclidean group. The In-
ternational Journal of Robotics Research, 38(2-3):95-125,
2019. 2

Raman Sanyal, Frank Sottile, and Bernd Sturmfels.
bitopes. Mathematika, 57(2):275-314,2011. 3

J. Saunderson, P. A. Parrilo, and A. S. Willsky. Semidefinite
descriptions of the convex hull of rotation matrices. SIAM
Journal on Optimization, 25(3):1314-1343, 2015. 3
Johannes L. Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In CVPR, 2016. 1, 3

Henrik Stewénius, Christopher Engels, and David Nistér.
Recent developments on direct relative orientation. ISPRS
Journal of Photogrammetry and Remote Sensing, 60(4):284—
294, 2006. 1

Or-

10

[55]

[56]

[57]

(58]

(591

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

(70]

Gilbert Strang and Linear Algebra. its applications. Aca-
demic Press, New York, 14:181208, 1980. 6, 2

C. Strecha, W. von Hansen, L. Van Gool, P. Fua, and U.
Thoennessen. On benchmarking camera calibration and
multi-view stereo for high resolution imagery. In CVPR,
2008. 7,3, 4

Jos F. Sturm. Using sedumi 1.02, a MATLAB toolbox for
optimization over symmetric cones. Optimization Methods
and Software, 11(1-4):625-653, 1999. 2

Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and
Xiaowei Zhou. Loftr: Detector-free local feature matching
with transformers. In CVPR, 2021. 1

Roberto Tron and Kostas Daniilidis. On the quotient repre-
sentation for the essential manifold. In CVPR, 2014. 2
Roberto Tron and Kostas Daniilidis. The space of essential
matrices as a riemannian quotient manifold. SIAM Journal
on Imaging Sciences, 10(3):1416-1445, 2017. 2, 3

Prune Truong, Martin Danelljan, Radu Timofte, and Luc
Van Gool. PDC-Net+: Enhanced Probabilistic Dense Cor-
respondence Network. [EEE TPAMI, 45(8):10247-10266,
2023. 1,7, 8

Charles F Van Loan. The ubiquitous kronecker product.
Journal of computational and applied mathematics, 123(1-
2):85-100, 2000. 5

Lieven Vandenberghe and Stephen Boyd. Semidefinite pro-
gramming. SIAM review, 38(1):49-95, 1996. 5

Makoto Yamashita, Katsuki Fujisawa, Kazuhide Nakata,
Maho Nakata, Mituhiro Fukuda, Kazuhiro Kobayashi, and
Kazushige Goto. A high-performance software package for
semidefinite programs: Sdpa 7. Technical report, 2010. 5, 6,
7,2

Heng Yang and Luca Carlone. A quaternion-based certifi-
ably optimal solution to the wahba problem with outliers. In
ICCV,2019. 2,5

Heng Yang, Pasquale Antonante, Vasileios Tzoumas, and
Luca Carlone. Graduated non-convexity for robust spatial
perception: From non-minimal solvers to global outlier re-
jection. IEEE RA-L, 5(2):1127-1134, 2020. 1

Heng Yang, Jingnan Shi, and Luca Carlone. Teaser: Fast
and certifiable point cloud registration. IEEE T-RO, 37(2):
314-333,2021. 2

Jiaolong Yang, Hongdong Li, and Yunde Jia. Optimal essen-
tial matrix estimation via inlier-set maximization. In ECCV.
Springer, 2014. 2

Ji Zhao. An efficient solution to non-minimal case essential
matrix estimation. I[EEE TPAMI, 44(4):1777-1792, 2022. 1,
2,3,5,6,7,8,4

Ji Zhao, Wanting Xu, and Laurent Kneip. A certifiably glob-
ally optimal solution to generalized essential matrix estima-
tion. In CVPR, 2020. 2



From Correspondences to Pose:
Non-minimal Certifiably Optimal Relative Pose without Disambiguation

Supplementary Material

In this supplementary material, we provide additional
details of our method in Supplementary A, proofs in Sup-
plementaries B and C and experiments in Supplementary D.

A. Additional details
A.1. Averaging of data-dependent constraints

We provide here compact expressions for averaging the
data-dependent coefficients of the quadratic terms stem-
ming from Egs. (22) and (23). We will use the notation
a'9) to refer to the j — th element of a vector a.

Rotation. For clarity, we recall Eq. (22):
fE[t]fo —s2=0, (37)
The quadratic terms for one correspondence (fy, f;) are:
£OF0e®t® 1 (VM@ 4 gVEP e
+£VE0e@4@ 4 gMED M@ 4 VgD e®)(0)
+ EDEO 041 | @ e 1g1) 4 2§ o(2)4(1)
— 1050 e®t® _ 0N eMt®) Ve e®1)  (38)
_ fél)flm)e(o)t(?) _ fél)fl(l)e(l)t@) _ fél)ff2)e(2)t(2)
_ f(gQ)f1<O>e(3)t(0) _ féQ)fl(l)e(4)t(0) _ féQ)fo)e@)t(O)

where, e := vec(ET), as defined in the main paper.

With this ordering, the coefficients of the first nine terms
of Eq. (38) (from féo)fl(o) to féQ)fl(z)) can be computed as
vec(f, fy ), which is a nine-dimensional vector (one element
per coefficient). Thus, the averaging of the terms across n
correspondences {fy ;, f1 ; }I_; can be expressed as:

1 n
vec <n Z;fl_,ifgi> . (39)

Furthermore, the subsequent nine quadratic terms have the
same (but negated) coefficients. Thus, the values of Eq. (39)
can be reused for these coefficients.

Translation. For clarity, we recall Eq. (23):
hfyt —hfq—s2=0, (40)
The quadratic terms for one correspondence (fy, f; ) are:
hEVt© + pelVt W 4 pg(Pe®
fhfl(o)q(o) _ hfl(l)q(l) _ hfl(Z)q@) 41)

2 _
—s5; =0

In this case the coefficients of the quadratic terms are di-
rectly given by the bearings. Thus, the average for the first
three coefficients can be computed as 1/nY " fy, and as
—1/n Y"1 f; for the subsequent three coefficients.

A.2. Appropriate scaling of the solution estimates

As explained in Sec. 4.1, we extract the solution esti-
mates from the dominant singular vector, denoted as vy,
of X ¢qn = X{i16,1:16)- Following the ordering and
notation of the main paper, this corresponds to vy =
[(e")T,(t*)7,(q*)",h]". However, the norm constraints
enforced during the optimization, namely t 't = 1, q ' q =
1 and tr(EET) = 2, apply to X* and not to vo. Conse-
quently, we cannot assume that the elements of this domi-
nant vector will be scaled appropriately even after multiply-
ing it with its singular value. The solution to this is straight-
forward: we separately normalize the vectors t and q to
make them unit vectors, and scale e := vec(ET) such that
its nonzero singular values equal 1 (in practice, we use the
SVD of E for greater precision). Finally, we leverage the
absence of products between the slack variable s; and the
rest of the parameters in Prob. (QCQP) to directly read sf
from its corresponding diagonal entry in X*, thus avoiding
the need to factorize X* to obtain its value.

A.3. Pure rotations and numerical accuracy

Under pure rotations, considering an optimal essential ma-
trix, E*, any pair of translation vectors t, q € S? satisfying
the definition q := R Tt will minimize the sum of squared
epipolar errors. Here, R € SO(3) represents one of the two
rotation matrices corresponding to E*. Given that both t, q
belong to S2, one might expect to find two additional sin-
gular vectors corresponding to nonzero singular values, in
addition to the three singular vectors metioned in Sec. 4.1.
However, we empirically verified that four additional sin-
gular vectors appear instead. We observed the same phe-
nomenon in [23, 69]. This phenomenon likely occurs be-
cause the constraints apply only to the optimal matrix X*.
Therefore, the elements in the singular vectors of X* do not
need to satisfy the norm constraints (e.g. that t, q belong to
S?) to still minimize the cost function. This may explain
the similar behavior noted in [10] regarding pure rotations.

Importantly, in our case, the correct solution can be
extracted from the dominant singular vector thanks to
Eq. (22), which enforces a larger singular value correspond-
ing to the vector containing the solution. However, for
pure rotations and in absence of noise, the component in
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Figure 8. Noise-free pure rotation scenarios. For our method, an edge case consists of noise-free pure rotational motions. In noise-free
scenarios (a) the estimate of h within the dominant singular vecto—which contains the rest of the solution estimates—approaches 1 in
near-pure rotational motions (when the relative scale is < 10™%), negatively affecting the numerical accuracy of the other estimates. As
can be seen, we effectively address this by using the dominant singular vector from the submatrix excluding h. However, despite the
effectiveness of this solution, this numerical issue is not present in practical scenarios (b), (c), where noise affects the observations. These
visualizations depict results averaged across 1000 different random instances of the same synthetic scenarios considered in the main paper.

the (unit) singular vector corresponding to the homogeniza-
tion variable, h, dominates the rest, being close to ~ 1.
This predominance reduces the numerical accuracy of the
other estimates (e,t and q). Since this behavior is only
present in a noise-free scenario, we can use a strict thresh-
old in the slack variable s? (we use 10~%) to detect such
scenario. Consequently, only in this case, we extract the so-
lution from the dominant singular vector of the submatrix
corresponding only to e, t and q, leveraging the previous
numerically-inaccurate solution to just correct the sign of
this new numerically-accurate solution, if necessary. This
behavior is shown in Fig. 8.

B. Tightness of [69] when the SDP solution is
rank-2

In [69, Eq. 11] the following QCQP is considered:
Problem QCQP-Z

min e' Ce, (42)
Et
st. BET = [t]«[t]), tTt=1. (43)

The tightness conditions in [69, Th. 2] assume that tightness
of the semidefinite relaxation imply rank(X*) = 1, where
X* represents the optimal solution of the SDP. In this sec-
tion, we adapt Theorem 4.1 to extend [69, Th. 2] and show
that Prob. (QCQP-Z) can also be tight when rank(X*) = 2.

With a similar notation as in the main paper, let us define
the following auxiliary variables:

X5 = XKoo Xi = Xioaonn - @4

Theorem B.1. The semidefinite relaxation of Prob.
(QCQP-Z) is tight if and only if rank(X*) € [1,2], and
its submatrices X} and X} are rank-1.

Proof. For the only if direction, assume the relaxation is
tight. Then, following [10], we can find X* in the convex

hull of the linearly independent rank-1 solutions to the rel-
ative pose problem?®:

X* = ozoxoxoT + alxlxlT, (45)

Xg = [‘j , X1 = {_et] , (46)

where o, o are non-negative scalars such that ag + a3 =
1. This last condition ensures that the cost is optimal, i.e.,
tr(CoX*) = e' Ce, and that the resulting matrix X* is
feasible. To see this, we can expand Eq. (45):

« [(ag+ar)ee” (ag—ar)et’
X = [(Olo —aq)te’  (ap+att’ |’ 47

to verify that ap + a3 = 1 is needed to satisfy the norm
constraint t 't = 1 (the rest of the constraints are satis-
fied for any valid combination of g and ;). This reveals
that when the semidefinite relaxation is tight, the diagonal
(upper-left and bottom-right) block matrices are rank-1 and
that rank(X*) € {1,2}. Specifically’, rank(X*) = 1
when ag = 0 and a; = 1 or when ag = 1 and a; = 0.
Otherwise rank(X*) = 2.

For the if part, we build upon [69, Theorem 2]. Since X*
is a positive semidefinite (PSD) matrix, X} and X} are also
PSD as they are principal submatrices of X* [55]. Given
that X7 and X7 are both rank-1 matrices, it follows that
there exist two vectors e* € R? and t* € R? that fulfill
the primal problem’s constraints and satisfy e*(e*) T = X}
and t*(t*) 7T = X¢.

Regarding the rank of X*, since it is PSD, it can be
factorized as X* = LLT, where L € R!2%" and r =
rank(X*). Thus, to satisfy the rank-1 property of X} and

8Note that the outer products of the negative counterparts, [—e T, —t |

and [—e T, tT], are not included, as they yield the same outer product.
9In practice, off-the-shelf SDP solvers [33, 57, 64] return a rank-2

block-diagonal solution [23], which corresponds to setting ag = a1 =

0.5 in Egs. (45) and (47).



X}, each column k of L must be given by: [aze’, byt T]T,
for some scalars ay, by, € R. This constraint limits the rank
of X* to at most 2, as any additional column in L would be
a linear combination of the existing ones. Therefore, since
X* must be feasible, this implies that rank(X*) € [1,2]
and that it is a convex combination of the two linearly in-
dependent solutions, stemming from Eq. (45), and thus the
relaxation is tight. O

C. Algebraic derivation of Equation (36)

Given estimates of the relative rotation and translation
(R, t), and a correspondence (£, f; ), the midpoint method
triangulates the corresponding 3D point p € R3. It identi-
fies this point as the midpoint (mean) of the common per-
pendicular to the two rays originating from the bearings [3].
Specifically, it determines the norms Mg, A\; € R of the 3D
points, pg := Aofy, p1 = A1fy, in each camera reference
system, that minimize the squared error | po — (Rp1 +t)||*:

o, A\| = arg /{ni/{l [ Mofo — (M RE +t)]|% . (48)

0,71

If the 3D points and their midpoint (mean) satisfy the
cheirality constraints, both norms Ay and \; will be posi-
tive. Otherwise, at least one of the norms will be estimated
as negative [60]. As will be shown, it is not necessary to
explicitly compute A\g and A; to estimate their signs.

The rays of ideal, noise-free correspondences meet in a
3D point, satisfying A\ofy — A1 Rf; = t, or in matrix form:

[fo —Rfi] B?] =t (49)
N————

AeRS X2

In practice, we minimize the squared errors. As such, an
equivalent solution to Eq. (48) is given as the solution to the
system ATA [\g, \]T = ATt:

1 —fTRE][N] £
_fTRE, 1 HAl w7t OO

where we have used that (f;)"f, = 1, k € {0,1} since
fy, fi € S2. Expanding Equation (50) leads to:

Ao — \ify Ry = £ t, (51)
A — Aofy Rfy = —(Rfy) "t (52)

which leads to the equivalent equations:

s?A =—(Rf1) "t + (£ RE)(f) t) , (53)
2\ = £t — (fy RE)((RE) L) . (54)

where

s2i=1— (fJRﬂ)Q = sin® Z(fo, Rfy) . (55)

Since s2 > 0, this implies that the RHS of Egs. (53)
and (54) must be positive for Ay, A1 to be positive too:

—(RE) "t + (RE)(t) >0,  (56)
£/t — (f, Rf))((Rf))"t) >0, (57)

Lastly, to express Egs. (56) and (57) in compact form, we
can use the property of the cross product:

(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c), (58)

for any a, b, c,d € R?, and with a - b = a" b representing
the dot product between any vectors a, b. With this prop-
erty, we reach the inequalities:

(Rf; x o) - (fg xt) >0, (59)
(Rf; x f5) - (Rf; x t) >0, (60)

corresponding thus to Eq. (36).

D. Additional experiments
D.1. Accuracy vs noise and translation magnitude

In Figure 9, we show additional synthetic experiments. In
Fig. 9(a)-(e), we verify that the conclusions drawn in Fig. 6
are consistent across different of levels of noise. In regimes
with a small number of points (Fig. 9(a),(c)), our C2P and
[23] perform the best. Notably, C2P is faster than [23] (see
Fig. 5) and slightly outperforms it in estimating translation
(Fig. 9(c)). In regimes with a large number of points, the
accuracy of our faster version of C2P is on-par with C2P
itself and [23]. In Fig. 9(e), we fix the number of points
at 1000 while varying the noise level and observe the same
behavior. Finally, in Fig. 9(f), we demonstrate that C2P
performs as well as [23, 69] when varying the scale of the
translation w.r.t. the scene, and unlike them, C2P is also
capable of directly detecting near-pure rotational motions
and does not need posterior disambiguation step.

D.2. Real-data

Following [23, 69], we test our method on all the sequences
from Strecha et al. [56]. We generate 97 wide-baseline im-
age pairs by grouping adjacent images. For each image pair,
correspondences are extracted using DoG + SIFT [43]. We
then use the RANSAC implementation of OpenGV [35] to
filter out wrong correspondences, setting the inlier thresh-
old to 5 pix, which we found sufficient given the images
resolution of 3072 x 2048 pix. The performance of C2P(-
fast) and [23, 69] is shown in Fig. 10. The results align with
those from the synthetic experiments. C2P-fast is the fastest
among all the methods. However, C2P-fast is not always
tight, resulting in a slight loss of accuracy with respect to
the alternatives. On the other hand, our C2P is significantly
more accurate than [69] and is on-par with [23]. Addition-
ally, our C2P is 40% faster than [23] on average.
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Figure 9. Additional synthetic experiments. We evaluate our proposed C2P and C2P-fast under various conditions: (a)-(d) number of
correspondences, (a)-(e) noise levels, and (f) relative translation scale w.r.t. scene. As shown in (b) and (d), C2P-fast is well-suited for
scenarios where n > 10®, performing on-par with C2P and [23, 69], while being faster (Fig. 5). With fewer correspondences, as shown in
(a) and (c), C2P outperforms [69], slightly surpassing the accuracy of [23] in estimating the translation, while also being faster. The same
conclusions are reached when varying the noise levels (e). Finally, in (f) we show that C2P performs as well as [23, 69] when varying the
scale of the translation relative to the scene, and unlike them, C2P is capable of directly detecting near-pure rotational motions.
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Figure 10. Performance across all sequences (97 pairs) from Strecha et al. [56]. (left) Relative rotation and translation errors (in
degrees) for all image pairs. (right) Averaged execution times for computing the relative pose for each method. As can be seen, C2P-fast
is the fastest among all methods. However, C2P-fast is not always tight, resulting in a slight loss of accuracy when compared to the
alternatives. On the other hand, our C2P is significantly more accurate than Zhao [69] and is on-par with Garcia-Salguero et al. [23]
(labeled on the left as G-Salg.). Additionally, our CG2P is, on average, 40% faster than [23].
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