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Model reduction is the construction of simple yet predictive descriptions of the dynamics of
many-body systems in terms of a few relevant variables. A prerequisite to model reduction is
the identification of these relevant variables, a task for which no general method exists. Here, we
develop a systematic approach based on the information bottleneck to identify the relevant variables,
defined as those most predictive of the future. We elucidate analytically the relation between these
relevant variables and the eigenfunctions of the transfer operator describing the dynamics. Further,
we show that in the limit of high compression, the relevant variables are directly determined by
the slowest-decaying eigenfunctions. Our information-based approach indicates when to optimally
stop increasing the complexity of the reduced model. Furthermore, it provides a firm foundation
to construct interpretable deep learning tools that perform model reduction. We illustrate how
these tools work in practice by considering uncurated videos of atmospheric flows from which our
algorithms automatically extract the dominant slow collective variables, as well as experimental
videos of cyanobacteria colonies in which we discover an emergent synchronization order parameter.

The exhaustive description of a biological or physical
system is usually impractical due to the sheer volume of
information involved. As an example, the air in your of-
fice may be described by a 1027–dimensional state vector
containing the positions and momenta of every particle in
the room. Yet, for most practical purposes, it can be effec-
tively described using only a small number of quantities
such as pressure and temperature. Similar reductions can
be achieved for systems ranging from diffusing particles
to biochemical molecules and complex networks. In all
cases, certain relevant variables can be predicted far into
the future even though individual degrees of freedom in
the system are effectively unpredictable.

The process by which one goes from the complete
description of a system to a simpler one is known as
model reduction. Diverse procedures for model reduc-
tion exist across the natural sciences. They range from
analytical methods, such as adiabatic elimination and
multiple-scale analysis [1–9], to data-driven methods such
as independent component analysis [10], dynamic mode
decomposition [11–13], diffusion maps [14], spectral sub-
manifolds [15, 16], and deep encoder-decoder neural net-
works [17–24].

The success of these approaches is limited by a funda-
mental difficulty: before performing any reduction, one
has to identify a decomposition of the full system into
relevant and irrelevant variables. In the absence of prior
knowledge and intuition (e.g. a clear separation of scales),
identifying such a decomposition is an open problem [4].
It may not even be clear a priori when to stop increasing
the complexity of a simplified model or, conversely, when
to stop reducing the amount of information needed to
represent the dynamical state of a complex system. In

both cases one must first determine the minimal number
of relevant variables that are needed. The answer to this
question depends in fact on how precisely and how far
in the future you wish to forecast. Nonetheless, this an-
swer should be compatible with fundamental constraints
on forecasting set by external perturbations and finite
measurement accuracy [25, 26].

In order to address the difficulty identified in the pre-
vious paragraph, we develop an information-theoretic
framework for model reduction. Very much like MP3
compression is about retaining information that matters
most to the human ear [27], model reduction is about
keeping information that matters most to predict the fu-
ture [28, 29]. Inspired by this simple insight, we formalize
model reduction as a lossy compression problem known
as the information bottleneck (IB) [30? , 31]. This formal
step allows us to give a precise answer to the question of
how to identify relevant and irrelevant variables. We show
how and under what conditions the standard operator-
theoretic formalism of dynamical systems [19, 32], which
underlies most methods of model reduction, naturally
emerges from optimal compression. Crucially, our frame-
work systematically answers the question of when to stop
increasing the complexity of a minimal model. Further, it
provides a firm foundation to address a practical problem:
the construction of deep learning tools to perform model
reduction that are guaranteed to be interpretable. We
illustrate our approach on benchmark dynamical systems
and demonstrate that it works even on uncurated datasets,
such as satellite movies of atmospheric flows downloaded
directly from YouTube and biological datasets composed
of microscopy videos of cyanobacteria colonies in which
we discover an emergent synchronization order parameter.
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FIG. 1. Interpretable dynamical variables in reduced models via the information bottleneck. (a) The information
bottleneck compresses high-dimensional state variables xt, into simpler encoding variables ht providing a controllable trade-off
between the degree of compression and the predictive power about the system’s future. With deep neural networks, the encoding
can be computed directly from data of observed fluid flows (left) or biological datasets, such as fluorescently labeled bacteria
colonies (right). In general, the state of the variable xt may comprise time-lagged variables of the intensity field, xt = {It, It+∆t}
(right). The amount of compression is determined by the “width” of the bottleneck β [see (1))]. The resulting compressed, or
encoded, variables ht represent collective variables most predictive of the system’s future. (b) Schematic evolution of the encoder
p(ht|xt) for varying compression strength β. For low β (high compression), the encoder is trivial and forgets everything about the
input xt. After the first IB transition at β1, the encoder becomes non-trivial by gaining some dependence on xt; some features of
the input are able to pass through the bottleneck. At subsequent IB transitions, additional features are learned. (c) The point
spectrum of the transfer operator contains several slowly decaying modes (red). We show that the most predictive variables that
IB systematically extracts correspond to the slowest eigenfunctions of the transfer operator, associated to eigenvalues Λi with
|Λi| ≈ 1. In fluid flows, the slowest-decaying eigenfunctions typically represent large-scale coherent patterns of the flow field,
while faster-decaying eigenfunctions correspond to variations over shorter length scales.

I. MODEL REDUCTION AS A COMPRESSION
PROBLEM

We present here a method to extract collective variables
most predictive of the system’s future evolution directly
from data. This data is composed of a time sequence
of measured states x1, x2, ..., xT . The system state xt
could correspond to anything from the position of a single
particle to an image of a fluid flow or the fluorescent
molecules in a living system (Fig. 1a). The full state can
be very high dimensional, with a number of dimensions
equal to the number of observed pixels in the case of
imaging data. However, the variation of any individual
pixel is often of limited interest to us, as noise (either
inherent or due to measurement) induces uncertainty
about its true value. Individual pixels are, due to this
uncertainty, poor predictors of the future state of the
system. We can say that they are irrelevant for predicting
the future. On the other hand, certain spatially-averaged
collective variables may evolve slowly in time, and the
future state of the system may be reliably estimated from
them.

We seek a way to “encode” each state xt into a simple,
lower-dimensional representation ht in a way that isolates
these relevant features of the input xt. For instance, in
Fig. 1a, both the velocity field of a fluid flow and the im-
ages of a dynamic cyanobacteria colony (upper row) may

be encoded as a point in a 2D space (lower row). The en-
coding is given by a probabilistic mapping p(ht|xt) which
can be thought of as a machine which takes a state xt
and assigns it to a value ht. The fact that this mapping is
probabilistic simply means we may have some uncertainty
about the true value of ht even given a measurement of
the state. Whether or not some encoding is extracting “rel-
evant” features of the state xt is determined by the extent
to which we can use it to predict the future. This predic-
tive power can be quantified by the mutual information
between the encoding and the future state, I(Ht, Xt+∆t),
which tells us how much the knowledge of Ht reduces our
uncertainty about the future Xt+∆t (see Methods). (In
our notation, upper-case Xt refers to the random variable,
while xt refers to a particular value taken by the random
variable.) To find a good encoder that extracts relevant
features, we might try to find an encoding which maxi-
mizes this information. However, an encoder obtained in
this way would simply copy the original state, ht = xt,
since xt represents all the information we have about the
system. In order to encourage the encoder to discard irrel-
evant features, we simultaneously seek an encoder which
maximizes compression by minimizing the information
about the original state, I(Ht, Xt). This prescription for
encoding relevant collective variables can be formalized
by the information bottleneck (IB) method [28, 30, 31].
The information bottleneck objective function combines
both of our stated goals – compression and predictive
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power – into one mathematical expression:

LIB[p(ht|xt)] = I(Xt, Ht)− βI(Xt+∆t, Ht). (1)

Crucially, the parameter β allows one to tune how much
weight to assign to compression versus prediction. For
small β the compression term dominates and the optimal
encoder is trivial, losing all information about the system.
For intermediate β the compression term does not allow
Xt to be completely captured by Ht, so that features
of Xt must “compete” to pass through to the encoding
variable (Fig. 1b). These features are reflected in the form
of the encoder

p∗(ht|xt) = arg min LIB (2)

which provides the optimal trade-off between compression
and predictability [29]. Our goal is to connect the dynam-
ical properties of the system to the features learned by
the encoder.

In any realistic experimental setting, the presence of
noise or uncertainty means we cannot predict precisely
the future state of a system but instead can only predict a
likely distribution of possible future states. Our prediction
of the state at ∆t in the future is then represented math-
ematically as p(xt+∆t|xt), the probability of observing
state xt+∆t given the current state xt. This conditional
probability distribution completely characterizes the dy-
namics of the system, and determines how probability
distributions evolve in time:

p(xt+∆t) =

∫
p(xt+∆t|xt)p(xt)dxt. (3)

For Markovian, or “memoryless” dynamics, such an evolu-
tion can be understood as the action of a (linear) transfer
operator U which acts on probability distributions. U
can be decomposed into its right and left eigenvectors as

U =
∑
n

|ρn⟩ eλn∆t ⟨ϕn|+ Uess (4)

where |ρn⟩ are right eigenvectors with eigenvalue Λn ≡
eλn∆t and ⟨ϕn| are the corresponding left eigenvectors.
λn are the eigenvalues of the infinitesimal generator of U ,
known as the Fokker-Planck operator (Fig. 1c). The oper-
ator Uess corresponds to the so-called essential spectrum,
and we assume that it can be neglected. This is usually
possible when the system is subjected to even a small
amount of noise, or when some amount of uncertainty
is present in the measurements [33, 34]. The eigenfunc-
tions ϕn in (4) are in some sense “natural” features of the
dynamics, as they evolve independently in time.

Our key observation is that the optimal encoder in (2)
can be expressed in terms of the eigenvalues λn and left
eigenfunctions ϕn of (the generator of) U ,

p∗β(ht|xt) =
p∗β(ht)

N (xt)
exp

[
β
∑
n

eλn∆tϕn(xt)fn(ht)

]
(5)

where fn(ht) are factors that do not depend on xt. For
an outline of the mathematical steps leading to this see
Methods, as well as the SI. These factors effectively de-
termine what the encoder learns about the state xt. In
general, there may be a large number of non-zero factors
fn so that the learned features are difficult to extract.
However, things become simple in the limit of small β, or
high compression. When β is small the encoder is trivial:
p(ht|xt) = p(ht). In this case the value ht is assigned at
random with no regard to the state xt of the system. No
feature has been learned, and all factors fn are equal to
zero. As β is increased, the encoder undergoes a series of
transitions at β = β1 < β2 < β3... where new features are
allowed to pass through the bottleneck (Fig. 1b) [35–38].
The first transition happens at a finite value of β1 when
the first most predictive feature is learnt.

Surprisingly, we find that at the first IB transition the
vector of fn coefficients is dominated by a single term f1.

p∗β(ht|xt) ≈
p∗β(ht)

N (xt)
exp

(
β eλ1∆tϕ1(xt)f1(ht)

)
(6)

This is our main mathematical result, which we derive by
considering a perturbative expansion of the IB objective
for small fn. A proof of Eq. 6 with clearly specified
technical assumptions may be found in the Methods and
SI.

The above statement shows that in the limit of high
compression the encoder’s dependence on xt is given by
the first left eigenfunction ϕ1(xt), which is the slowest-
varying function of the state under dynamics given by U .
Therefore, Eq. 6 makes precise the intuitive statement
that slow features are the most relevant for predicting
the future. Our analytical result, while applying only to
the dominant eigenfunction, is valid for arbitrary non-
Gaussian variables. The question of maximally informa-
tive features has additionally been explored in the context
of animal vision, where one seeks to understand what fea-
tures of the field of vision are encoded by retinal neurons
[39, 40].

We further observe numerically that this picture holds
true more generally: also at successive IB transitions,
the learned features correspond to successive modes of
the transfer operator. This picture is consistent with the
exact results known for Gaussian IB, where the encoder
learns eigenvectors of a matrix (related to the covari-
ance of the joint Xt, Xt+∆t distribution) in a step-wise
fashion at each IB transition [37]. Together, this shows
that the most informative features extracted by IB, an
agnostic information-theoretic approach, correspond to
physically-interpretable quantities – namely transfer oper-
ator eigenfunctions. As we show later, the insight above
can be leveraged to systematically learn these slow vari-
ables directly from data with neural networks [41].
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FIG. 2. Information loss of a Brownian particle in a double well potential. (a) Fixed point (FP) diagram of the
dynamics given by Eq. 7 for zero noise. There is a bifurcation at µ = 0 where the stable FP at x = 0 becomes unstable and
two new stable FPs appear at ±√

µ. Insets show the evolution of the corresponding potential V (x), with the emergence of a
double-well structure for µ > 0. (b) Dynamics of the system Eq. 7 for varying values of µ corresponding to the potential insets
in (a), with uniformly-distributed initial conditions. (c) Loss of information between the initial condition and the future state.
Inset shows scaling given by the first eigenvalue of the transfer operator. (d) Mutual information between the present and future
state for varying time delay ∆t and bifurcation parameter µ. (e) Spectrum of the transfer operator U , showing a pile-up of
eigenvalues for µ ≳ 0. These are related to the eigenvalues of its infinitesimal generator by Λi = eλi∆t. (f) Maximal mutual
information which can be encoded into a discrete variable of NH values, for a fixed time delay ∆t = 1.0. Black dashed line
shows I(Xt, Xt+∆t) for reference. Information is provided in units of bits.

II. INFORMATION DECAY AND THE
SPECTRUM OF THE TRANSFER OPERATOR

To develop intuition for information in a dynamical
system, we turn to the simple example of a Brownian
particle trapped in a confining double-well potential. This
might represent, for example, a molecule with a single
degree of freedom that transitions between two metastable
configurations [42]. In the overdamped limit the state
of the particle is completely determined by its position
Xt ∈ R, with dynamics given by the Langevin equation

ẋt = −∂xV (xt) + σηt. (7a)

V (x) =
1

4
(µ− x2)2 (7b)

Here, ηt is unit-variance white noise, σ controls its
strength, and µ controls the shape of the potential V (x).

The deterministic dynamical system undergoes a bifur-
cation at µ = 0 (Fig. 2a). Sample trajectories, with noise,
for a uniform initial distribution of particles are shown
in Fig. 2b. For negative µ, the trajectories all converge
to a fixed point at x = 0, while for µ > 0 they fluctuate
around the fixed points at x = ±√

µ.
To quantify the amount of information about the future

state Xt+∆t contained in the initial state Xt we compute
their mutual information (Fig. 2c; see SI for details). The
dynamics of Xt are Markovian, so that for any sequence of
times t0 < t1 < t2, p(Xt2 |Xt1 , Xt0) = p(Xt2 |Xt1). From
the data processing inequality, one has [43]

I(Xt2 , Xt0) ≤ I(Xt1 , Xt0),

which implies that information can only decrease in time.
What governs the rate at which information decays?

Here we can already see the role of the spectrum of the
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FIG. 3. “Knowing when to stop”. The spectral properties of the transfer operator determine the necessary complexity (i.e.
“when to stop” [25]) of the reduced model, which we show is also visible in information theoretic metrics. (a) Four-well potential
in which a Brownian particle fluctuates. The magnitude σ of the fluctuating noise is related to an energy scale Eσ = σ2. (b)
Information contained in the encoding variable Ht about the future state Xt+∆t for varying levels of noise and alphabet sizes
NH . (c) Information gain achieved by increasing the alphabet size by a single variable. This is the discrete derivative of the
curve in (b). (d) Spectrum of the transfer operator for changing values of noise amplitude.

dynamics’ transfer operator. By exploiting the spectral
expansion of the conditional distribution p(xt+∆t|xt) one
finds that for long times the information decays as

I(Xt, Xt+∆t) = e2λ1∆t⟨ϕ21⟩⟨ρ21/ρ20⟩+O(e2λ2∆t) (8)

where expectations are taken over the steady state distri-
bution (see SI). Asymptotically, the information decay is
set by the value of λ1, the rate of decay of the slowest-
varying function ϕ1(x) under the dynamics of U . In the
limit of infinite time, for any value of µ even weak noise
will cause the mutual information to become zero as there
is a non-zero probability of hopping between the wells,
though this rate of hopping is exponentially small [33].

The loss of information in time depends on the bifurca-
tion parameter µ as summarized in Fig. 2d. Note the peak
in I(Xt, Xt+∆t) for small, positive µ. This corresponds
to dynamics where observation of Xt strongly informs the
future state; recall that the mutual information is max-
imized when the conditional entropy S(Xt+∆t|Xt) ≈ 0
(see Methods). In contrast, for large positive or negative
µ, Xt is not as informative of Xt+∆t even for small times:
the initial state is quickly forgotten as the particle ap-
proaches the bottom of the single (for µ < 0) or double
(for µ > 0) well.

This phenomenon is reminiscent of critical slowing
down, which occurs in the noise-free system as µ passes
through the bifurcation at µ = 0. For the deterministic
dynamics, the slowing down is reflected in the spectrum as
a “pile up” of eigenvalues to form a continuous spectrum
[33]. In the presence of noise, although the continuous
spectrum becomes discrete [33, 34] there is still a pile-up
of eigenvalues characterized by several eigenvalues becom-
ing close to 1 (Fig. 2e). This pile-up gives rise to the
information peak seen in Fig. 2d. The peak is not solely
due to the closing spectral gap λ1 − λ2, but is also im-
pacted by the subdominant eigenvalues which accumulate
at µ ≈ 0.2 (SI Fig. S4).

III. KNOWING WHEN TO STOP

For discrete encoding variables h, the information bot-
tleneck partitions state space and reduces the dynamics
on x to a discrete dynamics on h. Such reductions of
complex systems to symbolic sequences via partitioning
of state space has attracted attention for more than half
a century in both theoretical and data-driven contexts[44–
50]. Several works have approached this partition problem
from a dynamical systems perspective, linking “optimal”
partitions to eigenfunctions of the (adjoint) transfer oper-
ator [25, 51]. In this setting, a central question is “when
to stop” [25, 26, 48, 49]: how many states does h need
in order to capture statistical properties of the original
dynamics?

We consider this question by finding the optimal IB
encoder in the limit of low compression, β ≫ 1, but fixed
encoding capacity NH (where Ht ∈ {0, ..., NH − 1}), i.e.
the encoder is only restricted by the number of symbols
it can use. An analogous setup was used in the con-
text of renormalization group (RG) transformations in
[52–54], which results in effective model reduction due
to the “sloppiness”, or irrelevance, of certain system vari-
ables [55, 56]. In this regime, the encoder learned by
IB is deterministic; we are learning an optimal hard par-
tition of state space. This can be seen by noting that
I(Ht;Xt+∆t) = S(Ht)−S(Ht|Xt+∆t) is maximized when
the latter term is zero, which happens when xt unambigu-
ously determines ht, i.e. when p(ht|xt) ∈ {0, 1} for all xt.
The details of how the encoder is computed are discussed
in the next section.

Fig. 2f shows that the number of states necessary to
describe the system depends strongly on the value of µ.
For |µ| ≫ 0, a two-state discrete variable ht ∈ {0, 1}
suffices to describe the system’s future. Increasing the
number of reduced variables NH does not allow more
information to be captured. Near the information peak
at µ ≈ 0.2 this changes: predicting the future state of the
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system requires a more complex hidden variable of up to
NH ≈ 10 values. Above, we saw that this peak arises due
to the pile-up of eigenvalues at µ ≈ 0.2. The content of
the transfer operator spectrum is thus directly reflected
in the number of encoding variables needed to capture
the system’s statistics.

Noise can have a similarly dramatic impact on the
reduced model complexity. Indeed, noise in some form,
either inherent to the dynamics or due to measurement
error, is necessary for a model to be reducible. In purely
deterministic systems where the future state is a bijective
function of the present state, information does not decay
and complete knowledge of the state is required to predict
the future.

Consider a fluctuating Brownian particle as above,
where now each of the wells is split into two smaller
wells, giving a total of four potential minima (Fig. 3a).
As the system is in steady state, the standard devia-
tion of the fluctuations σ corresponds to an energy scale
Eσ = σ2 = 2kBT . For small Eσ, the system rarely tran-
sitions between the four potential minima. In this case,
knowledge of the initial minimum is very informative of
the future state of the particle. In contrast, for large
fluctuations the particle can spontaneously jump between
shallow minima in each large well, so that the system
immediately forgets about the precise potential minimum
it was in. Information about the shallow minima has been
“washed out”, and only the information about the larger
double-well structure remains.

To see this reflected in the information, we again con-
sider an encoding of the initial state into a discrete vari-
able Ht ∈ {0, ..., NH − 1}. In both the small and large
noise scenarios, a variable with NH = 2 encodes approxi-
mately one bit of information (Fig. 3b), corresponding to
an Ht which distinguishes the two large wells for x ≶ 0.
For large noise this is essentially all the information that
can be learned; increasing the capacity of the encoding
variable beyond this provides only marginally more in-
formation about the future state (Fig. 3c). In the small
noise case, the information between the encoding and the
future state continues to increase to approximately two
bits at NH = 4, after which it plateaus. The encoding
has learned to distinguish each of the four potential wells.
These observations are reflected in the transfer operator
spectrum shown in Fig. 3d. For small noise, the eigenvalue
λ = 1 is four-fold degenerate which indicates the existence
of four regions that can evolve independently under U ,
giving rise to four steady state distributions satisfying
Uρ = ρ. These regions correspond to the potential min-
ima. Hops between the separate minima are exceedingly
rare, so that the dynamics essentially take place in the
four minima independently. With larger σ the degeneracy
is lifted, resulting in one dominant subleading eigenvalue
followed by a gap. The corresponding eigenfunction is
one which is positive (negative) on the right (left) side
of the large potential barrier at x = 0: the only relevant
piece of information is which of the large wells the initial
condition is contained in, and all other information is lost

exponentially quickly.

IV. TRANSFER OPERATOR
EIGENFUNCTIONS ARE MOST INFORMATIVE

FEATURES

Until now we have concerned ourselves with encodings
whose capacity is limited only by the number of variables,
rather than by the compression imposed by a small value
of β. In the regime of small β, or high compression,
features of the state xt are forced to compete to make it
through the bottleneck ht. By studying the behavior of
the encoder in this regime, in particular its dependence
on xt, we may identify the most relevant features of
the state variable and show that they coincide with left
eigenfunctions of the transfer operator.

We return to the simple example of a particle in a
double well with dynamics given by (7) which we map to
a discrete variable Ht ∈ {0, ..., NH − 1}. In this system
the IB loss function (1) can be optimized directly, as
shown in Ref. [30], using an iterative scheme known as
the Blahut-Arimoto algorithm [43] (see SI).

To focus on the properties of encodings for varying
degrees of compression β, we consider a fixed set of dy-
namical parameters µ and σ. Increasing β reduces the
amount of compression, i.e. “widens” the bottleneck, al-
lowing more information to pass into the encoder. This
leads to a series of IB transitions which are sketched in
Fig. 1b and shown quantitatively in Fig. 4a. The form of
the optimal encoder changes qualitatively at these transi-
tions. Before β1, the optimal encoder has no dependence
on x so that p(Ht = hi|xt) = const for all hi. After the
first transition, the encoder begins to associate regions
of x to particular values of h. We are interested in the
form of the encoder at β ≳ β1, just above the first IB
transition, as this reflects the most informative features
of the full state variable x (Fig. 4a). The dependence
of p(ht|xt) on x can be explained by a stability analy-
sis of the IB Lagrangian (see Methods and SI). Stability
is governed by the eigenvalues ηi of the Hessian of the
IB Lagrangian with respect to the parameters fn(ht) in
Eq. 5. These parameters tell us how much the encoder
“weights” each transfer operator eigenfunction; fn(ht) = 0
(for n > 0) corresponds to the uniform, or trivial encoder
p(ht|xt) = p(ht).

For small β all eigenvalues ηi are positive, indicating
that the uniform encoder is a stable minimum of the IB
Lagrangian. In Fig. 4b we show the smallest two eigen-
values of the IB Hessian when evaluated at the uniform
encoder. At the first transition one eigenvalue becomes
negative, so that the uniform encoder is unstable. The
eigenvector corresponding to the unstable eigenvalue η1
indicates how the weights fn(ht) should be adjusted to
lower the value of the IB Lagrangian. Our numerics con-
firm that these weights are dominated by f1 as expected
from our analytical result (Fig. 4c, top). By taking the
logarithm of the encoder after the transition, we can in-
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FIG. 4. IB learns eigenfunctions of the adjoint trans-
fer operator. (a) When the relative weight β between both
constraints in Eq. 1 is changed, more and more information
can go through the encoder. This occurs in steps, where the
spectral content of the transfer operator is included starting
from eigenvalues with largest magnitude (i.e., the slowest ones).
(b) Transitions are characterized by the appearance of nega-
tive eigenvalues in the spectrum of the Hessian of the IB loss
function. Here we consider the Hessian evaluated at the uni-
form encoder p(h|x) = N−1

H . The IB transitions β1 ≈ 1.1 and
β2 ≈ 1.8 correspond to the appearence of negative eigenvalues
of the Hessian. (c) The unstable directions are dominated by
single components (note the color scale is logarithmic). (d)
At the first transition, the logarithm of the encoder is given
by the eigenfunction ϕ1(x), up to rescaling (y-axis is shown
in arbitrary units). (e) Likewise, at the second transition the
encoder is given by ϕ2(x).

dependently confirm that the encoder depends only on
ϕ1(x) (Fig. 4d).

Our stability analysis predicts that a second mode
becomes unstable at the second IB transition β ≈ β2
(Fig. 4b). Here we see that this unstable mode selects f2,
and that the encoder correspondingly gains dependence
on ϕ2(x) (Fig. 4d). Note that in general, η2 must not
necessarily become negative precisely at β2 because the
stability analysis is performed at the uniform encoder
while the true optimal encoder has already deviated from
uniformity. In the SI, we perform the same analysis
for a triple-well potential where this difference is more
apparent.

V. DATA-DRIVEN DISCOVERY OF SLOW
VARIABLES

IB finds transfer operator eigenfunctions by optimizing
an information theoretic-objective that makes no refer-
ence to physics or dynamics. This suggests it may be used
for the discovery of slow variables in situations where one
lacks physical intuition. The utility of exact IB for this
purpose is limited because it requires knowledge of the ex-
act conditional distribution p(xt+∆t|xt) which is difficult
to estimate in many real-world scenarios. Fortunately
however, the IB optimization problem can be replaced
by an approximate variational objective introduced in
Ref. [41] that can be solved with neural networks. We
refer to this as variational IB. In the remainder of this
paper, we show how to implement these networks for the
discovery of slow variables directly from data.

First we show numerically that the results of the previ-
ous sections remain valid for high-dimensional systems by
considering a simulated data of fluid flow past a disk [57].
The state of the system is given by a two-dimensional
velocity field v(x) ∈ R2×Npixels , where Npixels ∼ O(105)
(Fig. 5a). Fluid flows in from the left boundary with a
constant velocity v0êx past a disk of unit diameter. At
Reynolds number Re ≳ 150, the fluid undergoes periodic
vortex shedding behind the disk, forming what is known
as a von Kármán street.

What do the true eigenfunctions look like in this sys-
tem? Because it is well approximated by linear dynamics,
eigenfunctions of the adjoint transfer operator are linear
functions of the state variable,

ϕn[v] = ⟨v(x),m(n)(x)⟩, (9)

where m(n) is the n-th mode (often referred to as a Koop-
man mode [19]) and angled brackets denote integration
over space. The true eigenfunction and corresponding
modes can be computed via dynamic mode decomposition
(DMD) [11, 12], as described in the SI. The eigenfunctions
for this system are in general complex, and come in con-
jugate pairs: ϕ2(x) = ϕ∗1(x). In this situation any linear
combination of ϕ1 and ϕ2 will decay at the same rate, and
hence we expect to learn some arbitrary combination of
the two dominant eigenfunctions, or equivalently a combi-
nation of the real and imaginary parts of ϕ1. We therefore
take a two-dimensional encoding variable [h0, h1], so that
it can represent the full complex eigenfunction rather than
only the real or imaginary part.

Our learned latent variables are oscillatory with the
correct frequency as shown in Fig. 5b-c. A more stringent
test is whether we are also learning the correct mode m(1).
From the true eigenfunctions, the modes can be extracted
by computing the gradient

∂ϕn
∂vj

= m
(n)
j . (10)

As the learned function h[v] is a neural network, we can
efficiently compute gradients of the network with respect
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FIG. 5. Variational IB for high-dimensional simulated fluid flow. (a) A fluid flows into the system with uniform velocity
v0 in the x-direction and passes a disk-shaped obstacle, which perturbs the fluid and causes vortex shedding behind the object
in a so-called von Kármán street. The state of the system is given by a spatially varying two-component vector field v(x). (b)
The dynamics in latent space (blue) are very regular, traversing a nearly circular trajectory (see Supplementary Movie 1). For
comparison we show the evolution of the mode amplitudes obtained by projecting the velocity field onto the first DMD mode
(green). (c) Time evolution of one component of the latent variable (h1, blue) as well as the DMD mode amplitude (green). (d)
Comparison of the first Koopman mode obtained from DMD (m(1)) and from VIB (m(IB)). Koopman modes from VIB are
computed as gradients of the latent encoding variables as described in the main text. Red corresponds to positive values and
blue to negative; the magnitudes of the modes are not directly comparable.

to the input field

∂h

∂vj
= m

(IB)
j + gres,j(v(x)), (11)

where we have separated the part of the gradient which is
independent of v from a residual part which is dependent
on v. If h corresponds to the true eigenfunction, we expect
that m(IB) is approximately equal to the Koopman mode
m(1), and that gres is small. We indeed find this to be the
case; Fig. 5d shows these gradients averaged over several
instantiations of the neural network, which corresponds
strongly to the true mode. Details concerning both the
averaging procedure and the residuals gres can be found
in the SI. This shows that variational IB not only recovers
the essential oscillatory nature of the dynamics, but does

so by learning the correct slowly varying functions of
the state variable given by the adjoint transfer operator
eigenfunctions.

VI. RELEVANT VARIABLE IDENTIFICATION
IN LABORATORY-GENERATED AND

ATMOSPHERIC FLOWS

The scenario above is characterized by high-dimensional
data and few samples; training was performed with only
∼ 400 samples. We now demonstrate that our framework
continues to hold approximately and yield interpretable la-
tent spaces even for real-world fluid flow datasets scraped
directly from videos on Youtube [58, 59] (Supplementary
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Movie 1).
The first shows a von Kármán street which forms as

water passes by a cylindrical obstacle at Reynolds number
171, with flow visualized by a dye injected at the site
of the obstacle [58]. We take a background-subtracted
grayscale image of the flow field as our input (Fig. 5e) and
task VIB with learning a two-dimensional latent variable
as above. Also here, variational IB learns oscillatory
dynamics of the latent variables (Fig. 5f). We visualize the
function learned by the encoder by considering gradients
of the latent variables, which show the same structure
as those obtained for the x component of the simulated
data (Fig. 5g). This is expected, as the x-component of
the velocity field has similar glide reflection symmetry as
the intensity image.

Next, we apply variational IB to a von Kármán street
arising due to flow around Guadalupe Island, which was
imaged by a National Oceanic and Atmospheric Adminis-
tration (NOAA) satellite [59] (Fig. 5h). The video consists
of only 62 frames, and the von Kármán street undergoes
a single oscillation. Even with this small amount of data,
the variational IB neural network learns latent variables
which capture this oscillation and have the expected de-
pendence on the input variables (Fig. 5i-j). As in the
first experimental example, the gradients of the encoding
variables show the glide symmetry of mx due to the sym-
metry of the intensity pattern in Fig. 5d. This symmetry
is less clear in the component ∂h1

∂I(x) , which is likely due to
the fact that the von Kármán street is not as fully formed
in this data as in our previous examples.

VII. RELEVANT VARIABLE DISCOVERY IN
CYANOBACTERIAL POPULATIONS

We now demonstrate how variational IB may be used as
an aid for collective variable discovery in situations where
physical intuition may not be a useful guide – collective
behavior of biological organisms (Supplementary Movie
2). Here, we ask what the most predictive variables are for
predicting the evolution of populations of cyanobacteria
(Synechococcus elongatus). The dynamics of the colonies
are driven by several factors: growth and division of
individual bacteria, translational motion of groups of
bacteria as they are pushed by their neighbors, as well as
the circadian oscillations within each bacterium (Fig. 6a).
These oscillations are controlled by three Kai proteins [60]
and depend in particular on the ratios of the copy number
of these proteins which can be tuned experimentally [61].

We were provided with videos of 10 cyanobacteria
colonies that were grown under various conditions that im-
pact their dynamics. However, as a test of our method, we
were blinded to these conditions until we had performed
our analysis. The videos are sequences of fluorescent im-
ages, taken once per hour, which show the clock state
of each individual bacteria visualized with a fluorescent
marker EYFP driven by the kaiBC promoter. Here, we
focus on collective variables which are predictive of the

state of the interior of the colony and not the growth in
area of the colonies. We therefore crop the images to the
interiors of each colony (SI Fig. S9). This allows us to
isolate the motion of individual bacteria and fluorescence
oscillations (Fig. 6b).

Our input to the variational IB neural network are these
cropped images augmented with a time-lagged image of
the same region (Fig. 6c). The purpose of this time lag is
to make the dynamics Markovian: due to the oscillatory
intensity field, if one observes only a single time point it
is unclear whether the intensity is currently increasing or
decreasing. These time lagged pairs comprise our system
state, Xt = {I(x, t), I(x, t+ τ)}, where τ is the duration
of the time lag. Here we take τ = 3 hr and a prediction
time horizon ∆t = 8 hr, but find that choosing different
∆t or τ does not change our results (SI Fig. S9).

With variational IB we compress the state Xt into a
latent variable h of variable dimension (Fig. 6d-f). We
train the neural network on the entire dataset of all 10
colonies simultaneously. The dynamics in latent space
undergo clear oscillations, indicating that the relevant vari-
ables encode primarily the intensity fluctuations rather
than, for example, the spatial locations of the bacteria.
Notably, the trajectories are essentially two-dimensional,
even when the encoding space is higher dimensional. This
is reflected in the information retained about the future
state, I(Xt+∆t, Ht). We see that increasing the dimen-
sion of the embedding space beyond two leads only to
marginal increases in I(Xt+∆t, Ht); this tells us “when to
stop” (Fig. 6f). We independently verify this by using
principal component analysis to characterize the geometry
of embedded trajectories, and find that even in higher
dimensions the trajectories occupy a two dimensional sub-
space (SI Fig. S10). In the following, we therefore restrict
our focus to the dimH = 2 case.

We noticed that there were notable differences in the
radius of latent space oscillations from colony to colony,
two of which are highlighted in (Fig. 6g). To understand
this difference, we examined the original microscopy time
series corresponding to both large and small latent radius
(Fig. 6k) and found that while the large-radius sample
showed clear, nearly uniform oscillations in intensity, the
small-radius samples appeared much more heterogeneous.

To quantify this we consider each pixel to be an inde-
pendent oscillator, akin to a spatial Kuramoto model [62–
64], and compute a global synchronization order parame-
ter r(t) (see SI). For each colony we calculate the time-
averaged synchronization ⟨r(t)⟩t and find that two clusters
emerge corresponding to high and low synchronization
(Fig. 6i). These clusters are precisely those represent-
ing trajectories of large and small latent radius (Fig. 6j),
suggesting that variational IB learns to encode the syn-
chronization of the colony in the latent variable radius.
As a check, we perform IB on a simulated locally-coupled
Kuramoto model as a system which shares many fea-
tures of the experimental system. Here we also learn an
encoding in which the latent radius corresponds to the
synchronization order parameter (SI Fig. S11).
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FIG. 6. Discovering slow collective variables in cyanobacteria populations (a) Fluorescent images of cyanobacteria
colonies labeled with EYFP driven by the kaiBC promoter, allowing the visualization of Kai protein transcription. The colonies
are imaged as they undergo cell growth and oscillations in Kai expression associated with the circadian rhythm. (b) Time
series of one cropped section of an individual colony (see SI Fig. S9 for details). (c) The “state” used for variational IB is the
time-lagged intensity field with lag time τ . (d) Variational IB embeddings of time-lagged images into two dimensions (see
Supplementary Movie 2). Every line corresponds to one colony’s evolution in time. Note the apparent oscillations of different
radii. (e) Embedding into three dimensions. We orient our axes to correspond to the three principal components of the data.
Thus, the projection onto the h2 = 0 plane corresponds to a projection along the dominant two principal components. In
this subspace, we see a similar structure as in the 2D embedding. (f) Mutual information between the future state and the
encoding, given by I(Xt+∆t, Ht), for varying dimension of the latent space. Increasing the dimension of the embedding space
beyond two leads only to marginal increases in I(Xt+∆t, Ht); this tells us “when to stop.” Each small point represents one
training instance of the variational IB model, while the large point shows the maximum estimated value. Because the InfoNCE
estimator is a lower bound on the true information, we consider the maximum as the estimated mutual information. The value
of Imax = I(Xt, Xt+∆t) is the mutual information estimated for the true dynamics. (g) Selected trajectories in latent space
with large and small radii. (h) Time-average latent radius of all colonies. (i) Mean synchronization order parameter of the
intensity images; see SI for computation details. (j) Mean radius versus synchronization parameter for each colony. VIB identifies
clusters of cells characterized by high (blue) or low (black) synchronization. As revealed to us after our analysis, this clustering
corresponds to differing theophylline concentrations across experiments. Within each experimental movie (each of which contains
2-3 colonies) the radii are mostly constant. (k) Sample time series of weakly (black) and highly (blue) synchronized colonies. We
apply a slight Gaussian blur to better visualize the bacteria boundaries.

In the SI we compare the performance of variational IB to several other model reduction methods and find that
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IB delivers more interpretable and well-behaved features.
This is likely due to the fact that many standard methods
for data-driven model reduction rely on assumptions about
the dynamics which may not be appropriate in the case
at hand, such as linearity. Even among deep learning
methods such as time-lagged autoencoders that are free
of such assumptions, the variables learned by IB appear
more interpretable. This increased interpretability is likely
due to the compression term which effectively regularizes
the latent space by encouraging the network to learn slow
transfer operator eigenfunctions. While there are many
specific use variants of DMD [13, 65–68] or autoencoders
for dynamics [20–22, 69] that may outperform variational
IB in some cases, we find that in this real-world example
it yields the smoothest and most interpretable latent
variables without requiring tailored pre-processing steps
(SI Fig. S12).

By using variational IB we could reduce a complex sys-
tem with multiple dynamical components – cell growth,
division, and gene expression fluctuations – into a low
dimensional form that retains only the most relevant infor-
mation for the future. In addition to the insight that the
dynamics are dominated by oscillations in two dimensions,
the latent variables clearly distinguished trajectories into
two groups that were not apparent a priori. We were pro-
vided this data as a “blind” test with no knowledge of the
underlying system. After we performed our analysis, it
was revealed to us that these bacterial colonies have been
engineered to control the translational efficiency of the
Kai proteins by varying theophylline concentration [61].
The synchronization order parameter discovered by vari-
ational IB corresponds to differing experimental concen-
trations of theophylline, which is in agreement with the
findings in Ref. [61]. IB can thus serve as a way to connect
experimental control parameters to effective changes in
dynamics.

VIII. CONCLUSION

We have related information-theoretical properties of
dynamical systems to the spectrum of the transfer op-
erator. We illustrate our findings on several simple and
analytically tractable systems, and turn them into a prac-
tical tool using variational IB, which learns an encoding
variable with a neural network. The latent variables of
these networks can be interpreted as transfer operator
eigenfunctions even though the network was not explic-
itly constructed to learn these: it optimizes a purely
information-theoretic objective that contains no knowl-
edge of a transfer operator or dynamics. This allows one to
harness the power of neural networks to learn physically-
relevant latent variables. Biological systems are an ideal
setting for such methods: despite their apparent com-
plexity, they can often be captured by low-dimensional
descriptions which are difficult to identify by physical
considerations alone [47, 70–72]. We have shown that
variational IB is a potentially powerful tool for these

cases, and can discover slow variables even directly from
image data without significant preprocessing.

METHODS

Mutual information and entropy

Let X be a random variable which takes values x that
are observed with probability p(x). The entropy of this
distribution measures the predictability of the outcome
of a measurement of X and is given by [43]

S(X) = −
∫

dx p(x) log p(x).

Given another random variable Y , such that X and Y
have a joint distribution p(x, y), we can ask how much
information is shared between these two variables. This
is given by the mutual information

I(X,Y ) = S(X)− S(X|Y ) (12)
= DKL(p(x, y)∥p(x)p(y)) (13)

This can be interpreted as quantifying how much (on
average) a measurement of Y can reduce our uncertainty
about the value of X ((12)).

The information bottleneck

The information bottleneck [30] is an example of a
rate-distortion problem which seeks to find an optimal
compression which minimizes some distortion measure
with the original signal [43]. Concretely, we call X the
source signal, and let H denote the compressed signal.
In IB, rather than using an a priori unknown distortion
function, one seeks to ensure that the compression retains
information about an additional relevance variable Y . As
noted in the main text, the IB optimization objective is
given by the Lagrangian

LIB[p(h|x)] = I(X,H)− βI(Y,H), (14)

where in our case the source signal X is the state of the
system Xt at time t, and the relevance variable is the
state of the system Xt+∆t at a future time t+∆t. The
encoder which optimizes this objective can be solved for
exactly and is given by [30]

p(h|x) = p(h)

N(x)
exp

[
−βDKL(p(y|x)∥p(y|h))

]
. (15)

Encoder in terms of transfer operator eigenfunctions

To connect the optimal encoder to the transfer op-
erator, we first rewrite (15) in terms of the transition
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probabilities,

p(ht|xt) =
p̃(ht)

Ñ(xt)
exp

[
β

∫
dxt+∆tp(xt+∆t|xt) log p(xt+∆t|ht))

]
.

(16)

where we have absorbed terms in the exponent which de-
pend only on ht or xt into the normalization factors. Into
the above equation, we replace the transition probability
with the spectral decomposition

p(xt+∆t|xt) =
∑
n

eλn∆tρn(xt+∆t)ϕn(xt). (17)

From this, the (5) of the main text immediately follows,
where

fn(ht) =

∫
dxt+∆tρn(xt+∆t) log p(xt+∆t|ht) (18)

which may be interpreted as a sort of cross entropy (ρn
is generally not a probability distribution) between each
right eigenfunction and the decoding of ht into the future
state xt+∆t.

To study the behavior of the encoder in the limit of high
compression, we consider a transfer operator U with in-
finitesimal generator LU . For LU with a discrete spectrum
with eigenvalues satisfying 0 = λ0 > λ1 > λ2 ≫ λ3... and
for β just above the first IB transition β1, we show that
the optimal encoder is given approximately by

p∗β(h|x) =
1

N (x)
p∗β(h) exp

(
β eλ1∆tϕ1(x)f1(h)

)
(19)

with corrections due to the second eigenfunction given by
f2(h) ≈ f1(h)e−Γ∆t +O(e−2Γ∆t) where Γ = λ1 − λ2 > 0
denotes the spectral gap. To see this, we compute the
Hessian of the IB Lagrangian

H(µ,n),(ν,m) =
∂2

∂fn(hµ)∂fm(hν)
LIB.

Here we assume a finite alphabet of size NH , i.e. hµ with
µ ∈ {1, ..., NH}. At the uniform encoder, i.e. fn(h) = 0,
the Hessian decomposes into a tensor product

H(µ,n),(ν,m) = Aβnm ⊗Gµν

where Aβ depends only on the indices of the coefficients
and G captures the dependence on hν . The only part
which depends on β is Aβ .

We are concerned with the sign of the eigenvalues of
H. A negative eigenvalue indicates that LIB is unstable
to a perturbation in f , which means the loss can be
lowered by changing f away from the trivial encoder at
fn = 0. Because the eigenvalues of a tensor product of
matrices are products of the eigenvalues of the component
matrices, the eigenvalues of H change sign when those
of Aβ do. Aβ and its spectrum can be computed, which
we do in the SI. The result of this calculation is that the

first eigenvalue to become negative is associated with the
eigenvector v = (1, 0, 0, ...). This computation is exact for
equilibrium systems, which are those in which the steady-
state flux vanishes, but in nonequilibrium systems there
may generally be a correction proportional to the flux. In
summary, this means that in the limit of high-compression
only the first component f1 becomes non-zero, hence the
encoder has the form given in (19).

Variational IB compared to other dimensionality
reduction techniques

Variational IB (VIB) is by no means the only numerical
method for performing data-driven model reduction. Here
we provide a brief overview of the benefits and shortcom-
ings of VIB with respect to other methods; an extended
discussion can be found in the SI.

One class of methods is based on linear projections,
such as principal component analysis (PCA), dynamic
mode decomposition (DMD) [11, 12], or (time-lagged)
independent component analysis (TICA) [10] (which is
equivalent to DMD [73]). These methods can be extended
to take into account non-linearity by introducing a library
of non-linear terms on which one then applies the above
methods, such as in kernel PCA [74] or extended DMD
(eDMD) [13]. These methods have the advantages, rela-
tive to VIB, that their optimization (even for the extended
algorithms) relies only on linear projections which are fast
and interpretable. However, the success of these meth-
ods depends on the choice of an appropriate library of
functions so that the projection onto this space is closed
under the dynamics. Choosing an appropriate library is
not always possible [75, 76].

A second category of non-linear dimensionality reduc-
tion techniques are graph-based or similarity-based meth-
ods, which typically assume that the data is distributed
on a low-dimensional manifold embedded in a higher-
dimensional space [77, 78]. One prominent example is
diffusion maps [14], which starts from a set of data snap-
shots and, assuming the system evolves diffusively on short
times, constructs an approximate transition matrix from
which one can compute eigenfunctions to parameterize
the data manifold. The assumption of diffusive dynam-
ics can be violated when data is not sampled sufficiently
frequently. This likely explains our finding that VIB pro-
duced more well-behaved low-dimensional embeddings
on the cyanobacteria dataset (SI Fig. S12). VIB has the
additional advantage, relative to this and similar methods,
that it explicitly takes dynamics into account without the
strong assumptions required by diffusion maps.

Finally, deep neural networks can be used for model
reduction through encoder-decoder architectures that at-
tempt to reconstruct the data from a low-dimensional la-
tent space; VIB falls into this class of methods. Some stan-
dard neural network architectures from this class include
autoencoders (AEs) and variational autoencoders (VAEs).
For dynamical systems in particular, extensions to these
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methods have been proposed which impose constraints on
the latent dynamics, such as linearity [20–22, 69]. Autoen-
coders often produce poorly-behaved latent spaces that
distribute the latent variables on a narrow manifold with
sharp features, see for example [69]. By regularizing the
latent embedding to encourage smoothness, variational
autoencoders can remedy some of these issues. We note
that the VIB loss is very similar to a VAE loss with the
contrastive InfoNCE loss replacing the reconstruction loss,
so we expect that for many problems these should perform
similarly. Other dynamically-constrained architectures
such as in [20–22] work well for deterministic systems
but it is unclear what effect stochasticity has on their
performance. In our examples we have seen that VIB
works well on noisy data.

In general when investigating a new system it is good
practice to start by attempting to perform dimensionality
reduction with linear methods such as PCA or DMD
because they are fast, straightforward to implement, and
easy to interpret. In situations where linear techniques are
not sufficient, VIB may be preferable to other methods
because it is guaranteed to find dynamically relevant
variables (in contrast to diffusion maps, t-SNE, AEs,
VAEs, etc.) and it does not require that one performs the
carefully tailored preprocessing steps that are required by
eDMD or kernel PCA, or other variants of DMD [65–68].
Additionally, it works well even when the dynamics are
highly stochastic as shown in the cyanobacteria dataset.
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Appendix A: Information bottleneck

The information bottleneck was originally formulated in Ref. [30] as a rate distortion problem. Rate distortion
theory describes how to maximally compress a signal (i.e. minimize its communication rate) such that it remains
minimally distorted, which, however, presupposes the knowledge of a distortion function specifying which features
need to be preserved[43]. In Ref. [30], Tishby et al. introduce a variant of the problem where the a priori unknown
distortion function is not used, but rather one seeks to ensure that the compression retains information about an
auxiliary variable Y correlated with the signal. As the correlations with Y define implicitly the relevant features of the
signal to be preserved, Y is called the relevance variable. Concretely, we call X the source signal, and H denotes the
compressed signal. The random variables form a Markov chain H ↔ X ↔ Y , meaning that H and Y are conditionally
independent given X:

p(y|h, x) = p(y|x)p(h, x)
p(h|x, y) = p(h|x)p(y, x)

As noted in the main text, the IB optimization objective is given by the Lagrangian

LIB[p(h|x)] = I(X,H)− βI(Y,H). (A1)

To enforce normalization of the p(h|x) one introduces a Lagrange multiplier λ(x) so that the full optimization function
is

LIB[p(h|x)] =
∑
x,h

p(h|x)p(x) log p(h|x)
p(h)

− β
∑
y,h

p(y, h) log
p(y, h)

p(h)p(y)
+
∑
x

λ(x)

1−
∑
h

p(h|x)

 . (A2)

The encoder which optimizes this objective can be solved for exactly. Using the following functional derivatives,

δ

δp(h|x)
p(h′) = δ(h− h′)p(x)

δ

δp(h|x)
p(h′, y′) = δ(h− h′)p(x, y′),

one can compute the derivative of the Lagrangian. By evaluating the derivative and setting to zero, one finds

log p(h|x) = log p(h)− β
∑
y

p(y|x) log 1

p(y|h)
− λ(x)

which can be rearranged to give the optimal encoder

p(h|x) = p(h)

N(x)
exp

[
−βDKL(p(y|x)∥p(y|h))

]
. (A3)

By absorbing terms which only depend on h and x into p(h) and N(x), respectively, the encoder can be expressed as

p(h|x) = p(h)

N(x)
exp

[
β

∫
dy p(y|x) log p(y|h)

]
. (A4)

When β < 1, it follows from the data processing inequality I(X,H) ≥ I(Y,H) that (A1) is minimized by a trivial
encoder p(h|x) = p(h). In this case, LIB = 0 and no information passes through the bottleneck. As β is increased,
more information is allowed through the bottleneck until the relevant variables begin to gain a dependence on the state
x. This occurs suddenly for a certain value of β = β1 > 1 at which the encoder becomes non-uniform and I(H,X)
becomes non-zero. This is referred to as an IB transition; for increasing β, there may be a sequence of transitions at
β2, β3, ... etc.

Appendix B: Numerically solving “exact” IB and Ulam approximations of the transfer operator

The optimal IB encoder (A3) can be found using the Blahut-Arimoto (BA) algorithm [43]. As described in detail in
Refs. [30, 79] and sketched in Fig. S1, the algorithm is an iterative procedure, where the encoder at iteration k + 1 is
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Blahut-Arimoto

CompressionInfo. max
FIG. S1. Exact IB. Exact IB finds an optimal encoder using an iterative Blahut-Arimoto algorithm, described in the main
text, for a rate-distortion problem with Kullback-Leibler distortion [30]. This process requires access to (an estimate of) the
transfer matrix and the steady state distribution. Once an optimal encoder has been found, relevant quantities such as mutual
information can be computed.

updated according to 
pk+1(h|xt) = pk(h)

Nk+1(x)
exp(−βDKL(p(xt∆t|xt)∥pk(xt+∆t|h)))

pk+1(h) =
∑
xt
p(xt)pk+1(h|xt)

pk+1(xt+∆t|h) =
∑
xt
p(xt+∆t|xt)pk+1(xt|h).

The first line simply plugs the previous estimate of the encoder in to Eq. D2 (and normalizes the distribution), while
the following two lines update marginal and conditional distributions using the new estimate of the encoder. In
Refs. [30, 79] it is shown that this algorithm converges.

The BA algorithm requires access to the conditional distribution p(xt+∆t|xt) for each xt, as well as the steady
state p(xt). To solve the IB optimization problem we therefore need a numerical approximation of the transfer
operator, which we obtain by an Ulam approximation [44, 45]. In brief, one divides space into bins and computes a
finite-dimensional approximation to the conditional distribution as

Pij = P (Xt+∆t = xj |Xt = xi) = Ni→j/Ni, (B1)

where Ni is the number of trajectories starting in bin i and Ni→j the number of observed transitions from bin i to bin
j. The transfer operator is then approximately given by

Up(xj) ≈
∑
xi

Pijp(xi), (B2)

and eigenvalues and eigenvectors of U can be computed by diagonalizing P .

Appendix C: Transfer operators

In this work we consider dynamical systems given by a Langevin equation

ẋ = f(x) +
√

2D(x)ξ(t) (C1)

where the first term is the deterministic part of the dynamics, and the second term corresponds to noise, where

⟨ξi(t)ξj(t′)⟩ = Cijδ(t− t′).

This framework captures purely deterministic dynamics, which are obtained by setting D = 0. The transfer operator
describes the evolution of probability distributions. For dynamics given by a Langevin equation, probability distributions
evolve according to the corresponding Fokker-Planck equation

[Lρ](x) = ∂tρ(x) = −∂i(fi(x)ρ(x)) + ∂i∂j(D(x)Cijρ(x)).

Here we recognize L as the infinitesimal generator of the transfer operator U : evolution for a time t is given by U = etL.
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The adjoint operator is given by the so-called backward Kolmogorov equation, and it describes the evolution of
functions ϕ.

L†ϕ(x) = fi(x)∂i(ϕ(x)) +D(x)Cij∂i∂j(ϕ(x)). (C2)

For D = 0, L is the generator of the Perron-Frobenius operator, while its adjoint is the Koopman operator [19].

Appendix D: Derivations

Here we derive the form of the optimal encoder at the first IB transition,

p∗β(h|x) ≈
1

N (x)
p∗β(h) exp

(
β eλ1∆tϕ1(x)f1(h)

)
(D1)

In Ref. [30], it is shown that the encoding minimizing the IB objective satisfies the implicit equation

p∗β(h|x) =
p∗β(h)

N (x)
exp

(
−βDKL

[
pXt+∆t|Xt

∣∣∣∣pXt+∆t|Ht

])
(D2)

where N is a normalization factor ensuring
∫

dh p∗β(h|x) = 1, and

p∗β(h) ≡ p∗β(h) =

∫
dx p∗β(h|x)p(x). (D3)

The Kullback-Leibler divergence between two probability distributions p(x) and q(x) is defined by

DKL[p||q] =
∫

dx p(x) log
p(x)

q(x)
; (D4)

in the DKL in (D2), the integration is done with respect to the common random variable Xt+∆t of the two conditional
distributions.

Equation D2 contains the conditional distribution pXt+∆t|Ht
, which is the composition of two operations: decoding

(going from Ht to Xt) and time evolution (going from Xt to Xt+∆t). The decoding is performed using Bayes’ theorem
pXt|Ht

pHt
= pHt|Xt

pXt
, so that we have

pXt+∆t|Ht
=

∫
Xt

pXt+∆t|Xt
pHt|Xt

pXt

pHt

. (D5)

Note the appearance of the encoder pHt|Xt
, making (D2) only an implicit solution of the optimization problem.

The conditional distribution pXt+∆t|Xt
can be written in terms of right and left eigenvectors of U . Here we neglect

Uess, which is the operator corresponding to the essential spectrum. The essential spectrum is the part of the spectrum
that is not the discrete spectrum; by neglecting it, we are assuming that the essential radius ρess (the maximum
absolute value of eigenvalues in the essential spectrum) is small enough compared to the first few eigenvalues |λn| in
the point spectrum. While purely deterministic systems may exhibit a large essential radius, the introduction of noise
causes the essential spectrum to shrink or disappear [33, 34]. We can then write the conditional distribution in terms
of right and left eigenvectors of U ,

pXt+∆t|Xt
(x|x′) =

∑
n

eλn∆tρn(x)ϕn(x
′). (D6)

The Kullback-Leibler divergence in (D2) can be represented as a sum of two terms,

DKL[...] =

∫
dxt+∆t p(xt+∆t|xt) log p(xt+∆t|xt)−

∫
dxt+∆t p(xt+∆t|xt) log p(xt+∆t|ht). (D7)

The first term has no dependence on h and can hence be absorbed into the normalization N (x). Plugging the
decomposition (D6) into the second term leads directly to

p∗β(h|x) =
1

N (x)
p∗β(h) exp

[
β
∑
n

eλn∆tϕn(x)fn(h)

]
(D8)
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where

fn(h) =

∫
dxt+∆t ρn(xt+∆t) log p(xt+∆t|h), (D9)

which can be understood as a quasi-cross entropy between the right eigenvector ρn and the distribution on xt+∆t

obtained by decoding h. Equation D8 depends only on the existence of the spectral decomposition; we have made no
other assumptions on the dynamics (beyond Markovianity) up until this point.

Perturbation theory at the uniform encoder

In this section we derive our main result for the optimal encoder in the limit of high compression (small β).
Mathematical result – Consider a transfer operator U with infinitesimal generator LU . Assume that LU has a

discrete spectrum with eigenvalues satisfying 0 = Re λ0 > Re λ1 > Re λ2 ≫ Re λ3.... Then, for β just above the first
IB transition β1 so that fn(h) → 0, the optimal encoder is given approximately by

p∗β(h|x) =
1

N (x)
p∗β(h) exp

(
β eλ1∆tϕ1(x)f1(h)

)
(D10)

with corrections due to the second eigenfunction given by f2(h) ≈ f1(h)e−Γ∆t + O(e−2Γ∆t) where Γ = λ1 − λ2 > 0
denotes the spectral gap.

To show this we compute the fn(h) coefficients at the onset of instability. The instability at the first IB transition
at β = β1 corresponds to the emergence of negative eigenvalues in the Hessian of the IB loss,

∂2

∂fn(hi)∂fm(hj)
LIB. (D11)

Similar perturbative approaches have been studied in other contexts within IB in [35, 38, 80]. For concreteness, we
consider a discrete state x ∈ {1, ..., NX} and discrete encoding h ∈ {1, ..., NH}. We express the encoder as in Eq. D8
where we now expand the normalization terms

p∗β(hµ|xi) =
f0(hµ) exp

[
β
∑
n eλn∆tϕn(xi)fn(hµ)

]∑
hλ
f0(hλ) exp

[
β
∑
n eλn∆tϕn(xi)fn(hλ)

] (D12)

In the following, we simplify notation as

p(hµ|xi) =
fµ0 exp

[∑
n ϕ̃n(xi)f

µ
n

]
∑
hλ
fλ0 exp

[∑
n ϕ̃n(xi)f

λ
n

] (D13)

where ϕ̃n(xi) = βeλn∆tϕn(xi). For the uniform encoder, fµn = 0 for all n ̸= 0.
Hereafter we assign ϕ̃0 = 1

fµ
0

, taking care to track the correct Greek index which otherwise is not present for ϕ̃n (in
the following, n is always paired with µ and m always with ν). For example, a single derivative of the marginal is
given by

∂µnp(hν) =
∑
xi

p(xi)p(hν |xi)ϕ̃n(xi)
(
δµν − p(hµ|xi)

)
. (D14)

To compute the Hessian, we use the fact that
∑
λ ∂

µ
np(hλ) = 0 (by exchanging sum and derivative), and that

p(hµ|xi)|f=0 = p(hµ). We note in passing that we find the first derivative terms of LIB vanish, see also [36, 38]. The
compression term is given by

∂µn∂
ν
mI(X,H) =

(
⟨ϕ̃nϕ̃m⟩ − ⟨ϕ̃n⟩⟨ϕ̃m⟩

)
×
(
δµνp(hµ)− p(hν)p(hµ)

)
and the information maximization term is

∂µn∂
ν
mI(Y,H) =

〈 ⟨ϕ̃n⟩p(·,y)⟨ϕ̃m⟩p(·,y)
p(y)2

〉
− ⟨ϕ̃n⟩⟨ϕ̃m⟩


×
(
δµνp(hµ)− p(hν)p(hµ)

)
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Angled brackets with no subscript correspond to an average with respect to the steady state distribution, ⟨·⟩ =∑
xi
· p(xi). For the second term, we retain the integration variable y for clarity. In sum, the Hessian of the Lagrangian

is given by

H(µ,n),(ν,m) =

⟨ϕ̃nϕ̃m⟩ − β

〈
⟨ϕ̃n⟩p(·,y)⟨ϕ̃m⟩p(·,y)

p(y)2

〉
− (1− β)⟨ϕ̃n⟩⟨ϕ̃m⟩

(δµνp(hµ)− p(hν)p(hµ)
)

(D15)

which lives in R(NX×NH)×(NX×NH); we index H with a multi-index (µ, n). From the form of Eq. D15, we see that
H is given by a Kronecker (tensor) product

H(µ,n),(ν,m) = Aβnm ⊗Gµν .

Eigenvalues of H are given by products of eigenvalues of Aβ and G, while eigenvectors are given by the tensor product
of eigenvectors of Aβ and G. The appearance of unstable directions of the Hessian corresponds to the appearance
of negative eigenvalues in its spectrum. As G does not depend on β, zero-crossings of eigenvalues of H therefore
correspond to zero-crossings of eigenvalues in the spectrum of Aβ .

Equilibrium systems: We first study the stability of the matrix Aβnm in the case of quasi-equilibrium dynamics.
In particular, we consider a Fokker-Planck operator LFP of the form

∂tp(x) = LFPp(x) = −∂i(fi(x)p(x)) +D∂2i p(x). (D16)

The steady state distribution ρ0(x) satisfies

LFPρ0(x) = −∂iJi(x) = 0 (D17)

where Ji = fiρ0 −D∂iρ0 is a flux. Our main assumption in this subsection is that in the steady state, fluxes vanish:
Ji = 0. In this case, left eigenfunctions ϕn of LFP become right eigenfunctions when multiplied by ρ0. To see this,
note that

LFP(ρ0ϕn) = ϕnLFPρ0 + ρ0L†
FPϕn − 2∂iϕn (fiρ0 −D∂iρ0)︸ ︷︷ ︸

Ji

= λnρ0ϕn (D18)

where the first term disappears because ρ0 is the steady-state distribution, and the third term disappears because of
our above assumption on disappearing fluxes, Ji = 0. The following inner product then satisfies

⟨ϕnρ0,L†
FPϕm⟩ = ⟨LFPϕnρ0, ϕm⟩

λm⟨ϕnρ0, ϕm⟩ = λn⟨ϕnρ0, ϕm⟩
→ (λm − λn)⟨ϕnρ0, ϕm⟩ = 0.

This shows that if λn ̸= λm, the inner product vanishes. Similarly, one can show that the same must be true for
⟨ρnρ0 ,

ρm
ρ0

⟩. These are precisely the types of terms appearing in the Hessian. Consequently, for equilibrium (no flux)
systems the Hessian is diagonal. The first term follows directly from the above, while the second is given by

∑
y

1

p(y)

(∑
x

p(y, x)ϕ̃m(x)

)∑
x′

p(y, x′)pλϕ̃n(x
′)


=
∑
ij

∑
y

1

p(y)
ρi(y)ρj(y)e(λi+λn)∆t⟨ϕiρ0, ϕn⟩

× e(λj+λm)∆t⟨ϕjρ0, ϕm⟩

=
∑
ij

e(λi+λn+λj+λm)∆tδijδniδmj

= δnme(2λn+2λm)∆t

The full matrix A appearing in the Hessian then takes the form

Anm = δnme2λn∆t
(
1− βe2λn∆t

)
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except for the n = m = 0 term, which is A00 = 0. The eigenvalues are given directly by these diagonal elements. For
small β these are all positive, and become unstable one after the other at

β = e−2λ1∆t, e−2λ2∆t, ... (D19)

which are increasing in order (remember λi ≤ 0). It follows that at the first transition, only f1 becomes non-zero,
and hence the encoder takes the form given by (D1). In the equilibrium case, the encoder learns exclusively the first
eigenfunction, with no correction due to the second eigenfunction.

General Case: We now show that the first component f1 is selected at the first IB transition even when the flux J
is non-zero. From our assumption on the spectrum of LU , namely 0 > Reλ1 > Reλ2 ≫ Reλ3... it follows that near the
first IB transition the IB loss is given by

LIB =

(
f1
f2

)T (
a11 a12
a12 a22

)(
f1
f2

)
+O(f3n, eλ3∆t)

with

a11 = e2λ1∆t
(
⟨ϕ21⟩ − βB11

)
= e2λ1∆tâ11

a12 = e(λ1+λ2)∆t
(
⟨ϕ1ϕ2⟩ − βB12

)
= e(λ1+λ2)∆tâ12

a22 = e2λ2∆t
(
⟨ϕ22⟩ − βB22

)
= e2λ2∆tâ22,

where we have introduced the shorthand Bij =

〈
⟨ϕ̃i⟩p(·,y)⟨ϕ̃j⟩p(·,y)

p(y)2

〉
and all angled brackets denote averaging with

respect to the steady state distribution. The stability of the uniform encoder at fn = 0 is given by the stability of the
2×2 matrix above. The eigenvalues ωi and eigenvectors vi of this matrix can be computed explicitly,

η± =
1

2

(
e2λ1∆tâ11 + e2λ2∆tâ22 ±D

)
v± =

(
−1

2e(λ1+λ2)∆tâ12

(
−e2λ1∆tâ11 + e2λ2∆tâ22 ∓D

)
1

)
where

D = (e4λ1∆tâ211 + 2e2(λ1+λ2)∆t(2â212 − â11â22) + e4λ2∆tâ222)
1/2.

In what follows, we will express quantities in terms of the spectral gap Γ = λ1 − λ2 > 0. For example, the expression
above can be written

D = e2λ1∆t
(
â211 + 2e−2Γ∆t(2â212 − â11â22) + e−4Γ∆tâ222

)1/2
= e2λ1∆t

(
â11 +O(e−2Γ∆t)

)
.

The first eigenvalue to become negative is η+. We are interested in the ratio of the corresponding eigenvector
components, f1/f2 = v+,1/v+,2, which tells us how much the encoder will depend on the first eigenfunction ϕ1(x)
compared to the second. This ratio is given by

f1
f2

=
−e(λ1−λ2)∆t

2â12

(
−â11 + e2(λ2−λ1)∆tâ22 −D

)
(D20)

=
eΓ∆t

2â12

(
2â11 +O(e−2Γ∆t)

)
(D21)

= eΓ∆t
â11
â12

+O(e−2Γ∆t). (D22)

This suggests that we must make one additional assumption, which is that the factor â11/â12 is not small. This is true
whenever the flux is small, as

⟨ϕnϕm⟩ρ0 = − 2

λn − λm
⟨(J · ∇ϕn)ϕm⟩ρ0 . (D23)
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a b

Optimal encoder
after 1st transition 

c d Optimal encoder
after 2nd transition 

Encoder-present
information

Encoder-future
information

FIG. S2. Information bottleneck for a Brownian particle in a double well. (a) Mutual information between the current
state Xt and its encoding Ht for various alphabet sizes NH (color). The first two IB transitions are denoted with black lines and
occur at β1 and β2. (b) Mutual information between the current state’s encoding Ht and the future Xt+∆t. The gray dashed line
denotes the maximum attainable information, which is the mutual information I(Xt, Xt+∆t). Color denotes encoding alphabet
size. Black lines showing IB transitions are shown for reference. (c) Optimal encoder after the first transition (β ≳ β1) with
alphabet size NH = 3. (d) Optimal encoder after the second transition (β ≳ β2) with alphabet size NH = 3.

Similar to the equilibrium case, we see that at the first transition the encoder depends only on f1, giving (D1).
In contrast to the equilibrium case, there may be a small correction due to the second eigenfunction, however this
becomes exponentially small for long times ∆t.

Note that in this calculation, ϕ0(x) is constant (following from the assumption of a non-degenerate eigenvalue at 0)
so that the f0(h) factors can be absorbed into p(h). This changes in the case of a degenerate ground state, which
corresponds a situation where there are decoupled sectors in which the dynamics evolve independently. Then, each
eigenfunction corresponding to the zero eigenvalue is piecewise constant on one of the independent sectors. The optimal
encoder Eq. D10 will depend instead on ϕ0(x), which identifies the independent sectors.

Appendix E: Rate of information decay

We consider the mutual information

I(Xt, Xt+∆t) =
∑
x,y

p(y|x)p(x) log p(y|x)
p(y)

(E1)

where x denotes values of the random variable Xt and y the values of Xt+∆t. We further consider dynamics which can
be given by a transfer operator U with integral kernel p(y|x) that can be spectrally decomposed as

p(y|x) =
∑
n

eλntρn(y)ϕn(x), (E2)
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FIG. S3. IB transitions for a Brownian particle in a triple-well potential. (a) Information transitions with varying
β for a particle in a triple-well potential. (b) Eigenvalues of the IB Hessian evaluated at the uniform encoder p(h|x) = N−1

H .
The appearance of an unstable direction at β1 ≈ 3 coincides with the first IB transition. The emergence of a second unstable
direction doesn’t correspond precisely to the IB transition at β2 because stability is evaluated at the uniform encoder, but the
true optimal encoder at β2 is not uniform. (c) The unstable directions are dominated by single components (note the color scale
is logarithmic). At the first transition, the logarithm of the encoder is given by the eigenfunction ϕ1(x), up to rescaling (y-axis
is shown in arbitrary units). (d) Likewise, at the second transition the encoder is given primarily by ϕ2(x).

where λ0 = 0, ϕ0 = const and ρ0(y) is the steady state distribution. The mutual information can then be written

I(Xt, Xt+∆t) =
∑
x,y

∑
n

eλn∆tρn(y)ϕn(x)p(x) log

1 +
∑
m>0

eλm∆t ρm(y)

p(y)
ϕm(x)

 (E3)

=
∑
n,m>0

e(λn+λm)∆t
∑
x,y

ϕn(x)ϕm(x)p(x)
ρn(y)ρm(y)

p(y)
(E4)

+
∑

n,m,ℓ>0

e(λn+λm+λℓ)∆t
∑
x,y

ϕn(x)ϕm(x)ϕℓ(x)p(x)
ρn(y)ρm(y)ρℓ(y)

p(y)
+ ... (E5)

For long times, the contribution of λ1 dominates, with the remaining terms decaying as e(λn−λ1)∆t for n ≥ 2.
Retaining only the first term, we see

I(Xt, Xt+∆t) = e2λ1∆t
∑
x

ϕ21(x)p(x)
∑
y

ρ1(y)
2

p(y)
. (E6)

For short times, other eigenvalues will also contribute to the mutual information (Fig. S4).

Appendix F: Variational IB

Exactly solving the IB problem in principle requires access to the full distribution p(y, x), where x is the variable to
be compressed and y is the relevance variable. One way around this is via so-called Deep Variational IB as introduced
in Ref. [41]. The key result from [41] is an upper bound on the IB objective

LIB = I(X;H)− βI(Y ;H). (F1)

To compute the first term, [41] introduces a variational ansatz for the marginal p̂(h). It follows from positivity of the
Kullback-Leibler divergence DKL(p(h)∥p̂(h)) that∫

dhp(h) log p(h) ≥
∫
dhp(h) log p̂, (F2)
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a

b c

d e

FIG. S4. Information gain due to an eigenvalue pile-up. (a) To study the role of a gap closing compared to the pile-up of
eigenvalues (beyond the dominant one) in the mutual information I(Xt;Xt+∆t) we build a matrix P with which we can tune
the eigenvalues via a parameter ε. (b) Eigenvalues for the matrix shown in (a) with varying parameter values ε; for ε → 0.5,
the spectral gap λ0 − λ1 closes. (c) Eigenvalues for the matrix shown in (a), but with all 1

2
( 1
2
− ε)2 terms subtracted with a

constant (here 1/8). Here, the spectral gap λ0 − λ1 does not close but there is an accumulation of eigenvalues at ε → 0.5. (d-e)
Mutual information for ∆t = 1 for the matrices in (b-c), respectively, as a function of ε. The curve from the other scenario is
shown in gray for comparison. Both exhibit a clear peak in information which differs only slightly in magnitude, showing that
the information peak in Fig. 2d-f of the main text is not due to the closing gap alone, but rather due to contributions from
subdominant eigenvalues.

and hence

I(X,H) ≤
∫
dxdhp(h|x)p(x) log p(h|x)

p̂(h)
(F3)

= ExDKL(p(h|x)∥p̂(h)). (F4)

If p(h|x) and p̂(h) are chosen properly, the Kullback-Leibler can be expressed analytically which enables gradients to
be effectively computed. As in Ref. [41], we take a Gaussian ansatz for p(h|x) and let the marginal p̂(h) be a spherical
unit-variance Gaussian. More concretely, encoded variables Ht are sampled from p(Ht|Xt) by computing

ht = fW (xt) + σW (xt)η, (F5)

where fW and σW are deterministic functions modeled by neural networks with parameters (weights) W , and η is a
Gaussian random variable with unit variance.

To bound the entire loss from above, we must bound I(Y,H) from below. We do this using the noise-contrastive
estimate of the mutual information introduced in Ref. [81]. This recasts the problem as one of distinguishing samples
from the distributions p(y|h) and p(y). Given a batch of B pairs (y, h) and one particular value hi, one asks what
the probability is that a sample yj is from p(y|hi) (is a positive sample) and not p(y) (is a negative sample). This
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probability is

p(yj = pos|hi) =
p(yi|hi)
p(yi)∑B

k
p(yk|hi)
p(yk)

, (F6)

where i is the index of the positive sample. The log likelihood of these probabilities,

E[− log p(yj = pos|hi)], (F7)

where the expectation is taken over indices i and j, is closely related to the mutual information I(Y,H). In the limit
of infinite samples B → ∞, this quantity is given by

−
∫
dydh p(h)p(y|h) log p(yj = pos|hi) = logB − I(Y,H). (F8)

If one had access to the probabilities p(yi = pos|h) appearing in Eq. F7, the mutual information could thus be easily
determined. One attempts to estimate these probabilities by introducing a variational ansatz f(y, h) to approximate
the density ratio p(y|h)

p(y) . Typically this f is represented by a neural network. One can then obtain a bound on the
mutual information by minimizing

LB = E

[
− log

f(yi|hi)∑B
k f(yk|hi)

]
, (F9)

from which the InfoNCE estimate of the mutual information can be calculated as

INCE(Y,H) = logB − LB ≤ Itrue(Y,H). (F10)

The full objective to be minimized is given by

LVIB = DKL(p(Ht|Xt)∥p̂(Ht))− βINCE(Xt+∆t;Ht), (F11)

an illustration can be seen in Fig. S5. This loss is evaluated on batches of sample pairs {(x(1)t , x
(1)
t+∆t), (x

(2)
t , x

(2)
t+∆t), ...}.

A minimum is found via stochastic gradient descent. Note that other variational loss functions inspired by the
information bottleneck have been derived, for example [82].

The VIB loss Eq. F11 is very similar to the loss function for a time-lagged β-variational autoencoder (β-VAE) [83],
which have a form L = DKL − Lrec, where the reconstruction term Lrec measures the deviation from the true future
state Xt+∆t and the reconstruction from the latent variable Ht. In the VIB, this term is replaced by the mutual
information INCE: rather than searching for a latent variable which can reconstruct the While a standard β-VAE with
mean squared error (MSE) loss finds a latent variable that can reconstruct the full state at a time ∆t in the future,
the VIB merely tries to reconstruct the statistics of Xt+∆t conditioned on Xt.

Replacing reconstruction losses with information-theoretical loss functions makes sense in some scenarios, such as
chaotic systems. Recent work in this direction has used the Kullback-Leibler divergence as a loss function in place of a
L2 loss which generated well-behaved long-term dynamics [84, 85]. Other metrics which penalize the number of “false
neighbors” in latent space have also shown to improve performance for chaotic systems [86].

The extent to which our findings might apply to time-lagged VAEs with L2 reconstruction losses is an interesting
question for future work. In Fig. S13, we observe that time-lagged VAEs learn a similar latent variable as VIB for
the simulated fluids dataset. Indeed, several works have noted the apparent similarity between modes learned by
variational and regular autoencoders with linear methods such as principal component analysis (PCA) [18, 87, 88].

VIB verification for noisy Hopf oscillator

We now show that VIB learns an encoding consistent with exact IB, i.e. one which depends only on the dominant
transfer operator eigenfunctions. We consider the example of a Hopf oscillator given by the dynamical system

ṙ = r(µ− r2),

θ̇ = ω. (F12)
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FIG. S5. Variational IB extends exact IB. (a) Variational IB optimizes the variational objective directly from samples, in
contrast to exact IB which requires an estimation of the full conditional distribution p(xx+∆t|xt). Values of ht are drawn from
a “latent” distribution p(h|x), from which one can estimate the mutual information I(Xt+∆t, Ht). The compression term is
approximated by the Kullback-Leibler divergence between the learned p(h|x) and a variational ansatz for the marginal p̂(h). (b)
Phase portrait for a dynamical system above a Hopf bifurcation. (c) Exact IB learns (up to permutations) an encoding h which
corresponds to the polar angle coordinate θ. (d) Variational IB similarly learns the correct encoding, directly from samples. (e)
Correspondence between IB encodings and the angle coordinate θ. The encoding learned by VIB is independent of r (inset). (f)
Time dependence of the encoded variable ht.

Equation (F12) is the normal form (in polar coordinates) for dynamics near a Hopf bifurcation [89]. For µ > 0 this
system exhibits a circular limit cycle of radius √

µ (Fig. S5b). In Section G we show that this system has infinite
purely imaginary eigenvalues λn = inω and that as a result, encoders which exactly encode the angle coordinate,
p(h|r, θ) ∝ δ(h− θ), are solutions of the IB optimization problem.

The exact IB calculation breaks down for perfectly deterministic dynamics, hence we add a small amount of white
noise to the dynamics. While this slightly perturbs the spectral content of the transfer operator, we still find our
results to be consistent with the those expected for the deterministic case (see Section G). As we increase the size of
the encoding alphabet NH , the encoder partitions space by finer and finer angular wedges. The learned encoding is
invariant under permutations of the encoded symbols. Upon reordering, we find that, for large alphabets NH ≫ 1, the
encoder indeed approximates p(h|r, θ) ∝ δ(h− θ) as expected (Fig. S5c).

Using VIB, we learn a continuous ht which can be computed directly from samples of the state variable. The
encoding ht learned by VIB closely approximates the angle coordinate (Fig. S5e-f) and is nearly uncorrelated with
r (inset). This shows that our mathematical results illustrated for exact IB in Sec. D hold also in the approximate
framework of VIB.

VIB for deterministic dynamics

IB is an inherently probabilistic framework. To handle deterministic dynamics, we make them effectively stochastic by
introducing a stochastic sampling scheme. Concretely, rather than taking as our IB relevance variable Y = Xt+∆t, we
take Y = Xt+∆t+η where η is a random uniformly-distributed time shift. Despite using a different relevance variable, this
yields essentially the same optimal encoding as (D1), where the eigenvalue eλn∆t is replaced by

∫
dη p(η) exp(λn(∆t+η)).

Crucially, the encoder retains its dependence on the transfer operator eigenfunctions ϕn(x) as before. In general, this
need not be the case: selecting a new relevance variable changes the IB objective and will generically lead to a different
encoder. Our choice of stochasticity which we introduce to the dynamics is chosen in such a way to preserve the form
of the encoder.

We illustrate this with a prototypical example of deterministic chaotic dynamics, the Lorenz system [90]. In the
steady state, the state variable of the Lorenz system resides on a chaotic attractor consisting of two “lobes” which
encircle unstable fixed points (Fig. S6a). The encoding variable h learned by VIB is the slowest varying function of the
state x, decaying as exp(λRe

1 t) where λRe
1 is the real part of the first subleading eigenvalue of the transfer operator

(here Perron-Frobenius operator) (Fig. S6b). Eigenvalues λn as well as right eigenvectors ϕn(x) of the Perron-Frobenius
operator were computed numerically using the Ulam method. The correspondence between ϕ1(x) and h disappears as
β is increased (Fig. S6c-e). The dynamics of h also become notably less “slow”, and are instead nearly constant with
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FIG. S6. Variational IB discovers slow variables. (a) Variational IB applied to the Lorenz system. Color corresponds the
encoding value ht. (b) Time correlation functions of the encoded variable CXY (τ) = ⟨(X(τ)−X̄)(Y (0)−Ȳ )⟩ for high compression
(black) and no compression (red). Blue shows the decay of the subleading Koopman eigenfunction using numerically-obtained
eigenvalues. (c-d) Lorenz attractor projected onto the x-y plane, colored by encoding variable. (e) Same projection, colored
by the value of the true subleading Koopman eigenfunction. (f) Dynamics of ht obtained by encoding the state at every time
during the true trajectory. Top corresponds to no compression (β = ∞), bottom corresponds to high compression (β = 4000).

occasional large jumps (Fig. S6f). This shows that in order for h to be a valid slow variable, the compression term in
Eq. (F11) is crucial. These results are consistent with those obtained for exact IB, where we showed that the encoder
incorporates the slow modes at low beta (high compression).

Appendix G: Optimal encoding for Hopf normal form dynamics

In Fig. S5 we show that IB learns the angle coordinate when applied to a dynamical system above a Hopf bifurcation.
Here, we show that this is expected. We begin by deriving the adjoint transfer operator in polar coordinates, and then
continue to solve for its eigenfunctions. In Cartesian coordinates, the equations of motion for the particle are

ẋ = (µ− x2 − y2)x− ωy (G1)

ẏ = (µ− x2 − y2)y − ωx (G2)

Expressed in polar coordinates, we have

fxêx = fx cos θêr − fx sin θêθ (G3)
fy êy = fy sin θêr + fy cos θêθ (G4)

From this we can compute LKϕ = fi∂iϕ,

fi∂iϕ = (∂rϕ)(µ− r2)r +
1

r
(∂θϕ)ωr (G5)

= r(µ− r2)(∂rϕ) + ω∂θϕ (G6)
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Because this differential equation is separable, we can find eigenfunctions by looking for eigenfunctions that are a
function of either r or θ. Recall that for deterministic dynamics, a product of adjoint transfer operator (or Koopman
operator) eigenfunctions is again an eigenfunction [19]. The eigenvalue equation for the radial coordinate is solved in
Ref. [33], and in Ref. [76] it is shown that for this system there is no globally valid Koopman decomposition. However
we are only interested in a subset of eigenfunctions, in particular those with eigenvalue with real part Reλi ≈ 0, which
may not suffice to approximate arbitrary functions of the state variable.

For the angle coordinate alone the situation is much simpler,

ω∂θϕ(θ) = λϕ(θ)

which is solved by functions ϕn(θ) = exp
(
λn

ω θ
)
. Periodicity requires λ

ω2π = i2πn, which leads to λ = inω. The
eigenfunctions and eigenvalues are then

ϕn(θ) = einθ, λn = inω.

The corresponding eigenfunctions of the Perron-Frobenius operator are given by ρ = e−inθ. We now consider an
encoding p(h|x).

p(h|r, θ) ∝ exp

{ ∞∑
n

eλn∆tϕn(r, θ)

∫
r′dr′dθ′ρn(r

′, θ′) log p(r′, θ′|h)

}
(G7)

= exp

{ ∞∑
n

einω∆t
∫
r′dr′dθ′ein(θ−θ

′) log p(r′, θ′|h)

}
+O(eReλk∆t) (G8)

where we retain only the eigenvalues with zero real part; the λk in the above refer to those eigenvalues with non-zero
real part. After neglecting these terms, it can be seen directly that p(h|r, θ) = p(h|θ). The coordinates (r′, θ′) are used
to denote (rt+∆t, θt+∆t). The expression can be further simplified by replacing the sum over n with a delta function,
which leads to

p(h|r, θ) ∝ exp

{∫
r′dr′ log p(r′, (θ + ω∆t)|h)

}
. (G9)

We next ask whether an encoder of the form p(h|θ) ∝ δ(h− θ) is a solution. Recall that the probability distribution
appearing in Eqn. G9 is a distribution over future positions, p(Rt+∆t = r′,Θt+∆t = θ + ω∆t|h). This distribution can
be calculated as

p(rt+∆t, θt+∆t|h) =
∫
rdrdθp(rt+∆t, θt+∆t|rt, θt)p(r, θt|h) (G10)

∝ δ((θt+∆t − ω∆t)− h) (G11)

where we used that the two terms in the integrand of the first equation are both delta functions. Plugging this into
(G9) shows that p(h|θ) ∝ δ(h − θ) is consistent, and hence is an optimal encoding. In the presence of noise, the
eigenvectors are perturbed and may gain a dependence on r (see Fig. S7).

Appendix H: VIB for fluid flow around a cylinder

Eigenfunction computation via dynamic mode decomposition

Here we provide some additional details on the computation used to generate components of Fig. 5 of the main text.
The true Koopman modes were computed using dynamical mode decomposition (DMD) [11, 12, 91], also described
below in Section K. DMD attempts to find a finite dimensional approximation of the Koopman operator using n
snapshots of the system’s state x ∈ Rd which are assembled into a data matrix X ∈ Rn×d. One then attempts to find
a linear evolution operator K which propagates the state forward in time

Xt+∆t = KXt.

The approximate Koopman operator is given by the least squares solution K = Xt+∆tX
+
t where X+

t denotes the
pseudo-inverse of Xt. Approximate Koopman eigenfunctions are given by ϕn(x) = x · wn where wn denotes the nth
eigenvector of the matrix K and is known as the nth DMD mode, denoted by m(n) in the main text.
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FIG. S7. Eigenfunctions and IB partitions for the Hopf Oscillator. (a) Phase portrait for the deterministic Hopf
oscillator. (b) Partitions found by IB for high beta but a restricted encoding alphabet NH . (c) Example trajectories of the
nearly deterministic Hopf oscillator, with small noise amplitude σ = 0.01. (d) IB partition of the low noise dynamics for a
NH = 16 encoding alphabet (same as appears in (b)). (e) For small noise, the first several eigenfunctions obtained numerically
approximate the numerically expected ones of the form cosnθ. (f) Simulated trajectories of Hopf oscillator with higher noise
amplitude σ = 0.2. (g) IB partition of the low noise dynamics for a NH = 16 encoding alphabet; note the dependence on r. (h)
The presence of noise changes the eigenfunctions, in particular they depend on r.

Details on gradient analysis

The fluid flow of a von Karmen vortex street is well approximated by linear dynamics, which can be understood by
recognizing that the system is poised just after a Hopf bifurcation so that there is an angle coordinate which rotates
with constant angular velocity. This constant rotation can be described by a linear dynamical system. It follows from
linearity that eigenfunctions of the adjoint transfer operator are given by linear functions of the state variable,

ϕn[v] = ⟨v(x),m(n)(x)⟩, (H1)

where m(n) is the n-th “Koopman mode” and angled brackets denote integration over space. To compute these modes
and the corresponding transfer operator spectrum, we use dynamic mode decomposition (DMD; see SI Section H)
[11, 12].

We allow VIB to learn a two-dimensional encoding variable [h0, h1], so that it can learn the complete first eigenfunction
rather than only the real or imaginary part. For the purposes of comparing our learned variable with ϕ1, we construct
a complex h = h0 + ih1 out of the two learned components.

To understand which function has been learned by the neural network, we check whether the learned functions hi[v]
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are of the form Eq. (H1). This can be done by examining gradients of the network with respect to the input field

∂h

∂vj
= m

(IB)
j + gres,j(v(x)) (H2)

where we have separated the part of the gradient which is independent of v from a residual part which is dependent on
v. Gradients of the true eigenfunctions are given simply by

∂ϕn
∂vj

= m
(n)
j . (H3)

We can then directly compare our latent variables with the true eigenfunctions by comparing their derivatives. If h
corresponds to the true eigenfunction, we expect that m(IB) is approximately equal to the Koopman mode m(1), and
that gres is small. While it is unclear how to perform this decomposition in a general setting, we assume that the
residual component gres,j averages to zero over an oscillation period of the flow field v. Then, m(IB)

j ≈ ⟨ ∂h∂vj ⟩t and gres,j
is given by variations about the mean. We see in Fig. S8 that these variations are much smaller than the mean in
magnitude, and that they are essentially orthogonal to the mean vector. From this, we conclude that the gradients are
given primarily by the constant part m.

orthogonalitymagnitudea b

C
ou

nt

FIG. S8. VIB gradients for fluid flow are nearly linear. We compare the linear part of the gradients of the VIB network
to the residual which depends on the input field v(x). (a) The residual parts are smaller in magnitude than the linear part
m. Angle brackets denote average over space. (b) The residual parts are nearly orthogonal to the mean m, as we see that the
projection of the full gradient onto the mean is nearly 1.

The learned latent functions vary for different training instances of the neural network. To extract the average
gradient, we use PCA in an approach similar to that in Ref. [52]. The learned functions can have arbitrary sign
structure; h = h0 + ih1 is just as likely to be learned as h = −h0 + ih1, for example. While in principle the network
could learn arbitrary rotations, rather than simply changes in sign, we observe this is not the case. The distribution of
gradients forms clusters in the high-dimensional gradient space corresponding to the four possible permutations of
sign. PCA picks out the directions separating these clusters, as these are precisely the directions along which the data
varies the most. This procedure gives an average gradient, while taking the varying sign structure into account. For
reference, the gradient of a single instantiation of the VIB network can be seen in Fig. S13b.

Appendix I: Cyanobacteria experiments

The experimental parameters used in the cyanobacteria experiments are described in detail in [61]. In brief, the
authors in [61] control the translation of the KaiA protein with a theophylline riboswitch, allowing them to tune the
copy number of KaiA proteins in the bacteria by modulating the concentration of theophylline. The clock state of
each individual bacteria is visualized with a fluorescent marker EYFP driven by the kaiBC promoter. Colonies are
imaged once per hour. The full dataset consists of 5 videos, such as the one shown in Fig. S9, which each contains
several colonies. For each video we isolate regions which are filled by bacteria at all times to eliminate the effect of
exponential colony growth, which otherwise dominates the VIB results. Each latent trajectory shown in Fig. S9 as well
as Fig. 6 in the main text corresponds to the trajectory of one single colony evolving under one of four theophylline
conditions. There are 10 trajectories (colonies) in total, coming from 4 experimental conditions (colonies with radius
smaller than 64 pixels are not considered). Figure S9 also shows the effect of the choice of time delay, which in the
main text we take as τ = 3 hr.

Synchronization measurements We measure the synchronization of the cyanobacterial oscillations using a metric
inspired by a locally-coupled Kuramoto model which considers a spatially-varying phase field θ(x, t). In terms of this
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FIG. S9. Cyanobacteria data and choice of time delay (a) The cyanobacteria dataset consists of 5 videos, where each has
multiple (up to 3) colonies. (Top) time evolution of one video, where the interiors of the colonies are outlined with white boxes.
The dataset is composed of all colonies which are greater than 64px in height and width. (Bottom) evolution in time of one
selected colony. (b) Learned VIB encodings when no time delay is used, i.e. τ = 0. Left shows the evolution of (a subset of)
individual colonies, colored by the original experimental video which they belong to. Note that the axes scale is adjusted for
each trajectory so that it fills the plot. Right panel shows all colonies in latent space. (c) Same as above, but with the 3 hr time
delay used in the main text. (d) Hyperparameter sweep over different choices of time delay τ and prediction horizon ∆t. Here
each set of three plots was trained with the same parameters but different neural network instantiations to understand how
robust these latent spaces are.
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field, an order parameter can be computed as

r(t)eiψ(t) =
1

V

∣∣∣∣∫ dxeiθ(x,t)
∣∣∣∣ (I1)

where V refers to the volume being integrated over. The value of r(t) is referred to as the synchronization order
parameter, while ψ(t) is the average phase.
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FIG. S10. Variance along principal component directions For each DVIB model trained on the cyanobacteria dataset,
we compute the principal component decomposition of the resulting point cloud in latent space. Here we show the variance
along each principal component for 60 instantiations of the DVIB model. Variances are normalized by the variance in the first
principal component direction.

To calculate the field θ(x, t) from an intensity field I(x, t) we imagine that the intensity field represents one component
of the complex phase, for example I(x, t) = sin(θ(x, t)). The other component can be accessed using a time-delay,
cos(θ(x, t)) = cos(θ(x, t+ τ)) = I(x, t+ τ) =, where τ here should be chosen so that the intensity field undergoes one
quarter of a full oscillation. As we know the true period of the circadian cycle is 24 hours/frames, we choose a delay of
τ = 8 frames. Then, the phase can be computed as

θ(x, t+ τ) ≈ arctan
I(x, t)

I(x, t+ τ)
.

In Fig. S11 we show the results of VIB when applied to a locally-coupled Kuramoto model. Here we learn the
same latent features which undergo oscillatory dynamics of varying radius, where the radius corresponds to the
synchronization order parameter.

Appendix J: Simulation Parameters

Triple well simulations For the dynamics of the triple well we work directly with the force F = −∂xU ,

F (x) =
−1

200

(
9375x5 − 7500x3 + 1100x− 20

)
.

The evolution of the Brownian particle’s position xt is given by

dxt =
F (xt)

γ
dt+ σ

√
dtηt (J1)

where ηt is white noise with unit variance. The noise magnitude σ is related to the diffusion constant in Eq. C1 by
D = σ2

2 . We use σ = 1.0 and γ = 0.2

Simulations were performed with Ninit = 105 initial conditions, with 300 trajectories generated from each initial
condition. The state is evolved for 100 steps at dt = 2 · 10−3. The transfer matrix is approximated by binning the
space x ∈ [−1, 1] with Nbins = 100 bins. IB is performed using a time delay ∆t = 64 steps.
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FIG. S11. VIB applied to simulated Kuramoto model Inputs are made to mimic the intensity field of the cyanobacteria
data. The intensity field (a) is derived from the phase field (b) according to I(x, t) = 1

2
cos θ(x, t)− 1. (c) DVIB trained with

two latent variables learns oscillations. Here each trajectory is colored by its synchronization order parameter. (d) Latent
oscillations are very highly correlated with synchronization order parameter.

Pitchfork bifurcation simulations The system was evolved according to the stochastic differential equation Eq. J1
with F (x) = −µx − x3, γ = 1 and σ = 0.1. For each value of µ, 105 initial conditions were simulated with 2000
trajectories starting at each initial condition. These were evolved for 100 time steps of dt = 2 · 10−3.
Hopf oscillator simulations The system was evolved according to Eq. J1 with the force given by Eq.F12 in the
main text, with γ = 1 and σ = 10−2, ω = 4.0 and µ = 0.25. For each value of µ, 106 initial conditions were simulated
with 1000 trajectories starting at each initial condition. These were evolved for 50 time steps of dt = 2 · 10−3.
Lorenz system simulations The system was evolved according to

ẋ = σ(y − x) (J2)
ẏ = x(ρ− z)− y (J3)
ż = xy − βz (J4)

with ρ = 28, β = 8/3 and σ = 10. We took 103 initial conditions from which trajectories were simulated for 105 steps
with dt = 2 · 10−3. We compute the true eigenfunctions using the GAIO library [92].
Fluid flow simulations The fluid flow simulations simulations are contained in the “Cylinder in Crossflow” dataset,
downloaded from Ref. [93]. We take the dataset at Reynolds number 150, and interpolate the velocity field from the
unstructured 6569-node mesh to a regular grid of 300× 150 pixels. The VIB networks are trained with β = 107 and a
time buffer ∆t chosen randomly between [4, 24] (see our comment on time randomization in “VIB for deterministic
dynamics” in Section F).
Locally-coupled Kuramoto model In SI Fig. S11 we perform variational IB on a locally-coupled Kuramoto model
and find the latent variables learn a synchronization order parameter as in the cyanobacteria data. This model
considers a spatially-distributed field of phases which evolves according to

∂tθ(xi, t) = ω(xi) + J
∑
j∈Ni

sin(θ(xi, t)− θ(xj , t))

where xi denotes the location of gridpoint i and Ni denotes the sites neighboring i. These dynamics are integrated
using the Euler method, where we take ω(x) = const = 0.05 for the natural frequencies, and J = 1.0.

Appendix K: Comparison of various dimensionality reduction methods

In this section we compare the performance of variational IB (VIB) to several common data-driven model reduction
or inference methods. VIB uses a neural network to identify the relevant variables that are most predictive of the
future. This construction learns dynamically relevant variables in contrast to methods such as principal component
analysis or diffusion maps (in the absence of additional stringent assumptions), and it finds potentially non-linear
variables in an agnostic way without requiring a tailored library of non-linearities (such as extended dynamic mode
decomposition). In addition to these factors, VIB produces physically well-defined relevant variables – transfer operator
eigenfunctions – in contrast to other deep methods such as (variational) autoencoders. In Fig. S12 we compare the
low-dimensional latent space trajectories of the reduced models obtained using several of these standard methods to
those output by VIB. In the remainder of this section we discuss these methods in detail.
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Principal Component Analysis/Proper Orthogonal Decomposition

Principal component analysis, or PCA, is a linear method that projects the data onto a subspace which accounts for
the most variance in the dataset [94]. In the dynamical systems literature, PCA is also known as a proper orthogonal
decomposition (POD) [95]. The starting point for PCA is a collection of samples x(k), where each sample has Nfeat
different features : x(k) ∈ RNfeat . Given these samples, one computes a correlation matrix between every pair of features

Cij =
1

Nsamples

Nsamples∑
n=1

(x
(n)
i − x̄i)(x

(n)
j − x̄j).

The principal components of the data are eigenvectors of the covariance matrix; the dominant principal component
determines the direction of most variation in the dataset. In practice, if many samples are present the correlation
matrix is expensive to compute. Writing the dataset as a matrix, X ∈ RNsamples×Nfeat , computing the correlation
matrix requires evaluating the matrix product C = XTX. Instead, a more computationally efficient way is to compute
the singular value decomposition (SVD) of the data matrix,

X = UΣVT .

The principal components are given by columns of V, and the singular values in the matrix Σ are the square root of
the variance along each principal component direction. PCA’s relation to SVD also means that one can interpret a
reconstruction of X using only k principal components as the optimal rank-k approximation of the dataset, where
optimality is here defined with respect to the Frobenius norm.

Compared to VIB, the linearity assumptions underlying PCA can be viewed either as a benefit or a drawback.
The benefit is that a linear projection can be intuitive to understand in terms of the original data, and that one can
compute this projection quickly. The potential downside is that a linear projection may not be sufficient or appropriate
for systems that are highly non-linear. In addition, PCA makes no reference to the dynamics of the system, unlike
VIB. An example of where PCA can fail is shown in Fig. 3 of Ref. [73]. In words, imagine a particle is hopping in a 2D
double-well potential, where the wells are centered at x± 1. If the vertical extent of the wells is very large (|y| ≫ 0),
then the dominant principal component will be along the y-direction, even though the interesting dynamics are the
hops between wells, which happens in the x-direction.

Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) starts from the assumption that the system evolves linearly [11, 12]. Concretely,
if xt ∈ Rnfeat denotes the observed quantity at one point in time, then one assumes dynamics given by

xt+1 = ADMDxt.

The matrix A is a finite-dimensional approximation to the Koopman operator [19].
To find the matrix ADMD, we start by assembling a collection of samples into a data matrix Xt ∈ RNsamples×Nfeat .

In addition to this, we assemble a time-shifted matrix Xt+1 of the same shape as Xt. In the scenario where we only
have one trajectory of duration T , each sample may correspond to the system at a measured time point (excluding the
final time), so that

Xt =


−x(1)−
−x(2)−

...
−x(T−1)−

 , Xt+1 =


−x(2)−
−x(3)−

...
−x(T )−


The matrix ADMD is given by the least squares solution

AT
DMD = X+

t Xt+1

where M+ denotes the pseudoinverse of the matrix M. Eigenvectors w of the matrix ADMD are Koopman modes,
which correspond to left eigenfunctions of the transfer operator. The evolution of these Koopman modes in time is
given by the time-dependent amplitude ai(t) = xt ·w, where we take xt here to be a single measurement at time t.
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Similar to PCA, DMD reduces the dimensionality of the dataset by finding a linear projection of the data onto
a subspace of the full features space. However, a key difference between the two approaches is that DMD uses the
system’s dynamics to identify an “optimal” subspace, whereas PCA identifies a subspace based only on the steady-state
distribution of the data.

DMD in its original formulation assumes that the Koopman operator linearly evolves the observed state variable.
However, the true Koopman operator evolves arbitrary non-linear functions of the state variable forward in time. DMD
has therefore been extended to account for non-linear functions through “extended DMD”, or eDMD [13]. eDMD
augments the state vector with non-linear transformations of the state. As an example, a state vector [−x−] may
be replaced by monomials [−x−,−x2−,−x3−] (where here we understand exponentiation as element-wise). Other
approaches also exist, such as augmenting the state vector by several time-delayed state vectors [96]. Rather than
constructing the full d × d matrix, where d is the dimension of the (possibly augmented) state, one can directly
construct a low-rank approximation of K by computing the reduced-rank singular value decomposition (SVD) of the
matrix K from the SVDs of Xt and Xt+∆t.

Similar to PCA, DMD is primarily limited in its assumption of linear dynamics. In some cases this can be resolved
with eDMD, which requires that one identifies a suitable set of non-linear terms to account for potential non-linear
eigenfunctions of the Koopman operator. It is unclear how to choose this set of functions in a generic setting, which
constitutes the biggest disadvantage to VIB. The features for eDMD must be hand-selected, which in some cases may
defeat the purpose of using it as a feature-learning tool. VIB is not subject to this restriction, and can learn relevant
features directly from the data.

Independent Component Analysis

Independent component analysis (ICA) was originally formulated in the context of blind source separation, where a
useful picture is the “cocktail party problem” [10]. Imagine you place a set of microphones in a room at a cocktail
party; these microphones will record the combination of all the conversations happening at once. The goal of blind
source separation is to find a way to, from the recorded signals, isolate the original conversations. Mathematically,
ICA finds a solution to the equation

x = AICAs. (K1)

Here, x denotes the recorded signal, s denotes the independent sources (conversations), and AICA is the mixing matrix.
The only measured quantity is the vector x; both the mixing matrix and the independent sources must be learned.

To find one independent component, we start with an initial guess y = bTx which, for a correct choice of b, should
be equal to some component si. To identify the correct b we will use the fact that sums of independent variables are
more Gaussian than the original variables themselves, which follows from the central limit theorem. By assumption,
the observed signals are a linear combination of independent components, so y is also: y = qT s. If multiple qi are
non-zero, this will be more non-Gaussian than if only one is non-zero. Thus, y = si for the choice of b for which y is
maximally non-Gaussian [10].

Numerically, one optimizes the deviation from Gaussianity using an approximation of the “negentropy” of the
distribution of y: Jneg = S(yGaussian)− S(y), where yGaussian is a normally distribution random variable and S is the
Shannon entropy. The intuition for this formulation is that the Jneg is minimized if y has a unit-Gaussian distribution,
so that it serves as a metric for non-Gaussianity. In practice one uses an approximation for Jneg, see Ref. [10] for
details. The optimal b can then be found by doing gradient ascent on this objective function.

On some level, independent component analysis (ICA) is similar to PCA in that it searches for a linear projection
of the data onto a subspace of the feature space. In its basic implementation ICA, like PCA, does not incorporate
dynamics in contrast to DMD or VIB. The essential difference between PCA and ICA is the assumption of independence
of the components. In PCA, unless the data distribution is actually multivariate Gaussian, the components are unlikely
to be independent. IB makes no assumptions about the independence of learned encoding variables with each other,
only about their level of independence with the original state. We note that ICA can be understood as minimizing the
mutual information between encoding variables, I(H1;H2), compared to IB’s minimization of the mutual information
with the original state [10]. Which objective is more desirable depends on the system at hand, but in general we do
not expect these to lead to the same encodings.

Time-lagged independent component analysis

The leveraging of non-Gaussianity in ICA is required due to the fact that, if using whitened data (z = Vx so
that z is zero mean ,E[z] = 0, and unit variance, E[zzT ] = I), then the mixing matrix AICA cannot be estimated if
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the components s are normal Gaussian variables: any orthogonal matrix will satisfy (K1). For dynamical systems,
however, one can get around this requirement of non-Gaussianity. In particular, one can use a time-lagged variable
zt−τ = AICAst−τ to compute the mixing matrix from the time-correlation matrix of the signal zt [10]. In particular,
we have

E[ztzTt−τ ] = AICAE[stsTt−τ ]AT
ICA

= AICADAT
ICA,

where D is a diagonal matrix. In going to the bottom line, we used the assumption that the components si are
independent not just instantaneously, but also for a time lag τ . From here we can read off that the matrix AICA
is composed of eigenvectors of the correlation matrix of the whitened signal. When written in terms of the original
(unwhitened) data xt and xt−τ it can be shown these eigenvectors are nothing other than the eigenvectors of the
transfer matrix ADMD [73]. Thus, the two methods are equivalent.

Diffusion maps

Diffusion maps are a technique which attempts to approximate the Perron-Frobenius operator, or rather the integral
kernel p(xt+∆t|xt) [14, 97]. Given this approximation, one computes eigenfunctions and uses them as a low-dimensional
parameterization of the data (“diffusion coordinates”).

This method takes data pairs {x(i)t , x
(i)
t+∆t}i and approximates the probability of observing these two points via a

kernel p(x(i)t , x
(j)
t+∆t) ≈ k(x

(i)
t , x

(j)
t+∆t), where one typically takes a Gaussian Ansatz

kϵ(x, y) ∝ exp

[
−(x− y)2

ϵ

]
.

From this, one can assemble the conditional probability distributions into a matrix

Pij = p(x
(j)
t+∆t|x

(i)
t ) =

p(x
(i)
t , x

(j)
t+∆t)

p(x
(i)
t )

=
k(x

(i)
t , x

(j)
t+∆t)∑

j k(x
(i)
t , x

(j)
t+∆t)

.

This matrix describes the evolution of probability distributions on a graph where each node is a data point. In practice,
a symmetrized version of P is constructed and the learned eigenvectors are adjusted after the diagonalization [14, 97].
To compute the diffusion coordinates of an arbitrary point that wasn’t in the original dataset, one inverts the definition
of the adjoint transfer operator eigenfunction

ϕi(xnew) ≈
1

λi

∑
k

P †
jkϕi(xk)

where λi is the i-th eigenvalue.
Diffusion maps have the advantage, relative to DMD, that they find the full Perron-Frobenius operator and not

a linear approximation to it. However, while DMD can isolate the dominant eigenvectors of the operator using
reduced-rank SVD, it is less clear how they can be extracted with diffusion maps without first computing the full
matrix P . We note that VIB, like DMD, also directly learns the dominant modes and does not require estimation of
the full transfer operator.

Deep (Variational) Autoencoders

Autoencoders (AEs) belong to a class of deep learning methods used for model reduction. Such approaches have
successfully been applied in various domains for forecasting the dynamics of complex systems in terms of simpler
latent dynamics [98, 99]. Autoencoders are composed of an encoder which compresses the observable x into a
lower-dimensional latent variable z, and a decoder which attempts to reconstruct the original state x. Variational
autoencoders aim to learn a probability distribution over observations pθ(x) ≈ p(x) from which one can directly sample
[100]. This is done by assuming that the latent variable is low dimensional, and optimizing the objective

Lβ-VAE = Eqϕ(z|x)[− log pθ(x|z)]− βDKL(q(z|x)∥p̂(z))
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FIG. S12. Comparison of various dimensionality reduction techniques on cyanobacteria dynamics Top row illustrates
linear methods, bottom row shows non-linear methods. For each method, we plot the trajectories of all cyanobacteria colonies
when projected onto the dominant modes (whose definition depends on the particular method). Blue trajectories show the
highly synchronized colonies corresponding to high theophylline concentration, black/gray trajectories show the unsynchronized
colonies from low theophylline conditions. Unlike the first four methods, deep neural networks (bottom right) directly produce
a two-dimensional latent variable and do not provide access to subleading modes. (a) Principal component analysis reduces
the dimensionality of data by finding a projection onto the directions of most variance (sketch). Here we show the projection
of the cyanobacteria trajectories onto several pairs of principal components, ai(t) = x(t) ·mi. Each curve corresponds to the
trajectory of one single colony evolving under one of four theophylline conditions; there are 10 trajectories in total, coming from
4 experimental conditions. Below, the first four principal components are shown. Here, the state is composed of two time-lagged
images of the cyanobacteria colony; the top half of m corresponds to the earlier image, the bottom half corresponds to the
lagged image. (b) Dynamic mode decomposition is performed on pairs of data points and aims to find a linear evolution operator
A that links them (sketch). (Right) Trajectories of the projection of the state onto several eigenvectors of A. The eigenvectors
themselves are shown below (the imaginary parts of the first two modes are uniformly zero). (c) Independent component analysis
seeks a linear projection of the data onto statistically independent components si. In other words, the distribution p(si|sj)
is independent of sj (sketch). (Right, top) Trajectories of the projection of the state onto several independent components.
(Bottom) columns of the mixing matrix; the components si describe how the weighting of these columns evolves in time. (d)
(Left) Diffusion maps build a graph of the observed state variables with edges weights determined by their distance from one
another. (Right) Projection of the trajectories onto the first non-trivial eigenfunctions (because a0 =const) of the inferred
transfer operator on the graph. (e) A (time-lagged) autoencoder is a deep neural network architecture which encodes the state
xt into a low-dimensional latent space. From the encoding one then tries to reconstruct the future state. (Right) Trajectories of
the cyanobacterial colonies when encoded into a two-dimensional latent space. (f) A variational autoencoder is similar to a
standard autoencoder, where one instead learns a distribution over possible encodings, p(ht|xt). (Right) Trajectories of the
cyanobacterial colonies when encoded into a two-dimensional latent space. (g) Implementation of the network in Ref. [20] which
encodes the state using a time-lagged autoencoder with an additional loss term that aims to enforce linearity of the embedded
dynamics, ht+∆t ≈ Kht. (h) Latent trajectories produced by variational IB (VIB).
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FIG. S13. Learned latent variables for fluid flows with various deep neural networks. To compare latent variables
we compare their gradients as in Fig. 5 of the main text, which should correspond to Koopman modes. Here we show the
gradients masked by regions in the DMD mode which have large amplitude. (a) True Koopman modes, with real and imaginary
parts shown, obtained via DMD. (b) Corresponding modes for a VIB network. Matrix in the bottom row shows the R2 values
obtained by regressing the pixel values of the VIB gradients against the different components of the Koopman modes. (c)
Corresponding modes for a β-variational autoencoder (VAE). The VAE has the same encoder structure as the VIB network,
while the decoder has an inverted architecture to predict the future state xt+∆t from the latent variable ht. Bottom row shows
R2 values, analogously to (b). (d) Corresponding modes for an autoencoder.

where qϕ(z|x) is the posterior on the latent variables z and is parameterized by a neural network (encoder) with
parameters ϕ, and pθ(x|z) denotes the decoding network with parameters θ. Strictly speaking, we present in the above
objective function the β-VAE loss [83]. With β = 1, which is the case for the original VAE [100], the objective is an
upper bound on the log likelihood −E[log pθ(x)] which is minimized when pθ(x) is equal to the true data distribution
p(x). The term β controls compression as in the IB objective, however it has the opposite effect: small βIB corresponds
to high compression, while small βVAE corresponds to low compression.

In cases where one directly computes the probabilities pθ(x|z) the first term can be evaluated directly, else it is
typically replaced with an L2 loss ∥x− gθ(z)∥2 (where gθ is a deterministic neural network), which is equivalent to
assuming a Gaussian Ansatz for pθ with a fixed variance.

The VIB loss function is very similar to the β-VAE loss [101]. Rather than attempting to reconstruct the original
state x, VIB replaces this term with an estimate of the mutual information between the latent variable z and some
other relevance variable y (for us, y = xt+∆t). In contrast to DMD and diffusion maps, neither VIB nor β-VAEs make
any mention of transfer operators and are instead motivated by purely statistical considerations. As we show in the
main text, the latent variables learned by VIB correspond to eigenfunctions of the transfer operator. While we cannot
claim that that β-VAEs learn the same thing, some preliminary results in Fig. S13 suggest they may coincide to some
degree. In the cyanobacteria dataset, we see that the latent variables learned by a β-VAE show the same qualitative
structure as in VIB, but are less smooth (Fig. S12).
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Other neural networks

Other deep architectures can also be used for model reduction. For example, Ref. [23] uses recurrent neural networks
(RNNs) to learn the evolution of macroscopic variables. To ensure stability and fidelity, the macroscopic variables
are periodically “lifted” to the full microscopic state, which is then evolved for several time steps to recalibrate the
RNN’s hidden state. While interpretability of the latent variables has yet to be explored in such models, we expect the
addition of VIB-like objective functions may aid interpretability without harming performance.

As another example, [20] attempts to learn the full Koopman operator using neural networks. This can be thought
of as an extension of eDMD, where instead of prescribing the library of nonlinear terms by hand, they can be learned
by a neural network. The latent dynamics are then encouraged to be linear by minimizing the deviation between
the true future (latent) state zt+∆t and its linear approximation found by least squares. Similar approaches have
also been explored in Refs. [21, 22]. As an illustration, we trained one such network on the cyanobacteria which can
be seen in Fig. S12. This approach was applied primarily to deterministic systems. We expect that combining their
method of encouraging linear latent dynamics together with the VIB objective function may be fruitful and lead to
more well-behaved latent variables.
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