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Abstract. Multimodal Large Language Models, combining the remark-
able reasoning and generalization capabilities of Large Language Models
(LLMs) with the ability to comprehend visual inputs, have opened up
new avenues for embodied task planning. Given diverse environmental
inputs, including real-time task progress, visual observations, and open-
form language instructions, a proficient task planner is expected to pre-
dict feasible actions, which is a feat inherently achievable by Multimodal
Large Language Models (MLLMs). In this paper, we aim to quanti-
tatively investigate the potential of MLLMs as embodied task planners
in real-world scenarios by introducing a benchmark with human annota-
tions named EgoPlan-Bench. Our benchmark is distinguished by realistic
tasks derived from real-world videos, a diverse set of actions involving
interactions with hundreds of different objects, and complex visual ob-
servations from varied scenes. We evaluate a wide range of MLLMs, re-
vealing that these models have not yet evolved into embodied planning
generalists (even GPT-4V). We further construct an instruction-tuning
dataset EgoPlan-IT from videos with human-object interactions, to fa-
cilitate the learning of high-level task planning in intricate real-world
situations. The experiment results demonstrate that the model tuned on
EgoPlan-IT not only significantly improves performance on our bench-
mark, but can also be applied as a task planner for guiding embodied
agents in simulations.

Keywords: Multimodal Large Language Model Benchmark · Egocen-
tric Embodied Planning

1 Introduction
In recent years, Large Language Models (LLMs) [4,5,39,46] demonstrate strong
performance in general-purpose natural language tasks. By seamlessly integrat-
⋆ Corresponding authors.
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Current ObservationTask Progress

&

Considering the progress shown in the video and my current
observation in the last frame, what action should I take next in
order to mix the meat with yogurt?

User

Stir meat.

Ground-Truth

Add yogurt to meat.

GPT-4V

Fig. 1: EgoPlan-Bench presents significant challenges for embodied planning given real-
time task progress and real-world visual observations (even GPT-4V makes mistakes).

ing the impressive reasoning and generalization ability of LLMs with multi-modal
comprehension capabilities, Multimodal Large Language Models (MLLMs) in-
herently have the potential to serve as embodied task planners, which are ex-
pected to predict feasible actions given a specific task goal, real-time task progress
and visual observations. Embodied task planning is crucial in enabling autonomous
agents to plan for complex tasks in everyday environments, paving the way for
versatile AI assistants.

However, embodied planning in real-world scenarios presents significant chal-
lenges, as it requires a comprehensive understanding of the dynamic and compli-
cated visual environment and the identification of the key information relevant
to the tasks. The model needs to comprehend various types of fine-grained visual
information such as the object states and spatial relationships between objects.
Moreover, for long-horizon tasks, models are expected to process a series of past
visual observations to assess the task progress and make informed plans that
better facilitate task completion.

As exemplified in Figure 1, in order to decide the next appropriate action
for the task goal “mixing the meat with yogurt”, the model must be able to
understand and track several state changes of the yogurt container and the
spoon, and clearly identify the white paste of yogurt on the meat that requires
further stirring in the current observation.

So we ask how far are the current MLLMs from becoming an em-
bodied planning generalist in real-world scenarios? Despite the emer-
gence of various benchmarks [11,23,33,51] specially designed to evaluate MLLMs
across a wide range of dimensions, there is a notable absence of a benchmark
designed for objectively evaluating the capabilities of MLLMs in embodied plan-
ning, especially for practical real-world tasks that involve complex visual inputs.
Large-scale egocentric videos [8, 16] capturing daily human activities from the
first-person perspective serve as a valuable resource for research in this area.
However, as illustrated in Figure 2, existing egocentric video question-answering
(QA) benchmarks [10,20] mainly focus on analyzing the comprehension ability
of models based on a complete video demonstration. In contrast, an embodied
task planning benchmark emphasizes on evaluating the planning capability of
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Considering the progress shown in the video and my current observation in the last
frame, what action should I take next in order to mix the meat with yogurt?

What color is the yogurt container?
Where does the person put the yogurt
container?

Which object changes its status when
the person opens something?

If the person did not open something,
can he put something on the meat?

How to do this task?

Blue.

Which object does the person use to
scoop yogurt?

Spoon.

No.

Task Progress      12Current Observation Next Action

Full Video

On the countertop.

Open yogurt, scoop yogurt, put yogurt
on meat, put down yogurt, stir meat.

Yogurt container.

Existing Egocentric 
Video QA Benchmarks

Visual Input:

EgoPlan-Bench (ours)

Visual Input:

Task Progress +         
Current Observation

Execution

Full Video

Stir meat.

+

Task Goal ActionTask Goal

Fig. 2: Our EgoPlan-Bench evaluates Egocentric Embodied Planning, where a model
predicts the next feasible action by taking a video showing task progress, current visual
observation and language instruction indicating the task goal as inputs. In contrast,
existing egocentric video QA benchmarks mainly evaluate Comprehension, where
a model answers questions based on the spatial and temporal understanding of the
entire video. The key difference is that the setting of EgoPlan-Bench better aligns with
real-world embodied AI applications, as the model’s output can directly serve as plans
for agents to execute tasks in real environments.

a model to predict feasible actions for a specific task goal, given the real-time
task progress shown in partial video input and current visual observation.

To mitigate the aforementioned gap, this paper establishes a rigorous Ego-
centric Embodied Planning Benchmark called EgoPlan-Bench, for real-world
embodied planning, which is sourced from egocentric videos [8, 16] that show-
case everyday human activities. All the evaluation data has undergone strict
manual screening, as illustrated in Figure 3. Drawing upon the attributes of the
egocentric video sources, our benchmark exhibits three main characteristics. 1)
Realism of Tasks: The tasks are extrapolated from authentic real-world videos,
offering a closer reflection of daily human needs and showcasing greater variety
than artificially constructed tasks. 2) Diversity of Actions: The benchmark
involves a diverse set of actions, requiring interaction with hundreds of differ-
ent objects and extending beyond basic manipulation skills such as picking and
placing items. 3) Intricacy of Visual Observations: The visual observations
come across various real-world scenes, where objects vary in appearance, state,
and placement. Besides, the visual inputs can span extensive periods, making
it difficult for models to monitor task progression and detect critical changes in
object states.

We evaluate a wide range of MLLMs on our benchmark. The results indicate
that our benchmark poses significant challenges for existing MLLMs, and there
is still a long way to go before these models evolve into generalist embodied task
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planners. In light of the empirical findings, we construct an instruction-tuning
dataset EgoPlan-IT in an automatical way, which is specialized for enhancing
Egocentric Embodied Planning. We further fine-tune a baseline MLLM with
EgoPlan-IT, and the experiment results show that the fine-tuned model signifi-
cantly improves performance in both in-domain and out-of-domain evaluations.
It demonstrates the feasibility for MLLMs to learn generalizable commonsense
for task planning from real-world videos. The fine-tuned model can also be ap-
plied to guide a robot in completing long-horizon tasks in a simulated environ-
ment, which showcases the potential of MLLMs as the “brain” of an embodiment
in accomplishing complex tasks.

In summary, our main contributions include:

– We introduce an evaluation benchmark called EgoPlan-Bench for real-world
embodied planning based on egocentric videos, which features realistic tasks,
diverse actions, and intricate visual observations.

– We evaluate a wide range of MLLMs and find that our benchmark poses
significant challenges for them. We further provide a detailed analysis of the
possible reasons and future directions in this area.

– We construct an instruction-tuning dataset EgoPlan-IT specifically for Ego-
centric Embodied Planning in real-world scenarios. The model tuned on this
dataset demonstrates robust performance gains on the proposed benchmark
and the potential to act as a task planner for guiding embodied agents.

2 Related Work

Large Foundation Models for Embodied Planning. The growing number
of studies incorporating large foundation models into embodied planning pro-
cesses can be broadly categorized into two main trends. The first trend focuses
on utilizing Large Language Models (LLMs) [4–6, 38, 40, 46] to facilitate rea-
soning and planning based on textual information. Research in this direction
often depends on external modules, which convert multi-modal environment in-
formation into text [27,45,48] or ground LLM predictions to environment affor-
dance [3, 18, 19, 28]. However, these approaches are constrained by the accuracy
of the external modules, which may lead to error propagation. The second trend
focuses on Multimodal Large Language Models (MLLMs) for end-to-end embod-
ied planning, which extends LLMs with multi-modal perception abilities. PaLM-
E [9] is the first work to demonstrate the potential of this approach. Subsequent
works, such as EmbodiedGPT [37] and Otter [21,22], construct instruction data
based on egocentric videos [16] for model pretraining and show qualitative evi-
dence of emergent embodied planning abilities. Nonetheless, these studies have
not conducted a comprehensive and objective evaluation of embodied planning
in real-world scenarios.
Egocentric Video QA Benchmarks. Egocentric videos provide a distinctive
perspective for active engagement with the real world. Over the years, numerous
egocentric video datasets have been developed [26,42,44]. Large-scale daily lifelog
datasets such as Epic-Kitchens [8] and Ego4D [16] offer fine-grained information
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on human-object interactions, making them valuable resources for embodied AI
research. Existing egocentric video QA benchmarks primarily assess models’ un-
derstanding of activities and objects in a given egocentric video demonstration.
These questions range from visual concept recognition [10] to spatial, temporal,
and causal relationship reasoning [20]. However, none of these benchmarks ad-
dress the specific needs of embodied planning, where a more practical question
and answer would involve a task goal instruction and a prediction of the next
executable action that has not yet occurred but is helpful for achieving the given
task goal.
Multimodal Large Language Models. Recent advancements in Large Lan-
guage Models (LLMs) [5, 6, 39, 46] have led to significant achievements in lan-
guage understanding and generation. As a result, there is a growing interest in
developing Multimodal Large Language Models (MLLMs) that combine LLMs’
impressive language capabilities with multi-modal perception abilities [2, 12, 15,
22, 36, 41, 41, 47, 49, 52, 54]. Typical research involves integrating representations
from pretrained visual encoders into LLMs’ input embedding space through pre-
training on image-text interleaved datasets [7,24,31,32,55]. Recent studies extend
this approach to incorporate video inputs, enhancing LLMs’ video comprehen-
sion capabilities. Some works even advance MLLMs to include visual generation
abilities [13,14]. In this paper, we aim to provide a comprehensive evaluation of
these models, particularly focusing on their performance in Egocentric Embodied
Planning.

3 EgoPlan-Bench

As illustrated in Figure 2, given a language instruction demonstrating the task
goal, Egocentric Embodied Planning aims to decide the next appropriate action
based on the visual input. The visual input includes a video showing a sequence
of previous video frames indicating the task progress, with the last frame indicat-
ing the current egocentric observation. The proposed EgoPlan-Bench contains
3.4K high-quality human-verified multiple-choice questions derived from exist-
ing egocentric video sources [8,16]. In Sec. 3.1, we first introduce the egocentric
videos we used to build the benchmark. We illustrate how to automatically ex-
tract task goals from these videos in Sec. 3.2 and construct questions based on
the extracted task goals in Sec. 3.3. We then report the detailed data statistics
in Sec. 3.4 and finally describe our evaluation strategy in Sec. 3.5. The entire
benchmark construction pipeline is demonstrated in Figure 3.

3.1 Egocentric Video Sources

Unscripted, egocentric videos encompass a wide range of daily human tasks
and diverse actions, making them an ideal and challenging medium for evaluat-
ing embodied planning. We select two large-scale and well-annotated datasets,
Epic-Kitchens [8] and Ego4D [16], as our video sources. In Epic-Kitchens, each
video is annotated with dense narrations and start/end timestamps of actions.
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00:05 put down mug … … 00:25 pour milk … … 01:06 put bread in toaster … … 02:23 cut butter … …

{
“overall_goal”: “make coffee with milk and toast with butter and jam”,
“clips”: [

“subgoal”: “make coffee with milk”,
“start_timestamp”: “00:02”,
“stop_timestamp”: “00:40”,
“sub_clips”: [

{
“secondary_subgoal”: “Brew coffee into mug”,
“start_timestamp”: “00:02”,
“stop_timestamp”: “00:17”,

},
…

# Instruction
-----
Please first summarize the overall
task goal of the entire video, and
then hierarchically decompose the
task goal step by step.

# Video Captions
------
Timestamp | Narration
… …
01:06 | put bread in toaster
… …

Hierarchical Task 
Goal Identification

Task Goal 
Filtering

# Valid Tasks
-----
Start | End | Task Goal

00:02 | 00:40 | make coffee with milk
… …

00:55 | 01:58 | make toast
… …

02:13 | 03:28 | spread butter and jam         
on toast

… …

Question: Considering the progress shown in the video and my current observation in the last frame,
what action should I take next in order to make coffee with milk (Task Goal)?

Candidate Actions:
A. pick milk bottle B. open fridge
C. put down mug D. close milk bottle Answer: D QA GenerationHuman VerificationEgoPlan-Bench

GPT-4

Fig. 3: Overview of the construction pipeline for EgoPlan-Bench based on existing
untrimmed egocentric videos with detailed action narrations. (1) We first leverage
GPT-4 to identify task goals through hierarchical reasoning. (2) We then filter task
goals based on the requisite number of actions. (3) The questions are designed in the
form of multiple-choice, where the questions are automatically generated based on task
goals, and the options are derived from different actions under the same task goal. (4)
We employ human annotators to verify each question to ensure the benchmark quality.

The narrations are expressed as brief verb-object phrases. Ego4D offers similar
annotations, except that it only provides a single timestamp for each action and
the narrations are expressed as brief sentences like “C does something”. We con-
vert Ego4D narrations to verb-object phrases as Epic-Kitchens with GPT-4 [38]
and derive the start and end timestamps for each action segment following the
EgoVLP framework [29].

3.2 Task Goal Extraction

Hierarchical Task Goal Identification. Egocentric videos, which capture
tasks ranging from simple (involving fewer than three actions) to complex (en-
tailing a long sequence of actions), present challenges in identifying task goals
due to their varying lengths. To address this, we introduce a hierarchical rea-
soning strategy to identify task goals. As illustrated in Figure 3, given the dense
narrations of actions, we utilize GPT-4 to decompose video content into three
levels: overall goal → subgoal → secondary subgoal. For instance, the goal to
“make coffee with milk and toast with butter and jam” is divided into the sub-
goals of “making coffee with milk” and “making toast with butter and jam,” with
the former further broken down into secondary subgoals like “brew coffee into
mug” and “merge coffee and milk.” This hierarchical approach allows GPT-4
to efficiently summarize tasks of varying complexity by organizing them into a
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structured framework, similar to chain-of-thought reasoning. Our findings sug-
gest that prompting GPT-4 to generate all task goals at once may lead to diffi-
culties due to the extensive information presented in longer videos. The Detailed
prompt can be found in the supplementary material.
Task Goal Filtering. Given the variance in video lengths, the task hierarchy
across different videos might not align consistently. Specifically, the complexity
of the overall goal in a shorter video could be equivalent only to a secondary
subgoal in a more extended video. To address this variance, we aggregate the
overall goals, subgoals, and secondary subgoals extracted from various videos
under the unified term “task goals”. We then refine this set by filtering based
on the requisite number of actions, retaining only those task goals that involve
between 4 to 20 actions to maintain a moderate level of task complexity.

3.3 Multiple-Choice Question Answering

Automatic QA Generation. Following the mainstream MLLM benchmarks
[23, 33], we evaluate Egocentric Embodied Planning with multiple-choice ques-
tions, which facilitates the convenient computation of accuracy as an objective
metric. With the filtered task goals, we use templates to automatically generate
questions. As shown in the blue box in Figure 3, the underlined words indicate
the part to fill in with different task goals. With the same task goal, we can
derive several question-answering (QA) pairs that differ in task progress and
current observations. For example, given a task goal involving N actions, we can
obtain N corresponding QA pairs with each action as the ground-truth answer.
We align the visual input with the ground-truth answer and randomly sample
three distinct actions under the same task goal as negative choices.
Visual Input Alignment. The visual input attached to each QA pair con-
tains the historical observations since the whole task begins and right before
the ground-truth action occurs. The last frame of the visual input indicates the
current observation for planning the next action. To prevent the models from
cheating with the clues from hand-object interaction (e.g., a hand touching a
tap implies turning it on or off), we set the end timestamp of the visual input
as 0.5 seconds preceding the actual action segment.
Human Verification. To ensure the reliability and objectiveness of our EgoPlan-
Bench, we rigorously refined the automatically generated QA pairs with the help
of 10 professional annotators, all holding at least a bachelor’s degree. Initially,
annotators underwent a quality assurance phase, pre-annotating 50 samples fol-
lowing comprehensive guidelines. Their work was meticulously reviewed by two
senior annotators. During the main annotation phase, pairs of annotators inde-
pendently selected the most appropriate answers for each question, based on the
task goal and visual cues, or flagged questions with unclear options for removal.
We retained only those QA pairs where annotators’ choices were unanimous and
aligned with the ground-truth answer. This process resulted in 3.4K high-quality
multiple-choice QA pairs, closely correlated with visual observations.
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Fig. 4: Top 20 verbs with top 8 related ob-
jects in EgoPlan-Bench candidate actions.

Fig. 5: Wordcloud of task goals in-
volved in EgoPlan-Bench questions.

Table 1: Statistics of the evaluation data of EgoPlan-Bench.

#questions #task goals #actions (verb+object) #verbs #objects #scenes

3,355 2,406 2,979 202 496 279

3.4 Data Statistics

The proposed EgoPlan-Bench, detailed in Table 1, includes 3,355 multiple-choice
questions covering 2,406 task goals. Figure 5 shows the distribution of task goals.
Overall, there are 2,979 actions (verb-object phrases) from the questions’ candi-
date options, involving 202 distinct root verbs and 496 unique objects. The most
common actions are illustrated in Figure 4, demonstrating the benchmark’s va-
riety of actions. Additionally, the visual observations of these questions originate
from egocentric videos taken across 279 different scenes. This diversity in task
goals, candidate actions, and visual scenes underscores the challenges presented
by our benchmark.

3.5 Evaluation Strategy

Inspired by [3, 4, 7, 23, 30], we use the closed-set answer ranking strategy based
on language completion distribution, rather than directly matching a model’s
free-form generation results with candidate options. From the output distribu-
tion of MLLMs, we can derive the likelihood p(a|v, l) that an MLLM generates
the content of each candidate action a, given the visual inputs v and the user
instruction l as the multimodal context.

This approach avoids the influence of option sequence in the prompt on the
model’s performance. More importantly, it is closer to the practical setting. An
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Table 2: Performance of MLLMs on EgoPlan-Bench.

Model LLM Acc%

BLIP-2 [24] Flan-T5-XL 25.69
InstructBLIP [7] Flan-T5-XL 26.32

InstructBLIP Vicuna [7] Vicuna-7B 25.37
LLaVA [32] LLaMA-7B 25.52

MiniGPT-4 [55] Flan-T5-XL 26.50
VPGTrans [52] LLaMA-7B 26.61

MultiModal-GPT [15] Vicuna-7B 27.03
Otter [22] LLaMA-7B 26.47

OpenFlamingo [36] LLaMA-7B 26.85
LLaMA-Adapter V2 [12] LLaMA-7B 26.49

GVT [47] Vicuna-7B 26.83
mPLUG-Owl [49] LLaMA-7B 25.93

Kosmos-2 [41] Decoder only 1.3B 26.97
Qwen-VL-Chat [2] Qwen-7B 26.32

LLaVA-1.5 [31] Vicuna-7B 26.80
VideoChat [25] Vicuna-7B 26.32

Video-ChatGPT [35] LLaMA-7B 26.35
Valley [34] LLaMA-13B 26.17

Video-LLaMA [53] LLaMA2-Chat-7B 28.58
SEED-LLaMA [14] LLaMA2-Chat-13B 29.93

InternLM-Xcomposer-VL [54] InternLM-7B 34.40
GPT-4V [1] - 37.98

MLLM that achieves better performance on our benchmark indicates that it can
output precise next-action plans with higher probability.

4 Evaluation Results

4.1 Models

We select 22 prominent MLLMs for a comprehensive evaluation, including BLIP-
2 [24], InstructBLIP [7], InstructBLIP Vicuna [7], LLaVA [32], MiniGPT-4 [55],
VPGTrans [52], MultiModal-GPT [15], Otter [22], OpenFlamingo [36], LLaMA-
Adapter V2 [12], GVT [47], mPLUG-Owl [49], Kosmos-2 [41], Qwen-VL-Chat [2],
LLaVA1.5 [31], VideoChat [25], Video-ChatGPT [35], Valley [34], Video-LLaMA [53],
SEED-LLaMA [14], InternLM-Xcomposer-VL [54], GPT-4V [1].

4.2 Performance Analysis

The performance of various MLLMs on our EgoPlan-Bench is shown in Table 2.
Notably, the majority of these models exhibit only marginally better results than
random guessing, with the highest-performing model attaining a mere 37.98%
accuracy, indicating that current MLLMs lack the ability as real-world embodied
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The task goal is to mix the meat with yogurt. The task progress is
demonstrated in this video and the current observation is shown
in the last frame of this video.

1.Please briefly summarize the task progress that is related to
planning the next action.
2. Please describe the current observation.
3. Please output the next action as a brief phrase.

1. The task progress involves preparing to mix meat with yogurt. The
series of images depict the steps leading up to this action. Initially,
the yogurt container is closed, and as the images progress, the lid is
removed, a spoon is used to measure yogurt, and the yogurt is finally
poised to be mixed with the meat.

2.The last frame shows a pot with cooked meat on a stove. The
cook's hand is holding a spoon containing yogurt over the pot,
suggesting that the yogurt is about to be added to the meat. Other
ingredients and kitchen utensils are visible on the countertop around
the stove, indicating an ongoing cooking process.

3.The next action: "Add yogurt to meat."

Wrong observation!

Missing state changes!

Incorrect plan!

GPT-4VUser

Fig. 6: A case study with GPT-4V, where the model fails to detect the state changes
of target object in task progress, and struggles to recognize the target object in current
observation, leading to the wrong prediction of plan.

task planners. In the supplementary material, we present common failure cases
of these models. Our analysis reveals that most MLLMs tend to select options
that are semantically closer to the given task goal. However, they often fail to pay
adequate attention to the vital aspect of visual observations. Common mistakes
such as overlooking completed actions or misinterpreting key object states can
significantly affect their overall performance in Egocentric Embodied Planning.

4.3 Case Study with GPT-4V

Since GPT-4V achieves the best performance among all the evaluated MLLMs,
we use it for a qualitative case study to delve deeper into why current MLLMs
may underperform on our benchmark. As depicted in Figure 6, we require GPT-
4V to explicitly summarize the task progress and describe the current observation
before planning the next action.

Our observations indicate that while GPT-4V successfully identifies obvious
actions, like “removing the lid of yogurt container” or “measuring yogurt with a
spoon,” it might overlook more subtle state changes that are critical to the task’s
objective. For instance, GPT-4V fails to recognize that yogurt has been added to
the meat, as indicated by the white paste visible on the meat post-measurement.
Furthermore, even when the yogurt has been placed on the countertop in the
final frame, GPT-4V erroneously maintains that the current observation shows
“a hand holding a spoon containing yogurt.” This misinterpretation of the visual
input leads to incorrect next plans, such as concluding that the next action is
to “Add yogurt to meat,” when this step has already been completed. This case
study highlights a key area for improvement in MLLMs’ processing of visual cues
in the context of real-time task execution.

Future directions may include: 1) developing advanced algorithms or incor-
porating sophisticated training datasets that highlight subtle visual changes, 2)
enhancing contextual understanding of MLLMs to make more informed plans
based on comprehensive visual input analysis relevant to specific task goals, and
3) integrating real-time feedbacks for adaptability in dynamic environments.
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𝑡0
𝑣…𝑡0

𝑣 𝑡𝐾
𝑣

Image Encoder
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…

Clip1

… …

Video Q-Former

Linear Layer

…

Large Language Model

<Video> <Clip1> … <ClipN> </Video>

<Image> <Observation> </Image>

Considering the progress demonstrated in

this video and my current observation shown

in this image, what action should I take next

in order to mix the meat with yogurt?

Prompt

Output:   Stir meat.

…𝑡0
𝑣 𝑡𝐾

𝑣

ClipN

…

Fig. 7: The diagram of enhancing the baseline model Video-LLaMA with EgoPlan-IT.

These improvements would enhance MLLM performance in Egocentric Embod-
ied Planning and expand their applicability in real-world scenarios.

5 Enhancing Egocentric Embodied Planning Capability
by Instruction Tuning

Given the suboptimal performance of the evaluated MLLMs on EgoPlan-Bench,
we investigate enhancing the Egocentric Embodied Planning capabilities of MLLMs
through instruction-tuning. Specifically, we construct an instruction-tuning dataset,
EgoPlan-IT, to enable MLLMs to effectively learn embodied planning experience
from real-world videos. In this section, we first describe the data preparation
process in Sec. 5.1. Then we introduce the framework of a baseline MLLM in
Sec. 5.2 and the training objectives in Sec. 5.3. In Sec. 5.4, we demonstrate the
effectiveness of our data and instruction-tuning strategy through experiments.

5.1 Data Preparation

Construction of EgoPlan-IT. Following the automatic data construction
pipeline in Sec. 3, we additionally tailor an instruction dataset EgoPlan-IT,
which contains 50K instruction-following pairs as shown in the bottom half
of Figure 2 , for Egocentric Embodied Planning. To assess the robustness of
our instruction tuning approach, we exclusively utilize video data from Epic-
Kitchens [8] for the creation of this training set. This enables us to assess the
performance of the enhanced model on both the in-domain (Epic-Kitchens) and
out-of-domain (Ego4D) subsets of our evaluation data, which will be discussed
in detail in Section 5.4. For increasing the efficiency of the dataset construction,
we do not include human annotations in this process.
Auxiliary Data for Action Recognition. To reduce the learning difficulty of
the model, we also construct an auxiliary dataset for action recognition based on
the visual inputs of the 50K training samples from EgoPlan-IT. For the example
shown in the bottom half of Figure 2, the instruction of the auxiliary sample
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would be a simple query for action recognition such as “Can you enumerate the
actions in the video, describing each with a short verb-noun combination?”, and
the response is the concatenation of corresponding action narrations such as
“Open yogurt, scoop yogurt, put yogurt on meat, put down yogurt.”
Increasing Instruction Diversity. In order to increase the diversity of instruc-
tions, we also include an additional collection of 164K instruction data, which
integrates the 150K image-instruction dataset from LLaVA [32], the 3K image-
detail-description dataset from MiniGPT-4 [55] and the 11K video-instruction
dataset from VideoChat [25].

5.2 Model Framework

We use Video-LLaMA [53] as a baseline MLLM for investigation. As illustrated
in Figure 7, the vision processor of Video-LLaMA comprises four components,
including an Image Encoder to extract features from video frames, a position
embedding layer for adding temporal information, a Video Q-former for aggre-
gating frame representations, and a linear layer for producing video embedding
vectors that match the dimensions of LLM token embeddings.

To enhance the model’s ability to process visual inputs for Egocentric Embod-
ied Planning, we organize historical observations based on actions and retain the
most recent N(= 4) clips. For each action segment, we choose K(= 8) uniformly
spaced keyframes, creating an aggregated video representation. To emphasize
the current observation, we treat it as a separate single-frame clip, extracting a
unique representation for it. The token embeddings for placeholders <Clipi> and
<Observation> in the textual prompt are substituted with the embeddings cor-
responding to the i-th action segment and the current observation, respectively,
within the LLM.

5.3 Training Objectives

To fine-tune the model, we mix the 50K specialized EgoPlan-IT data together
with the 50K auxiliary data for Action Recognition and the 164K diverse in-
struction data. The autoregressive loss function is defined as:

Lft = −
∑
t

logP (at|v, l,a<t;Θ), (1)

where v and l denote the given visual observations and the language instruc-
tion respectively, and a<t signifies the sequence of answer tokens preceding the
current prediction token at. Θ is the trainable parameters including the full
parameters of the Video Q-Former and the Linear Layer, and the LoRA [17]
parameters of the language model. Inspired by the RRHF mechanism [50], we
add a contrastive loss to the fine-tuning loss:

L = Lft + Lct, (2)

Lct = max(0, sneg − spos), (3)
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Table 3: Performance of the baseline model (Video-LLaMA) tuned on EgoPlan-IT.
In-Dom. and Out-Dom. are short for in-domain and out-of-domain respectively.

Model In-Dom. Out-Dom. All

GPT-4V 38.40 36.90 37.98
Video-LLaMA 27.88 30.44 28.58

Enhanced Video-LLaMA 54.65 44.42 51.83
w/o LoRA 53.58 42.58 50.55
w/o Contrastive Loss 52.14 40.52 48.94
w/o Diverse Instructions 53.95 43.12 50.97
w/o Action Recognition 52.34 44.31 50.13

s =

∑
t logP (at|v, l,a<t;Θ)

||a||
. (4)

Here, for each instruction-following pair, a random action distinct from the
ground-truth answer is selected under the same task goal to serve as a ‘negative’
answer. The model is then constrained to ensure that its score for the ‘positive’
answer (spos) exceeds that for the ‘negative’ answer (sneg). This operation aims
to ensure a more balanced consideration of both the language instruction and
the visual context in Egocentric Embodied Planning.

5.4 Experiments

Main Results. The results in Table 3 clearly indicate that the baseline model
(Video-LLaMA) tuned on our data outperforms the previous state-of-the-art
model, GPT-4V, by a considerable margin. Notably, it shows a remarkable
23.25% increase in accuracy over its vanilla version across the overall evalua-
tion set. Furthermore, the enhanced model demonstrates robust domain trans-
fer capabilities, outperforming the vanilla version by 13.98% on the out-of-
domain evaluation subset. This indicates that the experience developed through
instruction-tuning on our Ego-IT data is effectively transferable to Egocentric
Embodied Planning in new environments.
Ablations. Our analysis of the ablated versions of the enhanced model re-
veals several key insights. Notably, employing the LoRA strategy, integrating
contrastive loss, diversifying instructions, and fine-tuning with auxiliary action
recognition data consistently enhance performance across domains. Contrastive
loss contributes the most to the model’s improvement. Furthermore, fine-tuning
the model with in-domain action recognition auxiliary data boosts in-domain
performance but does not significantly improve domain transferability.
Applications in Guiding Embodied Agents. Embodied planning could fa-
cilitate various downstream applications, including personalized virtual assis-
tants, robotics for complex tasks, adaptive gaming experiences, and so on. We
demonstrate how to apply the MLLM tuned on EgoPlan-IT as a task planner
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Task Goal: Obtain the pizza from the fridge.

Open fridge

Current Observation

Execution

Task Progress 1

Pick up pizza

Current Observation

Execution

Task Progress 2

Close fridge

Current Observation

Execution

Task Progress 3

Fig. 8: The MLLM tuned on EgoPlan-IT can be applied as the task planner of em-
bodied agents for completing long-horizon tasks within a simulated environment.

for guiding embodied agents, through a qualitative analysis in a simulated en-
vironment, VirtualHome [43]. The model is deployed in a zero-shot setting. As
depicted in Figure 8, we use the model to predict feasible actions for an agent
to execute step by step. We employ the beam search decoding algorithm with
a beam width of five, choosing the top-one prediction for implementation. As
shown in Figure 8, the model’s predictions closely align with the visual progress
and real-time observation at each step, successfully guiding the embodied agent
to complete a long-horizon task. This application case highlights the promising
usage of the MLLM and instruction-tuning dataset specialized for Egocentric
Embodied Planning, underscoring the significant research potential of this area.
More examples can be seen in the supplementary material.

6 Conclusion and Discussion

In this work, we introduce EgoPlan-Bench, a sophisticated benchmark to eval-
uate Multimodal Large Language Models (MLLMs) in Egocentric Embodied
Planning, where a model is expected to plan step-by-step executable actions by
considering task progress, current visual observation, and open-form task goal.
The evaluation results of various models reveal that current MLLMs have not yet
developed into generalized embodied planners. We further construct EgoPlan-IT,
an instruction-tuning dataset, to facilitate the learning of high-level task plan-
ning from human videos. The model tuned on EgoPlan-IT exhibits a significant
performance enhancement on our benchmark. Moreover, it can be applied as
an effective task planner for guiding embodied agents to complete long-horizon
tasks within a simulated environment. Currently, we have not considered the
situation of replanning if the agent fails to complete the given task, as the cases



EgoPlan-Bench 15

are rare in existing egocentric video sources. Nevertheless, our benchmark con-
struction approach is general, and in the future, we can expand our benchmark
by recording videos in such scenarios to further investigate this area.
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