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A recent theory described strange metal behavior in a model of a
Fermi surface coupled a two-dimensional quantum critical bosonic
field with a spatially random Yukawa coupling. With the assumption of
self-averaging randomness, similar to that in the Sachdev-Ye-Kitaev
model, numerous observed properties of a strange metal were ob-
tained for wide range of intermediate temperatures, including the
linear-in-temperature resistivity. The Harris criterion implies that
spatial fluctuations in the local position of the critical point must dom-
inate at lower temperatures. For an //-component boson with M > 2,
we use multiple graphics processing units (GPUs) to compute the
real frequency spectrum of the boson propagator in a self-consistent
mean-field treatment of the boson self-interactions, but an exact
treatment of multiple realizations of the spatial randomness from the
random boson mass. We find that Landau damping from the fermions
leads to the emergence of the physics of the random transverse-field
Ising model at low temperatures, as has been proposed by Hoyos,
Kotabage, and Vojta. This regime is controlled by localized over-
damped eigenmodes of the bosonic scalar field, also has a resistivity
which is nearly linear-in-temperature, and extends into a ‘quantum
critical phase’ away from the quantum critical point, as observed in
several cuprates. For the M/ = 1 Ising scalar, the mean-field treatment
is not applicable, and so we use Hybrid Monte Carlo simulations run-
ning on multiple GPUs; we find a rounded transition and localization
physics, with strange metal behavior in an extended region around
the transition.
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S trange metals are an unusual state of quantum matter
invariably present above the critical temperature of cor-
related electron superconductors, including the cuprate high
temperature superconductors (1). They are characterized by
numerous properties which deviate from the Fermi liquid de-
scription of conventional metals: most prominent among these
are the linear-in-temperature resistivity, and the 1/w tail in
the optical conductivity (2), where w is frequency.

A recent work (3) proposed a universal theory of strange
metals by considering the influence of spatially random
electron-electron interactions on the theory of quantum phase
transitions in metals (4). The spatial randomness was treated
in a self-averaging manner, similar to the methods employed
in the solution of the infinite-range Sachdev-Ye-Kitaev (SYK)
models (5). This universal theory was found to be a good
description of observations in a widening fan of temperatures
emerging from the zero temperature quantum critical point
(QCP).

However, strange metal behavior is often observed over
wider regions of the phase diagram, and can appear in an
extended region at low temperatures (T") away from the T' = 0
QCP (6, 7). Bashan et al. (8) postulated a non-zero density
of two-level systems which resonantly scatter electrons, and

argued that they can led to the needed extended quantum
critical phase at low T'. Here, we show that the self-averaging
assumed in the universal theory (3) breaks down at very low
T, and there is eventually a crossover to a regime where
the overdamped bosonic modes of the quantum critical theory
spatially localize. These localized bosonic modes are the analog
of the two-level systems of Bashan et al. (8), and lead to an
extended low T quantum critical phase with a nearly linear in
T resistivity. We emphasize that our localized, overdamped
bosonic modes are not postulated degrees of freedom, but
emerge naturally in the existing theory after the flow to strong
disorder at low T is accounted for. We also note earlier works
(9-13) in which localized bosonic modes played an important
role in other metallic correlated electron systems.

Section 1 describes an effective theory for the bosonic modes
alone, and we present numerical results on its properties for
M > 2 boson flavors in Section 2. The derivation of the effec-
tive boson only theory from the original fermion-boson theory
of Ref. (3) is presented in Section 3, along with a description
of electrical transport. We treat the M = 1 Ising scalar case
separately using an alternative technique in Section 4.

1. Effective theory for overdamped bosonic modes

We begin by considering a spatially random version of the
Hertz-Millis theory of metallic QCPs (14) for a M-component
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bosonic field ¢;,(7) with action Sg + Sga:
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in two spatial dimensions. Here a = 1... M, j labels the sites
of a square lattice, 7 is imaginary time, and ) is Matsubara
frequency. The action Sy + Ssq can obtained by integrating
out the fermions from the universal theory of Patel et al. (3)
(see Eq. [10]). All couplings in S+ Sea would then be spatially
random, but we have only retained the spatial randomness in
the tuning parameter A\ because that is the most relevant form
of disorder by the Harris criterion (3, 14)—we have included
a spatially random /\;, whose disorder averages obey

No=0 , N =6pA". 2]

The coupling v > 0 in Sgq is the Landau damping induced by
the fermions, and the repulsive self-interaction u > 0 plays an
important role in stabilizing the theory in regions where A; is
very negative.

The bosonic field ¢ can represent a symmetry-breaking
order parameter (such as a spin density wave or Ising nematic
order), or a fractionalized field (such as a hybridization boson
in Fermi volume changing transitions (15-17)).

For the case of M > 2 the global O(M) symmetry is
continuous, and important results for the properties of Sy +
Sg¢a were obtained by Hoyos et al. (18, 19), building on
earlier work (20-22). Assuming that the renormalization group
flow of X} (and also of a spatially random addition to J)
was towards a broad distribution, Hoyos et al. reached the
remarkable conclusion that the low temperature properties
near the QCP \ = \. were the same as that of the random
transverse field Ising model for insulators without any fermion-
induced Landau damping. This random Ising model was
shown to be described by infinite randomness fixed points
by Fisher (23, 24) in d = 1 spatial dimension; numerical
studies in d = 2 (25, 26) also support infinite randomness
fixed points. The argument of Hoyos et al. relies on the fact
that the || Landau damping term in Sgq is equivalent to a
long-range ¢-¢ interaction which decays as 1/ 72 in imaginary
time. Then the quantum dynamics of a droplet which is
nearly ordered can be mapped on to the statistical mechanics
of a one-dimensional chain of O(M) spins with an inverse-
square interaction; this classical model has no phase transition,
but a correlation length which diverges exponentially with
the inverse classical ‘temperature’ (27). This exponentially
large correlation length is similar to the exponentially large
correlation length of classical Ising chains with short-range
interactions (28), and hence the mapping of Hoyos et al.. This
mapping can be understood as a compensation between the
enhancement of local quantum fluctuations in a droplet by
the continuous symmetry, and the suppression of quantum
fluctuations by the fermion-induced dissipation, leading to a
mapping to a non-dissipative quantum system with a discrete
symmetry. For the case of M = 1, the ordered droplets have
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no additional fluctuations, leading to the destruction of the
Griffiths phase and a smearing of the QCP (29, 30).

2. Numerical results for the bosonic theory

We have obtained numerical results for the properties of
S¢ + Spa. When M > 2, we follow the analysis of Del Maestro
et al. (31) for the same theory in a different context in d = 1.
We solve the large M saddle-point equations in a finite sam-
ple exactly in the presence of specific realizations of disorder.
Modern computing hardware makes such a numerical solution
possible for large systems in d = 2, as we will describe below.
The large M method makes it possible to perform exact ana-
lytic continuation to real time, and that will be important for
our computation of the fermion spectrum and transport prop-
erties. Moreover, we expect the large M method to accurately
capture the physics of the infinite disorder physics because
the exponential divergence of the droplet correlation time is
also present in the classical limit. We note that the numerical
large M solutions in d = 1 were in excellent agreement (31)
with exact theoretical predictions for the critical properties
(23, 24).

The large M saddle point equations amount to replacing
S¢ by

Sy = / dr [g Z (¢ia — ¢ja)2 + Z %;Qﬁa} (3]

(5)
N= AN+ 5> (Ba)s, s, [4]

The numerical solution of this equation involves diagonaliza-
tion of the boson propagator implied by Ss. At a given A,
we then compute self-consistent renormalized ‘mass’ Xj by
updating it iteratively using Eq. [4].

Weused J =1, v =1, ¢ = 10, and u = 1 throughout
this work, with the variance of the random mass, i.e. /\'2,
taken to be 0.25. The size of the L x L systems was set to
L = 160 unless otherwise mentioned, with periodic boundary
conditions. The main challenge in obtaining a numerical
solution of Eq. [4] is that the eigenvalues of the self-consistent
boson propagator must be positive, or else the solution is
unphysical. We therefore started from a value of A far from
criticality in the disordered phase, which allowed for a positive
definite self-consistent boson propagator, and then pushed A
towards criticality using solutions at previous values of A as
initial conditions.

The allowed A step size to retain positive-definiteness of
the boson propagator became progressively smaller as the
critical point was approached. Therefore, getting data in the
critical regime for the parameter values we analyzed required
up to order 10,000 matrix diagonalizations of 25,600x 25,600
matrices per disorder realization, as well as the same number
of frequency summations over up to order 10,000 Matsubara
frequencies per eigenvalue of the matrices and per disorder re-
alization. We executed these operations in a massively parallel
manner on a graphics processing unit (GPU), and also utilized
multiple GPUs to execute multiple disorder realizations in
parallel for high throughput. The use of GPUs reduced matrix
diagonalization times down from tens of minutes to just a few
seconds, and frequency summation times from tens of seconds
to just milliseconds, which made solving the problem possible
on a reasonable timescale.
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Fig. 1. Correlation length as a function of the tuning parameter A, for different
values of 3 = 1/T'. (inset) The crossing point where ¢ scales as a power law in
B (¢ ~ B°-45) estimates the position of the critical point A, &~ —0.447. There is
long-range order in ¢ for A < A. at T = 0.

‘We computed the boson correlator
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where eq and 1)q; are eigenvalues and eigenfunctions of the ¢
quadratic form in Sy, labeled by the index oo = 1...L? for a
L x L sample. We also computed the spatial Fourier transform

1 s — i
D(g1,q2,i9) = 77 Y Dij(iQ)e' ™15 [6

2,7

where 7; is spatial co-ordinate of site j, and qi,2 are two-
dimensional momenta.

From fitting the decay of the spatially averaged D;;(if2)
at large |r; — ;| to e”I"7"il/¢ we obtained the correlation
length &, shown in Fig 1. A strong T dependence of £ appears
only for smaller values of A, and from this we identify the
position of the T' = 0 QCP A = )\, as the point where the
correlation length can be best described to be a power law in
the inverse temperature 3, i.e. £ ~ ™. There is long-range
order in ¢ for A < A; at T'= 0.

We examine the frequency and momentum dependencies
of D7'(q,q,iQ) at the QCP X = X, in Fig 2. We find a ||
frequency dependence and a ¢> momentum dependence at all
non-zero Matsubara frequencies (Fig. 2a,b), as expected from
the averaged theory (3). However, at 2 = 0 we find a noisy
momentum dependence that is strongly sensitive to the chosen
disorder sample, indicating the influence of localized modes at
low energies (Fig. 2b). This is confirmed by an examination
of D(q1,q2,i2) with unequal gi1,2: while the Q # 0 results
are strongly peaked at g1 = g, the 2 = 0 results have large
off-diagonal components (Fig. 2¢). The frequency dependence
also shows a downturn at the zeroth Matsubara frequency,
which indicates a change of physics from that of the averaged
theory at low energies (Fig. 2a).

A more explicit demonstration of the localization of the
low energy modes is presented in Fig. 3. We compute the
localization length by determining the localization volume to
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Fig. 2. (a) Frequency dependence of D(q, iQ2) = D(4q, q, iQ2) at the quantum
critical coupling A = A.. Results for other values of A\ appear in SI Appendix Fig. S1.
(b) Momentum dependence of D(q, i2) for different Matsubara frequencies, at the
quantum critical coupling A = A.. Results for other values of A appear in SI Appendix
Fig. S2. (c) Momentum off-diagonal components of D (g1 = 0, g2, i$2) for different
Matsubara frequencies, again at A = A.. The zeroth Matsubara frequency shows a
significant off-diagonal component. These results were obtained for a single disorder
sample at 8 = 320.

be equal to the reciprocal of the inverse participation ratio
(Z.) of the normalized low energy eigenvectors ¥, of D™!; the
localization length (L) is then obtained from the localization
volume by assuming an isotropic exponential decay of the
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Fig. 3. (a) Localization lengths £, of the overdamped bosonic modes in a collection
of 10 disorder samples as a function of the eigenvalue e, of the inverse bosonic
propagator, at A = A, and 8 = 800. The blue curve denotes the average localization
length across samples in a given eigenvalue bin. Results for other values of A appear
in Sl Appendix Fig. S3. (b, ¢, d) Plot of the bosonic eigenstates, ) ; as a function of
7. The corresponding eigenvalue is noted in (a). The delocalized states with higher
e, are superpositions of plane waves, as is apparent from the interference patterns
in (b). These transition into strongly localized lower energy states in (c), and start to
delocalize again at very low energies in (d). However, the delocalized states in (d) are
not wave-like and break translational invariance strongly, as evidenced by the lack of
interference patterns.

eigenvectors:

1
To = Zdzﬁj, Lo = T [7]
J
The higher energy modes have a localization length of O(L/2),
as is expected for fully delocalized states in a system with
periodic boundary conditions. We expect the universal SYK-
type theory of Patel et al. (3) to apply at such energies. But
at lower energies, Fig. 3a shows a minimum of the localiza-
tion length, and a slow subsequent increase of the localization
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Fig. 4. Density of states of boson eigenmodes p(w) averaged over 10 disorder
samples. A larger w range is shown in the inset. The localized boson eigenmodes
lead to an increase in p(w) at the lowest energies. These results were obtained at
B =320and A = A..

length at the lowest energies. This non-monotonic behavior,
and the lowest energy increase of the localization length, is just
as expected from the physics of the random transverse field
Ising model. In the real-space Dasgupta-Ma renormalization
group procedure (32), higher energy localized modes renor-
malized the couplings of lower energy modes at lower energy,
leading to the activated dynamic scaling of the localization
length with damping rate e, (23-25)

Lo~ [In(1/ea)]" 8]

where p is an exponent. This logarithmic dependence of
length scale on energy is consistent with slow increase of the
localization length in Fig. 3a at the lowest energy. There could
also be connections of this increasing localization length to
‘cluster glass’ physics (13).

We also show a plot of the averaged density of states of
eigenmodes of the boson propagator

p(w) = 5w —e) 9

in Fig. 4. The density of states is roughly constant for most
of the energy range, as is expected for a ¢> boson dispersion
in d = 2, but increases as w — 0, where the localized lowest-
energy eigenvectors are clustered.

3. Fermion and transport properties

‘We now turn to the full model which includes fermionic degrees
of freedom. The model underlying Sy + Sgq in Eq. [1] is that
examined by Patel et al. (3), and involves electrons ¢; (we do
not write out the electron spin components) coupled to the
bosonic modes with imaginary time action

S =84+ 8. +Sv
0
SC :/dT;cL (E‘l'fk) Ck

Sy = / dr Z(g + g;) ¢jac;a;-lcj . [10]
J
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Here k is a two-dimensional momentum, e is the electron
dispersion with a simple convex Fermi surface, o} is a fixed
coupling matrix depending upon the nature of the field ¢, and
the Yukawa coupling g + g; has a spatially random component
obeying

9i=0 , gg.=0drg". [11]

Patel et al. (3) argued that the spatial randomness in A + X
could be ‘gauged away’ by rescaling ¢;, and then analyzed S
with a spatially independent A, averaging over the disorder g
along the lines of the Yukawa-SYK model (33, 34). We expect
that this procedure should be applicable as long as we are
in the regime with extended bosonic eigenmodes, above the
minimum in Fig. 3a. But we do not expect it to be applicable
in the strong disorder regime associated with the localized
bosonic eigenmodes below the minimum in Fig. 3a. We also
note a perturbative study of localization effects (35) on a
model closely related to Eq. [10] which strong corrections.

Here, we wish to describe the consequences of the crossover
in the bosonic eigenmodes in Fig. 3 in the electronic spectrum.
To this end, we will use the bosonic eigenmodes of Section 2
to compute the electron self energy perturbatively in g + g7,
assuming that the electronic eigenmodes remain extended. For
the extended bosonic eigenmodes, it has been argued (3) that
the fermion self energy due to the spatially uniform coupling
g cancels in the computation of transport properties. For
the localized bosonic modes, the influence of g and gj in the
electronic self energy should be similar, as the randomness in
the eigenfunctions 1., ensures lack of momentum conservation.
So for transport properties, it is adequate to follow the simpler
procedure of computing the electronic self energy only from
gj, and using the imaginary part of the retarded self energy
as a proxy for the transport scattering rate. We do not self-
consistently recompute the Landau damping for the boson
¢ (as was done in earlier work (36)), as the fermions remain
extended, and we do not expect significant spatial dependence.
We therefore compute the average perturbative electronic self
energy via

T

Y (iw) —iwg'zNoﬁ Z sgn(w + Q)Dj;; (i)
1,92

o I sgn(w + Q)

g N0L2 Z ’Y‘Q| +QZ/62 +ea7

a,Q

(12]

where Ny is the density of electronic states at the Fermi level,
associated with the dispersion €. The last expression is only
valid for the large M self-consistent approach, and now the
Matsubara summation can be performed exactly in closed form
(see SI Appendix Eq. [S1]), with the sum over eigenvalues e,
subsequently performed numerically. Therefore, an important
advantage of this computational procedure is that we can
perform an exact analytic continuation to real frequencies,
iw — w+i0", and then obtain the retarded fermion self energy
¥ (w) on the real frequency axis. Taking the imaginary part
of £ (w), we obtain the results for the w dependence of the
transport scattering rate shown in Fig. 5. We find a power-law
dependence on w for w > T. The exponent n of the power
law is approximately 1 for a range of A > A, indicating the
extension of the strange metal (which is defined by an exponent
n = 1 in the transport scattering rate) into a ‘quantum critical
phase’ away from the QCP.
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W —Im[2f(w > 27T)] ~ const. + |w|™ T

0.200 2.0

0.175
1.8

0.150
0.125 1.6

0.100
1.4

0.075
0.050 1.2

0.025
1.0

—0.45 —0.40 -0.35

\ -0.30

Fig. 5. Power-law scaling in the frequency (w > T') dependence of the transport
scattering rate inferred from the contribution to the single particle self energy from
spatially random (g’) interactions. The dashed line represents A = \.. These
results were obtained at 5 = 800 and are an average over 10 disorder samples. An
exponent n. ~ 1 is seen over an extended region away from the QCP that becomes
wider in A at lower energy scales, thereby resembling the results of Ref. (6). The
exponent n is determined using n = —d In(Im[Zf (w)] — Im[2F(0)])/d In w.

Finally, we compute the DC resistivity ppc from Im[%F(w)],
using the standard relation (37) that is valid for transport de-
termined by the non-momentum conserving scattering arising
from the spatially random part g’ of the Yukawa coupling:

1 = mipNo [ d—wsech2 (i) :
ppc(T) 8T | _ 2m 27 ) Im[XR(w)]’

[13]

where vp is the average Fermi velocity of the electrons. We
plot the T-dependence of the DC resistivity in Fig. 6. A
linear temperature dependence of the resistivity is seen for a
significant range of A > A, again indicating a ‘quantum critical
phase’. Eventually, for A > \., the temperature dependence
crosses over to the quadratic scaling expected in a Fermi liquid.
Interestingly, we also observe a finite residual resistivity, that
becomes significant as A — A.. Its origin can be traced back
to the large boson density of states at w — 0 shown in Fig. 4.
From Eq. [12], a cluster of near-zero eigenvalues e, can be
seen to produce a nearly w-independent offset in X (iw) and
Im[Y"(w)], which translates into a residual resistivity through
Eq. [13]. The physical interpretation of this effect is simple -
the lowest energy boson eigenstates are localized in nature and
are also nearly frozen with very slow dynamics, and therefore
simply act as local elastic impurity scatterers of the electrons,
giving rise to a residual resistivity.

4. M = 1lIsing scalar

When M = 1, the large M saddle point Egs. (4) are no
longer applicable. We therefore simulate the theory of Eq. [1]
using a Hybrid Monte Carlo (HMC) algorithm. We use a
HMC method recently developed for critical fermionic theories
(38), but without the fermions, running on multiple GPUs
to sample over many disorder configurations. We find that
the sharp QCP becomes smeared over some region of A, as
indicated by the correlation length and the susceptibility and
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Fig. 6. (a) DC resistivity ppc (T") vs temperature T'. A roughly linear dependence on
T is seen over an extended region away from the QCP, along with a residual resistivity,
thereby resembling the results of Ref. (6). (b) DC resistivity further away from the QCP,
showing superlinear scaling in 1", and eventually transitioning into the Fermi-liquid
T2 scaling far away from the QCP. These results were obtained by averaging over 10
disorder samples.

shown in Fig. 7. This is consistent with the predictions of
Refs. (29, 30). In this ‘smeared critical’ region, the disorder
variance is significantly enhanced compared to the M > 2
case, with hundreds of disorder configurations required to
smooth out many of the observables for which only a few
configurations were sufficient at large M. The wavefunction
localization lengths L, are shown in SI Appendix Fig. S7
and behave largely the same as in Fig. 3a, but with a few
differences: there are significantly fewer localized eigenmodes,
and the de-localized but translation-symmetry breaking lowest
eigenmodes get spectrally separated from the localized ones as
M is lowered. The former is again consistent with the absence of
a Griffiths phase where a large density of localized eigenmodes
give a critical spectral density at low energies. The latter is
a novel observation, and we attribute these states to ordered
puddles which are no longer fluctuating do to the discrete
symmetry breaking. More plots of bosonic properties are
shown in the ST Appendix.

Although the HMC solution does not enable us to analyti-
cally continue the fermion self-energy, we can still evaluate it
on the Matsubara axis using the first expression of Eq. [12]. In
the entire ‘smeared critical’ region, we observe a very distinct
marginal Fermi-liquid (MFL) scaling of Im[X(iw)], as shown in
Fig. 8. Based on the arguments of Patel et al. (3) and those
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Fig. 7. Observables describing the rounded phase transition for the M = 1 Ising
scalar. The main figure shows the correlation length of the equal-time propagator, &,
plotted as a function of A, for an L = 80 system and with 40 disorder configurations.
Unlike the M > 2 case, £ does not diverge (or even change) with temperature in
the entire critical region, indicating the absence of a sharp transition. The inset in the
upper right corner shows the Binder cumulant, B, = 1 — (®4) /(3(®2)2), where
P = ¢(2 = 0,q = 0), plotted as a function of X, for L = 64,3 = 32 and
with 120 disorder configurations. The shape of the curve tells us the approximate
‘smeared critical’ region, as well as the A beyond which B, is close to the limiting
value of 0.66 and can be considered ‘ordered’. We plot only one value of 3, L as
no crossing point will occur in this case. The inset in the lower left corner shows
the uniform static susceptibility x. All curves are for L = 80, and the § = 20, 32
(B = 64) curves use 100 — 200 (40) disorder configurations. As expected, the
susceptibility peak does not become sharper with lower T, as is the case for QCPs.
However, the presence of a peak indicates a smaller region of A where we expect the
most critical-like behavior.
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Fig. 8. The fermion self-energy —Im[3(iw)] as a function of Matsubara frequency
w, in the ‘smeared critical’ region for M = 1. All curves are for an L = 80 system at
8 = 64, using an average over 100-200 disorder realizations. The lines are fits to
the MFL form a w log(b/|w|) + ¢, which has a UV cutoff b and a w = 0 scattering
rate c. The MFL form is very well fit for all A values shown, with coefficients for all
curves in the ranges: 0.083 < a < 0.088,41 < b < 46,and 0.04 < ¢ < 0.12
(increasing with decreasing ). (inset) The extrapolated value of —Im[¥(iw = 0)]
from the MFL fit vs temperature T', showing a T' dependence of roughly — 7" InT'
along with a residual scattering rate, as expected for a MFL.

in the previous section, upon analytic continuation to real fre-
quencies this MFL self energy is what leads to strange metal
behavior with linear-in-temperature and linear-in-frequency
transport scattering rates.

5. Discussion

The recent universal theory of strange metals by Patel et al.
(3) considered the action S in Eq. [10] of electrons ¢; coupled
to quantum critical bosonic scalars ¢;,. They argued that
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the random ‘mass’ spatial disorder A} in Eq. [1] could be
absorbed by a rescaling of the scalar fields ¢;q, resulting in an
enhancement of the spatial disorder in the Yukawa coupling g
in Eq. [10]. They performed a self-consistent and self-averaging
analysis of the resulting action, similar to that required for the
exact solution of the SYK model (5). This theory matched
numerous observations in strange metals, including the T-
linear resistivity, the Planckian relaxation time, the TIn(1/T)
specific heat, and the 1/w optical conductivity.

The present paper has focused closer attention on the role
of the random mass spatial disorder )\;. We have shown that
the rescaling procedure of Patel et al. (3) remains valid in an
intermediate temperature regime where the eigenmodes of the
zero frequency boson propagator remain extended. However,
new physics emerges at low temperatures when the boson
eigenmodes localize, resulting in an extended regime of strange
metal behavior away from the QCP. This extended regime is
proposed as an explanation of observations by Cooper et al.
(6) and Greene et al. (7).

Our key results for the localization of the boson eigenmodes
for M > 2 appear in Fig. 3. At higher energies, the bosonic
eigenmodes are extended, as in Fig. 3b. The extended bosonic
eigenmodes have a density of states which is independent of
energy, as shown in Fig. 4, and as found in the SYK-type
analysis by Patel et al. (3). This constant density of states
results in a linear-in-T resistivity (Fig. 6), that we found to
extend away from QCP. Fig. 3a shows a minimum in the
localization length below which the localization length shows a
logarithmically slow increase with decreasing energy. We have
argued that this low energy regime is described (18, 19) by
the strong-disorder Griffiths regime of the random transverse
field Ising model (23, 24). We computed the effect of these
localized eigenmodes on electronic transport perturbatively,
and showed that they produce a significant contribution the
residual resistivity as the QCP is approached. However, it
would be worthwhile to examine the contributions of the
localized modes more completely in future work.

For the case of the M = 1 Ising scalar, the localized modes
are far fewer in number, which leads to an absence of a Griffiths
phase and a ‘smeared critical’ region which replaces the sharp
QCP of M > 2. Like in the M > 2 case, this region also shows
strange metal behavior at finite energies over an extended
range of the critical tuning parameter. However, due to the
finite correlation length, we expect the strange metal behavior
to not extend all the way down to zero temperature, and
instead give way to Fermi liquid behavior at the lowest energy
scales, unlike in the M > 2 case. This is of direct relevance
to experiments on strange metals near possible Ising-nematic
QCPs such as those in FeSe studied in Ref. (39). Ref. (39)
suggests that the low temperature strange metal behavior
observed in FeSe might be due to antiferromagnetic (M = 3)
fluctuations, rather than Ising-nematic (M = 1) fluctuations,
which would be in alignment with our conclusions about a
Fermi liquid ground state for M = 1.

It would also be interesting to directly observe the dynam-
ics of the localized overdamped eigenmodes in strange metals.
These eigenmodes resemble ‘two-level systems’ in glasses, and
perhaps similar experimental methods can be used (8, 40, 41),
or those used to image nanoscale electron flow (42). Addition-
ally, it might be possible to see indirect signatures of these
modes in low energy dynamical structure factors ST (q,w)

Patel etal.

(which could be in either spin or charge channels depending
upon the physical origin of the bosonic modes). We would
expect, for instance, the wavevector-integrated structure factor
Im[S*(w)] = [ d’q Im[S"(q,w)] to show an upturn like in
Fig. 4 starting at around w ~ 0.1 —1 meV, going by the energy
scales in Ref. (6). Such upturns should also occur in structure
factors ST(q,w) measured at a fixed wavevector q.
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Supporting Information Text

1. Off-critical results

This section presents numerical results on the overdamped boson model in Egs. [3] and [4] away from the critical point
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Fig. S1. The inverse boson propagator as a function of imaginary frequency, supplementing the critical point result in Fig. 2a. These results were obtained for a single disorder
sample at 5 = 320.

The frequency dependence of the inverse boson propagator is in Fig. S1, to be compared with the critical point results in
Fig. 2a. The frequency dependence is linear, apart from the low frequency regime for A < A., where deviations occur from the
contribution of localized modes.
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D™ (q,i)

D™ *(q,i)

Fig. S2. The inverse boson propagator as a function of momentum squared, supplementing the critical point result in Fig. 2b. These results were obtained for a single disorder
sample at 8 = 320.

The momentum dependence of the inverse boson propagator is in Fig. S2, to be compared with the critical point results in
Fig. 2b. The dependence on ¢ is linear, apart from the Q = 0 Matsubara frequency for A < A., where deviations occur from
the contribution of localized modes.
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Fig. S3. Localization lengths away from the critical point, supplementing the critical point results in Fig. 3a. These results were obtained at 5 = 320 and combine 10 disorder
samples.

Fig. S3 shows the localization of the bosonic eigenmodes, as in Fig. 3a. The non-monotonic behavior with decreasing energy
is visible only for A < A..

2. Fermion self energy

We provide the analytical expression for the Matsubara frequency summation in the computation of the fermion self energy
¥(iw) in Eq. [12]:
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were G is the digamma function.
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3. M = 1Ising scalar theory

In this section we show the properties of the M = 1 bosons. The diagonal part of the inverse propagator as a function of
frequency and momentum squared across the critical region is shown in Figs. S4 and S5.
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Fig. S4. The inverse propagator as a function of imaginary frequency, going across the smeared critical region. These results were obtained at 8 = 64, L = 80 and combine
between 40 (A = —0.05) and 200 disorder samples.

We can see that the as a function of frequency, the inverse propagator is basically linear for all non-zero frequencies, just as
in the M > 2 case shown in Fig. S1.
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Fig. S5. The inverse propagator as a function of momentum squared, going across the smeared critical region. These results were obtained at 5 = 64, L = 80 and combine
between 40 (A = —0.05) and 200 disorder samples.

As a function of momentum squared, the inverse propagator again looks very similar to the M > 2 case shown in Fig.
S2. The main difference is that there is no sharp transition beyond which only the zero-frequency propagator acquires a
strong disorder-sample-dependence: here all the curves are strongly fluctuating as a function of disorder samples. The disorder
fluctuations decrease gradually as we move to larger values of A, but one disorder configuration is not enough to give a smooth
curve for any parameter value we looked at.

We also plot the off-diagonal momentum components of D(q1 = 0, g2, i€2) in Fig. S6 for a single disorder sample. Unlike the
M > 2 case, all Matsubara frequencies show a significant off-diagonal component, indicating a much larger disorder variance.

Fig. S6. Momentum off-diagonal components of D (g1 = 0, g2, i€2) for different Matsubara frequencies, in the middle of the smeared critical region (A =
a single disorder sample at 3 = 64, L = 80. All Matsubara frequencies show a significant off-diagonal component.
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(2)

Fig. S7. (a) - (d): Localization lengths across the smeared critical region. These results were obtained at 3 = 64, L = 80 and combine 40 disorder samples. These
results should be compared with Fig. S3 (the number of disorder samples is chosen to match the density for the two systems of different sizes). (e) - (g): three different
wavefunction probabilities at A = —0.14, plotted in real space. As expected, the three types of states correspond to (e) plane waves, (f) localized modes, (g)-(h) delocalized
non-translation-invariant modes for A = —0.14 and A = —0.22.

We show the localization lengths of the eigenmodes of the zero-frequency propagator in Fig. S7. We can see that the
delocalized non-plane-wave modes start to appear at the far edge of the smeared critical region, relatively far away from the
peak of the susceptibility. Importantly, unlike the M > 2 case, as A is lowered, a gap opens up in the density of states that
separates these states and the others (localized and plane-wave states). We attribute these states to the non-fluctuating ordered
puddles. Interestingly, deeper in the ordered phase, these puddles can become more delocalized that the plane-wave states, and
can essentially take up the entire size of the system (or half of it, given the periodic boundary conditions.), as shown in Fig.
S7h.
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