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One-dimensional quantum optical models usually rest on the intuition of large scale separation
or frozen dynamics associated with the different spatial dimensions, for example when studying
quasi one-dimensional atomic dynamics, potentially resulting in the violation of 3 + 1D Maxwell’s
theory. Here, we provide a rigorous foundation for this approximation by means of the light-matter
interaction. We show how the quantized electromagnetic field can be decomposed – exactly – into
an infinite number of subfields living on a lower dimensional subspace and containing the entirety
of the spectrum when studying axially symmetric setups, such as with an optical fiber, a laser
beam or a waveguide. The dimensional reduction approximation then corresponds to a truncation
in the number of such subfields that in turn, when considering the interaction with for instance an
atom, corresponds to a modification to the atomic spatial profile. We explore under what conditions
the standard approach is justified and when corrections are necessary in order to account for the
dynamics due to the neglected spatial dimensions. In particular we will examine what role vacuum
fluctuations and structured laser modes play in the validity of the approximation.

I. INTRODUCTION

The success of theoretical quantum optics describing the
tremendous experimental progress in the past decades is
largely due to effective models which provide very accu-
rate statements to physical problems via simple models
that are valid in limited parameter regimes only [1–10].
For instance, lower dimensional effective models are ubiq-
uitously used to describe the dynamics of Bose-Einstein
condensates (BECs) [11–17], semiconductor devices [18,
19], quantum dots [20–23] or quantum state engineer-
ing [24, 25]. Care needs to be applied, however, when
quantum models are based on different spatial dimen-
sions as significantly different predictions may occur; this
is evident for instance in thermalization [26, 27], commu-
nication [28, 29] or scattering processes [12, 13, 30].
Cavities, in particular, are of special interest as effects be-
come experimentally relevant which are highly restricted
in free space, like power enhancement, spatial filtering
and more accurate beam profiles [31–34]. Based hereon
is the concept of lasers and masers [35–38] and cavity
matter-wave interferometry [39–42], but also photonic
BECs [43, 44] and quantum dots [45–48] benefit from
the effects offered by cavity quantum electrodynamics
(QED). All together, this reveals cavity QED as a pow-
erful area of research in quantum optics [49–51].
Nonetheless, the mode structure of the cavity, which de-
pends on the cavity geometry, can be almost arbitrarily
complex. To this end there is – despite exact 3D models
containing the full spectrum [5, 52–54] – usually an un-
derlying, simpler low dimensional model which, however,
is nothing but a physically motivated educated guess. In
this context, lower dimensional models are typically pre-
scribed ad hoc in a wide range of applications. For in-
stance one might consider an atom in a cavity of length L
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interacting dipolarly with the cavity field via a coupling g
[45, 55]

Ĥdi =ℏ
∑
l

[
ωlâ

†
l âl + g(σ̂† − σ̂)(ūl(x)â

†
l − ul(x)âl)

]
, (1)

where ωl = c|kl| are the 1D cavity field’s frequencies with

â
(†)
l being the creation and annihilation operators, and

σ̂(†) being the atomic ladder operators. The modes ul of
the field are usually scalar quantities, respectively eval-
uated at the atomic 1D position x, e.g. u(x) ∼ cos(klx).
Subsequent approximations lead to the 1D versions of
the Jaynes-Cummings model [45, 56–61], or for an en-
semble of atoms to the Dicke model [62–65] and the
Tavis-Cummings model [66]. One might also add a semi-
classical pumping that drives the cavity with strength η
or the atom with the Rabi frequency Ω via [55, 56, 67]

Ĥpump = iℏη
(
â†l − âl

)
+ iℏΩcos(klx)

(
σ̂† − σ̂

)
. (2)

Further effective dispersive interactions in the large-
detuning limit can be obtained, e.g. [68–70]

Ĥdisp = ℏU0|ul(x)|
2â†l âl. (3)

The common feature of these (and many more) Hamil-
tonians is that they arise by considering electromagnetic
fields as scalars living in 1D, i.e. [71–73]

Ê(x) = i
∑
l

√
ℏωl

2ε0Al
(ul(x)âl − ūl(x)â

†
l ), (4)

with the (effective) cross sectional area Al being the only
remnant of the higher dimensions. Besides the lack of two
polarizations, Maxwell’s equations do force three spatial
dimensions [74]. Various approaches have been made to
reduce the dimensions of electromagnetism when starting
from 3D, both at the classical level, e.g. Refs. [75–79], as
well as for quantized fields, see e.g. Ref. [73, 80]; often
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employing the method of Hadamard’s decent. I.e. lower
dimensional models are obtained by assuming that the
model is constant in certain degrees of freedom [81].

Here, however, we will not rely on descent conditions nor
impose any restrictions on our original model in order to
reduce the dimensions (apart from a symmetry consider-
ation for analytical purposes). Instead we show, starting
from the Helmholtz equation, how to rigorously realize a
lower dimensional model from 3D cavity QED. To that
end, we consider axially symmetric geometries (such as
optical fibers or Fabry-Pérot cavities) which manifest in
a separation of the cavity modes. By projecting an ap-
propriate ancilla basis onto the 3D modes, the resulting
reduced modes only depend on the complementary spa-
tial coordinates and are solutions of a reduced Helmholtz
equation. This extends Ref. [82], where this problem has
been studied with a scalar version of the light-matter in-
teraction, by actively accounting for the vector nature of
electromagnetism and the non-trivial coupling of the dif-
ferent components due to the polarization induced by
Maxwell’s equations. Naturally, as we will show, the
common light-matter interactions as well as setups with
laser beams can be incorporated.

In the process, the electromagnetic fields decompose into
an infinite collection of vector-valued subfields which live
on the remaining dimensions but encode geometrical in-
formation of the original model. This allows to answer
the question under which circumstances a 3D cavity can
be treated as a, e.g., 1D problem which is usually jus-
tified by having some length scales of the cavity or the
matter system much larger than the remaining ones, or
the dynamics is assumed to be frozen in some dimen-
sions. Here, a dimensionally reduced simple model can
be achieved via a single- or few-mode approximation on
those subfields. Due to corrections that arise from the 3D
model, it is not equivalent to the usual way of prescribing
this approximation ad hoc. As we will show, this is also
not generally the case in the common regime of having
a very long but narrow fiber. Finally, we highlight the
difference between the role of vacuum fluctuations and
strongly excited modes, such as for a laser, in order to
reconstruct the full 3D dynamics.

This manuscript is organized as follows: In Sec. II we
establish the formalism for the dimensional reduction of
ideal cavities. In particular we will discuss how the 3D
electromagnetic modes decompose into lower dimensional
sectors, each governed by its independent dynamics in the
absence of interactions. In Sec. III the dimensional re-
duction is applied to the Hamiltonian dynamics, includ-
ing interactions with matter, showing that the common
quantum optical models can be treated in this frame-
work. We identify the typical approach of dimensional
reduction as a truncation in the number of the lower
dimensional fields. The validity of such a number-of-
subfield approximation is then investigated for different
parameter regimes of a waveguide and an optical cavity
in Sec. IV. Lastly, in Sec. V we will provide an extension
of the dimensional reduction to structured laser beams.

II. DIMENSIONAL REDUCTION OF THE
ELECTROMAGNETIC FIELDS

We start with the free, second-quantized electromagnetic
fields inside an ideal, i.e. perfectly conducting, cavity of
volume V . The mode decomposition of the Heisenberg
fields may be written in the form

Ê(r , t) =
∑
j,µ

(
Aj,µ âj,µ(t)uj,µ(r) + h.c.

)
, (5a)

B̂(r , t) =
∑
j,µ

(
Cj,µ âj,µ(t)vj,µ(r) + h.c.

)
, (5b)

with frequency ωj,µ, the electric and magnetic field
modes uj,µ(r) and vj,µ(r), and the creation and the

annihilation operators in the Heisenberg picture â†j,µ(t)

and âj,µ(t). The index j denotes the tupel of unspecified
mode numbers, and µ ∈ {µ1, µ2} the two polarizations.
The field amplitudes read

Aj,µ = i

√
ℏωj,µ

2ε0
, Cj,µ =

√
ℏωj,µ

2ε0c2
. (6)

It follows directly from Maxwell’s equations and the dis-
persion relation, ωj,µ = c|kj,µ|, that the electric and
magnetic modes defined in Eqs. (5) are solutions of the
unsourced Helmholtz equation, e.g.(

∆+ k2j,µ
)
uj,µ(r) = 0, (7a)

with the boundary conditions for the electric modes being

n× uj,µ(r)
∣∣∣
r∈∂V

= 0, (7b)

∇ · uj,µ(r)
∣∣∣
r∈∂V

= 0, (7c)

where n is the normal vector to the cavity surface.
Whereas the Dirichlet type boundary condition (7b) is
obeyed by the electric field on a perfectly conducting cav-
ity wall, the Neumann type condition (7c) is physically
motivated by Gauss’ law [83]. With Farraday’s law the
magnetic field modes can be expressed in terms of the
electric field modes via

vj,µ(r) = |kj,µ|−1∇× uj,µ(r). (7d)

For the boundary conditions of the magnetic modes one
obtains then

n · vj,µ(r)
∣∣∣
r∈∂V

= 0, (7e)

n× [∇× vj,µ(r)]
∣∣∣
r∈∂V

= 0. (7f)

The Helmholtz equation (7a) together with the bound-
ary conditions (7b)-(7c), or (7e)-(7f) respectively (also
known as the short-circuit boundary conditions), form a
self-adjoint boundary problem (cf. [83], Th. 4.4.6) de-
fined on the Hilbert space of square integrable functions
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Figure 1. Axially symmetric cavity of length L with arbitrary
but integrable cross section Γ and sufficiently smooth bound-
ary ∂Γ. The cavity is spanned by the basis C: the symmetry
axis defines the longitudinal direction e(z), and the cross sec-
tion is spanned by e(y1) and e(y2) which are the transversal
directions. The normal vectors of the cross section are ±e(z),
and n(Γ) for the lateral surface.

L2(V ) on the cavity volume V , which is considered sim-
ply connected enclosed by a sufficiently smooth boundary
surface. Therefore, magnetic modes vj,µ(r) and electric
modes uj,µ(r) form an orthonormal mode basis with re-
spect to the L2 inner product on V , e.g.

⟨uj,µ(r),uj′,µ′(r)⟩V =

∫
V

d3ru†
j,µ(r) · uj′,µ′(r)

= δj,j′δµ,µ′ . (8)

To perform the dimensional reduction of the 3D model we
will restrict ourselves subsequently to geometries which
exhibit axial symmetry such that the model becomes sep-
arable in the longitudinal and transverse degrees of free-
dom (note, we connote these terms with respect to the
symmetry axis and not the wave vector, cf. Fig. 1). This
covers a wide area of common cavity QED setups, and
later we will see how the formalism can be extended to
setups including laser beams (see Sec. V).

A. Separability of the Modes under Axial
Symmetry

General Idea: Mapping onto Ancilla Bases

We will provide first a short mathematical motivation
of the dimensional reduction. In detail, let us con-
sider a separable cavity of simply connected volume
V = Γ×S which is spanned by an arbitrary cross section
Γ ∋ y = (y1, y2) and a longitudinal section S ∋ z, assum-
ing a sufficiently smooth boundary surface ∂V . Thus,
one can for example consider a rectangular, circular, or
more exotic cross sections as shown in Fig. 1. We can
accordingly define an orthonormal basis with respect to
this geometry via

C = {e(y1), e(y2), e(z)}. (9)

To stress that the cross section is treated differently
from the longitudinal direction, we introduce the tupel of
mode numbers m = (m1,m2), which is associated with
the cross section, while the mode number l is associated
with the longitudinal degrees of freedom, i.e. j = (m, l).
Mathematically speaking a separable cavity geometry
implies that the modes factorize into a set of orthonormal
basis modes for the cross section Γ and one for the longi-
tudinal section S (cf. Th. 2.17 in [83]). However, these
modes couple via the polarization induced by Maxwell’s
equations in a non-trivial way.
For a separation of the equations of motion it is required
that the eigenvalues of the 3D Laplace operator in the
Helmholtz equation separate. Indeed, for a separable ge-
ometry the wave vectors decompose as

k2
j,µ = k2

m,µ + k2
l , (10)

where km,µ is the wave vector spanned by the transverse
basis vectors of y, and k l corresponds to the longitu-
dinal z direction. Since we keep the cavity cross section
arbitrary, km,µ may depend on the polarization µ. More-
over, we do not impose Γ to be separable in its individual
degrees of freedom y1 and y2. In that case it is not possi-
ble to give the individual components of the wave vector
associated with those coordinates. An example of such
a cavity is a cylinder [53] which we will study in detail
subsequently as an example of how the dimensional re-
duction can be implemented, see Sec. IV.
The idea in order to obtain a lower dimensional model
from the originating 3D model is to project the an-
cilla mode basis, which spans the cavity cross section
(if one wishes an 1D model associated with the longi-
tudinal space S) and has not been endowed with a po-
larization structure, onto the 3D mode basis such that
L2(V ) → L2(S) =

⊕
m L2

m(S). This results in an infi-

nite set of Hilbert spaces L2
m(S) in 1D where each of

these, which we will call longitudinal mode spaces, is as-
sociated with fixed transversal mode numbers m. Alter-
natively, one could consider a 2D model: go from the 3D
model to the 2D cross section Γ via a mapping onto the
ancilla basis associated with the longitudinal degrees of
freedom, i.e. L2(V ) → L2(Γ) =

⊕
l L

2
l (Γ). Again, an

infinite set of spaces L2
l (Γ) is found for each longitudi-

nal mode number l. We will denote these subspaces as
transverse mode spaces. Each transverse and longitudi-
nal mode space is spanned by its own set of basis modes,
cf. Fig 2. However, it is important to note that the
modes corresponding to different longitudinal and trans-
verse mode spaces, i.e. for different m and for different
l, respectively, have a non-zero overlap. Thus, the dif-
ferent subspaces are in principle coupled to each other.
Nonetheless, as we will see in Sec. III, for common quan-
tum optical interactions with matter these couplings will
not be of relevance. I.e. the dimensional reduction results
in an exact decomposition of the 3D model where the
non-orthogonal, lower dimensional Hilbert spaces com-
pletely decouple. For more general dynamics, an exten-
sion to the procedure would be required and shall not
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Figure 2. Principle of the dimensional reduction of the electric field Ê(y, z, t) and its dynamics in an arbitrary axially symmetric
3D cavity of volume V (here example of cylinder of length L and radius R). The electric modes are represented by the grids
with each dot describing a different tupel of quantum numbers j = (m, l), where m is associated with the cross section Γ and
l with the longitudinal direction S, and polarization µ. The 3D modes uj,µ(r) can be written as a product of matrices Sm(y)
and Ul(z), serving as ancilla bases on Γ and S respectively, and polarization ϵj,µ. The reduction to 1D on S is performed by

projection onto the ancilla basis Sm(y). One obtains an infinite set of subfields Êm(z, t), each spanned by the set of modes

uj,µ(z). Every Êm(z, t) can be seen as corresponding to an independent sector, visualized by the set of 1D cavities. The
collection of all of them re-comprises the original 3D dynamics. The back transformation is applied by multiplying each of
the uml,µ(z) with their corresponding Sm(y). Likewise, a 2D model on Γ with subfields Êl(y, t) built from modes sj,µ(y) is
realized via projection onto ancilla modes Ul(z). The same follows for the magnetic field and extends to the common quantum
optical interactions with matter.

be the focus here. Additionally, the modes living on the
reduced mode spaces are the solution of a lower dimen-
sional Helmholtz equation defined on the respective do-
main, appended with dimensionally reduced boundary
conditions.

The dimensional reduction that we will construct in the
following can always be implemented for cavity QED
with axial symmetry, e.g. an optical fiber or a Fabry-
Pérot cavity. More generally, the dimensional reduction
is also applicable to cavities with infinite extension (such
as an open-ended cavity), and to setups where the radi-
ation field decays sufficiently fast in some direction (for
instance in a laser beam).

Mode Decomposition using Ancilla Bases

In order to arrive at a lower dimensional model of the
electromagnetic theory, we re-cast the electric and mag-

netic modes as a product of components associated with
the different spatial degrees of freedom. To that end, we
define for the electric modes the matrix Sm(y) for the
cavity cross section Γ, the matrix Ul(z) associated with
the longitudinal direction S, and the polarization vectors
ϵj,µ such that

uj,µ(r) = Sm(y)Ul(z)ϵj,µ. (11a)

A similar decomposition can be applied to the magnetic
modes. Defining a suitable matrix Tm(y) for Γ, a ma-
trix Vl(z) for S, and the polarization vector κj,µ, the
magnetic modes decompose as

vj,µ(r) = Tm(y)Vl(z)κj,µ. (11b)

As we show in App. A such decompositions are al-
ways possible when considering axially symmetric ge-
ometries. In particular, the transversal components
Sm(y) and Tm(y) are given without polarization in-
dex even though k2m,µ generally depends on µ, and
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the orthonormality of the polarization is preserved, i.e.

ϵ†j,µ · ϵj,µ′ = κ
†
j,µ · κj,µ′ = δµ,µ′ .

Without specifying the cross section, the matrices Ul(z)
and Vl(z) can be written explicitly for any axially sym-
metric cavity of finite length L. Thus, assuming that
z ∈ S = [0, L], the longitudinal degrees of freedom of the
electric and magnetic modes read

Ul(z) =

√
2

L
diag [sin (klz) , sin (klz) , cos (klz)] , (12a)

Vl(z) =

√
2

L
diag [cos (klz) , cos (klz) , sin (klz)] , (12b)

where kl = lπ/L. The matrices Sm(y) and Tm(y) for the
transversal degrees of freedom, on the other hand, cannot
be explicitly written without specifying the cross section
Γ; the same is true for the polarizations ϵj,µ and κj,µ.
We can, nonetheless, provide a simple reconstruction in
terms of the eigenbasis of the scalar Helmholtz equation,
cf. App. A. This will also serve as a bridge to previous lit-
erature where the dimensional reduction has been applied
to a scalar version of the light-matter interaction [82].
As worked out in the following, the matrices Sm(y) and
Ul(z) (and analogously for the magnetic field) serve as
ancilla modes without polarization structure and allow
to generate dimensionally reduced field modes living on
a lower dimensional subspace that satisfy the expected
orthonormalization properties and corresponding lower
dimensional Helmholtz equations. Indeed, the dimen-
sional reduction corresponds then to a projection onto
orthonormalized basis modes of a certain subspace ones
wishes to integrate out, and the reduced modes evolve in-
dependently from the other degrees of freedom. In Fig. 2
we provide a visualization for the procedure.
That the decomposition of the field modes also implies a
complete decoupling of the dynamics of the dimension-
ally reduced problem is not guaranteed, a priori, due to
the polarization coupling the different degrees of freedom.
Despite being common in the literature, leading to cele-
brated and successful models in many regimes of quan-
tum optics (e.g. 1D versions of the Jaynes-Cummings
and Dicke model), decoupling of the field modes can in
general not be obtained by brute force distilling out the
degrees of freedom suitable for the lower dimensional
model. On the contrary a more general way to realize
lower dimensional models, which is achieved without any
approximation, is the mapping of the modes onto a lower
dimensional space.

B. Lower Dimensional Modes

1D Dynamics

We will begin with the dimensional reduction to the lon-
gitudinal degrees of freedom which in an intuitive picture
would correspond to a very long and narrow cavity with
negligible cross section. Note, however, that at this point

we impose no approximations on the fields. In detail, the
reduction from 3D to the 1D subspace S can be defined
solely in terms of the transverse ancilla modes Sm or
Tm via the L2 inner product on Γ. Hence, the reduced,
normalized electric modes of the 1D system are given by

uj,µ(z) =
∑
m′

⟨Sm′(y),uj,µ(r)⟩Γ = Ul(z)ϵj,µ. (13a)

Analogously the magnetic modes (11b) reduce to:

vj,µ(z) =
∑
m′

⟨Tm′(y),vj,µ(r)⟩Γ = Vl(z)κj,µ. (13b)

The orthonormality conditions

⟨Sm(y),Sm′(y)⟩Γ = δm,m′11, (14a)

⟨Tm(y),Tm′(y)⟩Γ = δm,m′11, (14b)

with 11 being the identity matrix, emerge naturally from
the orthonormality of the 3D modes in Eq. (8). Accord-
ingly, the dimensional reduction can be viewed as an or-
thogonal (with respect to transverse mode numbers m)
projection onto the transversal ancilla basis on Γ, inte-
grating out those degrees of freedom. It is due to the infi-
nite number of transverse ancilla modes that one obtains
an infinite set of longitudinal modes uj,µ(z) and vj,µ(z),

each pair corresponding to a subspace L2
m(S) ⊂ L2(V )

with distinct transverse mode numbers m.
With the longitudinal 1D modes (13a) and (13b) at hand,
we need to verify that their dynamics completely sep-
arates from the dynamics of the transversal degrees of
freedom. Therefore, one has to not only split the 3D
Helmholtz equation (7a) in two independent equations
for transverse and longitudinal degrees of freedom but
also the boundary conditions of Eq. (7). While the
Helmholtz equation can be split by a simple separation
ansatz [84], it is shown in App. C 1 that the boundary
value problem for the electric 1D modes becomes

(∂2z + k2l )uj,µ(z) = 0,

e(z) · ∂zuj,µ(z)
∣∣∣
z∈∂S

= 0,

e(z) × uj,µ(z)
∣∣∣
z∈∂S

= 0.

(15)

For the 1D magnetic modes we have analogously

(∂2z + k2l )vj,µ(z) = 0,

e(z)∂z × vj,µ(z)
∣∣∣
z∈∂S

= 0,

e(z) · vj,µ(z)
∣∣∣
z∈∂S

= 0.

(16)

We further show in App. D 1 that these boundary value
problems correspond to self-adjoint, dimensionally re-
duced Laplacian operators with the corresponding L2

norm on L2
m(S) (cf. [83], Def. 3.14). In other words,

each longitudinal mode space L2
m(S) is equipped with an
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orthonormal basis of the dimensionally reduced longitu-
dinal modes (13). They obey orthonormality conditions,
for fixed cross sectional mode numbers m,

⟨uml,µ(z),uml′,µ′(z)⟩S = δl,l′δµ,µ′ , (17a)

⟨vml,µ(z),vml′,µ′(z)⟩S = δl,l′δµ,µ′ . (17b)

Lastly, the longitudinal modes are imbued with the po-
larization vectors ϵj,µ, respectively κj,µ, of the 3D prob-
lem. As we will see in detail later, this induces the lower
dimensional model to still contain information on the
original 3D model. Further, the 1D electric and mag-
netic modes obey the usual orthogonality condition (see
App. B 1)

⟨uj,µ(z),vj,µ(z)⟩S = 0. (18)

2D Dynamics

Conversely, the same procedure can also be applied to the
transverse degrees of freedom by projecting the longitu-
dinal ancilla basis onto the 3D modes. To that end, we
switch the role of the longitudinal and transverse compo-
nents. The orthonormality condition for the longitudinal
ancilla modes, for the electric and magnetic modes re-
spectively, read (cf. Eqs. (12))

⟨Ul(z),Ul′(z)⟩S = δll′11, (19a)

⟨Vl(z),Vl′(z)⟩S = δll′11. (19b)

Continuing analogously, one can define dimensionally re-
duced modes depending solely on the transversal coordi-
nates y:

sj,µ(y) =
∑
l′

⟨Ul′(z),uj,µ(r)⟩S = Sm(y)ϵj,µ, (20a)

tj,µ(y) =
∑
l′

⟨Vl′(z),vj,µ(r)⟩S = Tm(y)κj,µ. (20b)

Combined with the orthonormality conditions (14) this
implies that the dimensionally reduced transverse modes
are L2 normalized on their respective subspace L2

l (Γ) (for
fixed longitudinal mode number l):

⟨sml,µ(y), sm′l,µ′(y)⟩Γ = δm,m′δµ,µ′ , (21a)

⟨tml,µ(y), tm′l,µ′(y)⟩Γ = δm,m′δµ,µ′ . (21b)

We remark that due to the polarization-independent map
applied in Eqs. (20a) and (20b), similarly to the map to
1D, all information of the 3D fields’ polarizations is con-
served, resulting in the usual orthogonality of the modes
sj,µ(y) and tj,µ(y) (see App. B 2):

⟨sj,µ(y), tj,µ(y)⟩Γ = 0. (22)

Moreover, via the same separation ansatz that led to
Eq. (15), we obtain the transverse Helmholtz equation

for the transverse electric modes on Γ i.e.(
∆Γ + k2

m,µ

)
sj,µ(y) = 0,

nΓ × sj,µ(y)
∣∣∣
y∈∂Γ

= 0,

∇Γ · sj,µ(y)
∣∣∣
y∈∂Γ

= 0.

(23)

Here nΓ is the normal vector of the surface ∂Γ (cf.
Fig. 1), ∇Γ the transverse nabla operator (both spanned
by the cavity basis vectors of the cross section), and
∆Γ = ∆ − ∂2z is the Laplacian acting only on the trans-
verse coordinates. Analogously, one finds for the dimen-
sionally reduced, transverse magnetic modes(

∆Γ + k2
m,µ

)
tj,µ(y) = 0,

nΓ · tj,µ(y)
∣∣∣
y∈∂Γ

= 0,

nΓ × [∇Γ × tj,µ(y)]
∣∣∣
y∈∂Γ

= 0.

(24)

A derivation of the boundary conditions is shown in
App. C 1; a proof of the self-adjointness of the boundary
value problem on the underlying transverse mode space
L2
l (Γ) can be found in App. (D 2). Accordingly, sm,µ(y)

and tm,µ(y) are both eigenmodes of a self-adjoint bound-
ary value problem with respect to the inner product (21)
and thus form a complete orthonormal eigenbasis for
fixed l. We want to emphasize again that the separa-
tion into two independent boundary value problems of
longitudinal (15) and transverse (23) degrees of freedom
for the electric modes (similarly for longitudinal (16) and
transverse (24) degrees of freedom in case of the magnetic
modes) assumed only a separable cavity geometry, as dis-
cussed in Sec. II A.
Hence, we have shown that by mapping the electromag-
netic 3D modes onto a certain subspace thereof, we ob-
tain solutions to the Helmholtz equation associated with
the complement space. This directly defines a dimen-
sional reduction procedure such that the original cavity
modes after this are no longer dependent on the spatial
coordinates associated with the ancilla basis, which in
turn acts as a means to view the cavity as a lower di-
mensional problem. In App. E we provide an example
for the reduction of the modes of a cylindrical cavity to
2D as well as 1D.

C. Dimensional Reduction of the Quantum Fields

To understand how the quantum fields themselves be-
have under the dimensional reduction, we will – without
loss of generality – consider from now on the dimensional
reduction to 1D. Therefore, we will employ the reduced
longitudinal 1D modes from Eq. (13a) for the electric
field and (13b) for the magnetic field respectively.
Since the electromagnetic fields are Hermitian, they have
to be reduced in a way which does not violate Hermitic-
ity. Accordingly, we decompose the fields into polariza-
tion independent positive and negative (frequency) field
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components. The positive field components of electric
and magnetic field read in our notation

Ê(+)
j (r , t) =

∑
µ

Aj,µ âj,µ(t)Sm(y)Ul(z)ϵj,µ, (25a)

B̂(+)
j (r , t) =

∑
µ

Cj,µ âj,µ(t)Tm(y)Vl(z)κj,µ. (25b)

Therefore one has to map the positive field components
via the Hermitian conjugate of the transverse ancilla
modes, i.e. S†

m(y) for the electric and T †
m(y) for the

magnetic field respectively. The same is done analogously
for the negative field components which are the Hermi-
tian conjugate of (25). Starting with the electric field,
a dimensionally reduced field which only depends on the
longitudinal coordinate z is realized as

Ê(z, t) =
∑
j,m′

〈
Sm′(y), Ê(+)

j (r , t)
〉
Γ
+ h.c.

=
∑
m

Êm(z, t), (26)

where we defined the electric field mapped onto them-th
transverse ancilla mode, i.e the electric modes live on the
subspace L2

m(S), as

Êm(z, t) =
∑
l

(
Ê(+)
j (z, t) + Ê(−)

j (z, t)
)

=
∑
l,µ

(
Aj,µ âj,µ(t)uj,µ(z) + h.c.

)
.

(27)

The field modes uj,µ(z) are the dimensionally reduced
modes of Eq. (13a). Analogously, one finds for the quan-
tized magnetic fields via the map Q(S)

B̂(z, t) =
∑
j,m′

〈
Tm′(y), B̂(+)

j (r , t)
〉
Γ
+ h.c.

=
∑
m

B̂m(z, t), (28)

where the mapping of the magnetic field onto the m-th
mode of the transverse ancilla basis gives

B̂m(z, t) =
∑
l

(
B̂(+)

j (z, t) + B̂(−)
j (z, t)

)
=
∑
l,µ

(
Cj,µ âj,µ(t)vj,µ(z) + h.c.

)
,

(29)

with vj,µ(z) being the dimensionally reduced modes of

Eq. (13b). Here, we defined Ê(+/−)
j (z, t) and B̂(+/−)

j (z, t)

as the positive/negative frequency components of the re-
duced 1D fields, i.e.

Ê(+)
j (z, t) =

〈
Sm′(y), Ê(+)

j (r , t)
〉
Γ
= Ê(−)†

j (z, t),

B̂(+)
j (z, t) =

〈
Tm′(y), B̂(+)

j (r , t)
〉
Γ
= B̂(−)†

j (z, t).
(30)

Hence, the 1D electric (26) and 1D magnetic field (28)

decompose into an infinite set of fields Êm(z, t) and

B̂m(z, t) for each given set of transverse mode num-
bers m (this is analogous to the modes’ decomposition
in Sec. II B). In return, the 3D fields can be fully and
without approximation reconstructed (by definition of a
mode decomposition) from the longitudinal 1D subfields
via the back transformation

Ê(r , t) =
∑
j

(
Sm(y)Ê(+)

j (z, t) + Ê(−)
j (z, t)S†

m(y)
)
,

B̂(r , t) =
∑
j

(
Tm(y)B̂(+)

j (z, t) + B̂(−)
j (z, t)T †

m(y)
)
.

(31)

We want to emphasize that the operators Ê(z, t) and

B̂(z, t) are the dimensionally reduced fields and are thus
not to be confused with the physical 3D observables
Ê(r, t) and B̂(r, t). Since the dimensionally reduced
fields describe the dynamics corresponding to exactly one
specific longitudinal mode space L2

m(S) each, we will call
them subfields (in App. E we provide at the example of
the cylinder the explicit construction of the subfields for
1D as well as 2D).

Comparison to Ad-Hoc 1D Fields and Maxwell’s Equations

The collection of all subfields encodes information about
the geometry of the cross section which is retained even
in the lower dimensional models (cf. Eqs. (27) and (29)).
In particular, the wave vector has neither been restricted
to point in longitudinal direction nor are the frequencies
then just 1D in nature. Contrast this with the commonly
found 1D field structure of Eq. (4). In detail, with our
choice of basis (see App. A), one of the polarizations in-
deed corresponds to the TE mode one would prescribe
ad hoc to a 1D electric field on z (and equivalently the
TM mode for the magnetic field). However, the second
polarization then necessarily contains a correction in the
longitudinal z component that is due to the transversal
part of the 3D wave vector:

ϵj,µ1
=

 1/
√
2

− 1/
√
2

0

 , ϵj,µ2 =
1

|kj,µ2
|

−kl/
√
2

−kl/
√
2

|km,µ2 |

 . (32)

That entry can never be identical to zero unless one con-
siders the continuum limit for the cross section (cor-
responding to a Fabry-Pérot cavity with inifnite-sized
mirrors). In that case, though, there is no energy
gap to the lowest level transversal mode which can-
not be expected to be the sole contributor to the dy-
namics, accordingly. In the opposite regime, and one
where one would intuitively expect to use a 1D model,
with the cross section much smaller in extension (with
characteristic scale R) than the length L of the cavity,
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the transversal modes dominate the wave vector since
|km,µ| ∝ 1/R, whereas |kl| ∝ 1/L.

Further, we showed that the lower dimensional modes
satisfy dimensionally reduced Helmholtz equations with
the analogue boundary conditions from the original
3D theory on their respective mode space. In con-
trast, one could have also tried reducing the dimen-
sions of Maxwell’s equations to achieve lower dimensional
Helmholtz equations [75, 76]. This can be for instance
done via the method of Hadamard’s decent [77, 81], where
spatial degrees which one wishes to reduce are assumed
constant. The dimensional reduction procedure used
here – where no assumptions besides an axially symmet-
ric cavity are applied – does in general not commute with
the spatial operations of Maxwell’s equations. Thus, a di-
mensional reduction acting directly on the 3D Helmholtz
equation (7a) but not on the 3D modes themselves is not
obtained trivially by the maps defined in Sec. IIA. Natu-
rally, the subfields (27) and (29) violate not only the 3D
Maxwell’s equations as well as the 3D Helmholtz equa-
tion (7a) but already the Coulomb gauge condition. In
summary this gives rise to the subfields being an effective
description as they do not represent physical fields but
an convenient representation to perform the dimensional
reduction.

The emergence of an effective theory is obviously given
by the non-invertible mapping from 3D to the lower di-
mensions. Here, the information that the eigenmodes of
the transverse Helmholtz equation, or the longitudinal
Helmholtz equation respectively, contribute to the mode
structure is lost. However, their eigenvalues remain, with
each subfield being associated with one of these eigenval-
ues. More precisely: The subfields do still contain in-
formation of the full cavity spectrum as the eigenvalues
to the Helmholtz equation are preserved by the dimen-
sional reduction. Through these eigenvalues, conclusions
can again be drawn about the 3D cavity geometry from
where the mode structure of the transverse degrees of
freedom may be reconstructed [82]. Nevertheless, the
subfield decomposition itself is exact which we will show
explicitly when deriving the dynamics for the subfields in
the next section.

III. DIMENSIONAL REDUCTION AT THE
HAMILTONIAN LEVEL

A. The Free-Field Dynamics

Analogously to the fields, the free-field Hamiltonian de-
composes into an infinite number of effective 1D Hamil-
tonians (see App. F 1):

Ĥfield =
ε0
2

∫
V

d3r
[
|Ê(r , t)|2 + c2|B̂(r , t)|2

]
=
∑
m

ĥfieldm .

(33)

Each Hamiltonian ĥfieldm is the 1D Hamiltonian analogue
in terms of the 1D electromagnetic subfields (27) and (29)
for a given transversal mode set m, i.e.

ĥfieldm =
ε0
2

∫
S

dz
[
|Êm(z, t)|2 + c2|B̂m(z, t)|2

]
=ℏ
∑
l,µ

ωj,µâ
†
j,µ âj,µ, (34)

where the whole spectrum of the longitudinal modes and
polarizations contribute. Accordingly, all of these sub-
field Hamiltonians taken together completely comprise
the original 3D free-field dynamics. Importantly, even
though the modes corresponding to different subspaces
L2
m(S) have non-vanishing overlap the Hamiltonians (34)

commute, and the free dynamics does not couple these
subspaces. Note: Since the subfield Hamiltonians are
realized without any approximation from the 3D model
they differ from the usual 1D theories discussed in Sec. I.

B. The Light-Matter Interaction

Next we will examine the dynamics of the fields induced
by the interaction with matter. Without loss of gen-
erality, we will restrict ourselves to the electric dipole
Hamiltonian; extensions to magnetic atoms, higher or-
der multipoles or atomic center of mass delocalization
follow analogously; in App. F 2 we explicitly show how
this applies to the electric dipole interaction for an atom
with a quantized center of mass.
Let us consider as a concrete example a general hydrogen-
like, stationary (atomic motion can be included in the
formalism in a straight-forward manner) atom interact-
ing with the electromagnetic field within the cavity. We
assume that the atom is an effective one-particle system
with a classical nucleus that is much heavier than the
electron. The atomic Hamiltonian may be written as
ĤA =

∑
sEs |s⟩⟨s| . The dipole interaction can then be

written – when prescribed from the field’s quantization
frame and in the joint atom-field interaction picture –
as [85, 86]

ĤI(t) =χ(t)
∑
s>s′

∫
V

d3r d̂ss′(re(r), t) · Ê(r, t), (35)

being in position representation and the electronic po-
sition re(r) accounts for the field’s (stationary) quanti-
zation frame to be potentially different from the atom’s
center of mass frame. The dipole operator can be ex-
pressed as

d̂ss′(re, t) = eFss′(re)e
iΩss′ t |s⟩⟨s′|+ h.c. (36)

in terms of the spatial smearing vector

Fss′(re) = reψ
∗
s(re)ψs′(re), (37)

where we inserted the atomic wave functions
⟨re|s⟩ = ψs(re), and we defined the atomic energy
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spacing ℏΩss′ = Es − Es′ . The spatial smearing
accounts for the atomic spatial profile associated with
the internal states for any considered transition process.
We also introduced a switching function χ(t) which
encodes the possibly time-dependent coupling between
the atom and the field inside the cavity. In order to
achieve the dimensionally reduced dipole Hamiltonian
we define the spatial smearing vector associated with
the m-th subfield, reading

Fm,ss′(ze(z)) =
〈
S†
m(y),Fss′(re(r))

〉
Γ
, (38)

i.e. it is the mapping of the atomic profile onto the field’s
transversal ancilla basis. Employing Eq. (31) yields

ĤI(t) =χ(t) e
∑
j

∑
s,s′

s ̸=s′

∫
S

dzFm,ss′(ze(z))Ê(+)
j (z, t)

× eiΩss′ t |s⟩⟨s′|+ h.c. (39)

=
∑
m

ĥIm(t),

where in the last step we defined the subfield-dipole

Hamiltonians ĥdipolem for fixed transverse mode num-
bers m. Therefore, the projected smearing vector
Fm,ss′(ze(z)) accounts for how much the atom couples

to the corresponding subfield Êm(z, t). Analogously to
the free-field Hamiltonian, the interaction Hamiltonian
too decomposes into an infinite number of dimensionally
reduced Hamiltonians, each prescribing the atom-light
interaction on its respective Hilbert space.

C. The Number-of-Subfield Approximation

In a similar fashion, the decompositions of the Hamil-
tonians (33) and (39) could have been also attained in
terms of a reduction to a 2D problem, that is via the
mapping onto the longitudinal mode spaces presented
in Sec. II B. Since we have performed no approximation
hitherto, both descriptions can be used to reconstruct
the dynamics induced by the interactions discussed so far.
I.e. they correspond merely to a different basis expansion
and thus correspond to different subspaces, cf. Sec. II A.
Both cases are, however, intuitively connected to differ-
ent cavity shapes and thus to different mode structures
inside a cavity.
To illustrate this, take two opposite regimes of a cylin-
drical cavity: a thin disk-shaped cavity (R ≫ L) and
a long fiber-shaped cavity (R ≪ L), with radius R and
length L. For the disk-shaped cavity, the frequency dif-
ference between two modes with neighboring transverse
mode numbers m but equal longitudinal mode number l
is much larger than for equalm but neighboring l. Thus,
if we choose a fixed polarization and neglect the polar-
ization index for compactness, we obtain the condition
(in reference to frequency ωm,l)

R≫ L : min{ωm+(1,0),l, ωm+(0,1),l} ≫ ωm,l+1. (40a)

In contrast to this we have for the fiber-shaped cavity

R≪ L : max{ωm+(1,0),l, ωm+(0,1),l} ≪ ωm,l+1. (40b)

Let us consider how lower dimensional models will intu-
itively be achieved when considering an atom near res-
onance to one cavity mode, i.e. ΩA ≈ ωmres,lres . For a
disk-shaped cavity with Eq. (40a) one would intuitively
pick the single subfield from the dimensionally reduced
2D model with longitudinal mode number lres. However,
in case of the thin fiber, one would pick instead the reso-
nant subfield corresponding to the 1D model with trans-
verse mode number mres.
The two limits are also well known when describing a
quantum mechanical particle in an axially symmetric
harmonic trap. There, two cases can be distinguished
based on the axial and perpendicular harmonic oscilla-
tor length az and a⊥, respectively. When az ≪ a⊥, the
system reduces to a two-dimensional disk, whereas for
a⊥ ≪ az, a one-dimensional tube is obtained. In both
cases the frequency spacing along the strongly confined
direction is too large to allow for any excitation, effec-
tively freezing the system in the corresponding ground
state of that direction, fully analogously to Eq. (40).
Further, in a BEC with interacting atoms, the picture
is more complicated due to additional intrinsic length
scales imprinted by the interaction. Here, the spectrum
separates in collective and single particle excitations at
the healing length ξ. If in addition to above criteria either
az ≪ ξ (disk) or a⊥ ≪ ξ (tube), the collective excitations
of the BEC in the strongly confined direction are frozen
out. Such circumstances allow for the description of the
dynamics with a dimensionally reduced Gross-Pitaevskii
equation [11, 12]. Note that the local scattering between
two atoms still retains its 3D character until the oscillator
length reaches the order of the 3D scattering length [87,
88]. This is in analogy to the models presented here
where the 3D character due to the polarization of the
field is preserved locally.
What we have achieved so far is to decompose – with-
out approximation – the full light-matter interaction in
terms of subfields of the electromagnetic field and asso-
ciated spatial profiles of the atom coupling to those sub-
fields. In order to formulate an approximation scheme
for dimensional reduction, and to connect this procedure
with the ad hoc prescription in the literature, we have to
discuss how many of the subfields are necessary so as to
have an accurate representation of the full 3D dynamics.
Then a subfield approximation based on Eq. (26) is noth-
ing but a number-of-modes approximation, equivalent to
a single- or few-mode approximation.
For that truncation, an observable has to be chosen. A
natural choice for this are atomic transition probabili-
ties that can be attained via an experiment. That is to
say, we will address the question of how many subfields
we need to take into account in order to only deviate
slightly from the full 3D statistics. In particular, we will
see that the atomic transition probabilities can also be
decomposed into a sum of independent terms each gov-
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erning the transition probability induced by the appro-
priate subfield.
To calculate the transition probabilities we will use a
Dyson series [55] in the weak coupling regime to first or-
der which is valid as long as the relevant parameters are
sufficiently small. We assume that the initial state of the
joint system is a product state of the field in the vacuum
state |Ω⟩ =

⊗
j,µ |0⟩j,µ and the atom in an arbitrary

energy eigenstate |s⟩. Thus, the transition probability
between an initial atomic level |s⟩ and the arbitrary (yet
distinct) level |s′⟩ can be, to leading order, written as

Ps→s′ ≈
∑
j′,µ′

∞∑
n=1

∣∣∣∣∣ ⟨nj′,µ′ ; s′|
∑
m

(
i

ℏ

∫
R
dt ĥIm(t)

)
|Ω; s⟩

∣∣∣∣∣
2

=
∑
m

|cm, s→s′ |2, (41)

where |nj,µ⟩ is the single-mode Fock state with n field
excitations in mode (j, µ) and all other modes in the
vacuum state. Accordingly, the total transition prob-
ability is decomposed into probabilities induced by the
corresponding m-th subfield:

|cm, s→s′ |2 =
∑
l,µ

ωj,µe
2

2ε0ℏ

∣∣∣∣∫
R
dtχ(t) ei(ωj,µ−Ωss′ )t

×
∫
S

dz uj,µ(z) · Fm,ss′(ze(z))

∣∣∣∣2 .
(42)

Let us come back to our issue at hand: How many sub-
fields of the reduced cavity are required? In particular:
Do there exist special regimes where one can approxi-
mate the 3D model by a small number of subfields (per-
haps one)? We assume that we restrict the number of
subfields to some subset N such that

PN , s→s′ =
∑

m∈N

|cm, s→s′ |2. (43)

Such a truncation can be analogously thought of as a
modification in the atomic spatial profile, cf. Eq. (38).
Intuitively, removing all but a few subfields is valid if the
atomic shape is such that it couples only strongly to a
few subfields. Of course, the field’s mode functions are
generally not of the shape of an atomic wave function,
and a truncation needs therefore careful analysis. We
can evaluate the validity of the truncation via the rela-
tive difference to the full transition probabilities (for a
detailed discussion on different measures for the trunca-
tion error see [82]):

δN ,s→s′ = P−1
s→s′ |Ps→s′ − PN ,s→s′ |. (44)

IV. EXAMPLE: DIMENSIONAL REDUCTION
FOR A CYLINDRICAL CAVITY

We will now perform a numerical study as a working
example of the dimensional reduction laid out in the pre-
vious sections and consider a cylindrical cavity of length

Figure 3. Atom in the center of a cylindrical cavity with
radius R and length L. The electronic (cylindrical) coordi-
nates are re = (ye, ze) with respect to the atomic center of
mass, and r = (ye, ze +L/2) with respect to the field’s quan-
tization frame. The atom is modeled as a two-level system
with the harmonic oscillator eigenstates ψ000(re) = ψg(re)
and ψ001(re) = ψe(re) with the energy gap ℏΩA.

L in longitudinal direction and radius R in transverse di-
rection. A single two-level atom is placed in the center
of the cavity at z = L/2 such that y = ye (see Fig. 3),
with the field’s quantization frame having its origin at
z = 0. For a discussion on transforming the interaction
Hamiltonian to different frames see Refs. [85, 89].
The atom will be modeled as a 3D quantum harmonic
oscillator where we only consider the ground state and
one excitation associated with the longitudinal (z) direc-
tion (the transverse directions being frozen out as is com-
monly assumed), expressed in the electric field’s quanti-
zation frame:

ψg(r, z) =
1

π3/4σ3/2
e−

r2

2σ2 e−
(z−L/2)2

2σ2 , (45a)

ψe(r, z) =
21/2

π3/4σ3/2
e−

r2e
2σ2 e−

(z−L/2)2

2σ2
z − L/2

σ
, (45b)

with harmonic oscillator length σ =
√
ℏ/(MΩA) [90], ΩA

being the frequency gap between excited and ground
state, and M being the mass of the atom.
We further consider two different time-dependent cou-
plings in Eq. (42). First a top-hat switching χTS(t) and
an adiabatic Gaussian switching χGS(t):

χTS(t) = θ(t)θ(t− T ), χGS(t) = exp

(
− t2

2T 2

)
, (46)

respectively. Both depend on the interaction time pa-
rameter T which gives a characteristic time the atom is
exposed to the field.
Considering the Hamiltonian (39), due to the axial sym-
metry the e(φ) component of the overlap from electric
field and smearing function vanishes in this setup. More-
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over, for axially symmetric atomic wave functions cen-
tered on the symmetry axis the integration will fix the
azimuth quantum numberm2 to zero. The vanishing e

(φ)

and e(z) component of the TE modes and the φ deriva-
tive in e(r) will then lead to a vanishing interaction of
the atom with the TE mode µ1. Thus we will drop the
polarization index for compactness of notation.
For sake of analytical results, we will assume that the
atom is sufficiently localized far from the cavity walls.
That is, σ ≪ R,L. In App. G 1 we calculate the overlap
of the atomic smearing function (38) with the subfields.
We find the following transition probabilities to leading
order [91]

P(±)=
(ecσ)2

2πε0ℏR4L

∑
m1,l

χ2
m1

exp

(
−χ2

m1
σ2

2R2 − 2π2l2σ2

L2

)
ω(m1,0),2l J

2
1 (χm1)

×


(

sin(∆(m1,0),2l,(±)T)
∆(m1,0),2l,(±)

)2

, χ(t)=χTH(t),

2πT 2 exp
(
−2(∆(m1,0),2l,(±)T )

2
)
, χ(t)=χGS(t),

(47)

where we defined χm1
as the m1-th zero of the

zeroth order Bessel function J0, the frequencies
ω(m1,0),2l = c

√
(χm1

/R)2 + (2πl/L)2, and the detuning
∆j,(±) = (ωj ± ΩA)/2, with (−) denoting spontaneous
emission (e → g), and (+) vacuum excitation (g → e).
We will now examine different regimes for the subfield ap-
proximation reaching from the general waveguide regime
with σ ⪅ R ≪ L to the general optical resonator regime
with σ ≪ R ⪅ L. By that notion, one would expect that
the long-and-narrow waveguide is a much better regime
for a small-number approximation in the subfields.

A. Numerical Results

We will discuss the numerical results for the validity of
the subfield approximation in terms of the four dimen-
sionless parameters L/R, R/σ, ΩAT , and ωj/ΩA. First,
we will investigate the geometric imprints (i.e. effects
induced by varying the parameters R/L, R/σ, and con-
sider different resonance conditions ωj/ΩA). Second, the
impact of the dynamics, i.e. in terms of ΩAT and differ-
ent switching functions, will be studied. Therefore, we
particularize the relative error Eq. (44) to our example,
reading

δN,(±) = P−1
(±)|P(±) − PN,(±)|, (48)

where PN,(±) = P(N,0),(±) is the transition probability
defined in Eq. (43) with the azimuthal mode number be-
ing fixed at zero, i.e. m2 = 0, and m1 ∈ N .

Imprint of the Geometry

Here, we will only discuss spontaneous emission, where
the impact of the geometry is particularly pronounced,

and drop for simplicity the (−) index in this section and
Fig. 4. First of all, see Fig. 4(a)-(b) for the example of
Gaussian switching, the individual subfield probability
amplitudes |c(m1,0)|2 are insensitive to the (intuitively im-
portant) ratio L/R. This can be understood, cf. Eq. (47),
by noting that the ratio L/R appears only in the field
frequencies. For the considered parameter space with
L/R ≫ 1, then, the most resonant subfield mres

1 has the
property that χres ≫ 2πlresR/L, where χres := χmres

1 ,0.
Note that the resonant mode is identical over the whole
parameter regime from optical cavity to waveguide in
these plots as it is only weakly affected by L/R. Nonethe-
less, the number of subfields necessary for a proper sub-
field approximation are impacted by the chosen resonant
subfield mres

1 . To keep the error δN fixed, the number of
subfields needed grows linearly with the resonant subfield
mres

1 : for δN ≈ 0.1, Fig. 4(a) with mres
1 = 10 requires 24

and (b) with mres
1 = 100 requires 240 subfields.

The parameter R/σ, on the other hand, is consider-
ably more relevant to the truncation (see Fig. 4(c)-(f)).
The subfield with the maximum contribution mmax

1 to
the transition probabilities, which is distinct from the
most resonant subfield mres

1 , grows linearly with R/σ:

mmax
1 ≈ 2R/(π

√
2σ) for R/σ ≤ πmres

1 /
√
2 . This is due

to the geometrical parameter R/σ dominating the en-
ergetic factor until the point of the resonance condition
ωj = ΩA is reached. From there the energetic part starts
to dominate and, for interaction times ΩAT ≈ 1 and
spontaneous emission,

mmax
1 ≈ 2χres

π(ΩAT )2
, (49)

cf. App. G 2 for a derivation of mmax
1 for both vacuum

excitation and spontaneous emission. In particular, due
to the impact of the cavity geometry the maximum tran-
sition probability lies with a subfield higher in energy
than predicted from the resonance condition; in our ex-
amples of Fig. 4 (c)-(f) this amounts to about two times
the resonant mode number.
On top of that, the number of significant subfields for a
given error δN grows linearly with R/σ until the res-
onance condition is reached. After that, the number
of subfields needed stays approximately constant, being
proportional to mres

1 , as was already found for Fig. 4(a)-
(b). Moreover, the number of subfields needed for a given
error δN and fixed R/σ grows linearly with the resonance
frequency. This can be seen, for instance, when com-
paring δN between Fig. 4 (d) and (f). Thus in order
to obtain the same accuracy for the number-of-subfield
approximation, for the optical resonator (R ≫ σ) a sig-
nificantly higher number of subfields is required than for
the waveguide (R ⪆ σ).

Imprint of the Dynamics

Next, we investigate the influence of the dynamical pro-
cess when the interaction time is varied. We consider
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(e)

(f)

(b)

(c)

(d)

(a)

Figure 4. Normalized subfield probabilities relative to the maximum transition probability |c(m1,0)|
2/|c(mmax

1 ,0)|2 plotted as
a function of subfield label m1 and L/R in (a)-(b) or R/σ in (c)-(f) for different resonance conditions with ΩAT = 1 for
spontaneous emission of the 2-level system in a cylindrical cavity, cf. Eq. (47). The resonant subfield mres

1 is depicted as a red
dotted line, the subfield with maximum transition probability mmax

1 as a green dashed line. Parameters in (a)-(b): R/σ = 103;
(c)-(f): L/R = 103. We further exemplarily show δN (cf. Eq. (48)) via the vertical bar indicating the set of subfields N needed
for a relative error of about 10 %. Note, the subscript (−) has been dropped here for convenience.

two regimes of the cylindrical cavity; first, a waveguide
(R = 20σ, R≪ L) [92–96] in Fig. 5, and secondly an op-
tical resonator (R = 104σ, R < L) [97–99] in Fig. 6. Even
though the parameter R/σ determines an upper bound of
how many subfields generally might have to be included,
as discussed in the previous section, the actual dynamical
process can indeed result in a much improved accuracy
for a lower number of subfields. When considering the
case of a waveguide and studying the off-resonant cou-
pling between atom and subfields with ΩA ≪ minj ωj ,
cf. Fig. 5 (a) and (b), the processes of spontaneous emis-
sion and vacuum excitation are identical. For Gaussian
switching, it is indeed possible to just choose one sub-
field when considering interaction times that are suffi-
ciently long. For shorter times, nonetheless, it is possible
to chose just a few – where of course more need to be

taken into account for shorter times. For sudden switch-
ing, this is never the case and one always is required to
choose several subfields for a low enough error.

In the case of resonant atom-field coupling, cf. Fig. 5
(c)-(f) (with ΩA = ω(5,0),2), we see that again for sponta-
neous emission with Gaussian switching one subfield may
suffice in the long interaction time regime. Now, however,
for vacuum excitation in Fig. 5 (c)-(d) the error does not
converge to zero with the one resonant subfield and may
not even diminish when considering the near-resonant
subfields (there emerges a unique interaction time where
the error may assume a minimum). This can be under-
stood from the exponential factor in Eq. (47). Therefore,
the subfield truncation will generally be better for spon-
taneous emission than for excitation processes. For small
interaction times the impact of the resonant term is com-
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Figure 5. Relative difference, Eq. (48), between full and subfield-truncated (indexed by the set N) transition probabilities as
a function of interaction time ΩAT for a two-level atom in a cylindrical cavity with R/σ = 20, L/R = 105, corresponding
to a typical waveguide. The error for spontaneous emission is given by δN,(−) and for vacuum excitation by δN,(+). The
left column shows Gaussian switching, the right top-hat switching. In (a-b): Atom is strongly off-resonant with all subfields
(ΩA = 6 · 1012s−1 ≪ minj ωj); spontaneous emission and vacuum excitation coincide. In (c-f): Atom is resonant with the 5-th
subfield (ΩA = ω(5,0),2). The (most-)resonant subfields are indicated. An arrow shows the direction of increasing number of
subfields from the resonant one.

paratively small leading to an increase of the number of
subfields needed. As before, with sudden switching it is
not possible to just choose the one resonant subfield to
arrive at a reasonable approximation.

Studying now the optical resonator (σ ≪ R < L), we see
first of all that, in order to achieve the same error as for
the waveguide, we need significantly more subfields. This

is, as noted in the previous section (cf. Fig. (4)), related
to the ratio of R/σ having increased. One can observe
that the error has a minimum for the case of spontaneous
emission. This is due to the fact that the larger the ratio
R/σ, the more the maximum subfield looses its unique
status as term which predominantly influences the tran-
sition probability. Secondly, even for off-resonant Gaus-
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Figure 6. Relative difference, Eq. (48), between full and subfield-truncated (indexed by the set N) transition probabilities as
a function of interaction time ΩT for a two-level atom in a cylindrical cavity with R/σ = 104, L/R = 102, corresponding to
a typical optical resonator. The error for spontaneous emission is given by δN,(−) and for vacuum excitation by δN,(+). The
left column shows Gaussian switching, the right top-hat switching. In (a-b): Atom is strongly off-resonant with all subfields
(ΩA = 6 · 1012s−1 ≪ minj ωj) ; spontaneous emission and vacuum excitation coincide. In (c-f): Atom is resonant with the
40-th subfield (ΩA = ω(40,0),1000). The (most-)resonant subfields are indicated. An arrow shows the direction of increasing
number of subfields from the resonant one.

sian switching the single-subfield approximation may no
longer be viable for long interaction times. The same
holds for resonant Gaussian interactions; and only a suf-
ficient number of subfields result in a diminishing trun-

cation error. For sudden switching, again, we observe a
generally oscillating error that does not reduce in time,
both resonant and off-resonant.
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V. LASERS

Previously, we developed the formalism for dimensional
reduction for closed cavities where the modes are com-
pactly supported. In the following, we will see that it can
be extended to more general setups such as lasers where
the modes decay sufficiently fast in transverse direction.
In the case of a laser beam mostly one or a few modes are
being significantly excited [100]. This results in the in-
creased coupling between the pumped modes and matter,
which in general highly exceeds the coupling to the un-
pumped vacuum modes discussed in the previous section.
Considering a predominant direction of propagation in z
and a sufficiently quickly decaying amplitude Am,µ(r , k)
in transverse direction, the modes take the form

um,µ(r , k) = Am,µ(r , k) e
ikz, (50)

with a continuous wave vector |k| = k in z direction. The
amplitude satisfies a paraxial wave equation that can be
achieved from the Helmholtz equation (7a) via a slowly
varying envelope approximation [36, 37, 101–103]:

[∆Γ + 2ik∂z]Am,µ(r , k) = 0, (51)

where ∆Γ is, again, the transverse Laplacian but now
on the unbounded domain. Note, in contrast to the
Helmholtz equation, the paraxial wave equation is no
longer self-adjoint.
The paraxial modes (50) emerge from the zeroth order

expansion in (
√
2kw0)

−1 of the paraxial wave equation
and thus solve Maxwell’s equations only up to this or-
der. By taking higher terms into account longitudinal
polarization, e.g. to first order, and cross polarization,
e.g. to second order, are introduced. A slightly different
method to obtain higher orders is implemented by ex-
panding the momentum space wave function in terms of
an small opening angle representing perturbations from
the central momentum along the propagation axis [103],
leading to the same results of cross polarization and lon-
gitudinal fields. Unfortunately, going to second order the
orthogonality of the modes will be lost, causing couplings
between laser modes of non-equal mode numbers [102].
However, for large cross sections compared to the beam’s
wavelength, a zeroth order approximation, which is most
commonly found in the literature [35–37, 101, 104], gives
robust results.
Most lasers generate electromagnetic waves with rect-
angular symmetry [102] which are given by Hermite-
Gaussian wave profiles. Then, the L2 normalized solu-
tions of (51) can be expressed in Cartesian coordinates
as

Am,µ(r, k) =
Hm1

(√
2x

w(z)

)
Hm2

(√
2y

w(z)

)
e
− x2+y2

w2(z) eiθm(r ,k)√
2m1+m2−1m1!m2!πw2(z)

ϵµ,

(52)

with Hmi
being the Hermite polynomial of order mi and

ϵµ being the polarization. The beam contour (see Fig. 7)

w(z) = w0

√
1 +

(
z

zR

)2

(53)

is determined by the beam radius w0 and the Rayleigh
length zR = kw2

0/2. The phase θm(r, k) is given by

θm(r , k) = k
x2 + y2

2R(z)
− (m1 +m2 + 1)ψG(z), (54)

where we define the radius of curvature of the phase front
and the Gouy phase, respectively:

R(z) = z

(
1 +

z2R
z2

)
, ψG(z) = arctan

(
z

zR

)
. (55)

Note that the following considerations are not restricted
to our example but can also be applied to general laser
modes such as Laguerre-Gaussian beams.
From these modes the quantized electric field of the laser
can be constructed, reading

Ê(r, t) = i
∑
m,µ

∫
R
dk

√
ℏω
2ε0

[
âm,µ(k)um,µ(r)e

iωt − h.c.
]

=
∑
m

[
Ê(+)
m (r, t) + Ê(−)

m (r, t)
]
, (56)

where ω = ω(k) = c|k|. Only at higher orders of the
paraxial approximation the frequencies’ degeneracy in
the transversal mode numbers m is lifted [103]. Here,
the frequencies observe an infinite level of degeneracy for
each k, which will prevail throughout the dimensional
reduction procedure. Accordingly, the field Hamiltonian
reads

Ĥfield =
∑
m,µ

∫
R
dk ℏωâ†m,µ(k) âm,µ(k). (57)

With the quantized electromagnetic fields and the field
Hamiltonian of the laser at hand, a reduction to 1D fields
and the 1D dynamics can be performed.

Dimensional Reduction of a Hermite-Gaussian Beam

Recall, dimensional reduction requires (if one is inter-
ested in analytic results) the separability of modes, cf.
Eq. (11a) and Eq. (11b). Due to the phase term (54)
and the z-dependence of the beam waist (53), separabil-
ity does not apply to the general form of the laser modes
defined in Eq. (52). However, we may consider the mat-
ter content to be strongly localized around the center of
the beam, i.e. via a long-wavelength approximation:∥∥∥∥ x̂ew0

∥∥∥∥≪ 1 ∧
∥∥∥∥ ŷew0

∥∥∥∥≪ 1 ∧
∥∥∥∥ ẑezR

∥∥∥∥≪ 1. (58)
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with x̂e, ŷe and ẑe being the electronic position operators,

and
∥∥∥Â∥∥∥ = ⟨ψ|Â|ψ⟩ / ⟨ψ|ψ⟩. Additionally, we require

sufficiently low mode numbers,

max
m

(m1 +m2 + 1) ≪
∥∥∥∥ ẑezR

∥∥∥∥−1

, (59)

such that the phase θm(r , k) becomes independent of z.
Note that higher order corrections to the paraxial equa-
tion will have to be taken into account long before this
condition is violated [102, 103]. Under the given assump-
tions, we get laser modes which separate in transversal
scalar modes and a plane wave in the longitudinal direc-
tion, reading

um,µ(r, k) = φm(x, y) eikz ϵµ, (60)

where we defined

φm(x, y) =
Hm1

(√
2x

w0

)
Hm2

(√
2y

w0

)
e
− x2+y2

w2
0√

2m1+m2−1m1!m2!πw2
0

, (61)

which are L2 orthonormalized on R2. The magnetic field
modes vm,µ(r , k) of the laser are obtained fully analo-
gously to Eq. (60) with the same functional form except
for a polarization that is orthogonal to the electric mode
to leading order in the paraxial approximation [102].
We are now in the position to perform the dimensional
reduction, which in contrast to the closed cavity has a
simpler form due to the scalar nature of the longitudinal
and transverse components. Following Eq. (13a), a map
defined by the transversal modes (61) of the laser yields
dimensionally reduced plane wave modes

uµ(z, k) =
∑
m′

⟨φm′(x, y),um,µ(r , k)⟩R2 = eikzϵµ. (62)

Analogously to (26) we map the complete transverse an-
cilla basis onto the 3D laser field

Ê(z, t) =
∑
m

∫
R
dk

(∑
m′

〈
φm′(x, y), Ê(+)

m (r, k, t)
〉
R2

+ h.c.

)
=
∑
m

Êm(z, t), (63)

with the subfields for the electric field of the laser being

Êm(z, t) =i
∑
µ

∫
R
dk

√
ℏω
2ε0

[
âm,µ(k) e

i(kz−ωt) ϵµ− h.c.
]
.

(64)

Decomposing the fields (64) in positive and negative fre-
quency parts, we can apply the same dimensional reduc-
tion method as already shown in Sec. (III B). Therefore,
the dipolar interaction Eq. (39) decomposes into a sum
of subfield Hamiltonians with the dimensionally reduced
smearing functions (cf. Eq. (38))

Fm,ss′(ze) =
〈
φ†
m(xe, ye),Fss′(re)

〉
R2 . (65)

Figure 7. Intersection in the (x, y)-plane of a Gaussian beam
with focus at z = 0 interacting with matter modeled by a
Gaussian two-level system with ground state ψ000(re) and
excited state ψ001(re) in center of mass coordinates re and a
energy gap of ℏΩA. The beam is symmetric in the z = 0-plane
in which the beam radius w0 is defined.

Example: Atom Interacting with a Laser

We consider the electric dipole interaction of Eq. (39) (in
the limit of V → ∞) and choose again a Gaussian two-
level atom. The calculation of the transition probabilities
follows very closely the derivation from Sec. III C. Due to
selection rules we assume that, for a linear polarization
in x-direction, the laser, with coherent state amplitude
α(k), is pumping into the TE10 mode which we denote as
ν = (1, 0, ϵx), assuming a sufficiently small bandwidth.
Thus, for the atom being centered in the laser beam, the
transition probabilities read to first order (see App. G 3
for details)

PN ,ϵx,(±) ≈ |cν,(±)|2 +
N∑

m ̸=(1,0)

|cm,ϵx,(±)|2| (66)

= g
(
|α(k)|2

∣∣f(−)(T ) + f̄(+)(T )
∣∣2 + γN

∣∣f(±)(T )
∣∣2) ,

where |cν,(±)|2 is the transition amplitude due to the laser

mode and |cm,ϵx,(±)|2 for the vacuum modes up to the
mode numbers N = (N1, N2). The interaction-time de-
pendent function is

f(±)(T ) =

{
T sinc(∆(±)T ), χ(t) = χTS(t),
√
2πT e−(∆(±)T)

2

, χ(t) = χGS(t),
(67)

with ∆(±) = (ω ± ΩA)/2 being the detuning, which is
independent of the mode numbers in the zeroth order
paraxial wave approximation. Moreover, we defined the
dimensionless coupling constant g and the mode-number
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dependent function γm:

g =
3c2k3σ6

ℏε0π4ω4
0

e−
(kσ)2

2 , (68)

γN =
1

3

(
4Γ
(
5
2 +N1

)
Γ
(
3
2 +N2

)
3πΓ (1 +N1) Γ (1 +N2)

− 3

4
θ1(N1 − 1)

)
,

where we employed the (non-standard) Heaviside func-
tion with θ1(0) = 1.
The first term in Eq. (66) originates from the laser, and
the second one comprises the contributions from the vac-
uum modes. To quantify their respective contribution,
we define a measure ζN ,(±) which can be upper bounded:

ζN ,(±) =

N∑
m ̸=(1,0)

|cm,ϵx,(±)|2

|cν,(±)|2
≤ γN

4|α(k)|2
. (69)

I.e. a single-subfield approximation is indeed a very good
approximation for strong lasers (cf. App. G 3). This is for
example achieved in matter-wave interferometry where
high-powered laser pulses (e.g. 6W-8W [105] or also up
to 43W [106]) in the Terahertz regime are applied pro-
ducing average photon numbers of order 1020, exceeding
significantly the coupling of the vacuum modes.

VI. CONCLUSION AND OUTLOOK

In this manuscript we develop a systematic procedure
to dimensionally reduce 3D quantum optical models;
thereby yielding a precise measure of how the reduction
can be applied as an approximation. To that end, we
decompose the electromagnetic modes into appropriate
ancilla bases. The mapping of the modes onto an an-
cilla basis results in the elimination of the corresponding
spatial dimension(s). The reduced modes obey indepen-
dent, lower dimensional Helmholtz equations which ex-
tend to the common interactions with matter. We show
how lower dimensional models emerge which comprise ef-
fective subfields yet constitute an exact reformulation of
the 3D problem. An overview of the procedure can be
found in Fig. 2.
By construction, this is generally not identical to the of-
ten ad hoc applied approximation in the literature. How-
ever, by defining a measure with respect to some observ-
able, for instance the relative difference to the statistics
of an experiment, we are able to provide a handle on
how good of an approximation the dimensional reduc-
tion should be; i.e. as a kind of number-of-mode approx-
imation which is ubiquitously done in quantum optics.
We show at the example of a two-level atom inside a
cylindrical cavity that the number of subfields needed
strongly depends on the parameters of the joint system
and its dynamics. In general however a single subfield
is not sufficient when considering the environment of the
field’s vacuum fluctuations. In particular, we find that

the intuitive idea of a very long and narrow cavity as
a 1D model is not easily justifiable. We further apply
the dimensional reduction to laser beams and see that a
single-subfield approximation can be valid given the laser
intensity is strong enough. This provides a justification
for the standard approach.
Even though the framework established here applies to a
wide range of setups commonly found in the literature,
we only study a handful in detail. For instance, we only
consider stationary atoms, yet motion (as was done for
a toy model in [5]) or more generally the quantization of
the center of mass of the atom may also be considered
(the dimensional reduction of the electric dipole interac-
tion for a fully quantized atom is derived in App. F 2).
This extension could then be of interest to dynamical
applications such as cavity-based atom interferometry in
which high laser energies are focused into a very narrow
area [71]. Due to technical limitations in the stability
of the modes one can excite cavity modes transverse to
the laser propagation, leading to an adversarial impact
on the experiments [40, 41]. Consequently, one has to
consider degrees of freedom that are not taken into ac-
count in the 1D case but could be better understood by
the procedure derived here. For that, one would have
to combine the cavity and laser aspects discussed in this
manuscript, i.e. by considering one or more lasers inside
a cavity [31].
On the other hand, we see that the subfields still contain
information about the full spectrum. Thus in metrologi-
cal applications one could imagine that by only measur-
ing atoms one can reconstruct the cavity geometry or im-
perfections thereof [107]. Furthermore, the free choice of
the transverse modes also suggests that the dimensional
reduction can be applied to more general mode bases
such as wavelets [108–110]. Additional setups might be
of interest such as transmission lines interacting with su-
perconducting qubits [6, 65], or optomechanical interac-
tions [70, 111, 112] where lower dimensional models are
commonly found. Lastly, treating leaky cavities within
this formalism was beyond the scope of this manuscript
and will undoubtedly be studied in the future.
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Appendix A: Constructing the Electromagnetic Modes from the Scalar Helmholtz Equation

Starting from the eigenspectrum of the scalar Laplacian and the requirement of an orthonormal mode basis we show
in a straightforward and simple fashion how expressions for the components of the mode decompositions of Eqs. (11a)
and (11b) can be obtained in terms of the scalar Laplacian’s eigenfunctions for arbitrary geometries. In particular,
we will verify Eq. (12) for the longitudinal (recall, with respect to the cavity’s symmetry axis) components of this
decomposition, and find general expressions for the transversal degrees of freedom and polarization vectors. To this
end, let us consider the scalar Helmholtz equation

(∆ + k2j,µ)ψj,µ(r) = 0, (A.1)

which is solved by the eigenfunctions ψj,µ of the Laplacian with discrete eigenvalues −k2j,µ (cf. Eq. (10)) corresponding
to the electromagnetic theory. The index µ, which corresponds to the polarization for the electromagnetic theory,
indicates here the solutions to the scalar Helmholtz equation under (so far not specified) different boundary conditions.
From the definition of the cavity volume as a Cartesian product of transversal and longitudinal space, i.e. V = Γ×S,
one can use the separation ansatz [113]

ψj,µ(r) = ψm,µ(y)ψl,µ(z). (A.2)

Then one has two independent scalar Helmholtz equations; one being the transverse Helmholtz equation

(∆Γ + k2m,µ)ψm,µ(y) = 0, (A.3a)

where ∆Γ is the Laplacian with respect to the transverse coordinates y only, and the other being the longitudinal
Helmholtz equation,

(∂2z + k2l )ψl,µ(z) = 0, (A.3b)

where we made use of the wave vector separation (10). Here we set, without loss of generality, the constant emerging
from the separation of variables to zero. Since this constant just adds an energy offset to the spectrum, the resulting
energy spectrum will not be altered. In order to arrive at the correct boundary conditions for the electromagnetic
modes, cf. Eq. (7), we preordain ψl,µ1

(z) to obey Dirichlet boundary conditions and ψl,µ2
(z) to obey Neumann

boundary conditions; in App. C 2 we will derive the boundary conditions of the scalar modes which will enable us to
explicitly determine the scalar modes for a given geometry. Granted this, we can write – without specifying the cross
section – the two longitudinal solutions as

ψl,µ1
(z) =

√
2

L
sin(klz), ψl,µ2

(z) =

√
2

L
cos(klz), (A.4)

where kl = πl/L is the longitudinal wave vector component. From the L2 normalization for the complete solution
Eq. (A.2) it follows for the longitudinal part∫

S

dz ψ†
l,µ(z)ψl′,µ′(z) =

{
δl,l′ , if µ = µ′,

δµ,µ′ , if l = l′,
(A.5)

and additionally for the transversal part∫
Γ

d2y ψ†
m,µ(y)ψm′,µ′(y) =

{
δm,m′ , if µ = µ′,

δµ,µ′ , if m =m′,
(A.6)

Once the scalar modes are garnered – requiring to know the transversal geometry –, one can construct, see e.g. [83, 114],
or [115] for a detailed derivation, the electric and magnetic modes (in the absence of charges and currents) via

uj,µ1
(r) = αj,µ1

∇× eψj,µ1
(r), (A.7a)

vj,µ1
(r) =

βj,µ1

|kj,µ1 |
∇×∇× eψj,µ1

(r), (A.7b)

for polarization µ1, and analogously for the µ2 polarization

uj,µ2
(r) =

αj,µ2

|kj,µ2
|
∇×∇× eψj,µ2

(r), (A.7c)

vj,µ2
(r) = βj,µ2

∇× eψj,µ2
(r), (A.7d)
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satisfying the boundary conditions of Eq. (7). Here, e is an a priori arbitrary unit vector (or pilot vector) such that
different choices yield different basis sets for uj,µ(r) and vj,µ(r). In general, however, the symmetry of the problem
gives a preferred choice for e. For our purpose, and assuming cavities with axial symmetry, selecting the unit vector
e(z) in longitudinal direction is most natural. Note that the normalization constants αj,µ, βj,µ depend on the form
of the unit vector e. For our choice, we require

αj,µ = βj,µ = |km,µ|−1 (A.8)

such that the electromagnetic modes are normalized on L2(V ).
We are now in the position to find the explicit expressions for the elements of the electromagnetic mode decompositions
of Eqs. (11a) and (11b) in terms of the scalar solutions. We define the components of the gradient in the transverse
directions, reading

∂(y1) = e
(y1) ·∇, and ∂(y2) = e

(y2) ·∇. (A.9)

We want to emphasize that for general geometries the derivatives ∂(yi) include Lamé coefficients [116] due to the
possible curvilinear nature of the coordinates. Employing then the Laplacian identity

∇×∇×A = ∇(∇ ·A)−∆A, (A.10)

for an arbitrary vector A, we can write Eqs. (A.7) as

uj,µ1(r) = |km,µ1 |−1

 ∂(y2)

−∂(y1)

0

ψj,µ1(r), uj,µ2(r) = |km,µ2 |−1|kj,µ2 |−1

∂(y1)∂z
∂(y2)∂z
k2m,µ2

ψj,µ2
(r), (A.11a)

vj,µ2(r) = |km,µ2 |−1

 ∂(y2)

−∂(y1)

0

ψj,µ2(r), vj,µ1(r) = |km,µ1 |−1|kj,µ1 |−1

∂(y1)∂z
∂(y2)∂z
k2m,µ1

ψj,µ1
(r), (A.11b)

where we used the transversal Helmholtz equation (A.3a). Inserting the scalar modes defined in Eq. (A.3b), with

klψj,µ2(r) = ∂zψj,µ1(r),

−klψj,µ1(r) = ∂zψj,µ2(r),
(A.12)

Eqs. (A.11a) and (A.11b) can be cast as a product of individual elements via Eq. (11a) for the electric field modes and
via Eq. (11b) for the magnetic field modes, respectively. Therefore, we define the matrices of the transverse degrees
of freedom as a superposition of the two polarization contributions (so that they may serve as ancilla basis later on
for the dimensional reduction)

Sm(y) = Sm,µ1(y) + Sm,µ2(y) (A.13a)

= (
√
2|km,µ1

|)−1

 ∂(y2) −∂(y2) 0
−∂(y1) ∂(y1) 0

0 0 0

ψm,µ1
(y) + (

√
2|km,µ2

|)−1

 ∂(y1) ∂(y1) 0
∂(y2) ∂(y2) 0

0 0
√
2|km,µ2

|

ψm,µ2
(y),

Tm(y) = Tm,µ1
(y) + Tm,µ2

(y) (A.13b)

= (
√
2|km,µ1

|)−1

 ∂(y1) ∂(y1) 0
∂(y2) ∂(y2) 0

0 0
√
2|km,µ1

|

ψm,µ1
(y) + (

√
2|km,µ2

|)−1

 ∂(y2) −∂(y2) 0
−∂(y1) ∂(y1) 0

0 0 0

ψm,µ2
(y),

for the electric and magnetic field, respectively. Further, the polarization vectors read

ϵj,µ1
=

 1/
√
2

− 1/
√
2

0

 , ϵj,µ2
= |kj,µ2

|−1

−kl/
√
2

−kl/
√
2

|km,µ2
|

 , κj,µ1
= |kj,µ1

|−1

 kl/
√
2

kl/
√
2

|km,µ1
|

 , κj,µ2
=

 1/
√
2

− 1/
√
2

0

 ,

(A.14)

and the matrices for the longitudinal degrees of freedom become (utilizing Eq. (A.4))

Ul(z) = diag (ψl,µ1
(z), ψl,µ1

(z), ψl,µ2
(z)) , Vl(z) = diag (ψl,µ2

(z), ψl,µ2
(z), ψl,µ1

(z)) . (A.15)
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Since the electromagnetic modes obey Eq. (7d), the components of the magnetic field decomposition, Eq. (11b), can
be realized via simple replacement in the electric mode components. In particular, the transverse mode matrices Tm

can be found by interchanging the polarization index, i.e. Tm(y) = Sm(y)
∣∣∣
µ1↔µ2

. The polarization vectors ϵj,µ,

however, depend not only on the transverse mode numbers m, but also on the longitudinal mode number l. Hence,
the component-wise orthogonality (19a) of the longitudinal elements Ul(z) and Vl(z) must also be taken into account.
For this reason one has to not only switch the polarization index of the transverse wave vectors km,µ to arrive at the
corresponding polarizations κj,µ but also the sign of the longitudinal wave vector kl. Then one obtains κj,µ1

from
ϵj,µ2

by the substitution {km,µ2
, kl} → {km,µ1

,−kl} and vice versa. The explicit electromagnetic modes can then
be easily given in terms of the scalar Helmholtz modes by particularizing to a specific cavity geometry.

Appendix B: Mapping of the Electromagnetic Modes and Orthonormality

Here, we will verify the orthonormality of Eqs. (14) of the transversal matrices Sm(y) that serve as ancilla modes
(the results follow analogously for Tm(y)) with which we arrive at the dimensionally reduced 1D modes of Eqs. (13).
We further show the orthonormality conditions for these reduced modes. The same will then be executed for the
reduction to the 2D modes.

1. Reduction to 1D Field Modes

First, recall the decomposition of Sm(y) into the two polarization contributions in Eq. (A.13). With help of the scalar
mode approach discussed in App. A and the use of the boundary conditions of the transverse scalar modes as shown
subsequently in App. C 2 we obtain by means of Green’s first identity∫

Γ

d2y ∂(y2)ψ̄m,µ(y)∂(y1)ψm′,µ′(y) =

∮
∂Γ

dy n
(y2)
Γ ψ̄m,µ(y)∂(y1)ψm′,µ′(y)−

∫
Γ

d2y ψ̄m,µ(y)∂(y1)∂(y2)ψm′,µ′(y)

=

∮
∂Γ

dy n
(y2)
Γ ψ̄m,µ(y)∂(y1)ψm′,µ′(y)−

∮
∂Γ

dy n
(y1)
Γ ψ̄m,µ(y)∂(y2)ψm′,µ′(y)

+

∫
Γ

d2y ∂(y1)ψ̄m,µ(y)∂(y2)ψm′,µ′(y)

=

∫
Γ

d2y ∂(y1)ψ̄m,µ(y)∂(y2)ψm′,µ′(y),

(B.1.1)

where we used for the infinitesimal surface vector dy = nΓdy, with the surface vector of the cavity cross section

nΓ = (n
(y1)
Γ , n

(y2)
Γ , 0). For identical polarizations it follows analogously by applying integration by parts and the

orthogonality and boundary conditions

∑
m′

∫
Γ

d2y
(
∂(y1)ψ̄m′,µ(y)∂(y1)ψm,µ(y) + ∂(y1)ψ̄m′,µ(y)∂(y1)ψm,µ(y)

)
− k2m,µ = 0. (B.1.2)

Then, we can write

∫
Γ

d2yS†
m,µ1

(y)Sm′,µ1
(y) =

δm,m′

2

 1 −1 0
−1 1 0
0 0 0

 ,

∫
Γ

d2yS†
m,µ2

(y)Sm′,µ2
(y) =

δm,m′

2

1 1 0
1 1 0
0 0 2

 . (B.1.3a)

For distinct polarizations with µ ̸= µ′, we find by means of Eq. (B.1.1):∫
Γ

d2yS†
m,µ(y)Sm′,µ′(y) = 0. (B.1.3b)
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These results imply the orthonormality relations (14). Consequently, the dimensionally reduced 1D modes defined in
Eq. (13) are achieved in a straight-forward manner:

uj,µ1
(z) =

√
L
−1

 sin(klz)
− sin(klz)

0

 , uj,µ2
(z) = (

√
L|kj,µ2

|)−1

 −kl sin(klz)
−kl sin(klz)√

2|km,µ2
| cos(klz)

 , (B.1.4a)

vj,µ2
(z) =

√
L
−1

 cos(klz)
− cos(klz)

0

 , vj,µ1
(z) = (

√
L|kj,µ1

|)−1

 kl cos(klz)
kl cos(klz)√

2|km,µ1
| sin(klz)

 . (B.1.4b)

Importantly, for this choice of the polarization basis or equivalently of the pilot vector e, one of the sets of 1D electric
and magnetic modes still depends on the transverse mode numbersm and polarization µ after dimensional reduction.
Form =m′, i.e. for modes corresponding to the same subspace L2

m(S), and via the normalization of Ul(z) and Vl(z)
in Eqs. (19) the orthonormality of uj,µ(z) and vj,µ(z) follows directly (cf. Eq. (17a)). For the orthogonality between
the electric and magnetic modes we have∫

S

dz u†
j,µ(z) · vj,µ(z) =

(
ϵ†j.µ· κj,µ

)∫
S

dz sin(klz) cos(klz) = 0, (B.1.5)

whereby in the last step we used that the integral vanishes on S, proving Eq. (18).

2. Reduction to 2D Field Modes

The same can be done now for the dimensional reduction to 2D. Here the normalization of the longitudinal matrices
(that now serve as ancilla modes) Ul(z) and Vl(z) in Eqs. (19) follows directly from their definition in Eqs. (12).
Then, the normalized modes solving the transverse Helmholtz Eq. (23) on Γ can be constructed via Eq. (20a):

sj,µ1
(y) = |km,µ1

|−1

 ∂(y2)

− ∂(y1)

0

ψm,µ1
(y), sj,µ2

(y) = |km,µ2
|−1|kj,µ2

|−1

−kl∂(y1)

−kl∂(y2)

k2m,µ2

ψm,µ2
(y). (B.2.6a)

Likewise, we have for the 2D solutions of the magnetic transverse Helmholtz equation, cf. Eq. (24), in terms of the
transverse scalar modes

tj,µ1
(y) = |km,µ1

|−1|kj,µ1
|−1

kl∂(y1)

kl∂(y2)

k2m,µ1

ψm,µ1
(y), tj,µ2

(y) = |km,µ2
|−1

 ∂(y2)

− ∂(y1)

0

ψm,µ2
(y). (B.2.6b)

The orthonormality of the electric field modes sj,µ(y) (cf. Eq. (21)) and thus also of the magnetic field modes tj,µ(y)
follows directly from Eq. (14) and the orthogonality of the polarization vectors, i.e. for l = l′ which corresponds to the
smae transversal mode space L2

l (Γ). Further, the orthogonality of the 2D electric and magnetic modes, cf. Eq. (22),
follows directly from the identity (B.1.1):∫

Γ

d2y s†j,µ · tj,µ = ± kl
|km,µ|2|kj,µ|

∫
Γ

d2y
[
∂(y2)ψ̄m,µ(y)∂(y1)ψm,µ(y)− ∂(y1)ψ̄m,µ(y)∂(y2)ψm,µ(y)

]
= 0. (B.2.7)

Appendix C: Boundary Conditions of the Lower Dimensional Helmholtz Equations

In the following we will derive the boundary conditions for the lower dimensional electromagnetic modes, i.e. the
boundary conditions stated in Eqs. (15), (16), (23) and (24), as well as for the transverse scalar modes ψm,µ, which
will allow us to easily find explicit expressions for the electromagnetic modes for a given geometry. Therefore, we
divide the boundary conditions of the cavity into longitudinal boundary conditions on ∂S with corresponding normal
vector ±e(z), and transverse boundary conditions on ∂Γ with normal vector n(Γ) (cf. Fig. 1). If both boundary
conditions (transversal and longitudinal boundary conditions) are satisfied, the boundary conditions at the cavity
edges, i.e. the case y ∈ ∂Γ ∧ z ∈ ∂S, are trivially satisfied as well.
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1. Boundary Conditions for the Lower Dimensional EM Modes

Electric Boundary Conditions

Starting with the lower dimensional electric modes, we plug the mode decomposition (11a) into the boundary condi-
tion (7b). Then one obtains on the transversal boundary

nΓ × uj,µ(r)
∣∣∣
y∈∂Γ

= nΓ × Ul(z)sj,µ(y)
∣∣∣
y∈∂Γ

= 0. (C.1.1)

Recall that in App. B 2 we found expressions for sj,µ(y) and tj,µ(y) in terms of the scalar modes (cf. Eq. (B.2.6a)
and Eq. (B.2.6b)). Via a decomposition in the basis spanning the cavity volume (9), one can write Eq. (C.1.1) in
terms of a superposition of the two different longitudinal scalar solutions ψl,µ1(z) and ψl,µ2(z) (see Eq. (A.15)):(

n
(y2)
Γ s

(z)
j,µ(y), −n

(y1)
Γ s

(z)
j,µ(y), 0

)T ∣∣∣
y∈∂Γ

ψl,µ1
(z) +

(
0, 0, n

(y1)
Γ s

(y2)
j,µ (y)− n

(y2)
Γ s

(y1)
j,µ (y)

)T ∣∣∣
y∈∂Γ

ψl,µ2
(z) = 0. (C.1.2)

Each of these terms decouples again into longitudinal and transversal degrees of freedom. Since the two vectors
depending on the transversal degrees of freedom are independent of each other, one attains the first boundary condition
of Eq. (23):(

n
(y2)
Γ s

(z)
j,µ(y), −n

(y1)
Γ s

(z)
j,µ(y), n

(y1)
Γ s

(y2)
j,µ (y)− n

(y2)
Γ s

(y1)
j,µ (y)

)T ∣∣∣
y∈∂Γ

= nΓ × sj,µ(y)
∣∣∣
y∈∂Γ

= 0. (C.1.3)

In order to arrive at the longitudinal boundary conditions in Eq. (15), we evaluate boundary condition (7b) on S and

make use of the matrix components U (y1,y1)
l (z) = U (y2,y2)

l (z) = ψl,µ1(z) such that

e(z) × Ul(z)sj,µ(y)
∣∣∣
z∈∂S

=
(
s
(z)
j,µ(y), s

(z)
j,µ(y), 0

)T
ψl,µ1

(z)
∣∣∣
z∈∂S

= 0. (C.1.4)

It follows directly that this boundary condition acts solely on the longitudinal scalar mode ψl,µ1
(z). Thus, multiplying

the diagonal matrix Ul(z) by the appropriate polarization vector (i.e. either ϵj,µ1
for µ1-polarization or ϵj,µ2

for µ2-
polarization) yields the longitudinal boundary condition for the 1D modes(

u
(y2)
j,µ (z), −u(y1)

j,µ (z), 0
)T ∣∣∣

z∈∂S
= e(z) × uj,µ(z)

∣∣∣
z∈∂S

= 0. (C.1.5)

For the set of boundary conditions originating from Eq. (7c), we decompose the nabla operator in the basis spanned
by the cavity (9) into its longitudinal and cross sectional part via

∇ = ∇Γ + e(z)∂z. (C.1.6)

Thus, we obtain on the transversal boundary

∇ΓUl(z)sj,µ(y)
∣∣∣
y∈∂Γ

= −e(z)∂zUl(z)sj,µ(y)
∣∣∣
y∈∂Γ

. (C.1.7)

From boundary condition (C.1.3) it follows that for y ∈ ∂Γ : sj,µ · e(z) = 0. Thus, the right-hand side of Eq. (C.1.7)

vanishes. Using the identity U (y1,y1)
l (z) = U (y2,y2)

l (z) (cf. Eq. (12)), one finds the second boundary condition of
Eq. (23), i.e.

∂(y1)s
(y1)
j,µ (y)

∣∣∣
y∈∂Γ

+ ∂(y2)s
(y2)
j,µ (y)

∣∣∣
y∈∂Γ

= ∇Γ · sj,µ(y)
∣∣∣
y∈∂Γ

= 0. (C.1.8)

To derive the longitudinal boundary condition from Eq. (7c), one uses U (y1,y1)
l (z)

∣∣∣
z∈∂S

= U (y2,y2)
l (z)

∣∣∣
z∈∂S

= 0 from

Eq. (C.1.5) such that

∂zu
(z)
j,µ(z)

∣∣∣
z∈∂S

= e(z)∂z · uj,µ(z)
∣∣∣
z∈∂S

= 0, (C.1.9)

which corresponds to the first boundary condition of (15).
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Magnetic Boundary Conditions

Analogously to the derivation of Eq. (C.1.8), one can show via the matrix components V(y1,y1)
l (z) = V(y2,y2)

l (z) of
Vl(z) that the boundary condition (7e) splits into

n
(y1)
Γ t

(y1)
j,µ (y)

∣∣∣
y∈∂Γ

+ n
(y2)
Γ t

(y2)
j,µ (y)

∣∣∣
y∈∂Γ

= nΓ · tj,µ(y)
∣∣∣
y∈∂Γ

= 0, (C.1.10)

v
(z)
j,µ(z)

∣∣∣
z∈∂S

= e(z) · vj,µ(z)
∣∣∣
z∈∂S

= 0, (C.1.11)

corresponding to the first boundary condition in Eq. (24) and the second boundary condition in Eq. (16), respectively.
The second boundary condition of the 3D magnetic modes (7f) reads

n× (∇× Vl(z)tj,µ(y))
∣∣∣
r∈∂V

= 0. (C.1.12)

Focusing first on the transverse boundary gives by means of the vector identity [83]

A× (∇×B) = ∇B(A ·B)− (A ·∇)B, (C.1.13)

with ∇B being the nabla operator acting only the vector B:

∇
(
n†

ΓVl(z)tj,µ(y)
) ∣∣∣

y∈∂Γ
− (nΓ ·∇)Vl(z)tj,µ(y)

∣∣∣
y∈∂Γ

= 0. (C.1.14)

The gradient term on the left-hand side vanishes due to boundary condition (C.1.10). Equivalently to the calculation
performed in Eq. (C.1.2), we find an expression purely in terms of the transversal degrees of freedom:(
n
(y2)
Γ

[
∂(y1)t

(y2)
j,µ (y)− ∂(y2)t

(y1)
j,µ (y)

]
, n

(y1)
Γ

[
∂(y1)t

(y2)
j,µ (y)− ∂(y2)t

(y1)
j,µ (y)

]
,
[
n
(y1)
Γ ∂(y1) + n

(y2)
Γ ∂(y2)

]
t
(z)
j,µ(y)

) ∣∣∣
y∈∂Γ

= 0.

(C.1.15)

Writing this equation in a more compact form, one obtains with nΓ ·∇ = nΓ ·∇Γ the second boundary condition of
Eq. (24), reading

nΓ × [∇Γ × tj,µ(y)]
∣∣∣
y∈∂Γ

= 0. (C.1.16)

Finally, for the longitudinal boundary we have

e(z) × (∇× Vl(z)tj,µ(y))
∣∣∣
z∈∂S

= 0. (C.1.17)

Applying identity (C.1.13) yields

∇
(
e(z)†Vl(z)tj,µ(y)

) ∣∣∣
z∈∂S

− (e(z) ·∇)Vl(z)tj,µ(y)
∣∣∣
z∈∂S

= 0. (C.1.18)

By use of boundary condition (C.1.11) the gradient term vanishes. Thus, when decomposing the nabla operator into
transverse and longitudinal components again (cf. Eq. (C.1.6)) and applying boundary condition (C.1.11) one arrives
at

−
(
∂zv

(y1)
j,µ (z), ∂zv

(y2)
j,µ (z), 0

) ∣∣∣
z∈∂S

= e(z) ×
[
e(z)∂z × vj,µ(z)

] ∣∣∣
z∈S

= 0. (C.1.19)

Equivalently, the first boundary condition presented in (16) is realized, reading

e(z)∂z × vj,µ(z)
∣∣∣
z∈S

= 0. (C.1.20)

Thus, we found that both the boundary conditions for the electric modes and the boundary conditions for the magnetic
modes separate on the underlying geometry into two groups of boundary conditions. One group entails the transverse
degrees of freedom and one group entails the longitudinal degrees of freedom, corresponding each to lower dimensional
dynamics after dimensional reduction.
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2. Boundary Conditions for the Scalar Modes

Here we will re-express the boundary conditions we found in the previous section for the lower dimensional electro-
magnetic modes in terms of the scalar solutions; enabling us to find the explicit electromagnetic modes for a given
geometry in terms of the scalar modes. For a cavity of length L, i.e. ∂S ∈ {0, L}, we will verify that the boundary
conditions are in accordance with our initial choice (A.4). Indeed, by making use of boundary condition (C.1.5) (cf.
Eq. (A.15)) or analogously boundary condition (C.1.11) we find

ψl,µ1(z)
∣∣∣
z∈∂S

= 0. (C.2.1)

From boundary condition (C.1.9) and boundary condition (C.1.20) we get similarly

∂zψl,µ2(z)
∣∣∣
z∈∂S

= 0. (C.2.2)

For the transverse scalar modes, we have for ψm,µ1
(y) a Neumann boundary condition from boundary condi-

tions (C.1.3):

(n
(y1)
Γ ∂(y2) + n

(y2)
Γ ∂(y1))ψm,µ1(y)

∣∣∣
y∈∂Γ

= 0. (C.2.3)

This condition can also be found from boundary condition (C.1.10) and (C.1.16), whereas boundary condition (C.1.8)
yields no additional information for the boundary condition of the scalar modes ψm,µ1

(y) whatsoever. For the scalar
modes ψm,µ2

(y), the boundary conditions (C.1.3), (C.1.8) and (C.1.10) yield boundary conditions of Dirichlet kind

ψm,µ2(y)
∣∣∣
y∈∂Γ

= 0. (C.2.4)

Thus we have shown that if the longitudinal scalar solution ψl,µ(z) is chosen to satisfy Dirichlet boundary conditions,
the corresponding transversal solution ψm,µ(y) is constrained by Neumann boundary conditions and vice versa.

Appendix D: Self-Adjointness of the Dimensionally Reduced Helmholtz Equations

In the following we will prove self-adjointness of the lower dimensional Helmholtz equations (cf. Eqs. (15), (16) for
the 1D problem and and Eqs. (23), (24) for the 2D problem) after dimensional reduction, and thus the validity of the
decomposition in an orthonormal eigenmode basis spanning the Hilbert space of the lower dimensional problems. For
a detailed discussion on self-adjoint problems in cavities and also for a proof of the self-adjointness of the initial 3D
problem see Ref. [83].

1. 1D Helmholtz Equations

We first show self-adjointness of the 1D electric and magnetic Helmholtz equations (15) and (16) on their respective
longitudinal mode space L2

m(S) for arbitrary transverse mode numbersm. Performing two times integration by parts
on the respective inner product gives∫

S

dz u†
ml,µ(z) · ∂

2
zuml′,µ(z)

= u†
ml,µ(z) · ∂zuml′,µ(z)

∣∣∣
z∈∂S

−
[
∂zu

†
ml,µ(z)

]
· uml′,µ(z)

∣∣∣
z∈∂S

+

∫
S

dz
[
∂2zu

†
ml,µ(z)

]
· uml′,µ(z).

(D.1.1)

The boundary terms can be written component-wise and vanish as

u†
ml,µ(z) · ∂zuml′,µ(z)

∣∣∣
z∈∂S

−
[
∂zu

†
ml,µ(z)

]
· uml′,µ(z)

∣∣∣
z∈∂S

=
∑
i

[
ū
(i)
ml,µ(z)∂zu

(i)
ml′,µ(z)− u

(i)
ml,µ(z)∂zū

(i)
ml′,µ(z)

]∣∣∣
z∈∂S

= 0.

(D.1.2)

Due to boundary condition (C.1.5) we have that the components u
(y1)
j,µ (z) and u

(y2)
j,µ (z) vanish at the boundary; the

remaining component with i = z vanishes due to boundary condition (C.1.9), which gives ∂zu
(z)
j,µ(z) = 0 for z ∈ ∂S.
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Thus, we verified the self-adjointness of the Laplace operator ∂2z for the dimensionally reduced dynamics of the
longitudinal electric modes. Analogously for the longitudinal magnetic modes, the self-adjointness of the boundary
value problem (16) can be seen since

v†ml,µ(z) · ∂zvml′,µ(z)
∣∣∣
z∈∂S

−
[
∂zv

†
ml,µ(z)

]
· vml′,µ(z)

∣∣∣
z∈∂S

=
∑
i

[
v̄
(i)
ml,µ(z)∂zv

(i)
ml′,µ(z)− v

(i)
ml,µ(z)∂z v̄

(i)
ml′,µ(z)

]∣∣∣
z∈∂S

= 0,

(D.1.3)

where we used boundary condition (C.1.19), yielding ∂zv
(y1)
j,µ (z) = ∂zv

(y2)
j,µ (z) = 0 at the boundary. The remaining

terms associated with i = z, likewise, vanish at the boundary via boundary condition (C.1.11). Hence we have
shown that the dimensionally reduced longitudinal modes’ dynamics associated with the electric and magnetic field,
respectively, correspond to a self-adjoint Laplace operator ∂2z with appropriate boundary conditions. It is obvious
that also the terms of the Helmholtz equations (15) and (16) associated with k2l are self-adjoint; thereby guaranteeing
that the reduced modes, being an orthonormal basis for given transverse mode numbers, reconstruct their respective
dimensionally-reduced longitudinal Hilbert space L2

m(S).

2. 2D Helmholtz Equations

Next, we show explicitly the self-adjointness of the 2D, i.e. transverse, Helmholtz equation after dimensional reduction.
This is shown for the boundary value problem of the electric modes (23) and the magnetic modes (24) on their
respective transverse mode space L2

l (Γ), separately. In both cases, one can rewrite the transverse Laplacian acting on
the transverse modes via Eq. (A.10) in terms of a Helmholtz decomposition

∆Γsj,µ = ∇Γ [∇Γ · sj,µ(y)] +∇Γ × [∇Γ × sj,µ(y)] . (D.2.1)

Making use of the (anti-)linearity of the L2 inner product (cf. Eq. (21)), we start with the gradient operator contri-
bution in Eq. (D.2.1). From the product rule we have

s†ml,µ(y)∇Γ

[
∇Γ · sm′l,µ(y)

]
= ∇Γ ·

(
s†ml,µ(y)

[
∇Γ · sm′l,µ(y)

])
−
[
∇Γ · s†ml,µ(y)

] [
∇Γ · sm′l,µ(y)

]
. (D.2.2)

Performing the integration over the transverse cavity domain Γ and using the divergence theorem on the first term
on the right-hand side, we get for the inner product by defining the infinitesimal surface vector dyΓ = nΓdy ∈ ∂Γ:∫
Γ

d2y s†ml,µ(y) ·∇Γ

[
∇Γ · sm′l,µ(y)

]
=

∮
∂Γ

dyΓ · s†ml,µ(y)
[
∇Γ · sm′l,µ(y)

]
−
∫
Γ

d2y
[
∇Γ · s†ml,µ(y)

][
∇Γ · sm′l,µ(y)

]
.

(D.2.3)

The contour integral on the boundary ∂Γ vanishes due to boundary condition Eq. (C.1.8). Using this boundary
condition again the remaining term gives by means of the divergence theorem∫

Γ

d2ys†ml,µ(y) ·∇Γ

[
∇Γ · sm′l,µ(y)

]
=−

∮
∂Γ

dyΓ · sm′l,µ(y)
[
∇Γs

†
ml,µ(y)

]
+

∫
Γ

d2y∇Γ

[
∇Γs

†
ml,µ(y)

]
· sm′l,µ(y).

(D.2.4)

Here, the contour integral does, similarly to the contour integral in Eq. (D.2.3), vanish due to boundary condi-
tion (C.1.8), yielding the self-adjointness of the gradient term of the Laplacian ∆Γ. For the rotation term in Eq. (D.2.1)
we obtain by applying the vector analogue of the second Greens theorem (cf. [117], Eq. 5)∫

Γ

d2y s†ml,µ(y) ·
{
∇Γ ×

[
∇Γ × sm′l,µ(y)

]}
=

∫
Γ

d2y
{
∇Γ ×

[
∇Γ × s†ml,µ(y)

]}
· sm′l,µ(y) +

∮
∂Γ

dyΓ ·
{
s†ml,µ(y)×

[
∇Γ × sm′l,µ(y)

]}
−
∮
∂Γ

dyΓ ·
{
sm′l,µ(y)×

[
∇Γ × s†ml,µ(y)

]}
.

(D.2.5)

With the vector identity A · (B ×C) = (A×B) ·C, the terms involving the contour integral in Eq. (D.2.5) vanish,
i.e. ∮

∂Γ

dyΓ ·
{
s†ml,µ(y)×

[
∇Γ × sm′l,µ(y)

]}
=

∮
∂Γ

dy
[
nΓ × s†ml,µ(y)

]
·
[
∇Γ × sm′l,µ(y)

]
= 0, (D.2.6)
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where from the second to the third line we used boundary condition (C.1.3).

The calculation for the self-adjointness of the boundary value problem of the transverse magnetic field modes, cf.
Eq. (24), is achieved fully analogously by substituting the transverse electric field modes sj,µ(y) by the transverse
magnetic field modes tj,µ(y) in the calculations performed in Eq. (D.2.1)-(D.2.5). In this case, self-adjointness of the
gradient term, i.e. ∇Γ · [∇Γ · tj,µ(y)], is obtained by the use of condition (C.1.10) in Eq. (D.2.3) and Eq. (D.2.4).
Further, for the rotation term, i.e. ∇Γ × [∇Γ × tj,µ(y)], the boundary terms in Eq. (D.2.6) vanish by the following
calculation∮

∂Γ

dyΓ ·
{
t†ml,µ(y)×

[
∇Γ × tm′l,µ(y)

]}
=

∮
∂Γ

dy t†ml,µ(y) ·
[
n(Γ) ×∇Γ × tm′l,µ(y)

]
= 0, (D.2.7)

where from the second to the third step we used boundary condition (C.1.11). Finally, the terms of the Helmholtz
equations (23) and (24) associated with k2m,µ are self-adjoint as well. To this end, we have verified self-adjointness of
the boundary value problems for the transverse electric modes defined in Eq. (23) and the transverse magnetic modes
defined in Eq. (24) on their respective transverse domain L2

l (Γ) after dimensional reduction.

Appendix E: Example – Dimensional Reduction for a Cylindrical Cavity

In the following a working example for reducing the dimensions of a 3D cavity to 2D as well as 1D is provided.
Therefore, let us consider an ideal cylindrical cavity, of length L in direction e(z) and radius R. Following App. A,
both the 2D and 1D modes can be constructed solely by the scalar eigenmodes of the Helmholtz equation under the
appropriate boundary conditions derived in App. C 1. Since the longitudinal scalar solutions ψl(z) are independent
of the cross section (cf. Eq. (A.4)), the dimensional reduction reduces to a single task: The construction of the scalar
solutions ψm,µ(y) of the transverse Helmholtz equation.

1. Construction of the Transverse Scalar Modes

The transverse Helmholtz equation (A.3a) in cylindrical coordinates, i.e.[
r−1∂r(r∂r) + r−2∂2φ + k2m,µ

]
ψm,µ(r, φ) = 0, (E.1)

with a so far unspecified wave vectors km,µ can be solved by

ψm,µ(r, φ) = cm,µJm2 (|km,µ|r) eim2φ, (E.2)

where cm,µ is a normalization constant and Jm2
the m2-th Bessel function of first kind. Recall that we use the

shorthand notationm = (m1,m2) and neglected unbounded solutions of Eq. (E.1). Applying the boundary conditions,
cf. Eq. (C.2.3) and Eq. (C.2.4), yields

∂rψm,µ1(r, φ)
∣∣∣
r=R

= 0, ψm,µ2(r, φ)
∣∣∣
r=R

= 0. (E.3)

Under these boundary conditions a unique |km,µ| can be determined for each polarization yielding: |km,µ1
| =

χm,µ1
/R, with χm,µ1

being the m1-th zero of the derivative of the m2-th Bessel function, and |km,µ2
| = χm,µ2

/R
with χm,µ2

being the m1-th zero of the m2-th Bessel function. We conclude from normalization conditions (A.5)
and (A.6)

cm,µ1
=
(
πR2[J2

m2
(χm,µ1

)− J2
m2+1(χm,µ1

)]
)−1/2

, cm,µ2
=
(
πR2J2

m2+1(χm,µ2
)
)−1/2

. (E.4)

One can use these transverse scalar modes on the disc in combination with the longitudinal scalar modes (A.4) to
reconstruct the 3D modes of the cylinder via Eq. (A.11). With the 3D modes and thus the 3D electric and magnetic
fields of the cylinder at hand one now can start to reduce the electric and magnetic fields to lower dimensions by the
approach presented in Sec. II.
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2. Dimensional Reduction to a 1D cavity – “Thin Fiber Limit”

Mapping from the 3D to the 1D problem for a cylindrical cavity is achieved via the transverse ancilla basis (A.13a)
in terms of the scalar modes defined in Eq. (E.2):

Sm(y) =
cm,µ1√
2|km,µ1

|

r−1∂φ −r−1∂φ 0
−∂r ∂r 0
0 0 0

 Jm2
(|km,µ1

|r) e−im2φ

+
cm,µ2√
2|km,µ2

|

 ∂r ∂r 0
r−1∂φ r−1∂φ 0

0 0
√
2|km,µ2 |

 Jm2
(|km,µ2

|r) e−im2φ .

(E.2.5)

The Tm(y) for the magnetic field can be obtained from Eq. (E.2.5) by the substitutions discussed in App. A. By
means of Eqs. (13) the longitudinal 1D modes as already given in Eqs. (B.1.4) are obtained. Plugging these modes
into the expressions for the 1D fields, i.e. Eq. (27) and Eq. (29), provides the 1D electric and magnetic subfields,
respectively.

3. Dimensional Reduction to a 2D cavity – “Large Mirror Limit”

The dimensional reduction to 2D is executed via the longitudinal ancilla basis Ul(z) and Vl(z) as shown in Eq. (20a)
and Eq. (20b), with the explicit forms given in Eqs. (12). By means of the transverse scalar modes derived in Eq. (E.1)
to Eq. (E.4) the dimensionally reduced 2D electric field modes read via Eq. (B.2.6a):

sj,µ1
(y) =

cm,µ1

|km,µ1
|

 im2

r Jm2

(χm,µ1

R r
)
eim2φ

− |km,µ1 |
2

[
Jm2−1

(χm,µ1

R r
)
− Jm2+1

(χm,µ1

R r
)]

eim2φ

0

 ,

sj,µ2
(y) = − cm,µ2

|km,µ2
||kj,µ2

|

kl|km,µ2
|

2

[
Jm2−1

(χm,µ2

R r
)
− Jm2+1

(χm,µ2

R r
)]

eim2φ

kl
im2

r Jm2

(χm,µ2

R r
)
eim2φ

−|km,µ2
|2Jm2

(χm,µ2

R r
)
eim2φ

 .

(E.3.6)

The 2D magnetic modes likewise are obtained via Eq. (B.2.6b):

tj,µ1(y) =
cm,µ1

|km,µ1 ||kj,µ1 |

kl|km,µ1 |
2

[
Jm2−1

(χm,µ1

R r
)
− Jm2+1

(χm,µ1

R r
)]

eim2φ

kl
im2

r Jm2

(χm,µ1

R r
)
eim2φ

−|km,µ1 |2Jm2

(χm,µ1

R r
)
eim2φ

 ,

tj,µ2
(y) =

cm,µ2

|km,µ2
|

 im2

r Jm2

(χm,µ2

R r
)
eim2φ

− |km,µ2 |
2

[
Jm2−1

(χm,µ2

R r
)
− Jm2+1

(χm,µ2

R r
)]

eim2φ

0

 .

(E.3.7)

These lower dimensional modes still depend on the mode number l associated with the integrated-out dimension which
is due to the polarization surviving the reduction. The 2D quantum fields are then obtained in the same manner as
the 1D fields of Eq. (27) and Eq. (29) but now via Eq. (20a) and Eq. (20b) as

Ê(y, t) =
∑
j,l′

〈
Ul′(z), Ê(+)

j,µ (r , t)
〉
S
+ h.c. =

∑
l

Êl(y, t), B̂(y, t) =
∑
j,l′

〈
Vl′(z), B̂(+)

j,µ (r , t)
〉
S
+ h.c. =

∑
l

B̂l(y, t),

(E.3.8a)

where we define the subfields in the 2D case

Êl(y, t) = i
∑
m,µ

√
ℏωj,µ

2ε0

(
âj,µ e

−iωj,µt sj,µ(y)− h.c.
)
, B̂l(y, t) =

∑
m,µ

√
ℏωj,µ

2ε0c2

(
âj,µ e

−iωj,µt tj,µ(y) + h.c.
)
,

(E.3.8b)

with each subfield describing the dynamics on its respective subspace L2
l (Γ).
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Appendix F: Dimensionally Reduced Dynamics

1. Free Field Hamiltonian

In the following we will derive the decomposition of the original free electromagnetic Hamiltonian into an infinite
sum of 1D subfield Hamiltonians (34). It is straightforward to show that for fixed l, i.e. after integrating out the z
direction in the Hamiltonian (33), all off-diagonal terms vanish since∫

Γ

dy2 (sj,µ(y) · sm′l,µ′(y)− tj,µ(y) · tm′l,µ′(y)) = 0. (F.1.1)

On the other hand we obtain for the diagonal terms by means of the identities (14) by splitting the 1D fields into
positive and negative frequency components (cf. Eq. (31))

Ĥfield =
ε0
2

∑
j,j′

∫
V

d3r
[
Ê(−)
j′ (z, t)S†

m′(y) · Sm(y)Ê(+)
j (z, t) + c2B̂(−)

j′ (z, t)T †
m′(y) · Tm(y)B̂(+)

j (z, t) + h.c.
]

=
ε0
2

∑
m

∑
l,l′

∫
S

dz
[
Ê(−)
ml (z, t) · Ê

(+)
ml′(z, t) + c2B̂(−)

ml (z, t) · B̂
(+)
ml′(z, t) + h.c.

] (F.1.2)

Since the polarization vectors satisfy for all modes ϵml,µ · ϵml′,µ′ − κml,µ · κml′,µ′ = 0, the terms with l ̸= l′ vanish
equally to the 3D case. Thus Eq. (F 1) recasts to Eq. (34):

Ĥfield =
ε0
2

∑
m

∫
V

d3r
[
|Em(z, t)|2 + c2|Bm(z, t)|2

]
=
∑
m

ĥfieldm , (F.1.3)

2. Electric Dipole Hamiltonian with Quantized Atomic COM

Here we will consider general hydrogen-like atoms with all their degrees of freedom being quantized; in particular the
center of mass (COM) is no longer assumed to follow a classical trajectory but can exhibit quantum delocalization [85,
118]. We will show that the dimensional reduction can likewise be implemented for the electric dipole interaction
with quantized COM, and, following the procedure analogously, the same is expected to hold for general multipole
interactions or interactions with the magnetic field. Note, this also includes diamagnetic or Röntgen terms where
potentially more involved components arise due to the cross product. In the COM variables, the electric dipole
Hamiltonian reads

ĤI
COM = −χ(t)e

∫
V

d3R |R⟩⟨R| r̂ · Ê(R, t), (F.2.1)

where R = (Y ,Z) denotes the atomic COM position and r is the relative position. Considering the transition
elements with respect to L2-normalized COM position distributions |s⟩ =

∫
d3Rψs(R) |R⟩, we have

⟨s|ĤI
COM|s′⟩ = −χ(t)e

∫
V

d3 RF̂ss′(R) · Ê(R, t), F̂ss′(R) = r̂ψ∗
s(R)ψs′(R), (F.2.2)

where F̂ss′(R) denotes, as in the semi-classical case, the atomic smearing functions. Integrating out the transverse
COM degrees of freedom Y gives the collection of dimensionally reduced transition matrix elements

⟨s|ĤI
COM|s′⟩ = −χ(t)e

∑
j

∫
S

dZ F̂m,ss′(Z) · Ê(+)
j (Z, t) + h.c., (F.2.3)

where the dimensionally reduced spatial smearing function, obtained by a mapping onto the transversal ancilla mode
associated with the m-th subfield (as introduced in Eq. (38)), reads

F̂m,ss′(Z) =

∫
Γ

d2Y Sm(Y)F̂ss′(R) =

∫
Γ

d2Y Sm(Y)r̂ψ∗
s(R)ψs′(R). (F.2.4)
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Appendix G: Determination of the Transition Probabilities for the Subfield Truncation

1. Gaussian Wave Packet in a Cylindrical Cavity

Recall that the transition probabilities (41) for a two-level system decompose into the transition amplitudes

|cm,(±)|2 =
∑
l,µ

ωj,µe
2

2ε0ℏ

∣∣∣∣∫
R
dtχ(t) ei(ωj,µ±ΩA)t

∫
S

dz uj,µ(z) · Fm,ss′(ze(z))

∣∣∣∣2 . (G.1.1)

Performing the time integration yields (using the detuning ∆j,µ,(±) = (ωj,µ ± ΩA)/2)

fj,µ,(±)(T ) =

∫
R
dtχ(t) ei(ωj,µ±ΩA)t =

{
T sinc(∆j,µ,(±)T ), ifχ(t) = χTS(t),
√
2πT e−(∆j,µ,(±)T)

2

, ifχ(t) = χGS(t).
(G.1.2)

For clarity, we will separately consider the terms (corresponding to the basis vectors of C) of the inner product for the
spatial integration. While the azimuth integration in Fm,ss′(ze(z)) fixes the azimuth quantum number m2 to zero,
the radial integration of the radial component in (G.1.1) gives by the use of integration by parts (cf. App. A and
App. E 1 to obtain an explicit expression for the field modes)∫ L

0

dz u
(r)
j,µ2

(z)F (r)
m (z − L/2)

= − 2cm,µ2
kl

σ4| k j,µ2 ||km,µ2 |
√
π3L

∫ L

0

∫ R

0

∫ 2π

0

dzdrdφ r2 e−r2/σ2

∂rJm2
(|km,µ2

|r) eim2φ e−
(z−L/2)2

σ2 (z − L/2) sin(klz)

≈ −
4c(m1,0),µ2

kl

σ2| k (m1,0),l,µ2
||k(m1,0),µ2

|
√
πL

∫ L

0

∫ ∞

0

dzdv

(
v3

2
− v

)
e−v2/2 J0

( |k(m1,0),µ2
|σ

√
2

v

)
e−

(z−L/2)2

σ2 (z − L/2) sin(klz),

(G.1.3)

where we used in the last step the substitution v =
√
2r/σ. Note that the wave functions are real-valued for the

transitions considered here with Fm,(+)(z) = Fm,(−)(z) such that we dropped the transition-process indices. Since

the dominating Gaussian decays sufficiently fast for v >
√
2R/σ, we expanded the upper limit of the r-integration in

Eq. (G.1.3) to infinity. The integral over [0,∞) here is solved analytically by Hankel transformations ([119], Eq. (21))
which results in a sum of hypergeometric functions 1F1, reading∫ L

0

dz u
(r)
j,µ2

(z)F (r)
m (z − L/2)

= −
4c(m1,0),µ2

kl

σ2| k (m1,0),l,µ2
||k(m1,0),µ2

|
√
πL

(
1F1

[
2; 1; −

( |k(m1,0),µ2
|σ

2

)2
]
− 1F1

[
1; 1; −

( |k(m1,0),µ2
|σ

2

)2
])

×
∫ L

0

dz e−
(z−L/2)2

σ2 (z − L/2) sin(klz)

=
kl| k (m1,0),µ2

|
|J1(χn0) k (m1,0),l,µ2

|πR
√
L
e
−
(

|k(m1,0),µ2
|σ

2

)2 ∫ L

0

dz e−
(z−L/2)2

σ2 (z − L/2) sin(klz).

(G.1.4)

For the z-integration we also use integration by parts and expand the limits of the integral to infinity∫ L

0

dzu
(r)
j,µ2

(z)F (r)
m (z − L/2) ≈

σ2| k (m1,0),µ2
|k2l

2|J1(χn0) k (m1,0),l,µ2
|πR

√
L
e
−
(

|k(m1,0),µ2
|σ

2

)2 ∫ ∞

−∞
dz e−(z−L/2)2/σ2

cos(klz).

(G.1.5)

For odd l, the integrand becomes an odd function and vanishes. For even l, the longitudinal component gives (cf.
[119], Eq. (11))∫ L

0

dz u
(r)
j,µ2

(z)F (r)
m (z − L/2) ≈

σ3| k (m1,0),µ2
|k2l

2|J1(χn0) k (m1,0),l,µ2
|R

√
πL

e−
iπl
2 e

−
(

| k(m1,0),µ2
|σ

2

)2

e
−
(

klσ

2

)2

. (G.1.6)
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Since the atom is located in the center of the cylinder, the component in the Hamiltonian (39) emerging from the
e(φ)-component of the scalar product of the reduced smearing function and the longitudinal mode vector vanishes due
to the rotational invariance. Finally for the z-component, we get by performing the azimuthal integration – which
again fixes the azimuthal mode number m2 to zero – and extending the upper limit of the radial integration to infinite∫ L

0

dz u
(z)
j,µ2

(z)F (z)
m (z − L/2) ≈

4c(m1,0),µ2
|k(m1,0),µ2

|
σ4| k (m1,0),l,µ2

|
√
πL

∫ L

0

∫ ∞

0

dzdr r e−r2/σ2

J0
(
| k (m1,0),µ2

|r
)
e−

(z−L/2)2

σ2 (z − L/2)2 sin(klz).

(G.1.7)

The radial integration can also be solved by Hankel transformations (cf. [120] p. 29 Eq. (10)):∫ L

0

dz u
(z)
j,µ2

(z)F (z)
m (z − L/2) ≈

2| k (m1,0),µ2
|

σ2|J1(χn0) k (m1,0),l,µ2
|πR

√
L
e
−
(

| k(m1,0),µ2
|σ

2

)2 ∫ L

0

dz e−
(z−L/2)2

σ2 (z − L/2)2 sin(klz).

(G.1.8)

For the sine term we thus have sin(klz + πl/2). Then, the integral is non-zero only for odd l (even l results in an even
function)∫ L

0

dz u
(z)
j,µ2

(z)F (z)
m (z − L/2) ≈

| k (m1,0),µ2
|σ

|J1(χn0) k (m1,0),l,µ2
|R

√
πL

e
−
(

| k(m1,0),µ2
|σ

2

)2 (
1− k2l σ

2

2

)
e
−
(

klσ

2

)2

, (G.1.9)

where we used in the last step Eq. (14) on p. 15 in [120]. Combining Eq. (G.1.6) and Eq. (G.1.9) yields for the total
overlap between longitudinal modes and smearing functions∫ L

0

dz uj,µ2(z) · Fm(z − L/2) ≈
| k (m1,0),µ2

|σ
|J1(χn0) k (m1,0),l,µ2

|R
√
πL

e
−
(

| k(m1,0),µ2
|σ

2

)2

e
−
(

klσ

2

)2

. (G.1.10)

Combining this with Eq. (G.1.2) yields the transition probabilities in Eq. (47).

2. Determining the Maximum Subfield Probability

To find the transverse mode number mmax
1 for the example of Sec. IVA which corresponds to the subfield with

maximum transition probabilty |cmmax
1 ,0,(±)|2 of Eq. (43), we consider

fm1,(±) =
|c(m1,0)+(1,0),(±)|2 − |c(m1,0),(±)|2

χm1+1 − χm1

→ 0, (G.2.1)

Since Eq. (G.2.1) contains an infinite sum over the longitudinal mode numbers l, it is useful employ the Euler-Maclaurin
formula (cf. [121] Eq. (23.1.30)) which yields in the case of Gaussian switching

|c(m1,0),(±)|2 =

∫
R+

dl

χ2
m1

exp

(
−χ2

m1
σ2

2R2 − 2π2l2σ2

L2 − 2(∆(m1,0),2l,(±)T )
2

)
ω(m1,0),2l J

2
1 (χm1)

+

χm1
exp

(
−χ2

m1
σ2

2R2 − (χm1±ΩA)2

2 T 2

)
2J2

1 (χm1)

+O
(
R2

L2

)
, (G.2.2)

where we neglect higher order terms due to R/L ≪ 1. The integral allows for an analytical solution in the range of
T ≈ Ω−1

A for spontaneous emission (for vacuum excitation a larger range of interaction times is allowed) in terms of
the modified Bessel function of the second kind in zeroth order K0 reading

|c(m1,0),(±)|2 ∝∼
χ2
m1

2J2
1 (χm1)

(
L

πR
K0(qχ

2
m1

) +
exp
(
−qχ2

m1

)
χm1

)
exp

(
−qχ2

m1
± τ2

Ω̃A

χm1 −
τ2

2

)
, (G.2.3)

with the dimensionless parameters

q =
( σ

2R

)2
+

(
τ

2Ω̃A

)2

=
( σ

2R

)2
+

(
cT

2R

)2

, τ = ΩAT, Ω̃A =

√
χ2
mres

1
+

(
2πlresR

L

)2

. (G.2.4)
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Eq. (G.2.1) becomes then

fm1,(±) ∝∼

χm1+1

J2
1 (χm1+1)

exp
(
−qχ2

m1+1 ± τ2

Ω̃A
χm1+1 − τ2

2

)
− χm1

J2
1 (χm1 )

exp
(
−qχ2

m1
± τ2

Ω̃A
χm1

− τ2

2

)
χm1+1 − χm1

→ 0, (G.2.5)

where we approximated the Bessel function to first order as K0 ≈
√
π/(2qχm1

)2 exp
(
−qχ2

m1

)
for qχ2

m1
> π (cf. [121],

Eq. (9.7.2)), corresponding to the parameter regime of Fig. (4). In this regime, the zeros of the zeroth order Bessel
function can be approximated by χm1

≈ π(m1−1/4) and therefore J1(χm1
)2 ≈ 2/[π(m1−1/4)] (cf. [121], Eq. (9.5.12)

and Eq. (9.2.1), respectively). Finally, solving for m1 and approximating the logarithm for large arguments to first
order yields a quadratic equation which is solved by

mmax
1,(±) ≈

4

2π2q ± πτ2

Ω̃A
+

√
32π2q +

(
2π2q ± πτ2

Ω̃A

)2 . (G.2.6)

For large ratios R/σ (optical resonator limit) in the case of spontaneous emission we have q ≈ [τ/(2Ω̃A)]
2. Additionally,

for the resonance frequencies considered in Fig. 4, we can use q ≪ πτ2Ω̃A, and therefore for spontaneous emission

mmax
1,(−) ≈

2Ω̃A

πτ2
, (G.2.7)

corresponding to Eq. (49) for the ratios lresR/L considered in the plots.

3. Gaussian Wave Packet in a Laser Beam

For fields polarized in ϵx, we have only a non vanishing overlap with the x-component of the smearing function.
Therefore, we obtain (for the Gaussian states defined in (45))

F (x)
m (z) =

√
2

π7σ82m1+m2m1!m2!w2
0

∫∫
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dxdy xzHm1

(√
2x

w0

)
Hm2

(√
2y

w0

)
e
− x2+y2

w2
0 e

− x2+y2+z2

σ2
. (G.3.1)

To perform the integration we define the constant a = w−2
0 + σ−2. For the integration of (G.3.1) in x one has an

odd function and thus a vanishing integration for even m1. For odd m1, the integral can be solved in terms of the
probabilist’s Hermite polynomials, Hem1

(x) = 2−m1/2Hm1
(x/

√
2), as

∫
R
dxxH2m1+1

(√
2x

w0

)
e−ax2

= 2(2m1+3)/2

∫
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0

4
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(
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4
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w2

0a
4
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. (G.3.2)

For solving the integral we used an integral transformation ([120], p. 172, Eq. (12)). For the integration in y one has
a vanishing integral for odd m2. Using the same approach as above one obtains

∫
R
dyH2m2

(√
2y

w0

)
e−ay2

= 2m2+1

∫
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. (G.3.3)

With these results we find for the reduced smearing function (G.3.1):

F (x)
m (z) =

√
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0

e
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, (G.3.4)
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where we used Eq. (58) to approximate σ2 + w2
0 ≈ w2

0. One can now calculate the longitudinal overlap of the lower
dimensional smearing function with the 1D modes for a beam polarized in ϵx:∫

R
dz Fm(z) ·

{
u∗
µ(z)
uµ(z)

} ∣∣∣∣∣
µ=ϵx

≈ (−1)m1+m2
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0π
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− z2

σ2

{
e−ikz

eikz

}
. (G.3.5)

Completing the square we obtain for the integral∫
R
dz z e

− z2

σ2
e±ikz = −σ

2

2
e−

k2σ2

4

[∫
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3
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2
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k2σ2

4 , (G.3.6)

where we used in the last step that the derivative of a Gaussian gives a odd function in the integral and thus vanishes
when integrated over R. To find the transition amplitudes defined in Eq. (66) we have to consider two different
possible final states: |κν(k)⟩ = |α(k)⟩ν ⊗ |Ω⟩¬ν , with |Ω⟩¬ν being the vacuum for the complement modes, and
|θm,µ(k)⟩ = |α(k)⟩ν ⊗ |1(k)⟩m,µ ⊗ |Ω(k)⟩¬ν¬(m,µ) for (m, µ) ̸= ν. To find the transition amplitudes we need to
evaluate the following matrix elements for the annihilation and creation operators:

⟨κν(k′)|âm,µ(k)|κν(k′)⟩ = δ(m,µ),ν δ(k − k′)α(k′), ⟨κν(k′)|â†m,µ(k)|κν(k′)⟩ = δ(m,µ),νδ(k − k′)ᾱ(k′), (G.3.7a)

whereas for the other final state |θm,µ(k)⟩:

⟨θm,µ(k
′)|âm,µ(k)|κν(k′)⟩ = 0, ⟨θm,µ(k

′)|â†m,µ(k)|κν(k′)⟩ = (1− δ(m,µ),ν)δ(k − k′). (G.3.7b)

Thus, we have for the pumped mode in the case of stimulated emission

|cν,g→e(t)|2 ≈ ce2
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For the non-pumped modes, i.e. for (m, µ) ̸= ν, it yields

|cm,µ,g→e(t)|2 ≈ ce2
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where we used the operator identities defined in Eq. (G.3.7b) and the overlap from reduced smearing function and
longitudinal modes (Eq. (G.3.5) and Eq. (G.3.6)). Recall, the transition probabilities (66) are in the paraxial wave
approximation to zeroth order, and by restriction of the number of vacuum modes toN . Thus, by adding the vacuum
transition amplitudes (G.3.9) to the laser transition amplitude (G.3.8), two couplings can be identified. One mode-
number independent coupling g, coupling laser and vacuum modes to the two-level system equally, and a mode-number
dependent coupling γN , yielding an additional modulation of the coupling to the set of vacuum modes:

g =
3ce2k3σ6

ℏε0π4w4
0
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k2σ2

2 , γN =
1

3
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4
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,

(G.3.10)
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where we assume here that the Heaviside function obeys (non-conventionally) θ1(0) = 1. By means of the short hand
notation for the time dependency, amplitudes (67) one arrives at expression for the transition probabilities Eq. (66)).
In particular, the time-integral contribution (Eq. (G.3.8)) of the laser mode to the transition probabilities reads∣∣∣∣∫

R
dt
(
f(−)(t) + f̄(+)(t)

)∣∣∣∣2
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)
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(G.3.11)

The measure ζN ,(±) quantifies the ratio of the contributions from the vacuum (G.3.9) versus the laser mode (G.3.8):

ζN ,(±) =

N∑
m
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(G.3.12)

Since all parameters of ζN ,(±) except the interaction time are assumed fixed, maximizing the right-hand side of this
equation in interaction time T gives the following upper bound:

ζN ,(±) ≤
γN

|α(k)|2
, (G.3.13)

which only depends on the mean photon number of the laser |α(k)|2 and the range N of vacuum modes considered.
In Fig. 8 we plot γN , showing that for strong laser intensities the vacuum modes’ contribution is highly suppressed.
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Figure 8. The mode-number dependent coupling γN versus mode numbers m1 and m2.
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