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Abstract

In this note, we give a new and short proof for a theorem of Bodineau stating that the slab
percolation threshold p̂c for the FK-Ising model coincides with the standard percolation critical
point pc in all dimensions d ≥ 3. Both proofs rely on the positivity of the surface tension for p > pc
proved by Lebowitz & Pfister. The key difference is that while Bodineau’s proof is based on a delicate
dynamic renormalization inspired by the work of Barsky, Grimmett & Newman, our proof utilizes
a technique of Benjamini & Tassion to prove the uniqueness of macroscopic clusters via sprinkling,
which then implies percolation on slabs through a rather straightforward static renormalization.

1 Introduction

We study the supercritical phase of the FK (also known as random-cluster) model with cluster weight
q ≥ 1 on Zd, d ≥ 3. This class of percolation models was introduced by Fortuin & Kasteleyn [FK72] and
is intimately linked to the q-state Potts model for integers q ≥ 2 – see [Gri06, Dum17] for an account on
these models and their connections. For q = 2 this model is sometimes called the FK-Ising model.

The model is defined as follows. Let E be the set of nearest neighbour edges of Zd. For a finite Λ ⊂ Zd,
denote by E(Λ) ⊂ E the set of edges of Zd intersecting Λ. Let q ≥ 1, p ∈ [0, 1] and ξ ∈ {0, 1}E\E(Λ),

and consider the probability measure ϕξΛ,p,q on ΩΛ := {0, 1}E(Λ) given by

ϕξΛ,p,q(ω) :=
1

Zξ
Λ,p,q

po(ω)(1− p)c(ω)qk
ξ
Λ(ω),

where o(ω) and c(ω) denote the number of open (= 1) and closed (= 0) edges in ω, kξΛ(ω) denotes the

number of clusters intersecting Λ in the concatenation ω ∪ ξ ∈ {0, 1}E , and Zξ
Λ,p,q is a renormalizing

constant. We often refer to ξ ≡ 1 and ξ ≡ 0 as wired and free boundary conditions. By monotonicity in
boundary conditions, we can construct the infinite volume measure ϕ0p,q (resp. ϕ1p,q) on Ω := {0, 1}E by

taking a weak limit of ϕ0Λ,p,q (resp. ϕ1Λ,p,q) as Λ ↑ Zd. We define the percolation threshold

pc = pc(q, d) := inf{p ∈ [0, 1] : ϕ1p,q(0←→∞) > 0}.

For d ≥ 3, consider the “slab box” of size N and thickness L given by

S(L,N) := {−L, . . . , L}d−2 × {−N, . . . , N}2.

We define the slab percolation threshold

p̂c = p̂c(q, d) := inf
{
p ∈ [0, 1] : ∃L ≥ 0 such that inf

N
inf

x∈S(L,N)
ϕ0S(L,N),p,q(0←→ x) > 0

}
.

It is clear that p̂c ≥ pc. The slab percolation threshold was introduced in the seminal work of Pisztora
[Pis96], where a powerful coarse graining technique was developed to describe the behavior of the model
assumption that p > p̂c. This technique has then found multiple applications in the study of fundamental
features of supercritical percolation, such as the Wulff crystal construction [Bod99, CP00, CP01], the
structure of translation invariant Gibbs measures for the Ising model [Bod06], the exponential decay of
truncated Ising correlations [DGR20] and the existence of long range order for the random the field Ising
model [DLX22], to cite just a few.

It is conjectured that p̂c(q, d) = pc(q, d) for all q ≥ 1 and d ≥ 3, which implies that Pisztora’s coarse
graining and its consequences are valid up to the critical point. This has only been proved for q = 1
(corresponding to Bernoulli percolation) by Grimmett & Marstrand [GM90] and for q = 2 (corresponding
to the Ising model) by Bodineau [Bod05] – see however [DT19] for a weaker result for integer q. In this
note, we give a new proof for the Ising case.
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Theorem 1.1. One has p̂c(2, d) = pc(2, d) for all d ≥ 3.

Similarly to [Bod05], a crucial ingredient in our proof is the positivity of the surface tension. Consider
the rectangle

R(L,M) := {−L, . . . , L}d−1 × {−M, . . . ,M}

and its top and bottom sides given by ∂topR(L,M) = {−L, . . . , L}d−1 × {M} and ∂botR(L,M) =
{−L, . . . , L}d−1 × {−M}. We define the (free) surface tension (in the direction ed) as

τ̃p = τ̃p(q, d) := sup
C≥1

sup
δ>0

lim sup
L→∞

1

Ld−1
log

(
ϕ0ΛCL,p,q

[
∂botR(L, δL) ↚→ ∂topR(L, δL)

]−1
)
, (1.1)

where ΛN := {−N, . . . , N}d. We can then consider the associated critical point

p̃c = p̃c(q, d) := inf{p ∈ [0, 1] : τ̃p(q, d) > 0}.

It is easy to see that p̃c ≥ pc. Lebowitz & Pfister [LP81] proved that in the Ising case q = 2 one has
τp > 0 for all p > pc, where τp is defined similarly but with wired boundary conditions on R(L, δL)
instead – see Appendix A. Using a weak mixing property, one can compare wired and free boundary
conditions, thus leading to the following.

Theorem 1.2. One has p̃c(2, d) = pc(2, d) for all d ≥ 3.

For the sake of completeness, we include in Appendix A the proof of positivity of the (wired) surface
tension from [LP81] along with the comparison between boundary conditions leading to Theorem 1.2.
The latter follows the same lines as [Bod05, Theorem 3.1], with a slight simplification due to the fact
that in our definition of p̃c the (free) boundary conditions are allowed to be at a macroscopic distance
from the support of the relevant (dis)connection event, which is not the case in [Bod05].

Theorem 1.1 then follows readily from Theorem 1.2 and the following result, which concerns all FK
models with q ≥ 1.

Theorem 1.3. One has p̂c(q, d) = p̃c(q, d) for all q ≥ 1 and d ≥ 3.

Theorem 1.3 is similar to [Bod05, Theorem 2.2], but our proof is completely different. We also stress
that, due to the aforementioned difference between our definition of p̃c and that of [Bod05], our result is
slightly stronger. Indeed, the proof of [Bod05, Thorem 2.2] relies on a delicate dynamic renormalization
scheme inspired by the work of Barsky, Grimmett & Newman [BGN91] on Bernoulli percolation in the
half space, which requires connections to go up to the boundary of the domain (with free boundary
conditions). Our approach on the other hand is based on static renormalization, for which a macroscopic
distance from the boundary is typically harmless.

Our proof of Theorem 1.3 goes as follows. First, we observe that the surface order exponential cost
for disconnection given by the condition p > p̃c implies that the clusters in ΛL touching ∂ΛL are ℓ-dense

in ΛL with high probability for ℓ = C(logL)
1

d−1 = o(logL). Then we adapt a technique of Benjamini
& Tassion [BT17] to prove that all the clusters crossing an annulus get connected to each other with
high probability after an ε-Bernoulli sprinkling – see also [DS23] for a very similar use of this technique
for Voronoi percolation and [DGRS23, DGRST23] for more sophisticated arguments in the context of
Gaussian Free Field level sets and random interlacements. Finally, we use this local uniqueness property
to perform a standard static renormalization argument implying percolation in the slab.

Remark 1.4. For simplicity, we chose to focus on nearest-neighbor interactions, but it is straightforward
to adapt all the proofs to finite range interactions as well.

Acknowledgements. I would like to thank Hugo Duminil-Copin, Ulrik Thinggaard Hansen and the
anonymous referees for their helpful comments on earlier drafts of this paper. This research was sup-
ported by the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No 851565).

2 From disconnection to slab percolation

In this section we prove Theorem 1.3. We fix q ≥ 1 and d ≥ 3 and henceforth omit them from the notation.
As explained in Section 1, the proof is split into two parts, which are done in separate subsections.
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2.1 Uniqueness with sprinkling

We start with the following lemma, which is an easy consequence of the FKG inequality.

Lemma 2.1. If τ̃p > 0, then there exists δ > 0 and such that for infinitely many L one has

ϕ0ΛL,p[Λℓ ←→ ∂ΛδL] ≥ 1− e−δℓd−1

∀ 1 ≤ ℓ ≤ δL. (2.1)

Proof. Since τ̃p > 0, there exist C ′ ≥ 1 and δ′ > 0 such that for infinitely many L one has

ϕ0ΛC′L,p[∂
botR(L, δ′L) ↚→ ∂topR(L, δ′L)] ≤ e−δ′Ld−1

. (2.2)

Cover the hyperplane {−C ′L, . . . , C ′L}d−1 × {0} by m ≤ C ′′(L/ℓ)d−1 boxes Λℓ(x1), . . . ,Λℓ(xm). Notice
that

m⋂
i=1

{Λℓ(xi) ↚→ Λδ′L(xi)} ⊂ {∂botR(L, δ′L) ↚→ ∂topR(L, δ′L)}.

Therefore, by the FKG inequality together with (2.2), we can find an i0 ∈ {1, . . . ,m} such that

ϕ0ΛC′L,p[Λℓ(xi0) ↚→ ∂Λδ′L(xi0)] ≤ e−δ′ℓd−1/C′′
.

By comparison between boundary conditions we obtain

ϕ0Λ2C′L(xi),p
[Λℓ(xi0) ↚→ ∂Λδ′L(xi0)] ≤ e−δ′ℓd−1/C′′

,

which does not depend on xi0 , so the result follows with δ = δ′ min{1/2C ′, 1/C ′′}.

Given p ∈ [0, 1], ε > 0, Λ ⊂ Zd and boundary conditions ξ on Λ, let ω ∼d ϕξΛ,p and γ ∼d

⊗x∈E(Λ)Ber(ε) be independent random variables, and denote its joint distribution on Ω2
Λ by ψξ

Λ,p,ε.
The following proposition is the heart of our proof. It is inspired by the work of Benjamini & Tassion

[BT17], where it was proved that any “everywhere percolating” subgraph of Zd becomes connected after
an ε-Bernoulli sprinkling. We adapt their proof to the case of a very dense subgraph.

Proposition 2.2. Let Unique(L) be the event that there is a cluster in ω ∩ ΛL crossing ΛL \ ΛL/8 and
that every cluster of ω ∩ ΛL crossing ΛL/2 \ ΛL/4 are connected to each other in (ω ∪ γ) ∩ ΛL/2. For
p > p̃c there exists δ > 0 such that for all ε > 0 one has

lim sup
L→∞

inf
ξ
ψξ
ΛL,p,ε[Unique(δL)]→ 1.

Proof. We follow closely the proof and notation of [DS23, Proposition 4.1], where a similar result is
proved for Voronoi percolation. Fix p > p̃c and ε > 0. Let δ′ > 0 be given by Lemma 2.1 and L′ such

that (2.1) holds. Set L := 2L′, δ := δ′/4, C0 := (dδ′)−
1

d−1 and

ℓ = ℓ(L, p) := C0(logL)
1

d−1 .

By monotonicity on boundary conditions and the inequality (2.1), we obtain

ψξ
ΛL

[Λℓ(x)
ω←→ ∂ΛδL] ≥ ϕ0ΛL′ [Λℓ ←→ ∂Λδ′L′ ] ≥ 1− L−d

for all x ∈ ΛδL and all ξ. By union bound, one concludes that the event

AL :=
⋂

x∈ℓZd∩ΛδL

{Λℓ(x)
ω←→ ∂ΛδL}

satisfies
lim sup
L→∞

inf
ξ
ψξ
ΛL

[AL] = 1.

It remains to prove that Unique(δL) happens with high probability under ψξ (uniformly in ξ) condition-
ally on AL. First, notice that the existence of a cluster of ω ∩ΛδL crossing ΛδL \ΛδL/8 is automatically
implied by AL, so we only need to focus on the uniqueness part. Consider the set of boundary clusters

C := {C ⊂ ΛδL : C is a cluster in ω ∩ ΛδL such that C ∩ ∂ΛδL/2 ̸= ∅}.

3



Obviously, |C| ≤ |∂ΛδL/2| ≤ CLd−1. Given ω ⊂ η ⊂ E(Zd), we define the relation ∼η in C by setting

C ∼η C
′ if C

η←−−→
ΛδL/2

C ′.

It is enough to prove that, with high probability conditionally on AL, all the clusters in C′ := {C ∈
C : C ∩ ΛδL/4 ̸= ∅} are connected to each other in (ω ∪ γ) ∩ ΛδL, or equivalently |C′/ ∼ω∪γ | = 1.

Let Vi := ΛδL/2−i
√
L, 0 ≤ i ≤ ⌊δ

√
L/4⌋. We will add γ to ω progressively on each annulus Vi \ Vi+1.

For every 0 ≤ i ≤ ⌊δ
√
L/4⌋, set

ηi := ω ∪ (γ ∩ (V0 \ Vi)).

Given η ⊃ ω, let
Ui(η) := Ci/ ∼η ,

where
Ci := {C ∈ C : C ∩ Vi ̸= ∅}.

Finally, we set
Ui := |Ui(ηi)|.

Notice that it is enough to prove that U⌊δ
√
L/4⌋ = 1 with high probability conditionally on AL, which

follows from the following lemma.

Lemma 2.3. There exists c > 0 such that for every ξ and every 0 ≤ i ≤ ⌊δ
√
L/4⌋ − 8, one has

ψξ
ΛL,p,ε[{Ui+8 > 1 ∨ Ui/2} ∩ AL] ≤ e−cL1/4

. (2.3)

By Lemma 2.3 together with a union bound, the following event occurs with high probability⋂
0≤i≤⌊

√
L/4⌋−8

{Ui+8 ≤ 1 ∨ Ui/2} ∩ AL.

On this event, U⌊δ
√
L/4⌋ > 1 would imply U0 ≥ 2⌊δ

√
L/32⌋−1, which contradicts the fact that U0 ≤ CLd−1.

This yields that U⌊δ
√
L/4⌋ = 1 on this event, thus concluding the proof.

It remains to give the following proof.

Proof of Lemma 2.3. We fix ξ and write ψ instead of ψξ
ΛL,p,ε for simplicity; all estimates will be uniform

on ξ. Fix 0 ≤ i ≤ ⌊δ
√
L/4⌋ − 8. We start by finding a sub-annulus of Vi \ Vi+8 such that most clusters

in it are crossing. For every η ⊃ ω and j ∈ {0, 1, 2, 3}, let

U j
i (η) := {C ∈ Ui(η) : C ∩ Vi+2j ̸= ∅ and C ∩ Vi+2j+2 = ∅}.

In the definition above, we abuse the notation by identifying the equivalence class of cluster C ∈ Ui(η)
with its associated η-cluster. Since (U j

i (η))j are disjoint subsets of Ui(η), we can find j ∈ {0, 1, 2, 3} such
that |U j

i (ηi)| ≤ |Ui(ηi)|/4 = Ui/4. We fix such a j for the rest of the proof and focus on the annulus
Vi+2j \ Vi+2j+2.

We now further restrict to one of the two sub-annuli Vi+2j \Vi+2j+1 and Vi+2j+1 \Vi+2j+2 as follows.

If at least one of the clusters in U j
i (ηi) touches Vi+2j+1, we “wire” all clusters in U j

i (ηi) (i.e. we treat
their union as a single element) and focus on the annulus Vi+2j \ Vi+2j+1. Otherwise, we forget about

all the clusters in U j
i (ηi) and focus on the annulus Vi+2j+1 \Vi+2j+2. More precisely, consider the family

Ũ :=

{
{C ∈ Ui(ηi) : C ∩ Vi+2j+2 ̸= ∅} ∪

{
C̃
}
, if C̃ ∩ Vi+2j+1 ̸= ∅,

{C ∈ Ui(ηi) : C ∩ Vi+2j+2 ̸= ∅}, otherwise.

where C̃ := ∪C∈Uj
i (ηi)

C if U j
i (ηi) ̸= ∅ and C̃ = ∅ otherwise, and the annulus

A :=

{
Vi+2j \ Vi+2j+1, if C̃ ∩ Vi+2j+1 ̸= ∅,
Vi+2j+1 \ Vi+2j+2 otherwise.

Notice that in any case, every element of Ũ contains a crossing of the annulus A, and that every box
Λℓ(x) ⊂ A, x ∈ ℓZd, intersects at least one element of Ũ . Define the following partition of Ũ . Let U0 be
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Vi+2j

Vi+2j+1

Vi+2j+2

Figure 1: The gluing procedure of Lemma 2.3. The blue and red clusters represent Ũ1 and Ũ2, respec-
tively. The dark red clusters represent the set C̃: we are therefore in the case where C̃∩Vi+2j+1 ̸= ∅, and
A is the grey annulus. The black squares represent the boxes (Dk)

n
k=1, of radius 2ℓ = o(logL), where Ũ1

and Ũ2 meet.

the set made of all the elements of Ũ connected to C̃ in ηi+8 and U1, . . . ,Um be the partition of Ũ \ U0

induced by the equivalence relation ∼ηi+8 . If we assume that |Uk| ≥ 4 for all 1 ≤ k ≤ m, then we get

Ui+8 ≤
1

4
|Ũ \ U0|+ |U j

i (ηi)| ≤
1

2
Ui.

This cannot occur on the event E := {Ui+8 > 1∨Ui/2}∩AL. As a result, if E happens, then there exists

a non-trivial partition Ũ = Ũ1∪Ũ2 such that |Ũ1| < 4 and Ũ1 ̸ηi+8←−→
A
Ũ2, where here we abuse the notation

again by identifying Ũ1 and Ũ2 with the union of the associated ηi-clusters. As a conclusion, we have

ψ[E ] ≤
∑
Ũ

ψ[{Ũ = Ũ} ∩ AL]
( ∑

Ũ=Ũ1⊔Ũ2

1≤|Ũ1|<4

ψ[ Ũ1 ̸ηi+8←−→
A

Ũ2 | {Ũ = Ũ} ∩ AL]
)
, (2.4)

where the sum in Ũ runs over all the (finitely many) possibilities for Ũ which are compatible with AL.
Fix a set Ũ and a partition Ũ = Ũ1 ⊔ Ũ2 as in (2.4). Recall that by construction both Ũ1 and

Ũ2 contain a crossing of the annulus A and their union is ℓ-dense in A. Therefore, by splitting A
into annuli of thickness 10ℓ, one can find vertices x1, . . . , xn ∈ ℓZd, n ≥ cd

√
L/ℓ, such that the boxes

Dk := Λ2ℓ(xk) ⊂ A, j ∈ {1, . . . , n}, are disjoint and each one intersects both Ũ1 and Ũ2. In particular, on
each of these boxes, there exists a path of length at most 4dℓ between Ũ1 and Ũ2 which is fully open in
γ with probability at least ε4dℓ. Notice that the event {Ũ = Ũ} ∩AL is (ω, ηi)-measurable and therefore
independent of γ ∩ (Vi \ Vi+8). By independence, we conclude that

ψ[ Ũ1 ̸ηi+8←−→
A

Ũ2 | {Ũ = Ũ} ∩ AL] ≤ ψ
[ n⋂
k=1

Ũ1 ̸
γ←→
Dk

Ũ2

]
≤

(
1− ε4dℓ

)n ≤ e−cL1/4

, (2.5)

for some constant c > 0, where we have used that nε4dℓ ≫ L1/4. Combining (2.4), (2.5) and the fact that

|Ũ | ≤ CLd−1, we obtain ψ[E ] ≤
∑3

k=1

(
CLd−1

k

)
e−cL1/4 ≤ e−c′L1/4

, for some c′ > 0 and L large enough,
thus concluding the proof.
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2.2 Static renormalization

Proposition 2.4. For every p > p̃c and ε > 0, there exists L ≥ 1 such that

inf
N

inf
x∈S(L,N)

ψ0
S(L,N),p,ε(0

ω∪γ←−→ x) > 0.

Proof. On the slab box S(L,N), consider the sites of the form x(u) = (0, . . . , 0, δ8Lu) for u ∈ Bn :=

{−n, . . . , n}2, where n := ⌊ 8(N−L)
δL ⌋ is chosen so that ΛL(x(u)) ⊂ S(L,N) for all u ∈ Bn. We construct

a site percolation model η on Bn under the measure ψ0
S(L,N),p,ε as follows. We set ηu = 1 if the event

Unique(δL) happens when centered at x(u). First notice that, by the definition of Unique(δL), a path
of η-open sites from u to v induces a path in ω ∪ γ from ΛδL/8(x(u)) to ΛδL/8(x(v)). Second, by the
Markov property one has

ψ0
S(L,N),p,ε[ηu = 1

∣∣ (ηv : ∥u− v∥∞ ≥ 16/δ)] ≥ α(L) a.s. ∀u ∈ Bn,

where α(L) := infξ ψ
ξ
ΛL,p,ε[Unique(δL)]. Since lim supL→∞ α(L) = 1 by Proposition 2.2, the main result

of [LSS97] implies that there exists an L (which we fix now) such that η stochastically dominates a
product measure with parameter s > psitec (Z2). In particular, there exists a constant c > 0 such that

ψ0
S(L,N),p,ε[u

η←→ v] ≥ c for all u, v ∈ Bn and all N . Now, given any point x ∈ S(L,N), there exists

u ∈ Bn such that x ∈ Λ2L(x(u)), so that the event {0 η←→ u} ∩ {ΛL fully open in γ} ∩ {Λ2L(x(u)) ∩
S(L,N) fully open in γ} is contained in {0 ω∪γ←−→ x}. As a conclusion, we obtain the desired uniform

lower bound ψ0
S(L,N),p,ε[0

ω∪γ←−→ x] ≥ c′ := cεCLd

> 0 for every x ∈ S(L,N) and every N .

Lemma 2.5. For every 0 ≤ p < p′ ≤ 1, there exists ε > 0 such that for every Λ ⊂ Zd one has the
stochastic domination ωp′ ≻ ωp ∪ γε, where ωp′ ∼d ϕ

0
Λ,p′ and (ωp, γε) ∼d ψ

0
Λ,p,ε.

Proof. We construct a natural coupling between ωp and ωp′ as follows. Let e1, . . . , en be an arbitrary
enumeration of E(Λ) and (Ui)i≥n be i.i.d. Uniform[0, 1] random variables. We inductively define

ωp(ei) = 1{Ui≤ϕ0
Λ,p[ω(ei) |ω(ej)=ωp(ej) ∀j<i]},

and analogous for p′. By the Markov property, the desired stochastic domination would directly follow
if we prove that there exists ε > 0 such that for every ∆ ⊂ Zd, every pair of boundary condition ξ′ ≥ ξ
and every edge e ∈ E(∆), we have

ϕξ
′

∆,p′ [ωe]− ϕξ∆,p[ωe] ≥ ε.

By monotonicity in boundary conditions, it is enough to consider ξ′ = ξ. By Russo’s formula, one has

∂pϕ
ξ
∆,p[ωe] =

1

p(1− p)
∑

f∈E(∆)

ϕξ∆,p[ωeωf ]− ϕξ∆,p[ωe]ϕ
ξ
∆,p[ωf ] ≥

1

p(1− p)
ϕξ∆,p[ωe](1− ϕξ∆,p[ωe]) ≥ 1/q,

where we used in the last inequality that p
p+q(1−p) = ϕ0{e},p[ωe] ≤ ϕξ∆,p[ωe] ≤ ϕ1{e},p[ωe] = p. The result

follows for ε = (p′ − p)/q.

Proof of Theorem 1.3. It follows readily from Proposition 2.4 and Lemma 2.5 that p̂c ≤ p̃c. The opposite
inequality is classical, see [Pis96].

A Positivity of the surface tension

In this Appendix, we prove Theorem 1.2. The proof relies on specific properties of the Ising model,
namely the Ginibre inequality, which is used in the proof of Theorem A.1 below, and the uniqueness
of infinite volume measure for its FK representation on the half space with positive boundary wiring,
which is used in the proof of Proposition A.2 below (see Lemma A.3). Since we will only work with
the FK-Ising model (q = 2), we henceforth omit q from the notation. We start by introducing the Ising
model. Given a finite Λ ⊂ Zd, and inverse temperature β ≥ 0 and a boundary field η ∈ R∂Λ, we define
the Hamiltonian on ΣΛ := {−1, 1}Λ given by

Hη
Λ(σ) := −

∑
xy∈E(Λ)

σxσy,
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where for y ∈ ∂Λ we write σy = ηy. Given an inverse temperature β ≥ 0, consider probability measure
⟨·⟩ηΛ,β on ΣΛ given by

⟨f(σ)⟩ηΛ,β =
1

Zη
Λ,β

∑
σ∈ΣΛ

f(σ)e−βHη
Λ(σ),

where Zη
Λ,β =

∑
σ∈ΣΛ

e−βHη
Λ(σ) is the normalizing partition function – see e.g. [FV17] for an introduction

to the Ising model. We denote by + the boundary field η ≡ 1 and by ± the boundary field given by
η = 1∂+Λ − 1∂−Λ, where ∂

+Λ = ∂Λ ∩ (Zd−1 × N) and ∂−Λ = ∂Λ \ ∂+Λ. Let ⟨·⟩+β denote the infinite

volume measure on Σ = {−1, 1}Zd

obtained as the weak limit of ⟨·⟩+Λ,β as Λ ↑ Zd. The critical inverse
temperature is given by

βc := inf{β ≥ 0 : ⟨σ0⟩+β > 0}.
Finally, the surface tension at β is defined as

τβ := lim
L→∞

1

Ld−1
lim

M→∞
log

Z+
R(L,M),β

Z±
R(L,M),β

. (A.1)

It is classical that the limit in (A.1) exists and that it is the same if taken jointly in L and M for any
M =M(L)→∞ as L→∞, see e.g. [MMR92].

Theorem A.1 ([LP81]). One has τβ > 0 for every β > βc.

Proof. Our main tool will be the Ginibre inequality (see [Leb77]):

⟨σAσB⟩η
′

Λ,β − ⟨σAσB⟩
η
Λ,β ≥

∣∣⟨σA⟩η′

Λ,β⟨σB⟩
η
Λ,β − ⟨σB⟩

η′

Λ,β⟨σA⟩
η
Λ,β

∣∣, (A.2)

for all A,B ⊂ Λ and η, η′ such that |η| ≤ η′. Let τL,M
β := 1

Ld−1 log
Z±

R(L,M),β

Z+
R(L,M),β

and note that

d

dβ
τL,M
β =

1

Ld−1

∑
x,y∈E(R(L,M))

⟨σxσy⟩+R(L,M),β − ⟨σxσy⟩
±
R(L,M),β .

Let τLβ := limM→∞ τL,M
β and note that, since R(L) = {−L,L}d−1 × Z is “one-dimensional”, the terms

in the sum tends to 0 exponentially fast with the distance to Zd−1 × {0}. Also, by (A.2) each term in
the sum is positive. Therefore, by applying (A.2), disregarding the horizontal edges, taking M →∞ and
using translation invariance in the id direction, we obtain

d

dβ
τLβ ≥

1

Ld−1

∑
x∈{−L,...,L}d−1

j∈Z

⟨σ(x,0)⟩+R(L),β

(
⟨σ(x,j+1)⟩±R(L),β − ⟨σ(x,j)⟩

±
R(L),β

)

=
1

Ld−1

∑
x∈{−L,...,L}d−1

2(⟨σ(x,0)⟩+R(L),β)
2

where we used that ⟨σ(x,j)⟩±R(L),β → ⟨σ(x,0)⟩
+
R(L),β and j → +∞ and ⟨σ(x,j)⟩±R(L),β → −⟨σ(x,0)⟩

+
R(L),β as

j → −∞. Finally, by taking L→∞ we obtain

d

dβ
τβ ≥ 2d(⟨σ0⟩+β )

2,

which readily implies that τβ > 0 for every β > βc.

The Ising model at inverse temperature β and the FK-Ising with p = 1− e−2β are coupled together
through the so-called Edwards–Sokal coupling – see [Gri06, Dum17] for details. In particular, one has
the relation ϕ1p[0 ←→ ∞] = ⟨σ0⟩+β , and therefore pc = 1 − e−2βc . One can also re-interpret the Ising
surface tension in terms of the FK-Ising model using the aforementioned coupling and noting that

Z±
R(L,M),β

Z+
R(L,M),β

= ϕ1R(L,M),p[∂
+R(L,M) ↚→ ∂−R(L,M)].

Therefore, in order to prove Theorem 1.2, it remains to compare wired and free boundary conditions,
which is the subject of the following proposition.
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Proposition A.2 ([Bod05]). For q = 2, τβ > 0 implies τ̃p > 0 with p = 1− e−2β.

Proof. The proof follows the same lines as [Bod05, Theorem 3.2], with some simplifications. By definition
and monotonicity in boundary conditions, if τβ > 0 then for every δ > 0 one has

ϕ1R(L,δL),p[∂
−R(L, δL) ↚→ ∂+R(L, δL)] ≤ e−Ld−1τβ/2

for L large enough. Notice that the lateral boundary of R(L, δL) has size of order δLd−1, so for δ small
enough a simple Radon–Nikodym derivative estimate gives

ϕ1,0R,p[∂
botR(L, δL) ↚→ ∂topR(L, δL)] ≤ e−Ld−1τβ/4,

where R = R(L, δL) and ξ = {1, 0} stands for the boundary condition which is wired on the top and
bottom boundaries and free on the lateral boundary. By inclusion of events, we have

ϕ1,0R,p[D] ≤ e
−Ld−1τβ/4, (A.3)

where D := {∂botR(L, δ2L) ↚→ ∂topR(L, δ2L)}. For all s ∈ [0, 1], let ϕs,0R,p be the measure with boundary
condition {1, 0} and intensity sp (defined in the natural way) on the set of bonds B which are incident
to ∂topR or ∂botR, and intensity p elsewhere. Note that ϕ0,0R,p = ϕ0R(L,δL−1) ≺ ϕ0ΛL,p. By the Russo’s

formula for FK percolation [Gri06, Theorem 3.12], we have

∂s(log ϕ
s,0
R,p[D]) =

1

1− sp
∑
b∈B

ϕs,0R,p[ωb | D]− ϕs,0R,p[ωb].

Since D is supported on R(L, δ2L), the domain Markov property and a comparison between boundary

conditions imply that, for every bond b at distance at least δ
2L from the lateral boundary of R, we have

|ϕs,0R,p[ωb | D]− ϕs,0R,p[ωb]| ≤ ϕs,1H( δ
2L),p

[ωb0 ]− ϕ
s,0

H( δ
2L),p

[ωb0 ],

where b0 is the bond {0, ed} and ϕs,1H(K),p (resp. ϕs,0H(K),p) is the measure on H(K) := {−K, . . . ,K}d−1×
{0, . . . ,K} with intensity sp and wired boundary conditions on the bottom face and wired (resp. free)
boundary condition on the rest of the boundary. Our goal is to show that ϕs,1H(K),p[ωb0 ]− ϕ

s,0
H(K),p[ωb0 ] is

small for large K. This is given by the following “weak mixing” result.

Lemma A.3. For every s > 0 and p ∈ [0, 1], one has ϕs,1H(K),p[ωb0 ]− ϕ
s,0
H(K),p[ωb0 ]→ 0 as K →∞.

Before proving Lemma A.3, we conclude the proof of Proposition A.2. By Lemma A.3 and the
dominated convergence theorem, we have

| log ϕ1,0R,p[D]− log ϕ0,0R,p[D]| =
∫ 1

0

∂s(log ϕ
s,0
R,p[D])ds

≤ CδLd−1 + CLd−1

∫ 1

0

(ϕs,1
H( δ

2L),p
[ωb0 ]− ϕ

s,0

H( δ
2L),p

[ωb0 ])ds ≤ 2CδLd−1,

(A.4)

for L large enough, where the first term CδLd−1 accounts for the bonds with distance at most δ
2L from

the lateral boundary of R. By choosing δ > 0 small enough so that 2Cδ < τβ/4, inequalities (A.3) and
(A.4) imply the result.

Proof of Lemma A.3. Setting β = − 1
2 log(1 − p) and h = − 1

2 log(1 − sp)/β, it follows easily from the
Edwards–Sokal coupling that the statement is equivalent to

⟨σ0⟩h,+H(K),β − ⟨σ0⟩
h,0
H(K),β → 0 as K →∞,

where h,+ (resp. h, 0) denotes the boundary field equals h on the bottom face of H(K) and 1 (resp.

0) on the rest of ∂H(K). It follows from [MMP84] that the limits ⟨σ0⟩h,+H,β = limK→∞⟨σ0⟩h,+H(K),β and

⟨σ0⟩h,0H,β = limK→∞⟨σ0⟩h,0H(K),β exist and are analytic in h > 0. By [FP87] (see (2.13) and (2.21)) one has

⟨σ0⟩h,+H,β = ⟨σ0⟩h,−H,β for all h ≥ 1. By monotonicity in boundary conditions it follows that ⟨σ0⟩h,+H,β = ⟨σ0⟩h,0H,β

for all h ≥ 1, thus for all h > 0 by analyticity, which completes the proof.
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