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Abstract— We propose a model predictive control (MPC)
scheme with sampled-data input which ensures output-
reference tracking within prescribed error bounds for relative-
degree-one systems. Hereby, we explicitly deduce bounds on
the required maximal control input and sampling frequency
such that the MPC scheme is both initially and recursively
feasible. A key feature of the proposed approach is that neither
terminal conditions nor a sufficiently-large prediction horizon
are imposed, rendering the MPC scheme computationally
efficient. We illustrate the MPC algorithm via a numerical
example of a torsional oscillator.

I. INTRODUCTION

Model predictive control (MPC) has gained widespread
recognition due to its ability to effectively deal with nonlinear
multi-input multi-output systems while adhering to control
and state constraints, see the textbooks [1], [2] and the
references therein. Since MPC is based on the iterative
solution of optimal control problems (OCPs) over a finite
prediction horizon, guaranteeing their initial and recursive
feasibility is key to ensure proper functioning of MPC. W.r.t.
recursive feasibility, often either terminal conditions [3] or
a combination of cost controllability [4] and a sufficiently
long prediction horizon are used, see, e.g., [5] and the
references therein for discrete-time systems. The use of ter-
minal constraints may increase the computational effort and
substantially reduce the domain of attraction, see, e.g., [6].
This becomes even more involved in the presence of time-
varying state or output constraints [7].

Recently, a novel MPC scheme was proposed in [8] to
overcome these restrictions by invoking structural properties
of the system class in consideration to show both initial and
recursive feasibility. This approach was further developed in
[9], [10] and, using the combination of a high-gain property
based on a well-defined relative degree and input-to-state sta-
ble internal dynamics, it allows for output reference tracking
within prescribed time-varying error bounds of continuous-
time systems. This also distinguishes it from the output
regulation problem, on which other MPC approaches focus,
see, e.g., [11], where discrete-time systems are considered.
The output regulation regulation problem was considered
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in the presence of time-invariant constraints in [12], where
suitable stabilizability and detectability conditions and a suf-
ficiently long prediction horizon are used to ensure constraint
satisfaction.

The underlying idea of the approach from [8], [9], [10]
is closely intertwined with the adaptive, high-gain funnel
controller [13], see, e.g., the recent survey paper [14], which
also guarantees output tracking within given bounds by con-
tinuously adapting the applied control signal based on con-
tinuously available measurements. However, both in practical
applications as well as in simulations, system measurements
and control input signals are typically only given at discrete
time instances. Consequently, the assumption underlying fun-
nel control, namely that the signal is continuously available,
is not met. In the recent work [15] this shortcoming was
addressed. It was shown that the control objective of ensuring
output tracking with predefined error boundaries can be
achieved by a sampled-data feedback controller, that receives
system measurements only at uniformly sampled discrete
time instances and yields a piecewise constant control signal.
The latter is usually called sampled-data control.

In [16], it is shown how to obtain a sampled-data model
approximation for continuous-time systems, where the mis-
match between the solutions scales with the sampling time.
Based on the concept of control barrier functions (CBFs)
for continuous-time systems, in [17] sampled-data CBFs
are utilized to ensure safe sets to be forward invariant. In,
e.g., [18], [19] a sampled-data MPC scheme for continuous-
time systems is developed, respectively.

In this paper, we show that it is possible to achieve
output tracking with prescribed performance using MPC
with sampled-data control. Although simulations suggest that
the MPC scheme from [8], [9] can be implemented using
sampled-data inputs, theoretical results, so far, are missing.
We rigorously prove that the novel MPC algorithm proposed
in the present paper is initially and recursively feasible.
Furthermore, we derive explicit bounds on the maximal
required control input as well as on the sufficiently small
step length. To this end, we combine results from [15]
on sampled-data adaptive feedback control and from the
continuous-time MPC case [9].

The article is organized as follows. In Section II, we
introduce the system class and define the control objective.
In Section III we propose an MPC algorithm, which achieves
the control objective by using sampled-data inputs only. Its
feasibility is proven in our main result Theorem 3.1. We
illustrate the MPC algorithm via a simulation in Section IV.
Conclusions and an outlook are given in Section V.
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Nomenclature. N, R denote natural and real numbers,
respectively. N0 := N ∪ {0} and R≥0 := [0,∞). ∥x∥ :=√
⟨x, x⟩ denotes the Euclidean norm of x ∈ Rn, and Bv :=

{ x ∈ Rn | ∥x∥ ≤ v }. ∥A∥ denotes the induced operator
norm ∥A∥ := sup∥x∥=1 ∥Ax∥ for A ∈ Rn×n. GLn(R) is the
group of invertible Rn×n matrices. Cp(V,Rn) is the linear
space of p-times continuously differentiable functions f :
V → Rn, where V ⊂ Rm and p ∈ N0 ∪ {∞}. C(V,Rn) :=
C0(V,Rn). On an interval I ⊂ R, L∞(I,Rn) denotes
the space of measurable and essentially bounded functions
f : I → Rn with norm ∥f∥∞ := ess supt∈I ∥f(t)∥,
L∞

loc(I,R
n) the set of measurable and locally essentially

bounded functions, and Lp(I,Rn) the space of measurable
and p-integrable functions with norm ∥·∥Lp and with p ≥ 1.
Furthermore, W k,∞(I,Rn) is the Sobolev space of all k-
times weakly differentiable functions f : I → Rn such that
f, . . . , f (k) ∈ L∞(I,Rn).

II. SYSTEM CLASS AND CONTROL OBJECTIVE

In this section, we introduce the class of systems to be
controlled and define the control objective precisely.

A. System class

We consider nonlinear multi-input multi-output systems

ẏ(t) = f
(
T(y)(t)

)
+ g(T(y)(t))u(t)

y|[t0−σ,t0] = y0 ∈ C([t0 − σ, t0],R
m),

(1)

with initial time t0 ≥ 0, “memory” σ ≥ 0, initial trajectory
y0, control input u ∈ L∞

loc(R≥0,R
m), and output y(t) ∈

Rm at time t ≥ t0. Note that u and y have the same
dimension m ∈ N. The system consists of the nonlinear
functions f ∈ C(Rq,Rm), g ∈ C(Rq,Rm×m), and the
nonlinear operator T : C([−σ,∞),Rm) → L∞

loc(R≥0,R
q).

The operator T is causal, locally Lipschitz, and satisfies a
bounded-input bounded-output property. It is characterized
in detail in the following definition.

Definition 2.1: For m, q ∈ N and σ ≥ 0, the set T m,q
σ

denotes the class of operators T : C([t0 − σ,∞),Rm) →
L∞
loc(R≥0,R

q) for which the following properties hold:
• Causality: ∀ y1, y2 ∈ C([t0 − σ,∞),Rm) ∀ t ≥ t0:

y1|[t0−σ,t] = y2|[t0−σ,t] =⇒ T(y1)|[t0,t] = T(y2)|[t0,t].

• Local Lipschitz: ∀ t ≥ t0 ∀ y ∈ C([t0 − σ, t],Rm)
∃∆, δ, c > 0 ∀ y1, y2 ∈ C([t0 − σ,∞),Rm) with
y1|[t0−σ,t] = y2|[t0−σ,t] = y and ∥y1(s)− y(t)∥ < δ,
∥y2(s)− y(t)∥ < δ for all s ∈ [t, t+∆]:

ess sup
s∈[t,t+∆]

∥T(y1)(s)−T(y2)(s)∥≤c sup
s∈[t,t+∆]

∥y1(s)−y2(s)∥.

• Bounded-input bounded-output (BIBO): ∀ c0 > 0
∃ c1 > 0 ∀ y ∈ C([t0 − σ,∞),Rm):

sup
t∈[t0−σ,∞)

∥y(t)∥ ≤ c0 =⇒ sup
t∈[t0,∞)

∥T(y)(t)∥ ≤ c1.

Since the operator T acts on the whole output trajectory,
the causality property of Definition 2.1 enforces that the
system does not depend on future system states. The second
condition (locally Lipschitz) is more of a technical nature

to guarantee existence and uniqueness of solutions. Finally,
the BIBO property ensures that the system remains bounded
as long as the system output does. Note that using the
operator T many physical phenomena such as backlash, and
relay hysteresis, and nonlinear time delays can be modeled,
where σ ≥ 0 corresponds to the initial delay, cf. [20,
Sec. 1.2].

Remark 2.1: Consider a nonlinear control affine system

ẋ(t) = F (x(t)) +G(x(t))u(t), x(t0) = x0 ∈ Rn,
y(t) = H(x(t)),

(2)

with t0 ∈ R≥0, x0 ∈ Rn, and nonlinear functions F ∈
C1(Rn,Rn), G ∈ C1(Rn,Rn×m), and H ∈ C2(Rn,Rm).
Under assumptions provided in [21, Cor. 5.6], there exists a
diffeomorphism Φ : Rn → Rn which induces a coordinate
transformation putting the system (2) into the form (1)
with new coordinates (y, η) ∈ Rm × Rn−m (output and
internal state) for appropriate functions f , g, operator T,
and σ = 0. In this case T is the solution operator of the
internal dynamics of the transformed system. As in [9],
exact knowledge about the coordinate transformation and
computation of the diffeomorphism Φ is not required to apply
Algorithm 1 to the system (2) – merely the existence of Φ
has to be assumed as a mean for the proofs.

Invoking the requirements for the operator in Defini-
tion 2.1, we formally introduce the system class.

Definition 2.2: For m ∈ N, a system (1) belongs to
the system class Nm, written (f, g,T) ∈ Nm, if, for some
q ∈ N and σ ≥ 0, the following holds: f ∈ C(Rq,Rm),
T ∈ T m,q

σ , and the function g is strictly positive definite,
that is for all ξ ∈ Rq and for all z ∈ Rm \ {0}

⟨z, g(ξ)z⟩ > 0. (3)
For t ≥ 0 and a control function u ∈ L∞

loc(R≥0,R
m),

the system (1) has a solution in the sense of Carathéodory,
meaning there exists a function y : [t0 − σ, ω) → Rm,
ω > t0, with y|[t0−σ,t0] = y0 ∈ C([t0 − σ, t0],R

m)
and y|[t0,ω) is absolutely continuous and satisfies the ODE
in (1) for almost all t ∈ [t0, ω). A solution y is called
maximal, if it has no right extension that is also a solution.
A maximal solution is called response associated with u and
denoted by y(·; t0, y0, u). Note that in the case σ = 0, we
mean by y|[t0−σ,t0] the evaluation of the function at t0, i.e.,
y|[t0−σ,t0] = y(t0), and refer to the vector space Rm when
using the notation C([t0 − σ, t0],R

m).

B. Control objective

The control objective is that the output y of system (1)
follows a given reference yref with predefined accuracy. To
be more precise, the tracking error t 7→ e(t) := y(t)−yref(t)
shall evolve within the prescribed performance funnel

Fψ = { (t, e) ∈ R≥0 ×Rm | ∥e∥ ≤ ψ(t) } ,

or formulated in a different way, the output y(t) should at
every time instance t ≥ t0 belong to the set

Dt := { y ∈ Rm | ∥y − yref(t)∥ ≤ ψ(t) } . (4)



The performance set Fψ is determined by the choice of the
function ψ belonging to

G :=

{
ψ ∈W 1,∞(R≥0,R)

∣∣∣∣ inf
s≥0

ψ(s) > 0

}
,

see also Figure 1. Note that keeping the tracking error

t
•

inf
t≥0

ψ(t)

(0, e(0)) ψ(t)

Fig. 1: Error evolution in a funnel Fψ with boundary ψ(t);
the figure is based on [22, Fig. 1], edited for present purpose.

in Fψ does not mean asymptotic convergence to zero.
Moreover, the funnel boundary is not necessarily monotoni-
cally decreasing. The specific application usually dictates the
constraints on the tracking error and thus indicates suitable
choices for ψ.

III. SAMPLED-DATA MPC
We aim to develop an MPC algorithm, which achieves

the aforementioned control objective. In contrast to the MPC
scheme proposed in [8], [9], the space of admissible controls
is restricted to step functions, i.e., the control signal can only
change finitely often between two sampling instances. In
other words, we use sampled-data control. To introduce the
control scheme properly, we formally define step functions
in the following definition.

Definition 3.1: Let I ⊂ R≥0 be an interval of the form
I = [a, b] with b > a or I = [a,∞). We call a strictly
increasing sequence P = (tk)k∈N0 with limk→∞ tk = ∞
and t0 = a a partition of I . The norm of P is defined as
|P| := sup { ti+1 − ti | i ∈ N0 }. A function f : I → Rm

is called step function with partition P if f is constant on ev-
ery interval [ti, ti+1)∩I for all i ∈ N0. We denote the space
of all step functions on I with partition P by TP(I,Rm).

Note that in the case of finite intervals I = [a, b] with
b > a, Definition 3.1 can also be formulated using finite
sequences P = (tk)

N
k=0 with N ∈ N and tN = b.

However, using infinite sequences every partition P of [a,∞)
is also a partition of [a, b] for all b > a. Using this fact
will simplify formulating our results. Changing the control
signal is restricted to the time instances tk. Further note
that Definition 3.1 allows for non-uniform step length, i.e.,
for τi = |ti−1 − ti| we allow τk ̸= τj for k ̸= j, where
i, j, k ∈ N. However, in practice, a uniform step length often
will be used.

Before formulating an MPC algorithm which achieves the
control objective described in Section II-B, we introduce the
class of admissible stage-costs. Let ℓ̃ ∈ C(R≥0 × Rm ×
Rm,R≥0). Then, we define the stage-cost ℓ piecewise by

ℓ(t, y, u)=

{
ℓ̃(t, y, u), ∥e(y, t)∥≤ψ(t),
∞, else,

(5)

where e(y, t) := y−yref(t). A suitable choice is, for instance,

ℓ(t, y, u) =

{
∥e(y, t)∥2 + λu∥u∥2, ∥e(y, t)∥ ≤ ψ(t)

∞, else,
(6)

where λu ≥ 0 is a design parameter. Note that in contrast
to the MPC scheme investigated in [8], [9], we allow for a
fairly large class of cost functions since the function ℓ̃ can be
freely chosen by the user. Moreover, the stage-cost (5) allows
the error to be “on the funnel boundary”, i.e., we allow for
∥y(t)− yref(t)∥ = ψ(t).

Invoking stage-costs like in (5), we propose the sampled-
data MPC Algorithm 1, where the input is restricted to
piecewise constant step functions with given step length.

Algorithm 1 Sampled-data MPC

Given: System (1), reference yref ∈ W 1,∞(R≥0,R
m),

funnel function ψ ∈ G, control bound umax > 0, maximal
step length τ > 0 of the control signal, and initial data
y0 ∈ C([t0 − σ, t0],R

m).
Set the time shift δ > 0, the prediction horizon T ≥ δ,
initialize the current time t̂ = t0, and choose a partition
P = (tk)k∈N0 of the interval [t0,∞) with |P| ≤ τ and
which contains (t0 + kδ)k∈N0 as a subsequence.
Steps:
1. Obtain a measurement of the output y of (1) on the

interval [t0 − σ, t̂] and set ŷ := y|[t0−σ,t̂].
2. Compute a solution u⋆ ∈ TP([tk, tk + T ],Rm) of

minimize
u∈TP([tk,tk+T ],Rm),

∥u∥∞≤umax

∫ tk+T

tk

ℓ(t, y(t; t̂, ŷ, u), u) dt. (7)

3. Apply the sampled-data control signal µ : [t̂, t̂ + δ) ×
C([t0 − σ, t̂],Rm) → Rm, defined by

µ(t, ŷ) = u⋆(t) (8)

to system (1). Increase t̂ by δ and go to Step 1.

Remark 3.1: If the system is given as nonlinear control
affine system (2), availability of the output signal y is not
required on the whole interval [t0, t̂] during Step 1 of Algo-
rithm 1, but measurement of the state x̂ = x(t̂; t0, x

0, uMPC)
is sufficient.

Remark 3.2: Note that while the time shift δ > 0 is an
upper bound for the step length τ > 0 of the control signals,
δ is allowed to be larger than τ under the condition that
the partition P contains (t0 + kδ)k∈N0 as a subsequence. In
this case, several control signals are applied to the system
between two steps of the MPC Algorithm 1. This can also
be interpreted as a multi-step MPC scheme, cf. [23].

In the following main result we show that the sampled-
data MPC Algorithm 1 is initially and recursively feasible
for every prediction horizon T > 0.

Theorem 3.1: Consider system (1) with (f, g,T) ∈ Nm

and initial data y0 ∈ C([t0 − σ, t0],R
m). Let ψ ∈ G and

yref ∈ W 1,∞(R≥0,R
m). Then, there exists umax > 0



and τ > 0 such that Algorithm 1 with T > 0 and δ > 0 is
initially and recursively feasible, i.e., at time t̂ = t0 and at
each successor time t̂ ∈ t0+ δN the OCP (7) has a solution.
In particular, the closed-loop system consisting of (1) and
feedback (8) has a (not necessarily unique) global solution
y : [t0,∞) → Rm and the corresponding input is given by

uMPC(t) = µ(t, y|[t0−σ,t̂]).

Furthermore, each global solution x with corresponding input
uMPC satisfies:

(i) ∀ t ≥ t0 : ∥uMPC(t)∥ ≤ umax.
(ii) The error e = y − yref evolves within the error

boundaries Fψ , i.e., ∥e(t)∥ ≤ ψ(t) for all t ≥ t0.
The proof is relegated to the appendix. Here, we sketch

the main ideas. First, using the construction of the sampled-
data controller [15], we show that there exist sampled-data
inputs satisfying the input constraints, and achieving the
output constraints. Invoking the definition of admissible cost
functions (5), we establish that the cost function is finite if
and only if the corresponding input belongs to the set of
admissible controls

UI(umax, ŷ) :=

{
u ∈ L∞(I,Rm)

∣∣∣∣y(t; t̂, ŷ, u) ∈ Dt∀ t ∈ I,
∥u∥∞ ≤ umax

}
,

where ŷ ∈ C([t0 − σ, t̂],Rm) with ŷ(t) ∈ Dt for all t ∈
[t0, t̂]. Finally, we show that minimal costs can be achieved
by sampled-data controls, and in fact, that these controls are
contained in the set of admissible controls.

Although Theorem 3.1 is an existence results, we empha-
size that feasible choices for the step length τ > 0 and the
maximal control umax are given explicitly in (12) and (13).
The bound umax is constructed using worst-case estimates of
the system dynamics and the funnel function ψ. It is large
enough such that a constant control input of this magnitude
can steer the system output y away the boundary of the
funnel Fψ . The step length τ > 0, on the other hand, is
small enough to avoid overshooting within one sampling
interval. Since the derivation of both quantities requires some
additional notation, we relegate the explicit expressions to the
appendix.

IV. SIMULATION

The theoretical results are illustrated by a numerical ex-
ample. We consider a torsional oscillator with two flywheels,
which are connected by a rod, see Figure 2. Such a system
can be interpreted as a simple model of a driving train,
cf. [24], [25]. The equations of motion for the torsional
oscillator are given by[

I1 0
0 I2

](
z̈1(t)
z̈2(t)

)
=

[
−d d
d −d

](
ż1(t)
ż2(t)

)
+

[
−k k
k −k

](
z1(t)
z2(t)

)
+

[
1
0

]
u(t),

where for i = 1, 2 (the index 1 refers to the lower flywheel)
zi is the rotational position of the flywheel, Ii > 0 is the
inertia, d, k > 0 are damping and torsional-spring constant,
respectively. We aim to control the oscillator such that the

z1

z2

u

k, d

Fig. 2: Torsional oscillator. The figure is based on [25,
Fig. 2.7], edited to the case of two flywheels for the present
purpose.

lower flywheel follows a given velocity profile. Hence, we
choose y(t) = ż1(t) as the output. To remove the rigid body
motion from the dynamics, we introduce ẑ := z1 − z2. With
this new variable, setting x := (ẑ, ż1, ż2) the dynamics can
be written as

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) = ż1(t),

where

M :=

1 0 0
0 I1 0
0 0 I2

 , Ã :=

 0 1 −1
−k −d d
k d −d

 , B̃ :=

01
0

 ,
A :=M−1Ã, B :=M−1B̃, C =

[
0 1 0

]
.

Using standard techniques, see, e.g., [26], and invoking
Remark 2.1, the reduced dynamics of the torsional oscillator
can then be written in input/output form

ẏ(t) = Ry(t) + Sη(t) + Γu(t),

η̇(t) = Qη(t) + Py(t),
(9)

where η is the internal state, and R = −d
I1
, S = 1

I1
[ k d ],

Q = 1
I2

[
0 I2
−k −d

]
, P = 1

I2

[−I2
d

]
. Note that Q is a stable ma-

trix, i.e., its eigenvalues are on the left half plane. Thus, the
internal dynamics are bounded-input bounded-state stable.

The high-gain matrix is given by Γ := CB = 1/I1 > 0.
For purpose of simulation, we choose the reference

yref(t) =
250

2

(
1 +

1√
2π

∫ t

0

e−
1
2 (s−3)2ds

)
,

which is a modified version of the error function (ERF)
and represents a smooth transition from zero rotation to a
(approximately) constant angular velocity of 250 rotations
per unit time. Thus, ∥yref∥∞ ≤ 250, ∥ẏref∥∞ = 250/

√
2π.

Inserting the dimensionless parameters I1 = 0.136, I2 =
0.12, k = 10, and d = 16, and invoking the reference yref
and the constant error tolerance ψ = 25 (we allow 10%
deviation), we may derive worst case bounds on the system
dynamics by estimating the explicit solution of the linear
equations (9). We compute these bounds in order to estimate
a sufficiently large umax > 0 as in (12). For the sake of
simplicity, we will assume η(0) = 0, which does not cause
loss of generality. For ∥y∥∞ ≤ ∥yref∥∞ + ψ we estimate

∀ t ≥ 0 : ∥η(t)∥ ≤ M

µ
∥P∥(∥yref∥∞ + ψ);
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Fig. 4: Control inputs.

where M :=
√
∥K−1∥∥K∥ and µ := 1/(2∥K∥), and K ∈

R2×2 solves the Lyapunov equation KQ+Q⊤K+I(2) = 0,
where I(2) is the two dimensional identity matrix. Inserting
the values, we find that the estimates for step length of the
control signal τ and maximal control provided in (12), (13)
are satisfied with τ = 0.0047, and umax = 358. We choose
the time shift δ = τ , i.e., a constant control is applied to
the system between two iterations in Algorithm 1. Further,
the prediction horizon is set as T = 10δ. For the purpose
of simulation, we use the cost function (6) with λu = 10−1.
The results are depicted in Figures 3 and 4. We stress that the
estimates in (12), (13) are very conservative. To demonstrate
this aspect, we run a second simulation, where we chose
τ = 0.2, and T = 1. The results of this simulation are
labeled as ŷ, û, respectively. With this much larger uniform
step length, the tracking objective can be satisfied as well,
cf. Figures 3 and 4. Note that the maximal applied control
value is much smaller than the (conservative) estimate umax

which satisfies (12). The simulations have been performed
with MATLAB using the CASADI1 framework [27].

V. CONCLUSION

We proposed an MPC scheme achieving output track-
ing within prescribed bounds extending the work [9] to

1http://casadi.org

sampled-data systems. Moreover, we provided explicit, so
far, conservative bounds on the required sampling frequency
and control effort. It is still an open question how this
conservatism can be reduced and how a priori given bounds
on the control input can be incorporated in the MPC scheme
while preserving inter-sampling tracking guarantees.

Moreover, future research may extend this research to
systems with arbitrary relative degree or towards a robus-
tification similar to [28], again invoking the key results [15].

APPENDIX

Throughout the appendix, let the assumptions of Theo-
rem 3.1 hold. In preparation of proving Theorem 3.1, we
note some observations for later use and recall some results
from [15] adapted to the current setting. To achieve that the
tracking error e := y − yref evolves within Fψ with ψ ∈ G,
it is necessary that the output y(t) of the system (1) is at
every time t ≥ t0 an element of the set Dt as in (4). For a
L∞–control function u bounded by umax > 0 to achieve the
control objective on an interval I ⊂ R≥0 with t̂ := min I ,
i.e., ensuring that the tracking error e evolves within Fψ , it
is necessary for u to be an element of the set

UI(umax, ŷ) :=

{
u ∈ L∞(I,Rm)

∣∣∣∣y(t; t̂, ŷ, u) ∈ Dt∀ t ∈ I,
∥u∥∞ ≤ umax

}
,

where ŷ ∈ C([t0−σ, t̂],Rm) with ŷ(t) ∈ Dt for all t ∈ [t0, t̂].
Consequently, for a step function with partition P to achieve
the control objective it has to be an element of

UP
I (umax, ŷ) := TP(I,Rm) ∩ UI(umax, ŷ).

A solution of the system (1) which fulfills the control
objective up to a time ν > t0 is an element of the set

Yν :=
{
ζ∈C([t0 − σ,∞),Rm)

∣∣∣∣ ζ = y0, ∀ t∈ [t0, ν] :
ζ(t)−yref(t)∈Dt

}
.

This is the set of all functions ζ ∈ C([t0−σ,∞),Rm) which
coincide with y0 on [t0−σ, t0] and evolve within the funnel
Dt on the interval [t0, ν]. With this notation, we may state
the following existence result, which is a particular version
of [15, Lem. 2.2].

Lemma 1.1: Under the assumptions of Theorem 3.1, there
exist constants fmax, gmax, gmin > 0 such that for every
ν > t0, ζ ∈ Yν , z ∈ Rm\ {0} and t ∈ [t0, ν)

fmax ≥
∥∥f((T(ζ))|[t0,ν))

∥∥
∞ ,

gmax ≥
∥∥g((T(ζ))|[t0,ν))

∥∥
∞ ,

gmin ≤
〈
z, g((T(ζ))|[t0,ν)(t))z

〉
∥z∥2

.

(10)

Note that the existence of gmin is a direct consequence of
the positive definiteness of the function g as assumed in (3).
In virtue of Lemma 1.1 let

κ0 :=
∥∥ψ d

dt1/ψ
∥∥
∞ + ∥1/ψ∥∞ (fmax + ∥ẏref∥∞),

β > 2κ0

gmin∥ψ∥∞
,

κ1 := κ0 + ∥1/ψ∥∞ gmaxβ,



and τ ∈ (0, κ0/κ
2
1]. It has been proven in [15, Thm. 3.1] that

the application of the ZoH control

uZoH(t) =

0, ∥e(ti)∥ < ψ(ti)
(
1− κ2

0

κ2
1

)
,

−β ψ(ti)e(ti)∥e(ti)∥2 , ∥e(ti)∥ ≥ ψ(ti)
(
1− κ2

0

κ2
1

)
,

(11)
to the system (1), for t ∈ [ti, ti + τ) with ti = iτ ,
i ∈ N0, yields y(t; t0, y0, uZoH) ∈ Dt for all t ∈ [t0,∞).
The key aspect here is that β > 0 is large enough to
compensate worst-case dynamical behavior, and τ > 0
is small enough (but fixed) to avoid overshooting in one
sampling interval. Note that ∥uZoH∥∞ ≤ β

1−κ2
0/κ

2
1

. Con-

sequently UP
[t0,∞)(umax, y0) ̸= ∅ for umax ≥ β

1−κ2
0/κ

2
1

and all partitions P of [t0,∞) with |P | ≤ κ0/κ
2
1. If, for

t̂ ∈ τN, a on the interval [t0, t̂] piece-wise constant control
u ∈ UP

[t0,t̂]
(umax, y

0) is applied to the system (1) on the
interval [t0, t̂], then the tracking error e evolves within the
funnel Fψ , i.e., y(t; t0, y0, u) ∈ Dt for all t ∈ [t0, t̂]. In
particular, y(t̂; t0, y0, u) ∈ Dt̂. Then, y(·; t0, y0, u) can be
extended to a function ζ ∈ C([t0−σ,∞),Rm), i.e., ζ|[t0,t̂] ≡
y(·; t0, y0, u). The function ζ is an element of Yt̂. Therefore,
the prerequisites of [15, Thm. 3.1] are fulfilled with the same
constants as in (11). This means that the application of uZoH
to the system (1) on the interval [t̂,∞) ensures that the
tracking error e evolves within the funnel Fψ on the interval
[t̂,∞). Thus, we have uZoH ∈ UP

[t0,t̂]
(umax, y(t̂; t0, y

0, u)).
Summing up our observations, we state the following

direct consequence of [15, Lem. 2.2, Thm. 3.1].
Corollary 1.1: Under the assumptions of Theorem 3.1, let

umax ≥ β
1−κ2

0/κ
2
1

(12)

and P = (tk)k∈N0
be a partition of the interval [t0,∞) with

|P| ≤ κ0/κ
2
1. (13)

Then, UP
[t0,∞)(umax, y0) ̸= ∅. Furthermore, for all k, j ∈

N0, k > j, we have

∀u ∈ UP
[t0,tj ]

(umax, y
0) : UP

[t0,tk]
(umax, y(tj ; t0, y

0, u)) ̸= ∅.
(14)

With these preliminaries at hand, we may now prove Theo-
rem 3.1.
Proof of Theorem 3.1: According to Corollary 1.1, there ex-
ist umax > 0 and τ > 0 such that UP

[t0,∞)(umax, y
0) ̸= ∅ for

a partition P with |P| ≤ τ . Let T ≥ δ be arbitrary but fixed.
UP
[t0,∞)(umax, y

0) ̸= ∅ implies that UP
[t0,t0+T ](umax, y

0) is
non-empty as well. Fact (14) implies that if, at every time
instance t̂ ∈ t0 + δN0 in Step 3 of Algorithm 1, a control
u ∈ UP

[t̂,t̂+T ]
(umax, ŷ) is applied to the system (1), where

ŷ = y(t̂; t0, y
0, uMPC) is the output of the system at time t̂,

then ∥e(t)∥ = ∥y(t)− yref(t)∥ ≤ ψ(t) for all t ∈ [t̂, t̂ + δ]
and UP

[t̂+δ,t̂+δ+T ]
(umax, y(t̂ + δ; t̂, ŷ, u)) ̸= ∅. In particular,

this inductively implies that claims (i) and (ii) of Theorem 3.1
are fulfilled.

Therefore, it only remains to show that if UP
[t̂,t̂+T ]

(umax, ŷ)

is non-empty for some t̂ ∈ t0 + δN0 and ŷ ∈ C([t0 −

σ, t̂],Rm) with ŷ(t) ∈ Dt for all t ∈ [t0, t̂], then the
OCP (7) has a solution u⋆ ∈ UP

[t̂,t̂+T ]
(umax, ŷ). To prove

this, assume UP
[t̂,t̂+T ]

(umax, ŷ) ̸= ∅ for t̂ ∈ t0 + δN0 and
ŷ ∈ C([t0 − σ, t̂],Rm) with ŷ(t) ∈ Dt for all t ∈ [t0, t̂].
Define the function J : L∞([t̂, t̂+ T ],Rm) → R ∪ {∞} by

J(u) =

∫ t̂+T

t̂

ℓ(t, y(t; t̂, ŷ, u), u) dt.

Step 1: Adapting [9, Thm. 4.3] to the current setting we show
that J(u) <∞ for u ∈ L∞([t̂, t̂+T ],Rm) with ∥u∥ ≤ umax

if and only if u ∈ U[t̂,t̂+T ](umax, ŷ). Given u ∈ UT (umax, ŷ),
it follows from the definition of UT (umax, ŷ) that e(t) :=
y(t; t̂, ŷ, u)− yref(t) ∈ Dt for all t ∈ [t̂, t̂+ T ]. Thus,

∀ t ∈ [t̂, t̂+ T ] : ∥e(t)∥ ≤ ψ(t).

Therefore, ℓ(t, y(t; t̂, ŷ, u), u) = ℓ̃(t, y(t; t̂, ŷ, u), u) for all
t ∈ [t̂, t̂+ T ]. Since ℓ̃ is a continuous non-negative function,
there exists an ℓ̄ > 0 such that ℓ̃(t, y, u) ≤ ℓ̄ for all t ∈
[t̂, t̂+ T ], u ∈ Bumax and all y ∈ Dt. Hence,

J(u) =

∫ t̂+T

t̂

ℓ̃(t, y(t; t̂, ŷ, u), u) dt ≤ T ℓ̄ <∞.

To show the opposite direction, let u ∈ L∞([t̂, t̂ + T ],Rm)
with J(u) < ∞. Assume there exists t̃ ∈ (t̂, t̂ + T ] with∥∥e(t̃)∥∥ > ψ(t̃). By continuity of the involved functions, there
exists ε ∈ (0, t̃− t̂) with ∥e(t)∥ > ψ(t) for all t ∈ (t̃− ε, t̃).
Thus,

J(u) =

∫ t̂+T

t̂

ℓ(t, y(t; t̂, ŷ, u), u) dt

≥
∫ t̃

t̃−ε
ℓ(t, y(t; t̂, ŷ, u), u) dt = ε · ∞ = ∞.

Step 2: We prove that minu∈UP
[t̂,t̂+T ]

(umax,ŷ) J(u)

exists. Since UP
[t̂,t̂+T ]

(umax, ŷ) ⊂ U[t̂,t̂+T ](umax, ŷ),
the set U[t̂,t̂+T ](umax, ŷ) is non-empty by assumption.
Since J(u) ≥ 0 for all u ∈ UP

[t̂,t̂+T ]
, the infimum

J⋆ := infu∈UP
[t̂,t̂+T ]

(umax,ŷ) J(u) exists. Let (uk)k∈N0
∈(

UP
[t̂,t̂+T ]

(umax, ŷ)
)N0

be a minimizing sequence, meaning
J(uk) → J⋆. By choice in the Algorithm 1, we
known that (t0 + δk)k∈N0

is a subsequence of the
partition P = (tk)k∈N0 . Therefore, there exists M,N ∈ N0,
N ≥M with tM = t̂ and tn > t̂+ T for all n > N . Define
ui,k := uk(ti) for i = M, . . . , N . For every i = M, . . . , N ,
(ui,k)k∈N0

is a sequence in Rm with ∥ui,k∥ ≤ umax

for all k ∈ N. Thus, it has a limit point u⋆i ∈ Rm.
The function u⋆ defined by u⋆|[ti,ti+1)∩[t̂,t̂+T ] := u⋆i is
an element of TP([t̂, t̂ + T ],Rm) with ∥u⋆∥ ≤ umax.
Up to subsequence, uk converges uniformly to u⋆.
Let yk := y(·; t0, y0, uk) be the sequence of associated
responses. By an adaption of the Steps 2, 3 of the proof
of [9, Thm. 4.6] to the current setting, we may infer that
(yk) has a subsequence (which we do not relabel) that
converges uniformly to y⋆(·; t̂, ŷ, u⋆). It remains to show
u⋆ ∈ UP

[t̂,t̂+T ]
(umax, ŷ). This means to show y⋆(t) ∈ Dt



for all t ∈ [t̂, t̂ + T ]. Assume there exists τ ∈ (t̂, t̂ + T ]
with y⋆(τ) /∈ Dτ , i.e., ∥y⋆(τ)− yref(τ)∥ > ψ(τ). There
exists ε > 0 with ∥y⋆(τ)− yref(τ)∥ > ψ(τ) + ε. Since
the uniform convergence of (yk) towards y⋆ implies
pointwise convergence of (yk), there exists K > 0 such
that ∥y⋆(τ)− yk(τ)∥ < ε for all k ≥ K. Furthermore,
∥yk(τ)− yref(τ)∥ ≤ ψ(τ) since uk ∈ UP

[t̂,t̂+T ]
(umax, ŷ)

for all k ∈ N0. This raises the following contradiction for
k ≥ K

ψ(τ) + ε < ∥y⋆(τ)− yref(τ)∥
≤ ∥y⋆(τ)− yk(τ)∥ + ∥yk(τ)− yref(τ)∥
≤ ε+ ψ(τ).

Thus, u⋆ ∈ UP
[t̂,t̂+T ]

(umax, ŷ). It remains to show that
J⋆ = J(u⋆) and J(u⋆) = minu∈UP

[t̂,t̂+T ]
(umax,ŷ) J(u), which

follows along the lines of Steps 6, 7 of the proof of [9,
Thm. 4.6]. □
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[8] T. Berger, C. Kästner, and K. Worthmann, “Learning-based Funnel-
MPC for output-constrained nonlinear systems,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 5177–5182, 2020.
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[15] L. Lanza, D. Dennstädt, K. Worthmann, P. Schmitz, G. D.
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