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We compute the ab-initio electron density beyond the Born-Oppenheimer approximation in
crystalline LiH and LiD with density functional methods. We report significant beyond Born-
Oppenheimer corrections to electron density in the vicinity of nuclei equilibrium positions. We thus
verify the breakdown of the Born-Oppenheimer approximation, as earlier suggested on experimental
grounds. A reasonable agreement between the experimental and computational results is found. The
results indicate the existence of beyond Born-Oppenheimer effects in solids at normal pressures and
suggest that these effects can be significant also in solids containing elements other than hydrogen
as well.

I. INTRODUCTION

The cornerstone of our current understanding of
molecules and solids is the Born-Oppenheimer (BO) ap-
proximation [1, 2], which makes the full quantum me-
chanical electron-nuclear many-body problem computa-
tionally more feasible. It relies on the mass difference
between nuclei and electrons and has proven to hold for
a great majority of molecules and solids. One well-known
exception is the LiH molecule, where the BO breakdown
is well documented, and the molecule has been studied
by experimental [3] and computational [4–6] methods.

The crystalline LiH, among other lithium hydrides, is
of scientific interest due to the high-temperature super-
conductivity recently discovered in hydrides [7–10] and
due to their potential as hydrogen storage [11, 12]. The
X-ray diffraction experiments conducted around 30 years
ago, measuring electron density, suggest the breakdown
of the Born-Oppenheimer approximation in crystalline
LiH [13]. There have also been subsequent theoretical,
computational and experimental studies suggesting the
breakdown of the BO approximation in various hydrides
[14–16]. However, while ab-initio computations of elec-
tronic [17–19] and lattice dynamical properties [20] of
LiH have been established, there are no computational
studies which would have taken the beyond-BO effects
into account in crystalline LiH.

Here we establish the first beyond-BO computation of
electron density in crystalline LiH with density functional
methods and computationally verify the breakdown of
the BO approximation suggested by experiments [13].
Our approach is based on the results recently derived
from the beyond-BO Green’s function theory [21, 22] and
the exact factorization of this theory [23]. We summarize
the theoretical background in Sec. II and give the cal-
culational details in Sec. III. The computed beyond-BO
electron densities are represented in Sec. IVA and we
make a comparison with the experimental results in Sec.
IVB.

∗ ville.j.harkonen@gmail.com

II. THEORY

The starting point of the approach used here is the
many-body Coulomb problem of electrons and nuclei de-
scribed by the Coulomb Hamiltonian H. The solution
of the Schrödinger equation HΨ(r, r) = EΨ(r, r) is not
computationally feasible, in general. In the seminal work
by Born and Oppenheimer [1], it was shown that the ex-
act problem can be separated into two parts: one for the
electrons and one for the nuclei [2]

Hnχ (R) = Eχ (R) , (1)

HBOΦR (r) = ϵBO (R) ΦR (r) , (2)

where the nuclear (Hn) and electronic BO Hamiltonians
(HBO) are of the form

HBO = H − Tn, Hn = Tn + ϵBO. (3)

Here, Tn is the nuclear kinetic energy and ϵBO the BO
energy from Eq. 2. In some systems the BO approxima-
tion, Eqs. 1 and 2 as separate entities, fails. For these
kinds of situations alternative approaches have been de-
veloped [24–30] since the beyond-BO wave function ap-
proach is not computationally feasible in numerous cases,
including solids. One of these alternative approaches
is the beyond-BO many-body Green’s function theory
[21, 31], which allows the computation of exact observ-
ables like electron density. However, the general form is
not computationally feasible and to overcome this limita-
tion we combined the exact factorization [25–27, 32–35]
and Green’s function approaches [23]. The exact fac-
torization of the Green’s function theory [23] provides a
systematic way for deriving approximations beyond-BO.
In particular, it was shown that the lowest order beyond-
BO approximation to electron density can be written as
[23]

n (r) =

∫
dR |χ (R)|2 nR (r) . (4)

Here, nR (r) is the BO electron density extractable from
Eq. 2 and χ (R) the nuclear wave function satisfying Eq.
1. The electron density nR (r) can be computed by us-
ing computational packages like Quantum Espresso [36].
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We can solve the BO nuclear equation in the harmonic
approximation, which holds for a wide range of mate-
rials, given no significant anharmonicity appears. The
integral in Eq. 4 is demanding to compute since we have
to solve nR (r) for all nuclear configurations that the in-
teral goes through. If we assume the harmonic approx-
imation to solve the BO nuclear equation for the mth
harmonic eigenstate, χ (R) = χm (R), it is beneficial to
approximate Eq. 4 as follows. We carry out the conven-
tional coordinate transformation of lattice dynamics [2]
R = x + u, where x are parameters called the reference
positions and u are the displacements (quantum mechan-
ical variables) from the reference positions. We expand
nR (r) = nx+u (r) up to third order in u about x and Eq.
4 can be written as

nm (r) ≈ nx (r) +
1

2

∑
s1,s2

∂2nx (r)

∂xs1∂xs2

⟨m|ûs1 ûs2 |m⟩ . (5)

Here we used the fact that the first and third order terms
vanish since we assumed the harmonic eigenstates. In Eq.
5, si = αiki is the combined label for Cartesian index αi

and the label for the kith nucleus. We can incorporate
temperature dependence by taking harmonic canonical
thermal average of Eq. 5 with respect to the nuclear
states, namely

⟨n (r)⟩ = nx (r) +
1

2

∑
s1,s2

∂2nx (r)

∂xs1∂xs2

⟨ûs1 ûs2⟩ . (6)

We denote the last term of Eq. 6 as ⟨n′
x (r)⟩ ≡

1
2

∑
s1,s2

∂2nx(r)
∂xs1

∂xs2
⟨ûs1 ûs2⟩ and use the following notation

for the ensemble average

⟨ô⟩ =
∑
m

pm ⟨m|ô|m⟩ , pm =
e−βEm∑
m′ e−βEm′

, (7)

where Em is the eigenvalue of the mth eigenstate of the
harmonic nuclear Hamiltonian. The quantities needed to
compute ⟨n (r)⟩ are therefore the equilibrium BO electron
density nx (r), its second order mixed partial derivatives
and the covariance ⟨ûs1 ûs2⟩ [37, 38]. We compute these
quantities by using open source ab-initio computational
package Quantum Espresso (QE) [36], which is based on
density functional theory [39, 40]. The QE program pack-
age has been successfully used to predict various exper-
imentally relevant quantities of interest [41] within BO
approximation, including phonon related properties [42–
44].

III. CALCULATIONAL DETAILS

With QE (version 7.0), we use projector augmented-
wave method [45] and PBE functional [46]. The har-
monic phonon frequencies are computed by using the
density functional perturbation theory as implemented
in QE [47]. The plane wave kinetic energy and charge

density cut-off values used were 80 Ry and 560 Ry, re-
spectively. The electronic structure was computed with
20×20×20 k point grids. We constructed 2×2×2 super-
cells in order to compute the electron density derivatives
of Eq. (6). The derivatives were computed as finite cen-
tral differences with 0.5% displacements from the nuclear
equilibrium positions. To compute the electron density
corrections from Eq. (6) we computed the lattice dy-
namical properties with the q point meshes matching the
supercell dimensions. The structure parameters for LiH
(Fm3̄m), which define the structure, are given in Table
1 of [13]. The LiH structure parameters used are the fol-
lowing: lattice parameter a = 4.0609 Å; fractional coordi-
nates of the in-equivalent atoms Li= (0.000, 0.000, 0.000),
H= (0.500, 0.000, 0.000). We first established the struc-
ture relaxation of the structure with the given param-
eters after which the lattice dynamical properties were
computed. The equilibrium structure of LiD is identical
to LiH in the BO approximation. All the calculations are
established at 0 kbar pressure.

IV. RESULTS

A. Beyond Born-Oppenheimer electron density

The conventional unit cell of the LiH crystal structure
is given in Fig. 1(a) and the phonon dispersions for LiH
and LiD in Fig. 1(b). The phonon dispersion closely re-
sembles to that obtained in earlier studies [20, 48]. The
acoustic modes of LiH and LiD are rather close to iden-
tical implying that these modes almost completely con-
sist of vibrations of Li atoms. As expected, the optical
modes in LiD are scaled down relative to the correspond-
ing modes of LiH due to the higher mass of deuterium.
The relative change [⟨n (r)⟩ − nx (r)] /nx (r) =

⟨n′
x (r)⟩ /nx (r) in electron density in the 100-plane of

the conventional cell [see Fig. 1(a)] is depicted in Fig.
1(c). Moreover, electron densities along different lines
of the 100-plane are given by Figs. 1(d)-1(f). We see
a significant breakdown of the BO approximation. The
largest relative change is around -76%/-82% (0 K/300
K) at the hydrogen nuclear equilibrium positions and
around -47%/-75% (0 K/300 K) at the lithium equilib-
rium positions. The largest positive relative change is in
the surrounding volumes of the Li nuclear positions. The
relative change is positive in the large volumes between
the nuclei. In the case of LiD, the largest relative change
is around -53%/-62% (0 K/300 K) at the deuterium nu-
clear equilibrium positions, the changes around Li nuclei
being essentially identical to that in LiH. The breakdown
is more significant at higher temperatures, especially in
the vicinity of the heavier nuclei, lithium and deuterium.
We see drastic deviations at 300 K as the BO values are
about five times higher than the beyond-BO values at
the equilibrium positions of hydrogen and lithium. The
functional form of the beyond-BO and BO densities at
0 K is the same around the Li nuclei, but around the
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FIG. 1. Phonon dispersions for LiH and LiD and electron densities (pseudo) in 100-plane of the conventional unit cell (110-plane
of the primitive cell) and in selected lines along the 100-plane. The electron densities are normalized to the number of (valence)
electrons per unit cell. (a) The conventional unit cell with the 100-plane indicated with a green plane in the lower left corner
(b) phonon dispersions for LiH and LiD (c) the difference of beyond-BO and BO densities relative to nx (r) in percentage at
0 K, (d) electron densities along the line between lithium nuclei (pointed out in c), (e) between lithium and hydrogen and (f)
between hydrogen nuclei. In (d), ⟨nd⟩ denotes the diagonal contribution to ⟨n⟩ discussed in the text. We have left out the lines
for LiD in (d) and (e) since in the vicinity of lithium nuclei the results are essentially identical.

hydrogen(deuterium) nuclei, the change from unimodal
to bimodal functional shape occurs. At 300 K the func-
tional forms of the densities near all nuclei, including
lithium, change from unimodal to bimodal shape. In
Fig. 1(d), the diagonal elements of Eq. 6 are depicted
and these terms essentially explain the whole beyond-BO
effect. The change in electron density at a given point in
space is thus caused by a local position uncertainty of the
nucleus, which is the same mechanism that occurs in the
YH6 superconductor and Cs-IV phase of solid hydrogen
[38].

B. Comparison with experiment

Our findings support the suggested breakdown of the
BO approximation based on experiments [13, 49]. We
verify the difference in densities of LiH and LiD in the
volumes near H and D nuclei, which is a sign of BO break-

down and was noted in [13]. The measurements cannot
be made within the BO approximation and thus are not,
at least directly, able to distinct the breakdown near the
Li nuclei. Our results show a significant reduction of elec-
tron density at the volumes near the nuclear equilibrium
positions of all three species of elements. The results also
indicate that the breakdown occurs in both studied states
of matter.

The computed spherically averaged radial densities
with the previous experimental results at 293 K [13] for
LiH are depicted in Fig. 2. Both, the pseudo and all-
electron densities are given. At low radii range (below
∼ 0.1 au), we have numerical instabilities in the compu-
tation of all-electron density derivatives. The radial BO
density is flattened for both species by the beyond-BO ef-
fects. For lithium, the computed values are rather close
to the experimental ones at low and high radii ranges.
The largest differences are at around ∼ 0.5 au radius.
The beyond-BO densities, in comparison to the corre-
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FIG. 2. Spherically averaged radial electron densities in LiH.
(a) For Li nucleus (b) for H nucleus. The computed pseudo
and all electron densities are given. The experimental data
at 293 K is from Ref. [13]. Some numerical instabilities were
detected in the all-electron density derivatives, which mani-
fest themselves in the beyond-Born-Oppenheimer all-electron
curves at small radii away from the nuclei.

sponding BO densities, are closer to the experimental
values essentially in the whole range considered. In the
middle radii range, the experimental density is further
flattened in comparison to our computational result and
the curve is peaking around ∼ 0.1 au later. The results
for hydrogen follow along the similar lines: the smallest
deviations are obtained at lowest radii and the largest
deviation appears in the middle range. In this case the
experimental results imply higher values at the middle
range, which is the opposite to what we found for lithium.
Again, the BO densities are the furthest away from the
experimental values essentially the whole range consid-
ered. There are several factors that can cause these men-
tioned differences. Possible factors are errors originating
from the density functional used and the neglected of
anharmonicity. We note, however, that the computed
phonon dispersions here are consistent with earlier com-
putational results, which appear to closely match the ex-
perimental findings. [48]. This implies a relatively weak

anharmonicity. It remains to be seen if the computa-
tional result about the bimodal shapes of the density at
the nuclei equilibrium positions, visible in Fig. 1, can be
verified by modern experimental methods [50, 51]. It ap-
pears that the current experimental data with the model
used [13] to refine the experimental X-ray data does not
repeat these features.

V. CONCLUSION

We have studied beyond-BO corrections to the elec-
tronic structure of LiH and LiD and report a significant
failure of the BO approximation, particularly apparent in
volumes near the nuclei. The temperature dependence of
electron density was found to be stronger at the vicinity
of the heavier nuclei. While the our computational re-
sults compare rather well to the earlier experimental re-
sults there still remains room for improvement, like the
inclusion of anharmonicity.

Earlier computational results on YH6 superconductor
and Cs-IV phase of hydrogen [38] imply the failure of
BO approximation in phases of matter that exist at high
pressures. Here we show that the BO approximation can
also fail in states of matter that exist at low pressures
and that the mechanism of the breakdown is local posi-
tion uncertainty of the nuclei. Another important aspect
indicated by the results is that a significant BO break-
down can occur in elements other than hydrogen, lithium
and deuterium in the present case. The lithium is around
seven times more massive than hydrogen which suggests
that there could be relevant beyond-BO effects in a num-
ber of different solids. For instance, carbon has less than
twice the mass of lithium.

To summarize. We report a significant breakdown of
the BO approximation in LiH and LiD, which is verified
by computing the ab-initio beyond-BO electron density
with density functional methods. The results support the
earlier experimental findings and recent computational
findings in solid hydrogen and in YH6 superconductor
[38]. Our recent findings highlight the importance of
beyond-BO effects in solids, which are likely necessary to
consider in order to enhance our understanding of mate-
rials such as various hydrides and solid hydrogen.
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[12] N. Klopčič, I. Grimmer, F. Winkler, M. Sartory, and
A. Trattner, J. Energy Storage 72, 108456 (2023).

[13] G. Vidal-Valat, J.-P. Vidal, K. Kurki-Suonio, and
R. Kurki-Suonio, Acta Crystallog. Sect. A 48, 46 (1992).

[14] N. I. Gidopoulos, Phys. Rev. B 71, 054106 (2005).
[15] M. Krzystyniak and F. Fernandez-Alonso, Phys. Rev. B

83, 134305 (2011).
[16] M. Krzystyniak, S. E. Richards, A. G. Seel, and

F. Fernandez-Alonso, Phys. Rev. B 88, 184304 (2013).
[17] S. Baroni, G. Pastori Parravicini, and G. Pezzica, Phys.

Rev. B 32, 4077 (1985).
[18] M. J. van Setten, V. A. Popa, G. A. de Wijs, and

G. Brocks, Phys. Rev. B 75, 035204 (2007).
[19] A. Reshak, Int. J. Hydrogen Energy 38, 11946 (2013).
[20] S. Biswas, I. Errea, M. Calandra, F. Mauri, and S. Scan-

dolo, Phys. Rev. B 99, 024108 (2019).
[21] V. J. Härkönen, R. van Leeuwen, and E. K. U. Gross,

Phys. Rev. B 101, 235153 (2020).
[22] V. J. Härkönen, arXiv:2403.16103 (2024).
[23] V. J. Härkönen, Phys. Rev. B 106, 205137 (2022).
[24] T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86,

2984 (2001).
[25] N. I. Gidopoulos and E. K. U. Gross, arXiv:cond-

mat/0502433 (2005).
[26] N. I. Gidopoulos and E. K. U. Gross, Phil. Trans. R. Soc.

A 372, 20130059 (2014).
[27] A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev.

Lett. 105, 123002 (2010).
[28] E. Villaseco Arribas, F. Agostini, and N. T. Maitra,

Molecules 27, 4002 (2022).
[29] A. Muolo, A. Baiardi, R. Feldmann, and M. Reiher, J.

Chem. Phys. 152, 204103 (2020).
[30] R. Feldmann, A. Muolo, A. Baiardi, and M. Reiher, J.

Chem. Theory Comput. 18, 234 (2022).
[31] G. Baym, Ann. Phys. 14, 1 (1961).
[32] G. Hunter, Int. J. Quant. Chem. 9, 237 (1975).
[33] A. Abedi, N. T. Maitra, and E. Gross, J. Chem. Phys.

137, 22A530 (2012).
[34] A. Schild, F. Agostini, and E. Gross, J. Phys. Chem. A

120, 3316 (2016).
[35] F. Agostini and E. K. U. Gross, Exact factorization of the

electron–nuclear wave function: Theory and applications,
in Quantum Chemistry and Dynamics of Excited States
(John Wiley & Sons, 2020) Chap. 17, pp. 531–562.

[36] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-
cioni, I. Dabo, et al., J. Phys.: Condens. Matter 21,
395502 (2009).

[37] V. J. Härkönen and A. J. Karttunen, Phys. Rev. B 89,
024305 (2014).

[38] V. J. Härkönen, arXiv:2311.06114 (2023).
[39] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864

(1964).
[40] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[41] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau,

M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, M. Cococcioni, et al., J. Phys.: Condens.
matter 29, 465901 (2017).

[42] V. J. Härkönen and A. J. Karttunen, Phys. Rev. B 93,
024307 (2016).

[43] V. J. Härkönen and A. J. Karttunen, Phys. Rev. B 94,
054310 (2016).

[44] T. Tadano and W. A. Saidi, Phys. Rev. Lett. 129, 185901
(2022).
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