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cannot explain every observational phenomenon. People have tried many kinds of modified

gravity theory to explain these phenomena which GR cannot explain very well, such as

string theory. In recent years Double Field Theory (DFT) has been an exciting research

area in string theory. The most general, spherically symmetric, asymptotically flat, static

vacuum solution to D = 4 double field theory has been derived by S.M. Ko, J.H. Park

and M. Suh. In this article, we calculate the minor corrections to the three predictions in

GR: optical deflation, planet precession and gravitational redshift. These three predictions

should be able to tested by observations and find the discrepancies between GR and DFT

in the future.
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1 Introduction

At present General Relativity (GR) is the most successful theory of gravity, which has

been verified by observations accurately. Although GR is very successful, it still cannot

explain every observational phenomenon. Take the galaxy rotation curve as an example.

While GR predicts the Keplerian inverse square root fall-off of the velocities, however,

observations show rather ‘flat’ (∼ 150 km/s) or ‘rising’ curves [1, 2]. The resolution of the

discrepancy might call for dark matter or modifications of the theory of gravity [1, 3], or

perhaps both. So far the most promising quantum gravity theory is string theory, which

is believed to unify four fundamental interactions. Therefore, it is natural to apply string

theory to explain the phenomena which GR cannot explain successfully, such as the galaxy

rotation curve.

On the one hand, in general relativity the metric, gµν , is the only geometric object. All

other fields, which source the gravity, are viewed as matter or radiation. On the other

hand, string theory puts a two-form gauge potential and a scalar dilaton on an equal

footing along with the metric, since the three of them, conventionally denoted by Bµν , φ,

gµν , correspond to the massless NS-NS sector and form a multiplet of T-duality [1]. This

may indicate the existence of an alternative theory of gravity where the whole massless

NS-NS sector becomes geometric as the gravitational unity. Such an idea has been realized

in recent years through the developments of Double Field Theory (DFT) [1].

In this article, we intend to consider the observational tests of 4d Double Field Theory

(DFT), which is an exciting research area in string theory in recent years. The primary

goal of DFT [1, 4–6] was to reformulate supergravity with doubled coordinates, namely,

xA = (x̃µ, x
ν), in a way that T-duality has been a manifest symmetry of the action and

unifies diffeomorphism and B-field gauge symmetry into ‘doubled diffeomorphism’ [7–9].
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The most general, spherically symmetric, asymptotically flat, static vacuum solution to

D = 4 double field theory has been derived directly in [1]. The equivalent form of the

solution can be obtained by using S-duality [10]. Furthermore, Stephen Angus, Kyoungho

Cho and Jeong-Hyuck Park studied more properties of Einstein double field equations in

[11]. In [12], Choi and Park performed post-Newtonian analysis of double field theory as a

test of string theory in gravitational sector against observations. In [23] the authors claimed

that 4D DFT has passed a test for late-time cosmology. Yang Liu analyzed Hawking

radiation of the solution [19], which was obtained in [1].

In our article, we intend to study some observational tests of the solution obtained in

ref.[1]. The article is composed as follows: in section 2, we review the double field theory

and spherical solutions in 4D double field theory briefly; in section 3, we obtain three

observational tests for the spherical solution; in section 4, the results of the article have

been discussed.

2 Review of 4D Double Field Theory

2.1 Review of double field theory

Double field theory (DFT) generalizes the spacetime action, which can possess T-duality on

the level of component fields manifestly [13]. Earlier efforts can be traced back to [14, 15].

Due to the equivalence of spacetime momenta and winding numbers in the string spectra

[13], a set of conjugated coordinates x̃i, which is conjugated to winding numbers, can be

introduced naturally [13]. These conjugated coordinates are treated on the same footing

as the usual coordinates xi. Then the dimension of spacetime is doubled from D to D+D

[13].

The action of DFT unifies the metric gij , the two-form bij and the dilaton φ by rewriting

these fields in an O(D,D) covariant way. If there is no dependence on the conjugated

coordinates, the DFT can be reduced to the supergravity action [16]. The action is given

by

S =

∫

dxdx̃e−2dR, (2.1)

where d is the shifted dilaton, which contains the determinant of the metric and the usual

dilaton φ both [16, 17], i.e.,

e−2d =
√−ge−2φ, (2.2)

and

R =
1

8
HMN∂MHKL∂NHKL − 1

2
HMN∂NHKL∂LHMK − ∂Md∂NHMN + 4HMN∂Md∂Nd,

(2.3)

where the generalized metric HMN is defined as

HMN =

[

gij −gikbkj
bikg

kj gij − bikg
klblj

]

. (2.4)

The level matching condition in closed string theory imposes the “weak constraint”, ∂∂̃φ(x, x̃) =

0, for any field φ(x, x̃). Furthermore, in order to ensure the action locally equivalent to
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the low energy effective string action, the “strong constraint”, ∂∂̃ = 0, is required as an

operator equation, acting on any products of the fields [13].

2.2 Spherical solutions in D=4 double field theory

In this section, we review the most general form of the static, asymptotically flat and spher-

ically symmetric vacuum solutions to D = 4 double field theory briefly [1, 11]. Without

loss of generality, the metric for the string frame can be assumed as

ds2 = e2φ(r)[−A(r)dt2 +A(r)−1dr2 +A(r)−1C(r)dΩ2], (2.5)

where

dΩ2 = dθ2 + sin2 θdϕ2. (2.6)

It is worthwhile to note that our string frame metric ansatz takes the product form of the

dilaton factor, e2φ, times the Einstein frame metric [1].

If the spacetime is asymptotically ’flat’, then the metric (2.5) should satisfy the following

three boundary conditions [1]:

lim
r→∞

A(r) = 1, (2.7)

lim
r→∞

r−2C(r) = 1, (2.8)

lim
r→∞

φ(r) = 0. (2.9)

From the asymptotic ‘smoothness’, the metric (2.5) should satisfy [1]:

lim
r→∞

A′(r) = lim
r→∞

A′′(r) = 0, (2.10)

lim
r→∞

r−1C ′(r) = lim
r→∞

C ′′(r) = 2, (2.11)

lim
r→∞

φ′(r) = lim
r→∞

φ′′(r) = 0. (2.12)

We write the B-field using the form notation [1]

B(2) =
1

2
Bµνdx

µ ∧ dxν = B(r) cos θdr ∧ dϕ+ h cos θdt ∧ dϕ. (2.13)

The H-flux, which takes the most general spherically symmetric form, can be written as

[1]

H(3) =
1

3!
Hλµνdx

λ ∧ dxµ ∧ dxν = B(r) sin θdr ∧ dθ ∧ dϕ+ h sin θdt ∧ dθ ∧ dϕ, (2.14)

which is closed for constant h [1]. As a result, with four constants a, b, c, h and [1]

c+ = c+
1

2

√

a2 + b2, (2.15)

c− = c− 1

2

√

a2 + b2, (2.16)

γ± =
1

2
(1±

√

1− h2/b2), (2.17)
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the metric (2.5) can be given [1, 11]:

e2φ = γ+(
r − α

r + β
)

b√
a2+b2 + γ−(

r + β

r − α
)

b√
a2+b2 , (2.18)

B(2) = h cos θdt ∧ dϕ, (2.19)

H(3) = h sin θdt ∧ dθ ∧ dϕ, (2.20)

and

ds2 = e2φ[−(
r − α

r + β
)

a√
a2+b2 dt2 + (

r + β

r − α
)

a√
a2+b2 × {dr2 + (r − α)(r + β)dΩ2}], (2.21)

where

α =
a

a+ b

√

a2 + b2, (2.22)

and

β =
b

a+ b

√

a2 + b2. (2.23)

If the metric must be real, then we must require b2 ≥ h2 [1]. Eqs.(2.18)-(2.21) are the most

general form of the static, asymptotically flat and spherically symmetric vacuum solutions

to 4D double field theory [1, 11]. We should point out that although the fundamental

symmetry principle of DFT is the backbone of the present work, in fact, with the ansatz

(2.5) and (2.13), we are solving the full Euler-Langrangian equations of the familiar NS-NS

sector gravity, namely, [1]

S =

∫

d4x
√−ge−2φ(Rg + 4∂µφ∂

µφ− 1

12
HµνρH

µνρ), (2.24)

as they are equivalent to the vanishing of the both two indexed and zero-indexed DFT-

curvatures, which is DFT vacuum. It can be proved that the asymptotic flatness is incon-

sistent with the magnetic H-flux, therefore we set B(r) = 0 and H(3) = h sin θdt∧ dθ ∧ dϕ

[1]. We can define “proper” radius:

R ≡
√

gθθ(r) =
√

C(r)/A(r)eφ(r), (2.25)

then the angular part of the metric can be properly normalized [1]:

ds2 = gttdt
2 + gRRdR

2 +R2dΩ2 = −e2φAdt2 + e2φA−1

(

dR

dr

)−2

dR2 +R2dΩ2. (2.26)

If b = h = 0 and a = 2M∞G > 0, the Schwarzschild metric will be recovered: with proper

radius, we have

ds2 = −
(

1− 2M∞G

R

)

dt2 +

(

1− 2M∞G

R

)−1

dR2 +R2dΩ2, φ = 0, Bµν = 0.

(2.27)

If b = h = 0 and a = 2M∞G < 0, then

ds2 = −
(

1 +
2M∞G

r

)−1

dt2+

(

1 +
2M∞G

r

)

dr2+(r+2M∞G)2dΩ2, φ = 0, Bµν = 0.

(2.28)

After the radial coordinate redefinition, r → R − 2M∞G, the metric (2.26) will reduce to

(2.25) with negative mass [1].
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3 Three observational tests of 4D Double Field Theory

In this section, we consider the observational tests of D = 4 Double Field Theory. Al-

bert Einstein proposed three tests for General Relativity (GR): optical deflation, Mercury

precession and gravitational redshift [18]. In the following we will calculate the minor cor-

rections to the three predictions in GR. In section 2, we have known that if b = h = 0

and a = 2M∞G > 0, the Schwarzschild metric is recovered. Therefore, assuming b is small

and h = 0 (since the electric H-flux must be zero due to an energy condition [12]), and

a = 2M∞G > 0, in this section we will investigate the minor corrections to the three pre-

dictions in GR 1. Since b ≪ a, we just consider the first terms in an expansion in powers

of b
a
. All the following calculations are done in the Einstein frame, since all the calcula-

tions in GR are also done in the Einstein frame, which is easier to compare the theoretical

results with the observational data. Therefore, according to (2.21), the metric, which we

will consider, is the following:

ds2 = −(
r − α

r + β
)

a√
a2+b2 dt2 + (

r + β

r − α
)

a√
a2+b2 × {dr2 + (r − α)(r + β)dΩ2}, (3.1)

where

α =
a

a+ b

√

a2 + b2, (3.2)

β =
b

a+ b

√

a2 + b2. (3.3)

and

dΩ2 = dθ2 + sin2 θdϕ2. (3.4)

3.1 Optical deflation in 4D DFT

Since the rest mass of photon is zero, then we introduce an affine parameter λ and define

4-momentum of photon:

pµ =
dxµ

dλ
. (3.5)

For photon, we have

gµνp
µpν = 0, (3.6)

namely,

g00

(

dt

dλ

)2

+ g11

(

dr

dλ

)2

+ g22

(

dθ

dλ

)2

+ g33

(

dϕ

dλ

)2

= 0. (3.7)

1In fact, in 4D DFT, we can obtain that GM = 1

2
(a + b

√

1− h2/b2) = 1

2
(a + b), where M is the

Newtonian mass and h = 0 [12]. In order to compare the theoretical results with observational data, it is

convenient to take a = 2GM∞, where M∞ can be obtained from observational data. And we regard b as

the minor correction to GR. The PPN parameters, βPPN and γPPN , are widely used in the literature of

modified gravity [12]. But in order to compare the results with the standard results in GR directly, we will

not use PPN parameters in this article.
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Since the metric is isotropic, it can be considered that the orbit of photon is limited to the

equatorial plane, namely, θ = π
2 , therefore we have dθ

dλ
= 0.

For the metric (3.1), p0 and p3 are conserved, we can get

g00
dt

dλ
= −E, (3.8)

and

g33
dϕ

dλ
= L, (3.9)

where E and L represent energy and angular momentum of unit mass, respectively.

According to (3.5)-(3.9), we can have

(

dr

dλ

)2

=
−g33(

dϕ
dλ
)2 − g00(

dt
dλ
)2

g11
=

− L2

g33
− E2

g00

g11
, (3.10)

(

dϕ

dr

)2

=
(dϕ
dλ
)2

( dr
dλ
)2

=

g11
g33

L2

−L2 − g33
g00

E2
. (3.11)

According to (3.1), we have

g11
g33

=
1

(r − α)(r + β)
, (3.12)

g33
g00

= −(r − α)(r + β)
(

r−α
r+β

)
2a√

a2+b2

. (3.13)

As a result, if we take a = 2GM∞, we can obtain the following equation around b = 0:

(

1

r2
dr

dϕ

)2

=

(

E

L

)2

− 1

r2

(

1− 2GM∞
r

)

+
4

r

(

E

L

)2

b− 1

r3

(

2− 2GM∞
r

)

b. (3.14)

The first two terms on the right hand side of (3.14) are the contributions from General

Relativity, while the other two terms on the right hand side of (3.14) are the contributions

from 4D Double Field Theory.

If we define µ = GM∞

r
, then from (3.14) we have

d2µ

dϕ2
+ µ = 3µ2 − 3µ2

GM∞
b+ 2GM∞

(

E

L

)2

b+
4µ3

GM∞
b. (3.15)

We only consider the case where GM∞ is always much smaller than r. And considering

that b is very small, then the last term on the right hand side of (3.15) can be neglected,

namely,

d2µ

dϕ2
+ µ ≈ 3µ2 − 3µ2

GM∞
b+ 2GM∞

(

E

L

)2

b. (3.16)
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An approximate special solution of (3.16) is

µ = µ0 cosϕ+ µ2
0(1 + sin2 ϕ)

+
1

12
(3A cos2 ϕ+ 12B cos2 ϕ+A cosϕ cos 3ϕ + 9A sin2 ϕ+ 12B sin2 ϕ+A sinϕ sin 3ϕ),

(3.17)

where

A = − 3µ2
0

GM∞
b, (3.18)

B = 2GM∞

(

E

L

)2

b, (3.19)

µ0 =
GM∞
R

, (3.20)

and R is the radius of the star. On the right hand side of (3.17), the first two terms are

from General Relativity and the third term is the contribution from 4D DFT.

Considering the azimuth angle at ±(π2 + α), where α is a small quantity, then from (3.17)

we have

−µ0α+ 2µ2
0 −

2µ2
0

GM∞
b+

2GM∞
µ0

(

E

L

)2

b ≈ 0, (3.21)

namely,

α = 2µ0 −
2µ0

GM∞
b+ 2R

(

E

L

)2

b. (3.22)

Then the deflection angle of light line is

∆θ = 2α =
4GM∞

R
− 4b

R
+ 4R

(

E

L

)2

b. (3.23)

In (3.22), the first term in the second equal sign, 4GM∞

R
, is the result of GR. The other two

terms, which are from 4D DFT, are the minor corrections to GR for optical deflection.

3.2 Planet precession in 4D DFT

In this case, the particle is massive, then we introduce proper time τ and define 4-

momentum of a particle:

pµ =
dxµ

dτ
. (3.24)

For a massive particle, we have

gµνp
µpν = −1, (3.25)
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namely,

g00

(

dt

dτ

)2

+ g11

(

dr

dτ

)2

+ g22

(

dθ

dτ

)2

+ g33

(

dϕ

dτ

)2

= −1. (3.26)

The orbit of massive particle is still limited to the equatorial plane, namely, θ = π
2 and

dθ
dλ

= 0.

For the metric (3.1), p0 and p3 are conserved, we can still get

g00
dt

dτ
= −E, (3.27)

and

g33
dϕ

dτ
= L, (3.28)

where E and L represent energy and angular momentum of unit mass, respectively. Then

we can obtain that

(

dr

dϕ

)2

= −g233
g11

1

L2
− g33

g11
− g233

g00g11

E2

L2
, (3.29)

and

−g233
g11

= −(r − α)2(r + β)2
(

r−α
r+β

)
a√

a2+b2

. (3.30)

Considering eqs.(3.12), (3.13), (3.29) and (3.30), if we take a = 2GM∞, we can obtain the

following equation about b = 0:

(

dr

dϕ

)2

= (−r4 + 2GM∞r3)
1

L2
+

E2r4

L2
− r2 + 2GM∞r

+ (6GM∞r2 − 4r3)
b

L2
+ (2GM∞ − 2r)b+

4E2r3

L2
b.

(3.31)

If we define µ = GM∞

r
, then (3.31) can be written as

(

d2µ

dϕ2

)2

+ µ =
G2M2

∞
L2

+ 3µ2 +
6GM∞
L2

µb+

(

2GME2

L2
− 2GM

L2

)

b, (3.32)

where we have neglected higher orders since µ and b are very small. The first two terms on

the right hand side of (3.32) are from General Relativity, while the third term and fourth

term are the contributions of 4D Double Field Theory (DFT).

We consider the nearly circular orbit whose eccentricity e ≪ 1. The zeroth order solution

of (3.32) is

µ0 =

(

GM∞
L

)2

(1 + e cosϕ), (3.33)
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then we have

3µ2
0 = 3

(

GM∞
L

)4

(1 + 2e cosϕ), (3.34)

where the higher order term has been neglected and

6GM∞
L2

µ0b = 6
G3M3

∞
L4

b+ 6
G3M3

∞
L4

be cosϕ. (3.35)

As a result, we can obtain that

(

d2µ

dϕ2

)2

+ µ =

(

GM∞
L

)2

+ 6

(

GM∞
L

)4(

1 +
b

GM∞

)

e cosϕ, (3.36)

where the higher order constant terms have been neglected like in GR since they are the

minor corrections to circular orbit, but we cannot measure the effects very accurately [18].

Let µ = µ1 + µ2, where µ1 satisfies

(

d2µ1

dϕ2

)2

+ µ1 =

(

GM∞
L

)2

, (3.37)

and µ2 satisfies

(

d2µ2

dϕ2

)2

+ µ2 = 6

(

GM∞
L

)4(

1 +
b

GM∞

)

e cosϕ. (3.38)

Eq.(3.37) has the general solution:

µ1 =

(

GM∞
L

)2

(1 + e cosϕ). (3.39)

Eq.(3.38) has a special solution:

µ2 = 3

(

GM∞
L

)4(

1 +
b

GM∞

)

eϕ sinϕ. (3.40)

Then the general solution of (3.36) is

µ = µ1 + µ2 =

(

GM∞
L

)2

(1 + e cosϕ) + 3

(

GM∞
L

)4(

1 +
b

GM∞

)

eϕ sinϕ

≈
(

GM∞
L

)2
(

1 + e cos [1− 3

(

GM∞
L

)2(

1 +
b

GM∞

)

]ϕ

)

,

(3.41)

where the higher order terms have been neglected.

The symbol of perihelion is

[

1− 3

(

GM∞
L

)2(

1 +
b

GM∞

)

]

ϕ = 2nπ, (3.42)
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where n = 0, 1, 2, ... Then we have

ϕ =
2nπ

[

1− 3
(

GM∞

L

)2
(

1 + b
GM∞

)] ≈ 2nπ

[

1 + 3

(

GM∞
L

)2(

1 +
b

GM∞

)

]

. (3.43)

The difference between the azimuth angles of two adjacent perihelion is

∆ϕ = 6π

(

GM∞
L

)2

+ 6

(

GM∞
L2

)

b. (3.44)

The first contribution of (3.44) is from General Relativity, while the second term is from

4D DFT.

3.3 Gravitational redshift in 4D DFT

When a photon is propagating in static gravitational field, stationary observers in different

locations will observe different frequencies, which is called gravitaional redshift of photons

[18]. For static gravitational field, we can choose coordinate properly, which makes gµν
does not dependent on t. Then for a stationary observer, the observed energy of photon is

given by:

E = −pµU
µ, (3.45)

where pµ is the 4-momentum of photon and Uµ is the 4-velocity of the observer, which has

the following form:

Uµ =
1√−g00

(1, 0, 0, 0). (3.46)

Combining (3.45) and (3.46), we have

E =
−p0√−g00

. (3.47)

According to the Planck formula E = hν, then (3.47) can be written as

√−g00ν = −p0/h. (3.48)

The right hand side of (3.48) is a constant, since p0 is a constant when a particle is moving

in static gravitational field. Therefore, the frequency of photon is inversely proportional to√−g00 locally.

According to (3.1) and b ≪ a, then in the Einstein frame we have

−g00 ≈ 1− a

r
+

(a− 2r)(1 + a
r
)

(a− r)r
b. (3.49)

If we set a = 2GM∞, then

−g00 ≈ 1− 2GM∞
r

+
(2GM∞ − 2r)(1 + 2GM∞

r
)

(2GM∞ − r)r
b, (3.50)

and
√−g00 ≈ 1− GM∞

r
+

(GM∞ − r)(1 + 2GM∞

r
)

(2GM∞ − r)r
b. (3.51)
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In weak gravitational field, the redshift is small, then we obtain that

ν

ν0
= 1− GM∞

R
+

(GM∞ −R)(1 + 2GM∞

R
)

(2GM∞ −R)R
b, (3.52)

where ν is the frequency of photon in infinity, ν0 is the frequency of photon on the surface

of star, and R is the radius of star.

We often define redshift z = ν0
ν
− 1, then we have

z =
GM∞
R

− (GM∞ −R)(1 + 2GM∞

R
)

(2GM∞ −R)R
b. (3.53)

Then second term of (3.53) is the correction to gravitaional redshift in Gerneral Relativity.

4 Conclusions and Discussions

Although General Relativity (GR) is a very successful theory of gravity, it still cannot ex-

plain every observational phenomenon, such as the galaxy rotation curve. The resolution

of the discrepancy might call for dark matter or modifications of the theory of gravity,

or perhaps both [1, 3]. At present the most promising quantum gravity theory is string

theory, which is believed to unify four fundamental interactions. Therefore, it is natural

to test string theory to explain the phenomena which GR cannot explain.

In recent years, Double Field Theory (DFT) has been an exciting research area in string

theory. DFT intends to reformulate supergravity with doubled coordinates, namely, xA =

(x̃µ, x
ν) [1, 4–6]. As a result, DFT unifies diffeomorphism and B-field gauge symmetry into

‘doubled diffeomorphisms’ and T-duality has been a manifest symmetry of the action of

DFT [7–9]. The most general, spherically symmetric, asymptotically flat, static vacuum

solution to D = 4 DFT has been obtained in [1]. Stephen Angus, Kyoungho Cho and

Jeong-Hyuck Park studied more properties of Einstein double field equations further [11].

Choi and Park performed post-Newtonian analysis of double field theory as a test of string

theory in gravitational sector against observations in [12]. Yang Liu analyzed Hawking

radiation of the solution [19], which was obtained in [1].

In this article we calculate the minor corrections to the three predictions in General Rela-

tivity: optical deflation, planet precession and gravitational redshift, namely, (3.23), (3.44)

and (3.53). In recent years more and more cosmological observations have been conducted.

One of the most significant developmets is about supermassive black holes [20–22]. Hence,

the value of b should be determined by observational data. The results we obtained in this

article, should be able to be tested accurately as well. We hope that people could find

suitable star or black hole systems to test our results in the future.

Future work can be directed along at least three lines of further research. First, the metric

obtained in [1] should be generalized to other cases, such as rotating black holes or charged

black holes. Second, 4D Double Field Theory should be applied to explain cosmologi-

cal phenomena, such as dark matter and dark energy. Third, Exceptional Field Theory

(ExFT) should be applied to black hole and cosmology. There is therefore great potential

for development of this work in the future.
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