
TRACTOR: Traffic Analysis and Classification
Tool for Open RAN

Joshua Groen, Mauro Belgiovine, Utku Demir, Brian Kim, Kaushik Chowdhury
Institute for the Wireless Internet of Things, Northeastern University, Boston, MA, USA

{groen.j, belgiovine.m, u.demir, br.kim, k.chowdhury}@northeastern.edu

Abstract—5G and beyond cellular networks promise remark-
able advancements in bandwidth, latency, and connectivity. The
emergence of Open Radio Access Network (O-RAN) represents
a pivotal direction for the evolution of cellular networks, inher-
ently supporting machine learning (ML) for network operation
control. Within this framework, RAN Intelligence Controllers
(RICs) from one provider can employ ML models developed by
third-party vendors through the acquisition of key performance
indicators (KPIs) from geographically distant base stations or
user equipment (UE). Yet, the development of ML models
hinges on the availability of realistic and robust datasets. In
this study, we embark on a two-fold journey. First, we collect
a comprehensive 5G dataset, harnessing real-world cell phones
across diverse applications, locations, and mobility scenarios.
Next, we replicate this traffic within a full-stack srsRAN-based
O-RAN framework on Colosseum, the world’s largest radio
frequency (RF) emulator. This process yields a robust and O-
RAN compliant KPI dataset mirroring real-world conditions.
We illustrate how such a dataset can fuel the training of ML
models and facilitate the deployment of xApps for traffic slice
classification by introducing a CNN based classifier that achieves
accuracy > 95% offline and 92% online. To accelerate research
in this domain, we provide open-source access to our toolchain
and supplementary utilities, empowering the broader research
community to expedite the creation of realistic and O-RAN
compliant datasets.

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no longer be accessible.

Index Terms—O-RAN, 5G, Data set generation, Traffic Clas-
sification, Network Slicing

I. INTRODUCTION

5G and beyond networks hold the promise of significantly
amplified throughput, reduced latency, and a vast increase
in connection capacity. However, the pursuit of these objec-
tives often entails competing demands that render a fixed-
configuration system incapable of concurrently fulfilling all
performance criteria. To address this challenge, 5G introduces
the concept of network slicing, comprising three key slices:
enhanced Mobile Broadband (eMBB), Ultra Reliable Low La-
tency Communications (URLLC), and massive Machine Type
Communications (mMTC). Network slicing facilitates end-to-
end resource allocation tailored to the specific requirements
of distinct traffic types. This process involves partitioning a
physical network into multiple virtual networks, capitalizing
on the growing virtualization trend in 5G networks [1]. Each
slice is designed with a distinct purpose: eMBB prioritizes
maximum bandwidth, URLLC ensures high reliability and
minimal latency, while mMTC excels in accommodating a
multitude of concurrent connections.

C
ore N

etw
ork

slice A

gNB

E2 Termination

xAPP 1
xAPP 2

E2 Manager
SDL

User
Plane

C
ontrol Plane

ML Classifier
Slice

slice B slice C

time

near-R
T R

IC

RAN

         CU/DU

Fig. 1: O-RAN system used in TRACTOR

The Open Radio Access Network (O-RAN) framework
supports virtualization as one of its four key architectural
principles [2]. Additionally, O-RAN provides inherent support
for closed-loop control driven by machine learning (ML),
a capability harnessed through RAN Intelligent Controllers
(RICs) for the optimization of network performance. O-RAN
introduces standardized technical specifications for open inter-
faces, enabling the collection of Key Performance Indicators
(KPIs) to facilitate diverse control and automation actions. In
this context, O-RAN stands out as a robust platform for the
implementation of network slicing.
Traffic Classification Challenges: While significant progress
has been made in network slicing (Sec. II-B), the focus has
largely been on improving the RAN component (Fig. 1).
However, measurements from deployed 5G networks reveal
that the primary throughput and delay bottleneck lies not
within the RAN but in the second hop of the network [3],
[4]—within the LTE Enhanced Packet Core (EPC) or 5G
Core Network (CN) highlighted in Fig. 1. Meeting diverse
network slice requirements necessitates end-to-end network
path optimization and accurate traffic classification [5].

Developing O-RAN compliant traffic slice classification
poses several challenges. Neither the traditional 5-tuple flow
information (source and destination IP address, source and
destination port, and transport layer protocol) nor the complete
layer 2 frame are available to the near-real time (near-RT) RIC
in an O-RAN system. Further, the KPIs used in the state-of-

ar
X

iv
:2

31
2.

07
89

6v
1 

 [
ee

ss
.S

Y
] 

 1
3 

D
ec

 2
02

3



the-art 5G classifiers [6]–[8] are neither O-RAN compliant nor
based on real 5G traffic.

To tackle these challenges, we introduce TRACTOR:
Traffic Analysis and Classification Tool for Open RAN. This
toolchain leverages O-RAN’s open interfaces for gathering
KPIs from the gNB, which serve as inputs to near-RT RICs
equipped with ML classifiers for user traffic classification. We
intentionally design our entire system to ensure user privacy
and system security while achieving accurate network-initiated
classification. TRACTOR represents a comprehensive, O-RAN
compliant deployment within Colosseum, the world’s largest
wireless network emulator featuring hardware-in-the-loop ca-
pabilities [9].

Our main contributions are:
• The creation of a pioneering and publicly available

dataset of O-RAN compliant KPIs generated from real
5G user traffic, accompanied by all necessary tools for
traffic emulation in Colosseum or similar environments.

• The development of a toolset that empowers fellow
researchers to efficiently generate datasets of their choice
from O-RAN compliant full-stack emulations.

• An evaluation of an ML based traffic slice classifier xApp,
both offline and online. This demonstrates the model’s
feasibility when deployed in actual systems.

• We release our xApp and all associated tools for public
use and to enable replication and extension of our results.

The rest of this paper is structured as follows. We discuss
the background and related works in Sec. II. We describe our
TRACTOR tool chain in detail in Sec. III. Next, we briefly
describe the ML model we deploy as an xApp in Sec. IV and
highlight initial offline and online results in Sec. V. We end
with a brief discussion and conclusion in Sec. VI.

II. BACKGROUND AND RELATED WORKS

A. O-RAN Principles and Framework

The near-RT RIC seen in Fig. 1 is a core component of the
ML-driven control and optimization of the RAN necessary
for 5G. The near-RT RIC hosts xApps, microservices that
support custom logic to perform RAN management. Open
interfaces are another core principle in O-RAN and one of
the key interfaces is the E2 interface that connects the gNB
and the near-RT RIC. An xApp can receive KPIs from the
gNB over the E2 interface, use those KPIs in a pre-trained
ML model, and send back control actions.

B. O-RAN Traffic Classification

Traditional IP traffic classification relied on packet inspec-
tion, as seen in [10] and [11]. However, these methods fail
when packets are encrypted at the network or data-link layer.
To overcome this, statistical traffic properties were used to
identify applications, which naturally led to the use of ML
in traffic classification, including encrypted traffic. Generally,
encrypted traffic classification techniques either use traffic
flows defined by a 5-tuple (source IP, source port, destination
IP, destination port, and transport-level protocol) [12] or the
entire encrypted packet [13]–[15] as the input. Both of these

options present a high risk to privacy and security, especially
when paired with other information unique to a cellular
environment, such as physical location. Furthermore, in an
O-RAN system, the near-RT RIC does not have access to the
entire packet, encrypted or otherwise.

Bonati et al. [16] select the best performing scheduling
policy and resource block assignment in each network slice
using deep reinforcement learning fed with data generated in
the Colosseum emulator. Both UE assignment and the rewards
in the DRL agents are based on knowing the traffic slice
a priori. Weerasinghe et al. [17] aims to predict incoming
traffic at the LTE base station (eNB) using supervised ML. The
authors test the performance of their model using simulated
bursty LTE traffic data. Li et al. [18] predicts traffic type
(among IM, web browsing, and video data) in an upcoming
5 minute period using the previous 3 hours of traffic data
in a framework that consists of α-stable models, dictionary
learning, and alternating direction method (ADM) using 7
million users’ OTA 2G-4G application layer data. Johnson et
al. [19] perform network slicing and scheduling on an xApp
that is based on srsRAN using policy driven heuristic methods.
Novelty of Proposed Approach over State-of-the-art: Our
approach to slice allocation differs from user equipment
(UE) initiated slicing, which often involves manual or ne-
gotiated slice assignments, adding complexity and potential
overhead [20], [21]. Instead, we focus on network-initiated
slicing, allowing the gNB to dynamically allocate traffic flows
to the appropriate slice. This approach enhances resource
allocation without the need for extensive user involvement.
While prior works [6]–[8] explore similar concepts, none of
these utilize O-RAN compliant KPIs generated from real 5G
traffic.

One of the primary shortfalls of previous ML-based slicing
is that the KPIs utilized could identify specific users or user
traffic, violating user privacy. In contrast, TRACTOR does not
use any identifying KPIs that could be correlated to a specific
UE, source, or destination. This ensures user privacy and
reduces the threat surface area for malicious attacks. Further,
neither the traditional 5-tuple flow information, the entire layer
2 frame, nor the KPIs used in [6]–[8] are available to the
near-RT RIC in an O-RAN system. In contrast to these works,
TRACTOR is the first work that uses real 5G traces to generate
O-RAN compliant KPIs used to perform near-RT traffic slice
classification using trained ML models.

III. CREATING AN O-RAN DATASET

To understand real 5G traffic patterns and overcome one
of the challenges found in prior work, we create a new
and publicly available tool chain and dataset. We implement
a software-defined RAN using the srsRAN-based SCOPE
framework [22] for both the gNB and one or more UEs, as
depicted in Fig. 1. SCOPE extends srsLTE (now srsRAN)
version 20.04 by introducing features like an E2 interface
and open APIs for real-time gNB reconfiguration, along with
additional data collection tools. Our near-RT RIC, part of the
ColO-RAN framework [23], utilizes a minimal near-RT RIC



based on the O-RAN Software Community’s near-RT RIC
(Bronze release). This near-RT RIC is structured as Docker
containers within the ColO-RAN LXC, providing essential
functionalities such as E2 interface support for data collection
and control communication with RAN nodes, alongside a
sample xApp for collecting fundamental KPIs from the gNB.

We add several key elements to this framework by creating
a custom traffic generator and developing the TRACTOR
xApp. We also create several supporting utilities as part of the
TRACTOR code base. We make this code publicly available
to build a framework useful for other researchers interested in
traffic classification and slicing.

Commercial gNBCOTS UE

5G Traffic CaptureA

B Traffic Generator

PCAPdroid

.pcap .csvSource / Destination
IP transform

Softwarized
UE

Softwarized
gNB

OTA

C KPI Capture

near-RT RIC

E2

xApp
KPIs

traffic_gen.py

size
timing

direction

Fig. 2: Process to create an O-RAN compliant dataset.

A. Collecting Real-World 5G User Data

To collect real-world 5G user traffic, we use the open source
PCAPdroid [24] Android application on a Google Pixel 6 Pro
smartphone and generate packet captures (.pcap files) of user
traffic. This is illustrated by block A in Fig. 2. We use a
variety of applications for each network slice. For eMBB, we
stream videos, browse the Internet, and transfer large files.
For URLLC, we conduct both voice phone calls, video chat,
and utilize real time AR applications. For mMTC we capture
texts and background traffic from all apps when the phone
is not actively being used. This is not the typical example
of mMTC traffic, such as IoT applications. However, it does
fit nicely in the fundamental definition of mMTC because
it is low throughput, latency tolerant communication from
numerous applications. PCAPdroid provides a custom trailer
that adds metadata identifying the phone application to each
packet capture. This data is used to ensure captured data is
labeled with the correct network slice. This large dataset was
collected on multiple different days, in different locations, with
different levels of mobility. Table I gives a detailed overview
of the parameters used to capture 447 minutes of 5G traffic.

B. Replaying Traffic in Colosseum

After capturing real-world data, we need a method to replay
traffic in an O-RAN system to capture KPIs. To enable this,
we use Wireshark to export the packet dissection to a .csv
file. Next, we alter the source and destination IP addresses
so that IP traffic is between two endpoints. This is especially

necessary for the mMTC traffic where, in reality, the UE is
reaching out to a wide range of IPs. These transformation
processes are shown between blocks A and B in Fig. 2. While
we chose to use real traces from an UE using deployed 5G
networks, any .pcap capture can be used as the input to the
system. In this way, we enable researchers to use any network
packet capture as the input to understand the impact to O-RAN
KPIs.

We built a traffic generator tool to replay the traffic between
the UE and gNB as shown in block B in Fig. 2. The traffic
generator emulates the original traffic by reading the length
field of the .csv file and sending a random byte string of
the appropriate length at the time indicated by the packet
timestamp. We use User Datagram Protocol (UDP) in our
traffic emulation because any transport layer functions are
already captured in the original traffic. In order to ensure the
replay traffic is the same as the original, we subtract 70 bytes
of overhead to remove the PCAPdroid trailer and account for
the new Ethernet frame, IP header, and UDP header we use.
We use the source and destination IP to determine if the UE or
gNB should be sending the traffic. We utilize the time stamp
to wait the appropriate amount of time before sending the next
packet. In this way, the UE and gNB accurately emulate the
first hop (cellular RAN) of the original 5G traffic.

We have developed several supplementary utilities related
to traffic generation, including multiple UE traffic generation,
anomalous traffic generation, and the introduction of arbitrary
RF interference. The multiple UE traffic generator operates by
replaying a randomly selected trace for each UE participating
in the experiment. While our original traces already encompass
real network competition, this approach enables researchers to
delve deeper into the influence of multiple competing UEs on

Slice Application Location Mobility Time (min)
eMBB Chrome, YoutTube, One Drive Residential Stationary 43.5
eMBB YouTube Campus Stationary 29.0
eMBB YouTube Campus Stationary 17.2
eMBB Netflix Campus Stationary 21.3
eMBB One Drive Campus Stationary 30.6
eMBB YouTube Campus Stationary 4.9
eMBB Pandora Campus Stationary 6.7
eMBB One Drive Campus Stationary 1.1
eMBB Chrome Campus Stationary 5.7
mMTC background Mixed Driving 64.0
mMTC background Campus Walking 11.8
mMTC background Campus Stationary 23.7
mMTC background Campus Stationary 23.9
mMTC background Campus Stationary 16.4
mMTC background Campus Stationary 5.6
mMTC background Campus Stationary 20.9
URLLC Google Meet Campus Walking 57.0
URLLC Phone, Google Meet Residential Walking 5.8
URLLC Google Meet Campus Stationary 8.0
URLLC Facebook Messenger Campus Stationary 21.0
URLLC Google Meet Campus Walking 7.9
URLLC Google Meet Campus Stationary 7.1
URLLC Google Maps Live View AR Campus B Walking 6.5
URLLC Facebook Messenger Campus Stationary 3.9
URLLC Microsoft Teams Campus Stationary 3.5

TABLE I: Detailed break down of real world data capture
variables including application used, location, and mobility.
For a given traffic slice, each row was collected on a different
day.



O-RAN KPIs. The anomalous traffic generation tool offers
support for two potential attack scenarios. Firstly, it models
a DoS UDP flood attack using a statistical model. Secondly,
it facilitates an attack known as “data-hog,” which employs
the original traces but increases packet sizes based on a Gaus-
sian distribution. The RF interference tool generates arbitrary
waveforms specified by the user on the uplink or downlink
channel. This provides a valuable tool for understanding the
impact on O-RAN systems as the RF environment becomes
ever more congested. These tools serve as starting points for
exploring security implications within O-RAN systems.

C. Capturing KPIs

The traffic generation script allows us to replicate the
timing, length, and direction of all data sent between the UE
and gNB, while completely anonymizing the actual payload
within our experimental test bed. Our O-RAN test bed further
emulates the channel conditions between the gNB and UE
based on measured channel conditions for a real deployed
cellular system. This allows us to accurately capture the O-
RAN KPIs as if the original communication were taking place
in our O-RAN test bed. To the best of our knowledge, this is
the first dataset generated with live 5G traffic and accurately
replayed in an O-RAN system to capture KPIs.

To capture KPIs, we employ the TRACTOR xApp, which
retrieves requested KPIs from the gNB every 250ms over the
E2 interface. This xApp uses our ML model for online traffic
slice classification. Simultaneously, we record all the available
KPIs for offline training. These KPIs are stored in a .csv file
and are part of our publicly accessible dataset. The process is
depicted in block C of Fig. 2. Additionally, we provide a tool
for automated IPsec configuration over this E2 interface, as
elaborated in [25], which is the first open-source solution for
configuring O-RAN compliant IPsec over the E2 interface,
facilitating swift O-RAN system deployment and systematic
performance analysis.

D. Pre-processing KPIs

In our O-RAN setup, we have access to 31 KPIs that
cover various low-level performance metrics and include some
identifiers like IMSI, RNTI, and slice ID. Before inputting
these KPIs into our ML model, we conduct preprocessing
to remove KPIs that contain unique identifying information
and certain administrative data, such as slice assignments and
scheduling policies, to ensure user privacy and confidentiality.
Additionally, we exclude KPIs like received signal strength
indicator (RSSI) that lack values in our Colosseum emulation,
reducing input dimensions without loss of information. The
resulting dataset for model training consists of 17 carefully
selected KPIs, detailed in Table II. A comprehensive list of all
KPIs and their descriptions is available in our public dataset.

The second major step is to trim some of the time from the
beginning and the end of the KPI capture. While the replay
script exactly replicates the original capture, there are periods
of time before and after the replay script runs when KPIs
are still being captured. Further, within some slices there can

be large periods of no traffic. We had to manually inspect the
KPIs and remove these periods of silence for training purposes
only.

KPI name Description
dl mcs Downlink modulation and coding
dl n samples Number of download samples in previous 250 ms
dl buffer bytes Downlink queue length in bytes
tx brate downlink Mbps Downlink bitrate in Mbps
tx pkts downlink Downlink number of packets transmitted in previous 250 ms
dl cqi Downlink channel quality indicator
ul mcs Uplink modulation and coding
ul n samples Uplink number of samples in previous 250 ms
ul buffer bytes Uplink queue lengith in bytes
rx brate uplink Mbps Uplink bitrate in Mbps
rx pkts uplink Uplink number of packets recieved in previous 250 ms
rx errors up perc Uplink percent of packets with errors in previous 250 ms
ul sinr Uplink signal to interference and noise ratio
phr UE power head room
sum reqsted prbs Sum of the resource blocks requested in previous 250 ms
sum granted prbs Sum of the resource blocks granted in previous 250 ms
ul turbo iters Uplink turbo encoding

TABLE II: TRACTOR uses 17 O-RAN compliant KPIs. None
of these KPIs expose uniquely identifiable information.

IV. MACHINE LEARNING FOR TRAFFIC CLASSIFICATION

To demonstrate the the potential of the TRACTOR toolset,
we train and deploy an xApp that uses a ML model, shown
in Fig 3, to perform traffic slice classification.

Slice size=T
TxM

Input

Features=M

KPIs

tim
e

N=20

Filters

4x1

Convolutional Layer

512

nodes

FC Layer

eMBB
mMTC
URLLC
ctrl

LogSoftmax

Fig. 3: ML model used for traffic classification in the TRAC-
TOR framework.

A. Data Preprocessing

We form our input by stacking T consecutive KPIs sampled
by the gNB, highlighted on the left side of Fig. 3. Each KPI
feature set is formed by M = 17 traffic metrics listed in
Table II. Thus, when stacked, we obtain a T ×M 2D input,
representing a snapshot of how such traffic indicators evolve
over a T ×250ms time span. In other words, we use a sliding
window with the size of T ×250ms, making a new prediction
at every 250ms. We collect traffic metrics in Colosseum for
the three main traffic categories, i.e. eMBB, URLLC, and
mMTC, and include an additional class of samples, denoted
as control (ctrl), or “silent”, class to identify the portions of
traffic where no application data is being exchanged between
registered UEs and gNB. Note that depending on the UE’s
activities, control class traffic might be found in any of the
three traffic categories and therefore we consider ctrl as a
fourth meta-class that can be used to identify idle users and
applications. Adding this traffic slice will benefit users and
service providers by providing a separate slice with minimum
resources allocated to keep connections alive and preserve
resources for the other slice types.



We preprocess input slices in the dataset by normalizing
each KPI feature individually, in order to keep all values in
the dataset within [0, 1] interval. We then randomize the order
of slices and allocate 80% of input samples to train the model,
while retaining 20% for testing purposes that the model does
not see during training. After training and testing datasets are
defined, we obtain 111.6K training samples and 27.9K testing
samples, equally distributed among the main 3 traffic classes
and control traffic class.

B. Model Training

To train our model, we generate a dataset by slicing the KPIs
in groups of T consecutive time samples for each KPI. The
proposed model is composed of a single 2D CNN layer with 20
kernels using ReLU activation, followed by 1 fully connected
(FC) hidden layer of 512 neurons with ReLU activation
function and the LogSoftmax output layer. The kernel size of
spatial filters in the convolutional layer is chosen to be 4× 1,
since we want local patterns to be learned at each individual
feature value as they are not spatially correlated on the KPI
features dimension. The extracted pattern is then passed on
to the following hidden layer and finally used to classify the
incoming KPIs traffic pattern. The optimizer used is Adam and
learning rate chosen starts from 10−3 and decreases by a factor
10 when a plateau in the cross entropy loss is found, until a
minimum value of 10−5 is reached. We train our model for a
total of up to 350 epochs, though we enable early stopping.

V. PERFORMANCE EVALUATION

In this section, we present the results of our O-RAN traffic
classifier. We evaluate our classifiers in both offline and
online setting, i.e. deployed as an xApp. We generate all the
evaluation data in Colosseum as described in Sec. III in order
to validate the feasibility of our model and analysis. Our metric
of success is traffic classification accuracy, which we evaluate
across multiple temporal input sizes (T ).

A. Offline TRACTOR Accuracy Evaluation

4 8 16 32 64
T

60
70
80
90

100

Ac
cu

ra
cy

 (%
)

CNN architecture

eMBB
mMTC
URLLc
ctrl
Avg.

4 8 16 32 64
T

60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Transformer-based architecture

eMBB
mMTC
URLLc
ctrl
Avg.

Fig. 4: Average offline CNN-based classifier performance for
different input slice sizes.

In order to test the classifier performance and highlight the
challenges of our proposed approach in a realistic O-RAN
setting, we train different versions of the proposed model for
input slice sizes of T = {4, 8, 16, 32, 64}, which correspond
to classification time granularity of {1, 2, 4, 8, 16} seconds,

respectively. Fig. 4 depicts the CNN-based classification accu-
racy over chosen values of T and shows how this parameter
influences the classification performance. It is clear that the
classifier performance is best when longer periods of traffic
metrics are observed by the classifier, reaching an overall
accuracy of ∼ 95% for T = 64, i.e. 16 s worth of sampled
KPIs.

B. Online TRACTOR Accuracy Evaluation

We also evaluate the performance of TRACTOR deployed
as an xApp in an O-RAN compliant system, shown in Fig. 1, to
validate the results from the offline trained model. The xApp is
deployed inside the near-RT RIC as a Python script, following
the implementation details in Sec. III-C. The xApp constructs
the input to the classifiers by stacking newly received KPIs
on the previous T − 1, and then queries the classifier model
in order to provide the classification output. The classifier
output identifies which slice the UE should be allocated to
at the classification moment and is reported back to the gNB
to perform slice assignment.

In order to test the accuracy of our proposed models in
unseen conditions, we collect a new set of traffic pattern
transmissions for each class (except ctrl, which would be
naturally included in all the traces) and replay such patterns
on Colosseum between the gNB and UE. This generates a new
set of KPIs for testing that are different from the KPIs we used
for our training. To fairly evaluate the accuracy of proposed
classifiers in recognizing the correct traffic slice in test settings,
we process the classifier outputs by defining an Idle Traffic
Removal (ITR) heuristic that we apply to the incoming KPIs
in order to exclude known idle portion of traffic and re-adjust
the total number of classification samples when computing
the accuracy. We evaluate how the classifier performs on the
filtered inputs, again considering all configurations of slice
length T = {4, 8, 16, 32, 64} in Fig. 5.

Fig. 5: Average accuracy as percentage (%) of correct classi-
fications for each test in online testing.

Fig. 5 shows that, while longer context provided by larger
values of T generally helps the classification accuracy, there
is no one-size-fits-all solution. This highlights the challenges
posed by the problem of real time traffic type classification in
fully O-RAN compliant systems tackled in this work.



VI. DISCUSSION AND CONCLUSION

One of the challenges we identified early on is the vast
amount of potential applications and use cases for modern
UEs. We chose to use specific exemplar types of traffic,
detailed in Sec. III-A, for our initial exploration. While we do
not cover all possible use cases in this work, we believe using
select cases of real traffic is a better starting point than using
statistical based traffic generation. In general, the majority
of internet traffic is inherently bursty and unpredictable, as
observed in most of our collected traffic.

To meet the complex demands of 5G and beyond cellular
networks, we introduce TRACTOR (Traffic Analysis and
Classification Tool for Open RAN), showcasing the viability
of automated traffic classification and slice allocation. We offer
public access to our toolset, along with O-RAN compliant
KPIs generated from a real-user 5G traffic dataset. Initial
ML models validate TRACTOR’s capacity for automated,
user traffic classification achieving accuracy > 95% offline
and > 92% online. This work underscores the potential for
future networks to excel across multiple performance metrics,
catering to individual user requirements while preserving
confidentiality and security.

By developing TRACTOR as an entirely open-source and
software-based full stack emulation system, we have laid the
foundation for further research in several areas. These areas
include: the ability to generate O-RAN KPIs from existing or
new traffic captures, studying user quality of experience after
adding the feedback mechanism to drive traffic slicing, adjust-
ing the KPI reporting frequency to optimize TRACTOR’s time
scale, studying the impact of multiple competing UEs, and
studying the impact of deploying ML models to proactively
predict future traffic slices.

ACKNOWLEDGMENT

This article is based upon work partially supported by U.S.
National Science Foundation under grant CNS-2112471.

REFERENCES

[1] S. Zhang, “An Overview of Network Slicing for 5G,” IEEE Wireless
Communications, vol. 26, no. 3, pp. 111–117, 2019.

[2] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding O-RAN: Architecture, interfaces, algorithms, security, and
research challenges,” IEEE Communications Surveys & Tutorials, 2023.

[3] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang,
D. Rybkin, Z. Yang, Z. M. Mao et al., “A variegated look at 5G in the
wild: performance, power, and QoE implications,” in Proceedings of the
2021 ACM SIGCOMM 2021 Conference, 2021, pp. 610–625.

[4] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu,
and H. Ma, “Understanding operational 5G: A first measurement study
on its coverage, performance and energy consumption,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 479–494.

[5] Cisco, “QoS: Classification Configuration Guide, Cisco IOS XE 17,”
Cisco, Tech. Rep., April 2020.

[6] A. Thantharate, R. Paropkari, V. Walunj, and C. Beard, “Deepslice: A
deep learning approach towards an efficient and reliable network slicing
in 5G networks,” in 2019 IEEE 10th Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON). IEEE,
2019, pp. 0762–0767.

[7] R. K. Gupta and R. Misra, “Machine learning-based slice allocation
algorithms in 5G networks,” in 2019 International Conference on
Advances in Computing, Communication and Control (ICAC3). IEEE,
2019, pp. 1–4.

[8] S. Khan, A. Hussain, S. Nazir, F. Khan, A. Oad, and M. D. Alshehri,
“Efficient and reliable hybrid deep learning-enabled model for conges-
tion control in 5G/6G networks,” Computer Communications, vol. 182,
pp. 31–40, 2022.

[9] L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-
Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder et al., “Colos-
seum: Large-scale wireless experimentation through hardware-in-the-
loop network emulation,” in 2021 IEEE International Symposium on
Dynamic Spectrum Access Networks (DySPAN). IEEE, 2021, pp. 105–
113.

[10] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE communications
surveys & tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[11] Y. Li, B. Liang, and A. Tizghadam, “Robust Online Learning against
Malicious Manipulation and Feedback Delay With Application to Net-
work Flow Classification,” IEEE Journal on Selected Areas in Commu-
nications, vol. 39, no. 8, pp. 2648–2663, 2021.

[12] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted
traffic classification using deep learning,” in 2018 Network traffic mea-
surement and analysis conference (TMA). IEEE, 2018, pp. 1–8.

[13] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and
M. Saberian, “Deep packet: A novel approach for encrypted traffic
classification using deep learning,” Soft Computing, vol. 24, no. 3, pp.
1999–2012, 2020.

[14] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and VPN traffic using time-related fea-
tures,” in Proceedings of the 2nd international conference on information
systems security and privacy (ICISSP), 2016, pp. 407–414.

[15] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification:
An overview,” IEEE communications magazine, vol. 57, no. 5, pp. 76–
81, 2019.

[16] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intelli-
gence and learning in O-RAN for data-driven NextG cellular networks,”
IEEE Communications Magazine, vol. 59, no. 10, pp. 21–27, 2021.

[17] T. N. Weerasinghe, I. A. Balapuwaduge, and F. Y. Li, “Supervised
learning based arrival prediction and dynamic preamble allocation for
bursty traffic,” in IEEE INFOCOM 2019-IEEE conference on computer
communications workshops (INFOCOM WKSHPS). IEEE, 2019, pp.
1–6.

[18] R. Li, Z. Zhao, J. Zheng, C. Mei, Y. Cai, and H. Zhang, “The learning
and prediction of application-level traffic data in cellular networks,”
IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp.
3899–3912, 2017.

[19] D. Johnson, D. Maas, and J. Van Der Merwe, “NexRAN: Closed-loop
RAN slicing in POWDER-A top-to-bottom open-source open-RAN use
case,” in Proceedings of the 15th ACM Workshop on Wireless Network
Testbeds, Experimental evaluation & CHaracterization, 2022, pp. 17–
23.

[20] V. K. Choyi, A. Abdel-Hamid, Y. Shah, S. Ferdi, and A. Brusilovsky,
“Network slice selection, assignment and routing within 5G networks,”
in 2016 IEEE Conference on Standards for Communications and Net-
working (CSCN). IEEE, 2016, pp. 1–7.

[21] C.-Y. Hsieh, T.-J. Tan, J.-C. Chen, and C.-E. Wei, “5G Mutually
Exclusive Access to Network Slices by Adaptively Prioritized Subset
Algorithm,” in ICC 2021-IEEE International Conference on Communi-
cations. IEEE, 2021, pp. 1–6.

[22] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “SCOPE: An open
and softwarized prototyping platform for NextG systems,” in Proceed-
ings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services, 2021, pp. 415–426.

[23] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-
RAN: Developing machine learning-based xApps for open RAN closed-
loop control on programmable experimental platforms,” IEEE Transac-
tions on Mobile Computing, 2022.

[24] E. Faranda, “PCAPdroid.” [Online]. Available: https://emanuele-f.
github.io/PCAPdroid/

[25] J. Groen, B. Kim, and K. Chowdhury, “The Cost of Securing O-RAN,”
in IEEE International Conference on Communications (ICC), 2023.

https://emanuele-f.github.io/PCAPdroid/
https://emanuele-f.github.io/PCAPdroid/

	Introduction
	Background and Related Works
	O-RAN Principles and Framework
	O-RAN Traffic Classification

	Creating an O-RAN Dataset
	Collecting Real-World 5G User Data
	Replaying Traffic in Colosseum
	Capturing KPIs
	Pre-processing KPIs

	Machine Learning for Traffic Classification
	Data Preprocessing
	Model Training

	Performance Evaluation
	Offline TRACTOR Accuracy Evaluation
	Online TRACTOR Accuracy Evaluation

	Discussion and Conclusion
	References

