
Training of Neural Networks with Uncertain Data –

 A Mixture of Experts Approach

Lucas Luttner

Faculty for Computer Science and Data Science, University of Regensburg

Lucas.Luttner@ur.de

Abstract

This paper introduces the "Uncertainty-aware Mixture of
Experts" (uMoE), a pioneering solution aimed at addressing
aleatoric uncertainty within Neural Network (NN) based
predictive models. While existing methodologies primarily
concentrate on managing uncertainty during inference,
uMoE uniquely embeds uncertainty into the training phase.
Employing a "Divide and Conquer" strategy, uMoE strate-
gically partitions the uncertain input space into more man-
ageable subspaces. It comprises Expert components, indi-
vidually trained on their respective subspace uncertainties.
Overarching the Experts, a Gating Unit, leveraging addi-
tional information regarding the distribution of uncertain in-
puts across these subspaces, dynamically adjusts the
weighting to minimize deviations from ground truth. Our
findings demonstrate the superior performance of uMoE
over baseline methods in effectively managing data uncer-
tainty. Furthermore, through a comprehensive robustness
analysis, we showcase its adaptability to varying uncertainty
levels and propose optimal threshold parameters. This inno-
vative approach boasts broad applicability across diverse da-
ta-driven domains, including but not limited to biomedical
signal processing, autonomous driving, and production qual-
ity control. Code can be accessed here:
https://github.com/lucascodinglab/uMoE_Training_Neural_
Networks_with_uncertain_data

 Introduction

Data uncertainty is a prevalent challenge within the domain

of Deep Learning, presenting significant obstacles in the

development and application of such predictive models. It

is a challenge that permeates various domains, from medi-

cine (Raviv and Intrator 1996) to autonomous driving

(Meyer and Thakurdesai 2020) and sensors-based domains

like quality control in manufacturing (Rodríguez and

Servigne 2013) casting a shadow of ambiguity over the re-

liability of data-driven decisions (Hariri et al. 2019).

Addressing this uncertainty is paramount for the effective

training of Deep Learning models. NNs, a cornerstone of

contemporary Deep Learning, thrives on deterministic data

(Loquercio et al. 2020). However, when confronted with

the real-world complexity of uncertain data, these models

falter (Ge et al. 2010). It is not merely a matter of accura-

cy; the stakes are higher. In applications like autonomous

driving, misinterpretation of uncertainty can have dire con-

sequences (Feng et al. 2018). Especially in cases, where

only uncertain data is available, considering this additional

information during training is essential, rather than just

during inference. However, in the existing research on un-

certainty in Deep Learning, the primary focus is predomi-

nantly on the propagation of uncertainty through NNs dur-

ing inference. However, these methods assume that the

model used for inference has been trained on certain data

without considering uncertainty in the input data, which

can be represented in form of Probability Density Func-

tions (PDFs) over the uncertain attributes. Due to this limi-

tation, these methods are not suitable for cases where the

input space already exhibits uncertainty (Astudillo and Ne-

to 2011; Abdelaziz et al. 2015; Smieja et al. 2019).

Apart from this major research path, the already limited

number of existing approaches in the literature regarding

the training of NNs under uncertainty is subject to many

restrictions. These restrictions result for example from the

assumption of parametric PDFs, from which they use prop-

erties of the distribution, such as mean value and variance,

for considering uncertainty during training. This is a prob-

lem in cases, where uncertainty is not following a specific

distribution. Besides that, these methods are just applicable

for specific domains such computer vision or probabilistic

inference and are thus not addressing uncertainty as their

main research problem (Kendall and Gal 2017; Gast and

Roth 2018). Furthermore, such approaches tend to focus

exclusively on uncertainty in the labels rather than ques-

tioning the underlying attribute uncertainty (Nguyen et al.

2019; Huang et al. 2022).

Derived from the significance of the problem and the re-

search gap in the existing literature on uncertain data, the

central research question guiding this work can be formu-

lated as:

"How can a NN-based predictive model be trained under

the presence of aleatoric uncertainty in the input features?

To address this question comprehensively, this paper intro-

duces uMoE, an innovative approach that addresses the

challenge of training NN-based predictive models in the

presence of aleatoric uncertainty, while being able to work

with any type of PDF in the input space. It stands as a pio-

neering technique in the landscape of Deep Learning, of-

1

https://github.com/lucascodinglab/uMoE_Training_Neural_Networks_with_uncertain_data
https://github.com/lucascodinglab/uMoE_Training_Neural_Networks_with_uncertain_data

fering a novel way to adapt NNs to uncertainty. Unlike tra-

ditional methods that rely on predetermined analytical for-

mulas constrained by distribution types, the uMoE method

leverages a Gating Unit that flexibly responds to different

uncertainty distributions, adapting to and learning from un-

certainty as the final decision-maker.

In the following sections, we will discuss categories and

characteristics of uncertain data, highlighting the distinc-

tion between aleatoric and epistemic uncertainty. We will

examine the origins of the Mixture of Experts (MoE)

framework, its core principles, and its role as a precursor to

our uMoE method. Additionally, we will provide a detailed

overview of the uMoE architecture and explain how it han-

dles uncertainty. We will present comprehensive evalua-

tions demonstrating uMoE's superior performance com-

pared to baseline NN models in the presence of uncertain

training data. This journey into uncertainty-aware Machine

Learning underscores the importance of addressing uncer-

tainty within modelling of NNs to enhance the robustness

and reliability of AI systems in an increasingly complex

and uncertain world.

Related Work

In this chapter, we review related work to explore existing

approaches for handling uncertain data during the training

of predictive models. It is worth noting that, the number of

papers confronting this problem is already manageable lit-

tle and underlies several limitations. Such limitations are

related to the type of probability functions the approach

can handle, mostly speaking of parametric distributions

like Gaussian, their applicability to various prediction

tasks, or specific application domains like computer vision.

Existing literature can be broadly categorized into three

groups. The first group addresses uncertainty in input fea-

tures, similar to our approach, although not within the con-

text of NNs. The next section, closely related to our work,

presents the literature that considers this uncertainty within

NNs. Finally, we shortly introduce approaches that, while

addressing uncertainty in the training dataset, focus primar-

ily on labels instead of PDFs over features and are there-

fore only mentioned in passing.

We begin with approaches, that focus on training of non

NN-based models under uncertainty in the input features.

In one such approach, the authors address the challenge by

extending the Naïve Bayes algorithm. They propose three

extensions: one based on averaging, which computes ex-

pected values and uses them as input for predictions, a

sample-based method that considers values sampled from

PDFs, and a formula-based method designed for specific

parametric probability distributions e.g. Gaussian distribu-

tions (Ren et al. 2009).

In a second approach, similar to the first, a classifier model

is adapted to handle uncertain data as PDFs. For this pur-

pose, the authors used a classic decision tree algorithm as

framework and modified it in a way, that it divides the

PDF into probability intervals for each split point and in-

corporates these weighted intervals into the entropy loss

during training (Tsang et al. 2011).

In addition to these two approaches, there are also more re-

lated methods, that not only consider uncertainty in the

training process, but also apply it in the context of NNs.

Gast and Roth (2018) address the propagation of uncertain-

ty through NNs, emphasizing a method that prioritizes fast

runtime with minimal adjustments to the NN architecture.

Among other techniques, they implement a probabilistic

output layer and replace intermediate activation functions

with assumed density filtering. In the process of propagat-

ing uncertainty, they also consider the uncertainty in the

data during the training of such an NN architecture. The

primary focus is on maximum conditional likelihood learn-

ing, which seeks to maximize the conditional likelihood of

data under a predictive model.

From another perspective, Kendall and Gal (2017) devel-

oped a framework for Bayesian Deep Learning that allows

modelling of input-dependent aleatoric uncertainty along-

side epistemic uncertainty. The framework was developed

for computer vision tasks such as semantic segmentation

and depth regression. Concerning the training of NNs, they

use a loss function that incorporates aleatoric uncertainty

into the modelling of predictions. The authors adapt the

loss function for regression tasks, incorporating aleatoric

uncertainty by weighing data points based on predicted

variance. For classification tasks, they introduce a Gaussi-

an distribution over logits, creating a stochastic loss func-

tion that encourages the model to learn loss attenuation

based on uncertainty. However, it is important to note that

their modelling of aleatoric uncertainty is limited to a sin-

gle dispersion parameter, leaving many other properties of

the PDF unused.

Although the four approaches described share similarities

with our goal of training NN-based predictive models with

uncertain data, each method exhibits distinct limitations.

Ren et al.'s method is exclusively suitable for classification

tasks and is restricted to Naïve Bayes, which relies on the

specific assumption, that all features are independent.

These limitations also apply to the second approach, which

is as well only suitable for classification tasks and just

works in the context of decision trees. While Gast and Roth

employ a NN model, their approach extends beyond train-

ing with uncertain data, and it still assumes parametric

probability distributions, not considering data to be certain

after training. In this method, training serves primarily to

enhance the model's robustness for inference under uncer-

tainty. Finally, Kendall and Gal's approach, despite being

based on a Bayesian-NN architecture, predominantly as-

sumes parametrically distributed noise over the data.

Moreover, this method is primarily designed for computer

vision applications, where the input space is significantly

larger and not easily transferable to tabular data due to the

intricacies introduced by convolutional layers.

2

Apart from the mentioned approaches to consider uncer-

tainty in the input data during training, there are also meth-

ods that address uncertainties in the target variable. It is

important to note that these methods, while dealing with

aleatoric uncertainty in the training process, differentiate

themselves from our idea by exclusively focusing on noise

or uncertainty in the labels. Therefore, they are mentioned

here only in passing. In one approach, the authors tackle

label noise in NNs, particularly in imbalanced datasets.

They present the Uncertainty-aware Label Correction

framework, which consists of two key components: one for

modelling epistemic noise to manage variations in class-

specific loss distributions, and another for aleatoric uncer-

tainty-aware learning to address residual noise (Huang et

al. 2022). In the second approach the authors address label

noise in Machine Learning models more broadly. They

propose iterative filtering with Semi-Supervised Learning,

an approach that iteratively removes noisy labels while re-

taining associated data samples. This is accomplished

through an unsupervised loss term acting as a regulariza-

tion to combat label noise (Nguyen et al. 2019).

Background

Now that we have addressed the context of our work, as

well as the related methods, we take a closer look at the

background of our uMoE. Firstly, we present an overview

of data uncertainty to better understand the problems that

arise with it. We then establish a fundamental understand-

ing of the MoE framework in which we have discovered

the potential to use it for training of predictive models with

PDFs.

Categories and Characteristics of Uncertain Data

In the realm of data-driven decision-making and Machine

Learning, data is often assumed to be precise and determin-

istic. However, in the real world, data is frequently imbued

with various forms of uncertainty. This uncertainty can

emanate from multiple sources and can significantly im-

pact the reliability and robustness of data-driven models.

Uncertain data can be broadly categorized into two main

types (Murphy 2012): aleatoric and epistemic uncertainty.

Aleatoric uncertainty arises from the stochastic or random

nature of the underlying processes generating the data, rep-

resenting irreducible randomness in observations. It can be

observed in scenarios such as sensor noise in measure-

ments (Wang et al. 2013), natural variability in medical da-

ta (Alizadehsani et al. 2021) or fluctuations in financial

markets (Li et al. 2020). Epistemic uncertainty, on the oth-

er hand, is related to the lack of a model to find the optimal

parameters, particularly in the context of NNs, where it

arises from the randomness of the stochastic gradient de-

scent, resulting potentially in a local minimum (Helton et

al. 2010; Jiang et al. 2018). In our case, we are addressing

the issue of aleatoric uncertainty in input data while assum-

ing given labels are certain. This means that instead of as-

suming attributes as certain scalars, we consider them to be

represented by multidimensional continuous PDFs over the

uncertain attributes. These PDFs can take any form of dis-

tribution, such as Gaussian, Poisson, or even non-

parametric distributions. By modeling the uncertain attrib-

utes with PDFs, it allows our method to capture the inher-

ent variability and uncertainty in the data (Hora 1996).

Introduction to Mixture of Experts

The MoE framework represents a significant advancement

in the field of Machine Learning and ensemble methods

(Gormley and Frühwirth-Schnatter 2018). Its origins trace

back to 1991 when Jacobs et al. introduced the concept of

decomposition theory in ensemble learning, notably the

"Divide and Conquer" paradigm. This paradigm entails a

structured approach to solve complex problems. It involves

breaking down intricate challenges into smaller, more

manageable subproblems. These subproblems are then ad-

dressed independently, and their solutions are eventually

combined to derive the solution for the original problem

(Jacobs et al. 1991). This principle comprises three funda-

mental steps (Smith 1985):

1. Divide: Initially, the overarching problem is parti-

tioned into smaller instances of the same problem or

entirely new subproblems. Often, this division process

is recursive, meaning each subproblem may undergo

further division until they become straightforward to

solve.

2. Conquer: In this phase, the divided subproblems are

individually solved. This can entail applying the same

algorithm recursively or employing diverse methods

based on the nature of each subproblem. The primary

goal is to find effective solutions for these subprob-

lems.

3. Combine: After solving the subproblems, their solu-

tions are integrated or combined to arrive at a solution

for the original, more complex problem. This combin-

ing step is crucial as it ensures that the solution aligns

correctly with the original problem.

At its core, the MoE framework is firmly grounded in this

paradigm. It strategically deconstructs a complex problem

(for example the entire data space 𝑥 𝜖 ℝ𝑑, where 𝑑 repre-

sents the input dimensionality) into more manageable,

smaller subspaces.

3

The MoE architecture primarily comprises two key com-

ponents, which are responsible for solving the three steps:

Expert components and a Gating Unit. Experts can be lik-

ened to specialized problem solvers, with each Expert ded-

icated to a specific segment of the problem domain. In

general, almost any conceivable predictive Machine Learn-

ing method can serve as an Expert, provided it aligns with

the objectives and complexity of the prediction task. To al-

locate subgroups of the problem to Experts, a common ap-

proach involves employing a cluster-based unsupervised

Machine Learning method. This method partitions input

data based on shared data distributions among attributes,

akin to the Divide step. Once the problem is subdivided, an

Expert is assigned to each subspace. Following this, each

Expert is assigned all instances that are located within its

region. The amount of all instances per Expert constitutes

the training dataset. This avoids including instances that

are outside of the Expert’s region, thus minimizing the

need for generalization while finding the optimal parame-

ters. This process aligns with the Conquer step, as the

problem is effectively conquered within each subgroup.

Conversely, the Gating Unit takes on the role of distrib-

uting input data among these Experts. Drawing inspiration

from the Combine step, it learns to identify which Experts

are best equipped to handle different types of inputs. It then

uses weighted decisions based on the predictions from each

Expert to allocate inputs to the most suitable ones (Yuksel

et al. 2012; Masoudnia and Ebrahimpour 2014). Mathemat-

ically formulated: The prediction for a given instance is

�̂� ∈ ℝ, which is calculated as the weighted sum of the out-

put predictions from each Expert �̂�𝑒 multiplied by the cor-

responding weight of the Gating Unit 𝑔𝑒:

�̂� = ∑ 𝑔𝑒�̂�𝑒

𝐸

𝑒=1

Note that: 𝐸 𝜖 ℕ represents the number of Experts.

The advantages of the MoE concept are manifold. Firstly,

it significantly enhances efficiency by breaking down

complex problems into smaller, more manageable subprob-

lems, resulting in improved overall performance. Secondly,

MoE exhibits remarkable flexibility and adaptability, ac-

commodating various types of Experts and problem do-

mains (Maimon and Rokach 2005). Building upon the

foundational principles of MoEs, our uMoE approach

emerges. From our standpoint, we perceive aleatoric uncer-

tainty as an additional layer of complexity situated behind

the decomposition of the input space. In this light, our ob-

jective is twofold. First, it entails incorporating uncertainty

into the process of decomposing the input space. Second, it

involves harnessing the insights gained from this decompo-

sition under conditions of uncertainty. These insights are

then translated into additional information and presented to

the Gating Unit as supplementary information. These

methodological steps clearly demonstrate why MoEs have

significant potential when dealing with uncertainty. In con-

trast to most approaches in literature, uncertainty is not in-

corporated into a purely analytical formula that considers

parameters such as the expected value and variance of un-

certainty (and thus is subject to various constraints, such as

the distribution type). Instead, this process is controlled by

a Gating Unit, which can flexibly respond to different dis-

tributions and, as a result, adapt to and learn from the un-

certainty as final decision maker. This flexibility is particu-

larly crucial in areas where either the nature of uncertainty

cannot be predetermined in advance or where a Gaussian

distribution is not appropriate.

Uncertainty-aware Mixture of Experts Model

In this chapter, we present our method – Uncertainty-aware

Mixture of Experts (uMoE) − for training a NN-based

model with uncertain data, represented by PDFs of any

shape. Although aleatoric uncertainty in the input space is

often prevalent in many real-world scenarios, standard

Deep Learning algorithms solely can operate with certain

data points, ignoring the variance of the uncertainty. To

address this, our method aims to train a NN-based model

by separating the uncertainty into its constituent subspaces

and leveraging the information derived from this decompo-

sition. Firstly, we establish the mathematical problem and

thus the relevance for our method, the definition of an un-

certain instance. Next, we introduce NNs as predictive

models within our method for Experts, as well as for the

Gating Unit. After presenting the backbone of our method,

the following five sections introduce the concept of our

uMoE for partitioning the uncertain input space among the

individual Experts responsible for this subspace. After the

description of our method, we then further define the Nest-

ed Cross-Validation (NCV), as process to find the optimal

number of subspaces for the uMoE.

Figure 1: Illustration of the Mixture of Experts

framework

4

Lucas Luttner

Figure 2 serves as a fundamental overview of the uMoE

(here illustrated with two Experts). The model's initiation

entails considering an uncertain instance, which is subse-

quently allocated to an Expert, by partitioning the input

space to identify the region where the PDF exhibits the

highest probability mass (see section 1). Within the sub-

space, the local mode value is calculated, which is defined

as the maximum of a PDF within the corresponding sub-

space. This process is iteratively applied to each instance

until all Experts have been trained using the local mode

values, which they are responsible for as described in, sec-

tion 2 and 3. Subsequently, the Gating Unit is trained on

the global maximum of the PDFs, which additionally in-

corporates the distribution of the PDF over the subspaces

as additional information (see section 4). It learns to weigh

the predictions of the Experts during this process in a man-

ner that minimizes the deviation of model-predictions from

the ground truth.

Definition 1: Uncertain instance

This section serves as an introduction to the problem of

aleatoric uncertainty in the input space. Let 𝐷𝑡𝑟𝑎𝑖𝑛 be the

dataset used for training the uMoE model. Let 𝐷𝑡𝑟𝑎𝑖𝑛 con-

tain 𝐼 instances with 𝑘 attributes. Each instance 𝑑𝑖 ∈ 𝐷, 𝑖 ∈
{1, … , 𝐼} can be represented as:

𝑑𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝐼𝑘)

with an affiliated PDF denoted as:

𝑝𝑑𝑓𝑖: ℝ𝑘′ → ℝ+, 𝑘′ ≤ 𝑘

Note that: 𝑘′ represents the set of attributes 𝑘 of an in-

stance that are uncertain. The definition of an uncertain

instance is applicable to all continuous attributes, as only

they can be meaningfully transformed into a continuous

function such as in our context a PDF. The attributes of an

instance, which are not affected by uncertainty are defined

as 𝑥𝑖𝑘∗, where 𝑘 ∗⊆ 𝑘.

This PDF 𝑝𝑑𝑓𝑖 characterizes the uncertainty associated

with the instance, mapping the 𝑘′-dimensional attribute

space to ℝ+. In the context of our model, these PDFs en-

capsulate the uncertainty inherent in each data point. Im-

portantly, our method does not impose restrictive assump-

tions regarding the distribution of uncertainty, such as as-

suming a Gaussian distribution. Instead, it offers the flexi-

bility to directly incorporate any type of continuous distri-

bution into the model. This flexibility is particularly valua-

ble, as it allows us to tailor our approach to a wide range of

applications, where uncertainty may manifest in diverse

and complex ways.

Definition 2: Neural Networks as predictive models

within uMoE

Following the introduction of uncertain data in definition 1,

this definition explores another fundamental aspect of the

uMoE architecture. In the background chapter, Experts and

the Gating Unit were initially viewed as placeholders for

various types of Machine Learning models. In this section,

we specifically define NNs as predictive models within our

architecture. Assuming we have for each Experts 𝐸 =

{𝑒𝑛=1, 𝑒 𝑛=2, … , 𝑒𝑁} and Gating Unit 𝐺 one NN with 𝐿 lay-

ers and 𝑇 neurons in each layer. A special feature of the

Gating Unit compared to the NN architecture of the Ex-

perts is, that the output is always defined as softmax func-

tion, where the number of neurons in the output layer

equals the number of Experts. Apart from this, output of

the 𝑡-th neuron {𝑡 ∈ 1, 2, … , 𝑇} in the 𝑙-th hidden layer
{𝑙 ∈ 1, 2, … , 𝐿} can be represented as:

𝑧𝑡
(𝑙)

= ∑ 𝑤𝑡,𝑡−1
(𝑙)

𝑇

𝑡=1

𝑎𝑡−1
(𝑙−1)

+ 𝑏𝑡
(𝑙)

𝑎𝑡
(𝑙)

= 𝑓(𝑧𝑡
(𝑙)

)

where:

• 𝑧𝑡
(𝑙)

is the weighted sum of inputs for the 𝑡-th neuron in

the 𝑙-th layer

• 𝑤𝑡,𝑗
(𝑙)

is the weight between the t − 1-th neuron in the

previous layer and the 𝑡-th neuron in the current layer

• 𝑏𝑡
(𝑙)

is the bias term of the 𝑡-th neuron in the 𝑙-th layer

• 𝑎𝑡
(𝑙)

is the output of the 𝑡-th neuron after applying the

activation function 𝑓: ℝ → ℝ on 𝑧𝑡
(𝑙)

Section 1: Cluster-based decomposition of probability

density functions

This section delves into the core idea of the concept behind

uMoE, which involves simplifying the intricate issue of

uncertainty by breaking it down into its constituent parts.

To achieve this, we make use of the concept of sampling

Figure 2: Overview of the training process of

uMoE

5

from a PDF to further divide the PDF through cluster-

based algorithms.

To decompose the input space into subspaces, a set of 𝑀

samples per instance is drawn from 𝑝𝑑𝑓𝑖 to get S𝑖 = {𝑠𝑖,1

, 𝑠𝑖,2, … , 𝑠𝑖,𝑀}, 𝑠 ∈ ℝ𝑘′. Next, the threshold parameter 𝑝 ∈

 (0,1] is introduced in this context to reduce the sample se-

lection by filtering out 𝑝 percent of the samples with the

lowest density. This threshold allows our method to react

to a different amount of variance in the PDFs through lim-

iting the region from which the samples are drawn.

To achieve the threshold sampling, let the density of a

sample point 𝑠𝑖,𝑚 be determined as 𝑝𝑑𝑓𝑖(𝑠𝑖,𝑚). The density

of a specific point in a PDF represents the likelihood of

that point occurring within a continuous probability distri-

bution. Next, we order the PDF values of the samples as a

sequence 𝜌𝑖 = (𝜌𝑖,1, … , 𝜌𝑖,𝑀) with 𝜌𝑖,𝑗 ≥ 𝜌𝑖,𝑗+1 for all 1 ≤

𝑗 ≤ 𝑀 − 1 and 𝜌𝑖,𝑗 = 𝑝𝑑𝑓(𝑠𝑖,𝜎(𝑗′)) for a (bijective) per-

mutation 𝜎: {1, … , 𝑀} → {1, … , 𝑀}. To obtain the 𝑝 share

of highest PDF values, we define the subsequence 𝜌𝑖,𝑝 =

(𝜌𝑖,1, … 𝜌𝑖,𝑀𝑝
) consisting of the first (and thus largest)

𝑀𝑝 = ⌈𝑝 ⋅ 𝑀⌉ values of 𝜌𝑖. This subsequence corresponds

to a subset 𝑆𝑖,𝑝 ⊂ 𝑆𝑖 via 𝜎:

𝑆𝑖,𝑝 = {𝑠𝑖,𝑗 ∈ 𝑆𝑖|𝜎(𝑗′) = 𝑗, 1 ≤ 𝑗′ ≤ 𝑀𝑝}

In other words, 𝑆𝑖,𝑝 contains the samples with the 𝑝 highest

share of PDF values.

This process of sorting out samples with low probability al-

lows our method to react to different amount of uncertainty

in the data and thus to make our method more robust. After

sample reduction, the next step is to decompose the uncer-

tainty of an instance in different subspaces corresponding

to each Expert via a clustering procedure.

To decompose 𝐷𝑡𝑟𝑎𝑖𝑛 into subspaces, the k-means algo-

rithm with |𝐸| clusters is applied on all samples 𝑆𝑖,𝑝, where

|𝐸| represents the total number of Experts. This results in a

model predicting the cluster affiliation of the samples 𝑆𝑖,𝑝:

𝑘𝑚𝑒𝑎𝑛𝑠(𝑆𝑖,𝑝): ℝ𝑘′ → [1,2, … , |𝐸|]

We calculate the cluster affiliation of instance 𝑖 based on

the relative frequencies in 𝑘𝑚𝑒𝑎𝑛𝑠(𝑆𝑖,𝑝) and obtain a vec-

tor of cluster probabilities:

𝐶𝑖 = [𝑐𝑖,𝑗=1, … , 𝑐𝑖,|𝐸|], 𝑐𝑖,𝑗 ∈ [0,1] ∀𝑖, 𝑗

This formula can be described as the probability 𝑐𝑖,𝑗 of in-

stance 𝑖 to belong to cluster 𝑗 or in other words the relative

distribution of the samples 𝑆𝑖,𝑝 across the subspaces.

Section 2: Determination of global and local mode value

Having now divided the input space, the next step is to de-

termine the global maximum of the PDF, as well as the lo-

cal maximum within the corresponding subspace of the

Experts. The local mode value is subsequently used for

training the Experts, and the global mode value serves for

training the Gating Unit. Using a global optimizer, the

global mode 𝑚𝑖,𝑔𝑙𝑜𝑏𝑎𝑙 ∈ ℝ𝑘′ of the PDF over the uncertain

attributes of an instance can be computed as:

𝑚𝑖,𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝𝑑𝑓𝑖(�̇�))

Note that: �̇� is the input configuration that undergoes op-

timization, with the to find the point, that maximizes the

PDF.

For Expert 𝑒𝑛, as the whole input space of 𝑝𝑑𝑓𝑖 is decom-

posed into subspaces through section 1, the aim is to up-

hold the assumption of MoEs, that an instance is assigned

to the Expert responsible for the subspace it belongs to.

To find the local mode value 𝑚𝑖,𝑙𝑜𝑐𝑎𝑙 ∈ ℝ𝑘′ for every in-

stance 𝑖 containing uncertain attributes 𝑘′, the maximum of

the cluster probability Vector 𝐶𝑖 is calculated.

𝐶𝑖,𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐶𝑖)

𝐶𝑖,𝑚𝑎𝑥 determines in which cluster 𝑐𝑖,𝑗 most of the probabil-

ity mass defined through 𝑆𝑖,𝑝 of instance 𝑖 lies, which will

serve on the one hand to restrict the search space of the lo-

cal mode value within 𝑝𝑑𝑓𝑖 and on the other as weighting

factor for the loss function during training of the corre-

sponding Expert (see section 3). The subspace-restricted

maximization algorithm can thus be defined as:

𝑚𝑖,𝑙𝑜𝑐𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝𝑑𝑓𝑖(�̇�))

subject to:

�̇� ∈ 𝐶𝑖,𝑚𝑎𝑥

Figure 3: Determining the local mode value in two-

dimensional space with two subspaces

6

Figure 3 exemplifies the determination of the 𝑚𝑖,𝑙𝑜𝑐𝑎𝑙 .

Here, the uncertain instance 𝑖 can be expressed as

𝑝𝑑𝑓𝑖: ℝ2 → ℝ0
+. The global mode (𝑘′1 = −4, 𝑘′2 = 2)

value lies outside the Cluster 𝐶𝑖[𝐶𝑖,𝑚𝑎𝑥] = 0.68 where most

samples 𝑆𝑖,𝑝 are located. Therefore, within dominant Clus-

ter, the local mode value (𝑘′1 = −1, 𝑘′2 = 3) is deter-

mined restrictively. This value is subsequently assigned to

the Expert 𝑒𝑛 responsible for this subspace for training

purposes.

Section 3: Training of Experts with weighted loss

By decomposing the PDF, each Expert can now be as-

signed the local mode value for training, which resides

within its respective region. Let 𝐷 𝑒𝑥𝑝𝑒𝑟𝑡𝑠,𝑡𝑟𝑎𝑖𝑛 be the train-

ing dataset for the Experts, includes instance 𝑥𝑖𝑘, which in-

cludes the local mode values 𝑚𝑖,𝑙𝑜𝑐𝑎𝑙 for the uncertain at-

tributes of the instance i, as well as the certain attributes

𝑥𝑖𝑘∗. The instances are finally allocated as trainings dataset

𝐷𝑒𝑛 ,𝑡𝑟𝑎𝑖𝑛 ⊆ 𝐷 𝑒𝑥𝑝𝑒𝑟𝑡𝑠,𝑡𝑟𝑎𝑖𝑛 to every Expert by the cluster

object 𝑘𝑚𝑒𝑎𝑛𝑠(𝑥𝑖𝑘) from section 1 under the restriction,

that the instance lies within the subspace of 𝑒𝑛 (see section

2):

𝐷𝑒𝑛 ,𝑡𝑟𝑎𝑖𝑛 = {(𝑚𝑖,𝑙𝑜𝑐𝑎𝑙 , 𝑥𝑖𝑘∗)|𝑘𝑚𝑒𝑎𝑛𝑠(𝑚𝑖,𝑙𝑜𝑐𝑎𝑙 , 𝑥𝑖𝑘∗) ∈

 𝑒𝑛 }

The training process can be formulated as an optimization

problem, where the parameters 𝜃 = (𝑤𝑡,𝑡−1
(𝑙)

, 𝑏 𝑡
(𝑙)

) of the

Expert are adjusted in such a way that the difference be-

tween the predicted output of the NN �̂�𝑖 𝜖 ℝ and the actual

output 𝑦𝑖 𝜖 ℝ is minimized. This is typically done using a

loss function 𝐿𝑒𝑛
(𝑦𝑖 , �̂�𝑖). The loss function quantifies the

deviation between the true value and the prediction. In our

case, the loss function is weighted by the proportion of

samples belonging to the cluster associated with Expert 𝑒𝑛.

This weighting factor is defined as:

λ𝑖 = 𝐶𝑖[𝐶𝑖,𝑚𝑎𝑥] ∈]0,1] ∀𝑖

This step significantly differs from the standard MoE as

described in the background chapter. Without weighting

the loss, an instance contributes equally to every Expert

with a factor of 1, even though, as shown in the example

from Figure 3, only a percentage 0 < λ𝑖 ≤ 1 of the PDF

falls within the Expert's region. When the number of Ex-

perts |𝐸| increases, λ𝑖 will most likely decrease and if the

extreme case of |𝐸| → ∞ occurs, λ𝑖 normally approaches

zero. Therefore, weighting is particularly crucial as it en-

sures that the loss of an instance is incorporated into the

training based on the proportion of how much the instance

belongs to the Expert’s subspace. Let the loss for Expert 𝑒𝑛

be defined as:

𝐿𝑒𝑛
(𝑦𝑖 , �̂�𝑖) = λ𝑖 ∑ 𝑓𝑙𝑜𝑠𝑠(𝑦𝑖 , �̂�𝑖)

𝐼

𝑖=1

where:

• λ𝑖 serves as weighting variable for the loss of 𝑒𝑛, which is

defined as the probability, that instance 𝑖 lies within the
region of 𝑒𝑛

• 𝑓𝑙𝑜𝑠𝑠 represents the set of all suitable loss functions for 𝐸

• 𝑦𝑖 stands for the prediction of Expert 𝑒𝑛 for the instance
(𝑚𝑖,𝑙𝑜𝑐𝑎𝑙 , 𝑥𝑖𝑘∗)

• �̂�𝑖 is the ground truth of the instance.

During training, the loss 𝐿𝑒𝑛
 will be mimimized for

𝑒𝑛 through the gradient based backpropagation algorithm,

which aims to adjust stepwise the weights 𝑤𝑡,𝑡−1
(𝑙)

 and biases

𝑏𝑡
(𝑙)

 of the Expert.

𝜃𝑒𝑛
∗ : (𝑤𝑒𝑛 ,𝑡,𝑡−1

(𝑙)
, 𝑏𝑒𝑛 ,𝑡

(𝑙)
)

→ 𝑎𝑟𝑔𝑚𝑖𝑛 (𝐿𝑒𝑛
(𝑦𝑖 , �̂�𝑖(𝑤𝑒𝑛 ,𝑡,𝑡−1

(𝑙)
, 𝑏𝑒𝑛 ,𝑡

(𝑙)
)))

𝜃𝑒𝑛
∗ represents for (𝑤𝑒𝑛 ,𝑡,𝑡−1

(𝑙)
, 𝑏𝑒𝑛 ,𝑡

(𝑙)
) ∀ 𝑡, 𝑙 , the parameters of

𝑒𝑛, which result in the lowest possible loss, after training

with 𝑟 epochs by a given learningrate 𝛼 𝜖 ℝ+.

Section 4: Training of Gating Unit with additional in-

formation

After training the Experts, the final step involves training

the Gating Unit, which takes the additional information of

instance 𝑖 about the corresponding sample distribution

along the subspaces as input to better weight the Experts

under uncertainty. Let 𝐷𝐺,𝑡𝑟𝑎𝑖𝑛 be the training dataset for

the Gating Unit 𝐺, which consists of the global mode val-

ues 𝑚𝑖,𝑔𝑙𝑜𝑏𝑎𝑙 representing the uncertain attributes, the cer-

tain attributes data 𝑥𝑖𝑘∗, the cluster probability vector 𝐶𝑖 as

additional information for the distribution of uncertainty

across the subspaces and the corresponding predictions of

the Experts of every instance �̂�𝑖,𝑒𝑛 in the training dataset:

𝐷𝐺𝑎𝑡𝑒,𝑡𝑟𝑎𝑖𝑛 = {((𝑚𝑖,𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑥𝑖𝑘∗), 𝐶𝑖 , �̂�𝑖,𝑒𝑛)} ∀ 𝑖, 𝑛

As output of the Gating Unit the weights 𝐺𝑒𝑛
=

 {𝑔𝑒1
, 𝑔𝑒2

, . . . , 𝑔𝑒𝑁
} for the Experts are generated by a soft-

max activation in the last layer 𝐿 of the Gating Unit:

𝑔 𝑒𝑛
 =

𝑒𝑥𝑝(𝑧𝑡
𝐿)

∑ 𝑒𝑥𝑝(𝑧𝑡
𝐿) |𝐸|

𝑡=1

, 𝑔 𝑒𝑛
∈ [0,1]

where:

• |𝐸|: Total number of Experts

• 𝑧𝑡
𝐿: 𝐼s the weighted sum of inputs for the 𝑡-th neuron in

the 𝐿-th layer

7

The training process of the Gating Unit involves learning

the weightings 𝑔 𝑒𝑛
 to minimize the loss function of the

uMoE model including the Gating Unit and the Experts.

This is typically achieved through backpropagation and

gradient descent. At first the weighting components are ini-

tialized randomly and can be seen as weights, similar to the

NN parameters. During training, the Gating Unit learns the

patters in the data, to weight the output of the Experts for

each instance to reduce the total loss 𝐿𝑢𝑀𝑜𝐸 , which can be

described as following:

𝐿𝑢𝑀𝑜𝐸(𝑦𝑖 , �̂�𝑖,𝑒𝑛 , 𝑔𝑖,𝑒𝑛
) = − ∑ ∑ 𝑦𝑖 𝑙𝑜𝑔 (𝑔𝑖,𝑒𝑛

 �̂�𝑖,𝑒𝑛)

𝐼

𝑖=1

|𝐸|

𝑛=1

Like the backpropagation of the Experts, the parameters of

the Gating Unit 𝜃𝐺
∗ = (𝑤𝐺,𝑡,𝑡−1

(𝑙)
, 𝑏𝐺,𝑡

(𝑙)
) are optimized to min-

imize the loss 𝐿𝑢𝑀𝑜𝐸 . Thus, the learning process of the pa-

rameters can be expressed as:

𝜃𝐺
∗ : (𝜃𝑒𝑛

∗ , 𝜃𝐺)

→ 𝑎𝑟𝑔𝑚𝑖𝑛 (𝐿𝑀𝑜𝐸 (𝑦𝑖 , �̂�𝑖,𝑒𝑛 (𝜃𝑒𝑛
∗), 𝑔𝑖,𝑒𝑛

(𝜃𝐺)))

where:
- 𝜃𝑒𝑛

∗ : Trained parameters of Expert 𝑒𝑛

- 𝜃𝐺 : Parameters of the Gating Unit

- 𝑔𝑖,𝑒𝑛
(𝜃𝐺) : The weight of the Gating Unit for the

Expert 𝑒𝑛 given the parameters 𝜃𝐺

Section 5: Inference on trained uMoE model

After the parameters of the clustering object 𝜃𝑘𝑚𝑒𝑎𝑛𝑠
∗ , the

individual Experts 𝜃𝑒𝑛
∗ and the Gating Unit 𝜃𝐺

∗ have been

sequentially trained to minimize the loss function, the

uMoE 𝜃𝑢𝑀𝑜𝐸
∗ = {𝜃𝑘𝑚𝑒𝑎𝑛𝑠

∗ , 𝜃𝑒𝑛
∗ , 𝜃𝐺

∗ } model is ready for in-

ference on new instances, both those with instances that

contain only certain attributes (𝑢 = 0, 0 ≤ 𝑢 ≤ 1), as

well as for instances that contain at least one uncertain at-

tribute (𝑢 > 0). In this context, 𝑢 is utilized as an indica-

tor measuring the average percentage of uncertain attrib-

utes in an instance.

�̂�𝑖(𝑢) = {
𝑓𝑢𝑀𝑜𝐸: (𝑥𝑖𝑘) → ℝ, 𝑢 = 0

𝑓𝑢𝑀𝑜𝐸 : (𝑝𝑑𝑓𝑖) → ℝ, 𝑢 > 0

This trained model can now be employed to make predic-

tions and perform inference tasks, leveraging the collective

expertise of its constituent Experts and the learned gating

mechanism. For instances with known attributes (𝑢 = 0),

the inference process is straightforward. The model com-

putes the prediction �̂�𝑖 by passing the instance 𝑥𝑖 through

the gating mechanism and the corresponding Expert.

In this case, the additional information used by the gating

mechanism is essentially 𝐶𝑖 as one-hot encoding vector

𝐶𝑖(𝑘𝑚𝑒𝑎𝑛𝑠(𝑥𝑖𝑘)) = [0, 0, . . . , 0,1,0, . . . ,0], indicating the

assignment of the instance to a specific cluster using the

trained k-means object.

For instances with uncertain attributes (𝑢 > 0), the infer-

ence process involves an additional step. Since the attrib-

utes are uncertain, the model samples 𝑆𝑖 = {𝑠𝑖,1, 𝑠𝑖,2

, … , 𝑠𝑖,𝑀}, 𝑠 ∈ ℝ𝑘′ from the PDF (𝑝𝑑𝑓𝑖) associated with the

instance to generate the additional variables that character-

ize the cluster distribution. The additional variables are

then provided to the gating mechanism, including the glob-

al mode value of the PDF.

Within the scope of this work, the primary focus has been

on addressing uncertainty in the input space during train-

ing. As a result, when it comes to the inference phase for

evaluation purposes, we will primarily consider scenarios

with certain data, where 𝑢 = 0. However, it is worth not-

ing, that our model possesses the capability to handle un-

certain instances even when working with the trained mod-

el. While this aspect is not the central point of evaluation in

this context, it underscores the model's ability to deal with

uncertainty in both training and inference phases.

Section 6: Nested Cross-Validation for hyperparame-

ter-tuning of number of subspaces

After presenting the individual steps from subspace parti-

tioning to training the components of the uMoE model and

the inference process in sections 1-5, section 6 serves as

presentation of an algorithm to evaluate the optimal num-

ber of subspaces. As mentioned in section 1, the partition-

ing of the input space and the resulting number of subspac-

es play a crucial role. However, since we must consider the

partitioning of the input space under uncertainty, common

pre-deterministic methods for determining the optimal

number of clusters, such as the Elbow Method, are not ap-

plicable. This is because, due to the uncertainty and associ-

ated variance in the data, the data points are spread much

wider across the input space. With the classical elbow

method, it is no longer possible to clearly discern cluster

separation on this scattered data, as each data point is treat-

ed as an instance and does not contribute as a weighted

sample from an instance into the model, unlike in our ap-

proach.

For this reason, our uMoE approach is embedded in a

Nested Cross-Validation (NCV), which allows us to de-

termine the number of subspaces, and thus the cluster size,

as well as the associated number of Experts for each da-

taset. In general, NCV consists of two loops, with the inner

loop attempting to determine the optimal hyperparameters

for the training data in the outer loop by optimizing hy-

perparameters and then applying them subsequently to the

training data in the outer loop (Krstajic et al. 2014; Bates et

al. 2023). In the outer loop, the dataset is partitioned into

𝑎 subsets, known as outer folds 𝐷𝑡𝑟𝑎𝑖𝑛
𝑎 . One of these outer

folds is designated as the test set, while the remaining 𝑎 −

8

1 folds collectively form the training set. For each outer

fold, the following steps are performed:

Within each outer fold, the training set 𝐷𝑡𝑟𝑎𝑖𝑛
𝑎 is further par-

titioned into 𝑏 subsets, known as inner folds. One of these

inner folds serves as the validation set 𝐷𝑏,𝑣𝑎𝑙
𝑎 , while the

remaining 𝑏 − 1 subsets are used for hyperparameter tun-

ing. For each inner fold, the uMoE model is trained and

evaluated for different number of subspaces. The optimal

number of subspaces 𝑛𝑠𝑢𝑏𝑝𝑎𝑐𝑒
∗ ∈ ℤ+ ∖ {1}, which ar-

chives the lowest loss on the validation set will be used for

training and testing on the outer fold. For each 𝑛𝑠𝑢𝑏𝑝𝑎𝑐𝑒
∗ ,

the uMoE model is trained using the entire training data of

the corresponding outer fold. Subsequently, the model's

performance is assessed on the test set of the respective

outer fold. The process of selecting the optimal number of

subspaces is repeated for each outer fold, resulting in the

set of 𝑛𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒
∗ for each outer loop 𝑁 =

 {𝑛𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒,𝑎=1
∗ , 𝑛𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒,𝑎=2

∗ , . . . , 𝑛𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒,𝑎=𝐴
∗ }.

Practical Instructions for uMoE

The uMoE model is supported by an extensive GitHub re-

pository, encompassing all essential resources and imple-

mentations. This repository has been curated to facilitate

seamless and effective utilization of the uMoE model

across various applications. The link to the code is attached

to the abstract.

This section offers a concise depiction of what can be en-

counter within the repository. The uMoE streamlines the

entire process of a basic Machine Learning pipeline, offer-

ing essential functionalities for training, prediction, and

model assessment.

Preprocessing uncertain instances

In the real-world context, working with datasets containing

uncertain or missing instances is a common challenge. To

facilitate the handling of such uncertain data, the project

incorporates the uframe library (Christian Amesoeder and

Michael Hagn 2023). This extension enables the generation

of highly complex multidimensional PDFs for uncertain in-

stances using Multiple Imputations by Chained Equations –

MICE (Buuren and Groothuis-Oudshoorn 2011). It also

transforms instances into objects, granting access to a

range of functions, including global mode calculation and

sampling. Due to its numerous useful and accessible fea-

tures for simplifying the handling of uncertain data, we

have built our approach on this library. Therefore, as start,

the uMoE model expects training data in the form of

uframe objects. In a real-world environment, uncertain at-

tributes of an instance can be manually deleted, thereby

marking them as uncertain for uframe. Subsequently,

uframe generates a PDF using MICE and stores it as an ob-

ject. In academic settings, attributes can be marked as un-

certain at will, serving as the training foundation for uMoE.

Train uMoE object with fit()

After the data has been preprocessed and converted into

uframe objects, an initialized uMoE object can be trained

on the uncertain instances using the fit() function. This

highly customizable function allows for the specification of

various hyperparameters, including the learning rate, the

number of training epochs, batch sizes for both Experts and

the Gating Unit as well as their corresponding NN-

Architectures (number of hidden layers and neurons per

layer). This adaptability ensures the model's suitability for

diverse datasets and tasks. To prevent overfitting, the fit

method leverages Elastic Net regularization (Zou and Has-

tie 2005), which combines L1 (Lasso) and L2 (Ridge) reg-

ularization techniques. Elastic Net encourages sparse mod-

el weights while also handling highly correlated features

effectively. This regularization approach helps maintain

model robustness, even in the presence of noisy or uncer-

tain data. The user can also set a threshold parameter 𝑝,

which controlls how much of the uncertainty of the in-

stance the model experiences (see Section 1). By choosing

𝑝 = 1 the hole PDF is used for training, while values near

0 assume that only a small area around the global mode

value is considered. For the determination of the local and

global mode values as described in section 2, the uMoE

method includes the basin hopping optimizer, due to the

ability of finding the maxima in a highly-dimensional

landscape, what agrees with a multidimensional PDF

(Wales and Doye 1997).

Prediction with predict()

After training a uMoE model, the predict method comes in-

to play. This function is designed to make predictions on

certain instances (see section 5). It employs clustering to

assign instances to the relevant Experts and then utilizes

these Experts to make predictions. The cluster probabilities

for each instance are than further used additional input in-

formation for the Gating Unit. The final predictions of the

uMoE are returned in a list.

Evaluation with evaluation()

The evaluation function calculates the performance of the

uMoE model's predictions against the true target values. It

generates scores tailored to the specific task type. For clas-

sification tasks, it computes the accuracy score, while for

regression tasks, it calculates the mean squared error. This

function is crucial for assessing how well the model's pre-

dictions align with the ground truth.

Evaluation

In this section, we conduct a comprehensive evaluation of

the uMoE model. We begin by describing our evaluation

procedure, which firstly encompasses the generation of un-

certainty, a short presentation of the used datasets, as well

9

as a description of the associated references. Subsequently,

we introduce two evaluation perspectives. The first assess-

es our model's ability to learn from uncertain data and test

on certain data using NCV for subspace size determination.

The second perspective involves iterative evaluation over

increasing numbers of subspaces to visualize the perfor-

mance graphically.

We begin by discussing the topic of uncertainty in datasets.

As we were unable to find suitable datasets with aleatoric

uncertainty, we introduced uncertainty artificially by ran-

domly removing 𝑢 percent of the data for each dataset. We

then generated one PDF for each uncertain instance using

uframe and MICE. In our context, MICE serves as inter-

mediate step to create PDFs through generating multiple

possible imputation values for all missing data points. Fol-

lowing this, the imputations can then be fused into one

multidimensional PDF across all attributes with a band-

width of 0.1 as smoothing parameter of the kernel density

estimation. It is important to note that the ground truths

corresponding to each uncertain instance remained un-

changed. We assumed that these ground truths would not

fundamentally change due to uncertainty, and our focus

was solely on uncertainty within the input space.

Datasets

Having introduced the generation of uncertainty, the next

step is to provide an overview of all the datasets we con-

sidered for evaluation. For each dataset, we have summa-

rized the source reference, the number of attributes and in-

stances as well as the prediction task (Regression (R) and

Classification (C)). When selecting the datasets, we exclu-

sively focused on well-known online databases such as

Kaggle and the UC Irvine Machine Learning Repository.

Reference Methods

To better assess the success of our method, additional ref-

erence approaches were incorporated. As previously de-

scribed in the related work chapter, there are only a few

works that have dealt with training with uncertain input da-

ta. However, when considering comparisons to our re-

search, no existing method serves as a suitable reference.

Ren et al.'s approach is confined to Naïve Bayes limits and

classification prediction tasks only like the decision tree

approach of Tsang et al.. Kendall and Gal's method is

likewise unsuitable because it focuses on image data. Gast

and Roth are also unsuitable as references since their

method incorporates inference with aleatoric uncertainty.

For this reason, specific baseline references were chosen,

capable of working with PDFs and simultaneously are

competitive with our method. We selected four references,

all of which fall in the field of NNs. These four approaches

can be separated into two groups: The first group was

trained using the global mode values 𝑚𝑔𝑙𝑜𝑏𝑎𝑙 of the PDFs,

and the other using the expected values 𝝁 of the PDFs, ef-

fectively covering a broad spectrum of deterministic

measures within a PDF. Both deterministic values were

then assigned to a standard NN, as well as to a classical

MoE, which leads to totally four independently approach-

es. Concretely speaking, for the NN references a model

was trained with either the global mode values or the ex-

pected values and subsequently tested on certain, unseen

data. In the case of the MoE references, the expected value

or the mode value was also provided as input, which was

then clustered and assigned to an Expert. After each Expert

received an instance assignment, they were trained accord-

ingly, followed by the training of the Gating Unit (though

this was done without the developed approaches from sec-

tion 1-4, such as additional information or loss function

weighting).

Experimental Result 1: Mean Value of NCV

In this section, we will first introduce how we initialized

the NN architectures of our uMoE components and the ref-

erences. In conclusion we explain our evaluation approach

trough NCV and show the results in tabular form.

For the reference methods as well as for the components of

our uMoE, NNs with two hidden layers, each consisting of

16 neurons and using the ReLU activation function, were

chosen. The learning rate during parameter training was set

moderately at 0.01, with an epoch count of 150 and a batch

size of 16 for both the reference NN and the Expert com-

ponents of uMoE and MoE. The batch size for the Gating

Unit is 24. Regarding regularization, alpha in the Elastic

Net was set to 0.5, indicating that both L1 and L2 regulari-

zation have equal influence on the loss, with a lambda

(regularization strength) of 0.002. This parameter setting

for the NNs, both for the baselines and for the uMoE, was

determined empirically through evaluations on the datasets

from Table 1 and, in total, yielded the best training results

for each method.

Dataset Reference # Attributes # Instances Task

Blood
(I-Cheng

Yeh 2008)
4 748 C

Califor-

nia

Housing

(Kelley
Pace and

Barry

1997)

8 20600 R

Energy

Efficien-

cy

(Tsanas and
Xifara

2012)

8 768 R

Water
Potabil-

ity

(Aditya

2021)
9 2011 C

Diabetes
(Smith et

al. 1988)
8 768 C

Banana
(Jaichanda-

ran 2023)
2 5300 C

Red

Wine

(Cortez et

al. 2009)
11 1599 C

Table 1: Summary of datasets included in the eval-

uation

10

In addition to the general hyperparameters for the NNs, we

selected a value of 0.8 for the threshold parameter 𝑝 in our

method, which represents the threshold for the samples, at

u = 0.4. As the uncertainty increased to u = 0.6, we re-

duced this threshold value from 0.8 to 𝑝 = 0.6. In general,

it can be said that as uncertainty increases, a low threshold

is advantageous, and vice versa.

The results presented in Table 2 were generated by choos-

ing the size a = 5 (outer fold - validation) and b = 3 (inner

fold – subspace tuning) for the NCV for both our uMoE

and the reference MoE. This process aimed to identify the

optimal number of subspaces for each approach. Subse-

quently, the mean value across all the results of the outer

folds was calculated. The references employing a baseline

NN were each trained and tested on the same outer folds,

followed by mean value calculation. The results were sub-

sequently compiled into Table 2 and for each dataset the

dominant values were highlighted. From the results in Ta-

ble 1, it can be observed that our method predominantly

outperforms the baseline methods. Considering the basic

MoE as a part of our conclusion and then comparing it to

the baseline NNs, our method performs only poorly in one

out of 14 evaluations, with the deviations in these cases be-

ing very minimal.

Experimental Result 2: Subspace Iteration

To provide a deeper insight into the performance of the

uMoE across varying number of subspaces, we conducted

a second evaluation on a subset of the previous datasets.

Unlike the previous tabular analysis focused on finding the

ideal number of subspaces and evaluating their perfor-

mance, this evaluation aims to demonstrate how uMoE per-

formances compared to the references as the number of

subspaces increases in a predefined interval.

For this evaluation, we conducted a basic Cross-Validation

(without inner fold) for each dataset once again, to observe

how performance varies across the number of subspaces (=

number of Experts). As a result, the outcomes may differ

from those in the tabular analysis. The interval was set in

the range of two to six. The NNs, which were trained on

the global mode values or expected values were tested on

the same folds. Graphically the basic NN references are

represented as vertical lines. The specific associations can

be found in the legends within the plots. In the graphical

evaluation, it becomes evident that our method is consist-

ently better than the references, but the optimum is mostly

located within a smaller subspace, typically ranging from

two to four, and worsens as the number increases.

Dataset

% Uncer-

tainty (u)
uMoE

Ref. MoE

(𝒎𝒈𝒍𝒐𝒃𝒂𝒍)
Ref. MoE

(𝝁)

NN

(𝒎𝒈𝒍𝒐𝒃𝒂𝒍)
NN

 (𝝁)

Regression

(MSE)

California 40 0.53 0.56 0.55 0.51 0.55

60 0.66 0.70 0.74 0.71 0.72

Energy 40 13.6 14.9 15.3 16.8 18.6

60 19 17.6 17.4 46.7 35.0

Classification

(AUC)

Diabetes 40 75.3 72.8 71.3 74.0 73.2

60 72.1 70.3 69.8 68.0 67.8

Blood 40 76.6 76.2 76.2 76.2 76.2

60 76.4 75.7 76.0 76.0 76.2

Banana 40 82.1 80.7 80.9 73.4 75.2

60 58.3 58.3 62.5 58.3 58.3

Water

Potability

40 63.1 62.0 60.8 60.5 61.7

60 59.5 57.5 55.8 57.5 56.8

Wine

Quality

40 57.8 56.1 56.7 57.8 57.8

60 55.0 51.4 52.7 52.5 47.7

Table 2: Tabular evaluation with NCV

Figure 4: Subspace evaluation of Water Potability

with 𝒖 = 𝟎. 𝟒 and 𝒑 = 𝟎. 𝟖

11

Discussion

In this chapter, our objective is to provide an interpretation

and critical discussion of the results obtained from the pre-

vious evaluation approaches. Within this context, we also

performed a robustness analysis by iteratively selecting

various sample threshold values, denoted as 𝑝. Besides

that, we also intend to explain the limitations of our ap-

proach and show interesting future research directions

based on our findings. From the tabular evaluation, it is ev-

ident that, with few exceptions, our approach emerged as

the dominant method. The learned weights of the Gating

Unit, influenced by additional information, and weighted

training of the Experts with local mode values contributes

to the model's enhanced consideration of uncertainty in the

parameter optimization. While our method faced more

pronounced competition in two cases, it was notably out-

performed only by the standard MoE methods, which we

consider as an integral component of our approach. With

one rare exception, our model consistently outperformed

the NN baseline methods, aligning with the primary objec-

tive of our evaluation.

The reason, why our method cannot always be dominant

lies in the way how the uncertainty is represented in the

PDFs. When MICE imputation accurately determines the

global mode or expected values close to the true attribute

values, our model tends to generalize too much based on

the local mode values. This effect is amplified when also

the variance of the PDF increases, leading to more cases

where most of the probability mass is in a different sub-

space, than the true value would lies. It is precisely for

such cases that the threshold for the samples becomes rele-

vant, as it provides our model with flexibility to mitigate

the variance by artificially constraining it and thereby re-

ducing the search space for the local mode value.

This is one of the main disadvantages of subspace decom-

position, that although leading to a value in the subspace of

the Expert, the deviation from the real value can become

significantly, especially with increasing number of sub-

spaces. Moreover, it is evident that an increase in uncer-

tainty results in a widening gap between uMoE and NN

methods besides a few exceptional cases. This assertion

underlines our theory that with more uncertainty the ex-

pected values and mode values deviate more and more

clearly from the true value and thus the basline models fail

to find the optimal parameters for inference on certain val-

ues. In summary, the tabular evaluation underscores that

our uMoE significantly leads to better results through in-

corporating uncertainty in the training process.

In addition to the tabular evaluation, the graphical evalua-

tion provides valuable insights into the number of subspac-

es necessary. Firstly, it is noticeable that the ideal subspace

size for our uMoE varies from one dataset to another, yet

the optimum is typically achieved at a lower subspace size,

typically ranging from two to four. Furthermore, it is evi-

dent that performance generally decreases as the number of

subspaces increases, with some exceptions that can be con-

sidered as outliers. This decline in performance can be at-

tributed to the decreasing portion of uncertain instance ob-

jects allocated to each subspace as the number of subspaces

expands. As a result, the decisions related to subspace cor-

Figure 5: Subspace evaluation of Diabetes with 𝒖 =
𝟎. 𝟒 and 𝒑 = 𝟎. 𝟖

Figure 6: Subspace evaluation of California Hous-

ing with 𝒖 = 𝟎. 𝟒 and 𝒑 = 𝟎. 𝟖

Figure 7: Subspace evaluation of Banana with 𝒖 =
𝟎. 𝟒 and 𝒑 = 𝟎. 𝟖

12

respondence and thus the locale mode search become in-

creasingly restricted, as discussed before. Although this ef-

fect is partially mitigated by the weighting of the loss func-

tion, it cannot be fully addressed in the determination of

local modes. Conclusively, it becomes evident that our

model demonstrates the capability to adapt to uncertainty

even with an inappropriate number of subspaces, showcas-

ing its flexibility in responding to hyperparameters.

Having demonstrated the effectiveness of our method in

the evaluation procedures, we now turn our attention to as-

sessing the robustness of our approach concerning the

threshold parameter 𝑝. To conduct this evaluation, we uti-

lized the California Housing dataset. This choice was mo-

tivated by the fact that even slight changes in a regression

dataset can have an immediate and noticeable impact on

the target variable, unlike a classification dataset. We per-

formed the evaluation for both 𝑢 = 0.4 and 𝑢 = 0.6 using

varying threshold values ranging from 1 to 0.1 in incre-

ments of 0.1. This analysis was conducted through a NCV

with 𝑎 = 3 and b= 2. The result was then calculated using

the mean value over all outer folds 𝑎 like in the tabular

evaluation.

Based on the outcomes, we conclude that in scenarios with

low uncertainty, it is advisable to choose a higher 𝑝 value

(e.g., 𝑢 = 0.4 corresponds to 𝑝 = 0.8), while in situations

with high uncertainty, a lower 𝑝 value is more appropriate

(e.g., 𝑢 = 0.6 corresponds to 𝑝 = 0.6). Furthermore, it is

worth noting that fluctuations in the results between the

different threshold values become minimal once 𝑝 values

exceed 0.5. These fluctuations can be attributed to the un-

derlaying NN components, which suffer from a non-

convex optimization problem, due to stochastic gradient

descent and thus can stuck in different local minima. Apart

from this, the trend can already be derived that with in-

creasing uncertainty, a lower threshold is more suitable de-

spite small fluctuations. Consequently, we pre-determined

the 𝑝 values for the previous evaluations (see Experimental

Results 1 and 2) based on these findings. Incorporating

both the 𝑝 value and the number of subspaces into the

NCV would result in an excessively large number of possi-

ble combinations. Even if the influence of the threshold

value is relatively small, it is still important, due to ena-

bling our method to respond more robustly to increasing

uncertainty levels. This adjustment is also important, be-

cause excessive uncertainty can lead to overgeneralization

by the Experts when dealing with uncertain data. This, in

turn, prevents the subgroups on which the Experts focus

from becoming too large as already assumed in the previ-

ous part of the discussion. However, it is important to note

that this reduction comes at the cost of losing some infor-

mation about the distribution of the PDF.

Having discussed the ability of our method to dominate the

baseline methods and to respond to increasing variance in

PDFs, it is important to also acknowledge the limitations

our model in the following paragraph. One limitation per-

tains to the fact that our model relies on numerous hy-

perparameters, whose predetermination is still a research

subject. These encompass typical hyperparameters of the

NN architecture, which are integral to our uMoE, such as

the number of hidden layers, neurons, and so forth. Addi-

tionally, this includes the selection of the threshold value

and, notably, the choice of the number of subspaces in our

case. While this crucial hyperparameter can be determined

using NCV, it is dependent on the size of the inner folds,

rendering it time intensive. This aspect may not be particu-

larly relevant during the training process but still necessi-

tates consideration. Furthermore, it is worth mentioning

that while our method accounts for uncertainty in the input

when optimizing parameters, it does not quantify this un-

certainty in the output during inference on certain instanc-

es. Consequently, the user must place trust in the model to

provide the best possible prediction without furnishing in-

formation regarding the uncertainty in the output.

Towards the conclusion of this chapter, we aim to discuss

potential avenues for future research. One intriguing re-

search direction involves delving deeper into the selection

of predictive models for the individual components of the

uMoE. In this regard, emerging large-scale data models

could gain significance, especially those trained on exten-

sive data under uncertainty, subsequently serving as com-

ponents in the Gating Unit and/or Expert components. This

Figure 8: Sample threshold analysis for 𝒖 = 𝟎. 𝟒

Figure 9: Sample threshold analysis for 𝒖 = 𝟎. 𝟔

13

approach could also be extended to the choice of clustering

algorithms. Beyond model selection, it holds promise to

explore the inference process of a trained uMoE in greater

detail, particularly in propagating uncertainty through the

trained uMoE for more precise handling of uncertain data.

These aspects offer potential for future extensions of the

uMoE method.

Conclusion

We have explored uncertainty in data, particularly aleatoric

uncertainty, and its impact on training of NNs. Existing re-

search has mainly focused on uncertainty during inference,

without paying attention to the challenge that arises when

the data used for training is generated under uncertainty.

To address this gap, we introduced the uMoE method,

which follows the “Divide and Conquer” paradigm. This

paradigm allows our model to break down the complex

problem of uncertainty represented as continuous PDFs in-

to smaller subspaces and additionally using the obtained

information from the decomposition to find the optimal pa-

rameters, that represent the uncertainty in the data best.

Through extensive evaluations, we demonstrated uMoE's

effectiveness, outperforming baseline methods in learning

from uncertain data and then use the trained models to pre-

dict on certain data.

This outstanding performance is based on our method's

ability to respond to different amount of variance in the

PDFs by partitioning them into subspaces. More detailed

said, our method locates the local mode of the PDF within

a subspace and integrates it in weighted manner into the

training of so-called Expert models responsible for that

subspace. The Gating Unit on top of the Experts subse-

quently learns to weight the predictions of the Expert mod-

els with gained additional information about the distribu-

tion of the PDFs across the subspaces. As result, with each

training iteration, the additional information from the de-

composition about the variance of the PDF is iteratively in-

corporated into multiple training steps as described in the

“Divide and Conquer” paradigm. It is also important to

note that our method has no restrictions on the input PDFs

and can handle even non-parametric distributions.

In summary, our work advances uncertainty-aware Deep

Learning during training, offering practical instructions for

implementing the uMoE. We stress the importance of inte-

grating uncertainty awareness into predictive models in

general to enhance the reliability of AI systems. Our

achievements open doors for future research in this field,

promising to enhance AI system capabilities and trustwor-

thiness.

References

Abdelaziz AH, Watanabe S, Hershey JR, et al (2015) Un-

certainty propagation through deep neural net-

works. In: Interspeech 2015. ISCA, pp 3561–3565

Aditya K (2021) Water Quality Dataset.

https://www.kaggle.com/adityakadiwal/competiti

ons. Accessed 12 Oct 2023

Alizadehsani R, Roshanzamir M, Hussain S, et al (2021)

Handling of uncertainty in medical data using ma-

chine learning and probability theory techniques:

a review of 30 years (1991–2020). Annals of Op-

erations Research. https://doi.org/10.1007/s10479-

021-04006-2

Astudillo RF, Neto JPDS (2011) Propagation of uncertain-

ty through multilayer perceptrons for robust au-

tomatic speech recognition. In: Interspeech 2011.

ISCA, pp 461–464

Bates S, Hastie T, Tibshirani R (2023) Cross-Validation:

What Does It Estimate and How Well Does It Do

It? Journal of the American Statistical Association

0:1–12.

https://doi.org/10.1080/01621459.2023.2197686

Buuren S van, Groothuis-Oudshoorn K (2011) mice: Mul-

tivariate Imputation by Chained Equations in R.

Journal of Statistical Software 45:1–67.

https://doi.org/10.18637/jss.v045.i03

Christian Amesoeder, Michael Hagn (2023) uframe: Pack-

age for handling uncertain data

Cortez P, Cerdeira A, Almeida F, et al (2009) Modeling

wine preferences by data mining from physico-

chemical properties. Decision Support Systems

47:547–553.

https://doi.org/10.1016/j.dss.2009.05.016

Feng D, Rosenbaum L, Dietmayer K (2018) Towards Safe

Autonomous Driving: Capture Uncertainty in the

Deep Neural Network For Lidar 3D Vehicle De-

tection. In: 2018 21st International Conference on

Intelligent Transportation Systems (ITSC). IEEE,

Maui, HI, pp 3266–3273

Gast J, Roth S (2018) Lightweight Probabilistic Deep Net-

works

Ge J, Xia Y, Nadungodage C (2010) UNN: A Neural Net-

work for Uncertain Data Classification. In: Zaki

MJ, Yu JX, Ravindran B, Pudi V (eds) Advances

14

in Knowledge Discovery and Data Mining.

Springer, Berlin, Heidelberg, pp 449–460

Gormley IC, Frühwirth-Schnatter S (2018) Mixtures of

Experts Models

Hariri RH, Fredericks EM, Bowers KM (2019) Uncertainty

in big data analytics: survey, opportunities, and

challenges. Journal of Big Data 6:44.

https://doi.org/10.1186/s40537-019-0206-3

Helton JC, Johnson JD, Oberkampf WL, Sallaberry CJ

(2010) Representation of analysis results involv-

ing aleatory and epistemic uncertainty. Interna-

tional Journal of General Systems 39:605–646.

https://doi.org/10.1080/03081079.2010.486664

Hora SC (1996) Aleatory and epistemic uncertainty in

probability elicitation with an example from haz-

ardous waste management. Reliability Engineer-

ing & System Safety 54:217–223.

https://doi.org/10.1016/S0951-8320(96)00077-4

Huang Y, Bai B, Zhao S, et al (2022) Uncertainty-Aware

Learning Against Label Noise on Imbalanced Da-

tasets

I-Cheng Yeh (2008) Blood Transfusion Service Center

Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991)

Adaptive Mixtures of Local Experts. Neural

Computation 3:79–87.

https://doi.org/10.1162/neco.1991.3.1.79

Jaichandaran S (2023) Standard Classification (Banana Da-

taset).

https://www.kaggle.com/datasets/saranchandar/sta

ndard-classification-banana-dataset. Accessed 12

Oct 2023

Jiang C, Zheng J, Han X (2018) Probability-interval hybrid

uncertainty analysis for structures with both alea-

tory and epistemic uncertainties: a review. Struc-

tural and Multidisciplinary Optimization

57:2485–2502. https://doi.org/10.1007/s00158-

017-1864-4

Kelley Pace R, Barry R (1997) Sparse spatial autoregres-

sions. Statistics & Probability Letters 33:291–297.

https://doi.org/10.1016/S0167-7152(96)00140-X

Kendall A, Gal Y (2017) What Uncertainties Do We Need

in Bayesian Deep Learning for Computer Vision?

Krstajic D, Buturovic LJ, Leahy DE, Thomas S (2014)

Cross-validation pitfalls when selecting and as-

sessing regression and classification models.

Journal of Cheminformatics 6:10.

https://doi.org/10.1186/1758-2946-6-10

Li L, Wang H, Li J, Gao H (2020) A survey of uncertain

data management. Frontiers of Computer Science

14:162–190. https://doi.org/10.1007/s11704-017-

7063-z

Loquercio A, Segu M, Scaramuzza D (2020) A General

Framework for Uncertainty Estimation in Deep

Learning. IEEE Robotics and Automation Letters

5:3153–3160.

https://doi.org/10.1109/LRA.2020.2974682

Maimon O, Rokach L (2005) Decomposition Methodology

for Knowledge Discovery and Data Mining. In:

Maimon O, Rokach L (eds) Data Mining and

Knowledge Discovery Handbook. Springer US,

Boston, MA, pp 981–1003

Masoudnia S, Ebrahimpour R (2014) Mixture of experts: a

literature survey. Artificial Intelligence Review

42:275–293. https://doi.org/10.1007/s10462-012-

9338-y

Meyer GP, Thakurdesai N (2020) Learning an Uncertainty-

Aware Object Detector for Autonomous Driving.

In: 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). pp

10521–10527

Murphy KP (2012) Machine Learning: A Probabilistic Per-

spective. MIT Press

Nguyen DT, Ngo T-P-N, Lou Z, et al (2019) Robust Learn-

ing Under Label Noise With Iterative Noise-

Filtering

Raviv Y, Intrator N (1996) Bootstrapping with Noise: An

Effective Regularization Technique. Connection

Science 8:355–372.

https://doi.org/10.1080/095400996116811

Ren J, Lee SD, Chen X, et al (2009) Naive Bayes Classifi-

cation of Uncertain Data. In: 2009 Ninth IEEE In-

ternational Conference on Data Mining. pp 944–

949

Rodríguez CCG, Servigne S (2013) Managing Sensor Data

Uncertainty: A Data Quality Approach. IJAEIS

4:35–54.

https://doi.org/10.4018/jaeis.2013010103

Smieja M, Struski Ł, Tabor J, et al (2019) Processing of

missing data by neural networks

Smith DR (1985) The design of divide and conquer algo-

rithms. Science of Computer Programming 5:37–

58. https://doi.org/10.1016/0167-6423(85)90003-

6

Smith JW, Everhart JE, Dickson WC, et al (1988) Using

the ADAP Learning Algorithm to Forecast the

Onset of Diabetes Mellitus. Proceedings of the

Annual Symposium on Computer Application in

Medical Care 261–265

Tsanas A, Xifara A (2012) Accurate quantitative estima-

tion of energy performance of residential build-

ings using statistical machine learning tools. En-

ergy and Buildings 49:560–567.

https://doi.org/10.1016/j.enbuild.2012.03.003

Tsang S, Kao B, Yip KY, et al (2011) Decision Trees for

Uncertain Data. IEEE Transactions on Knowledge

and Data Engineering 23:64–78.

https://doi.org/10.1109/TKDE.2009.175

Wales DJ, Doye JPK (1997) Global Optimization by Ba-

sin-Hopping and the Lowest Energy Structures of

Lennard-Jones Clusters Containing up to 110 At-

oms. J Phys Chem A 101:5111–5116.

https://doi.org/10.1021/jp970984n

Wang Y, Li X, Li X, Wang Y (2013) A survey of queries

over uncertain data. Knowl Inf Syst 37:485–530.

https://doi.org/10.1007/s10115-013-0638-6

Yuksel SE, Wilson JN, Gader PD (2012) Twenty Years of

Mixture of Experts. IEEE Transactions on Neural

Networks and Learning Systems 23:1177–1193.

https://doi.org/10.1109/TNNLS.2012.2200299

Zou H, Hastie T (2005) Regularization and Variable Selec-

tion Via the Elastic Net. Journal of the Royal Sta-

tistical Society Series B: Statistical Methodology

67:301–320. https://doi.org/10.1111/j.1467-

9868.2005.00503.x

