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Abstract. The Swift-Hohenberg (SH) and Phase-Field Crystal (PFC) models are

minimal yet powerful approaches for studying phenomena such as pattern formation,

collective order, and defects via smooth order parameters. They are based on a free-

energy functional that inherently includes elasticity effects. This study addresses how

gradient elasticity (GE), a theory that accounts for elasticity effects at microscopic

scales by introducing additional characteristic lengths, is incorporated into SH and

PFC models. After presenting the fundamentals of these theories and models, we first

calculate the characteristic lengths for various lattice symmetries in an approximated

setting. We then discuss numerical simulations of stress fields at dislocations and

comparisons with analytic solutions within first and second strain-gradient elasticity.

Effective GE characteristic lengths for the elastic fields induced by dislocations are

found to depend on the free-energy parameters in the same manner as the phase

correlation length, thus unveiling how they change with the quenching depth. The

findings presented in this study enable a thorough discussion and analysis of small-scale

elasticity effects in pattern formation and crystalline systems using SH and PFCmodels

and, importantly, complete the elasticity analysis therein. Additionally, we provide a

microscopic foundation for GE in the context of order-disorder phase transitions.

Keywords: gradient elasticity, pattern formation, phase-field crystal, lattice deformation,

dislocations
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1. Introduction

Gradient elasticity (GE) is a theoretical framework that extends classical continuum

mechanics with additional higher-order derivatives to capture the effects of small

length scales [1–7]. It incorporates additional characteristic lengths accounting for

internal material structure and discreteness, thereby allowing the description of size

effects relevant at the nano- and micro-scale. Such a theory has been tested and

exploited in different frameworks, e.g., classical mechanics and dislocation dynamics,

and applied in contexts such as flexoelectricity and biomechanics [8–14]. It has also

been extended to describe strain-gradient plasticity [15–18]. Parameters entering

the theory have been connected to interatomic potentials and, in general, can be

determined by atomistic methods [19–21]. A key feature of GE is that it overcomes some

limitations of continuum elasticity theory, such as nonphysical singularities emerging

from approximated descriptions of small scales. This leads, for instance, to regularized

elastic fields at the dislocation core [22–26], which are instead singular in classic linear

elasticity [27].

Elasticity-driven pattern formation emerges in a variety of physical systems—

e.g., hard and soft materials, biological tissues [28, 29]—due to the interplay

between mechanical deformation and other physical contributions such as capillarity,

solidification, crystal growth dynamics, and grand potential jumps across interfaces.

In the study of general features of pattern formation, a central role has been played

by the so-called Swift-Hohenberg (SH) model [30, 31] and its extensions. It describes

the spatiotemporal evolution of a real order parameter field ψ based on a partial

differential equation comprising linear differential operators and polynomial terms (the

SH equation). Such an equation favors the linear growth of periodic modes of ψ until

the nonlinear contributions induce saturation, leading to the selection of patterns with

different symmetries depending on the parametrization. Notably, the SH equation can

be written in a variational form through the definition of a free energy (or Lyapunov)

functional F [ψ] as ∂tψ = −δF/δψ. Therefore, stable stationary states correspond

to the minima of such functional. While it was initially proposed to model the

so-called Rayleigh-Bénard convection in a heated fluid, similar equations have been

exploited to describe the emergence of patterns involving elasticity effects in different

contexts [32–34]. The connection of SH-like models to elasticity became evident in

the conservative formulation, the so-called phase-field crystal (PFC) model, explicitly

introduced to model elasticity in crystal growth [35–38]. In its basic formulation,

the PFC model is based on a free energy analogous to the SH model, albeit with

conservative dynamics ∂tψ = ∇2(δF/δψ), where ψ can be considered as the time average

of microscopic atomic density over vibrational timescales. The periodic pattern, in that

case, represents the lattice structure of crystalline materials. Such a model has been

successfully applied to describe mesoscale phenomena in crystals, including elasticity

effects during crystal growth, dislocation dynamics, and microstructure evolution

[36, 38–41].
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Elasticity is thus naturally encoded in SH/PFC models. Introducing a small

perturbation in the periodicity of the order parameter and neglecting higher-order terms,

the energy can be written as a quadratic form of the strain [36, 42] resembling classical

models of linear elasticity. Elastic constants are then related to the lattice symmetry

described by ψ, with magnitudes dependent on the model parameters. Advanced

models have also been proposed to account for elastic relaxation timescales [42–46].

Without approximations, the elastic energy obtained by perturbing the density field

also comprises higher-order terms, including nonlinear and strain-gradient terms. While

nonlinearities have been the object of dedicated analyses [47–49], strain-gradient terms

have typically been neglected. However, numerical simulations exhibit features typical

of GE. For instance, the stress field at dislocations in PFC simulations matches classical

continuum elasticity in the far field but is nonsingular at the core [49–52]. Qualitatively,

some form of regularization is indeed expected as the fields ψ are smooth functions

of the spatial coordinates due to the underlying free energy functionals. However, the

emerging regularization explicitly resembles that obtained in GE theories [22], for which

preliminary evidence has been reported [49, 52].

In this work, we study how GE is encoded in SH/PFC models. We bridge for

the first time the field of nonlocal elasticity encoding microscopic effects (as described

by GE) with the theory of pattern formation at the micro-to-meso-scale conveyed by

SH/PFC models, which also serve as convenient frameworks for numerical simulations.

The importance of establishing this connection is thus two-fold. (i) Current approaches

in the field of GE typically assume some form of elastic energy; here, we show how

GE free energies and constants entering this theory follow from microscopic models

like SH and PFC, as well as related aspects, like the regularization of elastic fields at

defects. (ii) By showing analytically and numerically that strain-gradient terms are

inherently encoded in the SH free energy, we generally assess that approaches based

on SH and PFC models retain these effects and discuss how GE emerges with concrete

examples. Our work then enables advanced interpretation of simulation results. It

paves the way for using SH and PFC models to study GE effects self-consistently, i.e.,

following assumptions on microscopic ordering in lattices or, more generally, patterns

retaining some degree of order.

This paper is organized as follows. In Sect. 2, we recall the basics of the GE theory,

reporting the key information exploited in the current analysis. Readers familiar with

this theory may skip this section and use it as a reference for the adopted notation.

Similarly, in Sect. 3, we illustrate the SH free energy functional and recall the basics

of SH and PFC models. From Sect. 4, we discuss novel aspects and results. As first

main focus, we discuss how GE naturally arises from the SH energy functional upon

perturbation of the microscopic density (Sect. 4.1). We then analyze in detail the derived

theory for stripe (Sect. 4.2) and crystalline (Sect. 4.3) phases, followed by a discussion

of the results and their implications (Sect. 4.4). While this analysis is obtained for a

minimal formulation of the SH energy functional, extended parametrizations achieved

via the definition of a two-point correlation function are also discussed (Sect. 4.5). As
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the second main focus, we address in Sect. 5 the effective GE theory that transpires

without approximations in numerical simulations. We study, in particular, the relevant

case of the elastic fields at dislocations. After reporting the details concerning numerical

simulations (Sect. 5.1), we characterize the stress field and its regularization at the core

of an edge dislocation via comparisons with analytic solutions from first and second

strain-gradient elasticity and fitting of effective characteristic lengths (Sect. 5.2). Results

including the dependence of the characteristic lengths on model parameters, like the

quenching depth, and their implications, are then discussed (Sect. 5.3). Conclusions

are summarized in Sect. 6. Technical details concerning numerical methods, analytic

expressions for the stress fields of dislocations in first and second strain-gradient

elasticity, details of fitting procedures, and additional information, are reported in the

Appendix.

2. Gradient Elasticity

In first strain-gradient elasticity (GE-1), the elastic energy density accounts for strain

and its first derivatives. In the Toupin–Mindlin theory of anisotropic GE-1 [1, 2],

following the convenient notation of Refs. [6, 7], the energy density generally reads ‡

w(ε,∇ε) =
1

2
Cijklεijεkl +

1

2
Dijmkln∂mεij∂nεkl + Eijklmεij∂mεkl, (1)

with ε = 1
2
(∇u+∇u⊺) the strain tensor, u themacroscopic displacement field, and C, E,

and D, the constitutive four-, five- and six-rank tensors encoding elastic constants. This

formulation simplifies the more general Mindlin’s theory of elasticity in the presence

of microstructures, which includes quantities at both macro- and micro-scale [3, 5].

This multiscale formulation, however, can hardly be exploited for practical purposes,

and gradient elasticity theories based on the macroscopic displacement u are usually

considered. In practice, the role played by microscopic deformation gradients is encoded

by second gradients of the macroscopic displacement (Form I) or first gradients of the

macroscopic strain (Form II), the latter leading to Eq. (1). C and D possess both minor

and major symmetries, while E has only minor symmetries. Illustrated for C, these

symmetries read component-wise

Cijkl = Cklij (major), Cijkl = Cjikl = Cijlk (minor). (2)

In the most general case, the constitutive tensors have 21, 108, and 171 independent

components, respectively (in 3D), which may be derived from the energy density

Cijkl =
∂2w

∂εij∂εkl
, Eijklm =

∂2w

∂εij∂(∂mεkl)
, Dijmkln =

∂2w

∂(∂mεij)∂(∂nεkl)
. (3)

‡ We hereafter adopt Einstein summation convention.
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The quantities conjugate to the elastic strain and the gradient of the elastic strain are

the Cauchy stress σ and the double stress τ

σij =
∂w

∂εij
= Cijklεkl + Eijklm(∂mεkl), (4)

τijm =
∂w

∂(∂mεij)
= Eklijmεkl + Dijmkln(∂nεkl). (5)

In isotropic and, more generally, centrosymmetric crystals, Eijklm = 0, resulting in the

so-called Mindlin GE-1 for centrosymmetric material [3, 4]

w(ε,∇ε) =
1

2
Cijklεijεkl +

1

2
Dijmkln∂mεij∂nεkl. (6)

The mechanical equilibrium condition (without body forces) reads

∂j(σij − ∂mτijm) = 0, (7)

which can be recast in a field equation for the displacement [6]:

Likuk = 0,

Lik = LC

ik − LD

ik = Cijkl∂j∂l − Dijmkln∂j∂l∂m∂n.
(8)

In the following, Voigt notation is also used for the fourth-order tensor C

11 → 1, 22 → 2, 33 → 3, 23 = 32 → 4, 13 = 31 → 5, 12 = 21 → 6, (9)

with components denoted Cij, and for the six-order tensor D

111 → 1, 221 → 2, 122 → 3, 331 → 4, 133 → 5,

222 → 6, 332 → 7, 233 → 8, 112 → 9, 211 → 10,

333 → 11, 113 → 12, 311 → 13, 223 → 14, 322 → 15,

123 → 16, 132 → 17, 231 → 18.

(10)

with components denoted Di,j.

2.1. Isotropic materials

For isotropic materials (iso), the elastic tensors read

C
iso
ijkl = λδijδkl + µ(δikδjl + δilδjk), (11)

with λ and µ the Lamé constants, and

D
iso
ijmkln =

a1
2
(δijδkmδln + δijδknδlm + δklδimδjn + δklδinδjm) + 2a2δijδklδmn

+
a3
2
(δjkδimδln + δikδjmδln + δilδjmδkn + δjlδimδkn) + a4(δilδjkδmn + δikδjlδmn)

+
a5
2
(δjkδinδlm + δikδjnδlm + δjlδkmδin + δilδkmδjn),

(12)
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with ai coefficients of the strain-gradient terms. We thus obtain the elastic energy

density

wiso =
1

2
λεiiεjj + µεijεij + a1(∂jεii)(∂kεjk) + a2(∂jεii)(∂jεkk)

+ a3(∂iεij)(∂kεjk) + a4(∂kεij)(∂kεij) + a5(∂kεij)(∂iεjk),
(13)

and the operators

LC, iso
ik = (λ+ 2µ)∂i∂k + µ(δik∆− ∂i∂k), (14)

LD, iso
ik = 2(a1 + a2 + a3 + a4 + a5)∂i∂k∆+

1

2
(a3 + 2a4 + a5)(δik∆− ∂i∂k). (15)

Equations (14) and (15) correspond to the expressions in (8) with (isotropic) elastic

constants as in (11) [6, 7]. Moreover, one may redefine Liso
ik as

Liso
ik = (λ+ 2µ)[1− ℓ21∇2]∂i∂k + µ[1− ℓ22∇2](δik∇2 − ∂i∂k),

with ∇2 the Laplacian and the two emerging characteristic lengths

ℓ21 =
2(a1 + a2 + a3 + a4 + a5)

λ+ 2µ
, (16)

ℓ22 =
a3 + 2a4 + a5

2µ
. (17)

ℓi can be considered measures of the material’s internal characteristic lengths, such as

the distance over which microstructural effects (like atomic lattice or grain structure)

significantly influence the material’s response to deformation. In essence, they provide a

way to include the effect of the material’s microstructure in continuum-scale models. ai
may be expressed in terms of the components of D, and computed by atomistic methods

[7]. In the following, they are directly extracted by comparison of the considered elastic

energy densities with the form given in (13), see also Sect. 4.1.

2.2. Centrosymmetric materials

Centrosymmetric materials (cs) possess a lattice structure with an inversion center r0,

i.e., points r0 ± r are equivalent. For these materials, elastic constants read

C
cs
ijkl = C12δijδkl + C44(δikδjl + δilδjk) + (C11 − C12 − 2C44)δijkl, (18)

with

δijkl =

{
1, if i = j = k = l,

0, otherwise.
(19)

The constants entering the prefactor of δijkl are typically used to quantify the anisotropy

of a cubic material via, e.g., the so-called Zener ratio z = 2C44/(C11−C12). For isotropic
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materials, z = 1 and Eq. (18) reduces to Eq. (11) as expected. The strain-gradient

elasticity tensor can be written as [7]

D
cs
ijmkln =

a1
2
(δijδkmδln + δijδknδlm + δklδimδjn + δklδinδjm) + 2a2δijδklδmn

+
a3
2
(δjkδimδln + δikδjmδln + δilδjmδkn + δjlδimδkn) + a4(δilδjkδmn + δikδjlδmn)

+
a5
2
(δjkδinδlm + δikδjnδlm + δjlδkmδin + δilδkmδjn)

+ a6(δikδjlmn + δilδjkmn + δjkδilmn + δjlδikmn)

+ a7(δkmδijln + δlmδijkn + δinδjklm + δjnδiklm)

+ a8δmnδijkl + a9(δijδklmn + δklδijmn)

+ a10(δimδjkln + δjmδikln + δknδijlm + δlnδijkm) + a11δijklmn.

(20)

With these elasic constants, the operator Lcs
ik for the generalized equations for

displacements (8) becomes [7]:

Lcs
ik = (C11 + 2C44)[1− ℓ21∇2]∂i∂k + C44[1− ℓ22∇2](δik∇2 − ∂i∂k)

+ (C11 − C12 − 2C44)[1− ℓ23∇2]δik∂i∂k − (a6δikδjlmn + a11δijklmn)∂j∂l∂m∂n

− (a6 + a7 + a9 + a10)(δklmn∂i + δilmn∂k)∂l∂m∂n.

(21)

with characteristic lengths

ℓ21 =
2(a1 + a2 + a3 + a4 + a5)

C12 + 2C44
,

ℓ22 =
a3 + 2a4 + a5

2C44
,

ℓ23 =
a6 + 2a7 + a8 + 2a10
C11 − C12 − 2C44

,

(22)

In this case, terms explicitly depending on ai appear in Lcs
ik, marking the intrinsic

anisotropy of cubic crystals.

2.3. Special second strain-gradient elasticity

In second strain-gradient elasticity (GE-2), second derivatives of the strain field are

retained in the elastic energy density, w ≡ w(εij, ∂kεij, ∂k∂ℓεij). For isotropic materials,

a formulation relying on two characteristic lengths ̺1,2 may be considered. They enter

the mechanical equilibrium condition as [23]

∂j [σij − ∂mτijm + ∂n∂mτijmn] = ∂j
[
(1− ̺21∇2)(1− ̺22∇2)σij

]
= 0

= ∂j
[
(1− ω2∇2 + γ4∇4)σij

]
= 0,

(23)

with τijmn = ∂f/∂(∂n∂mεij) the triple stress tensor and ∇4 the bi-Laplacian. Constants

relate as ω2 = ̺21 + ̺22 and γ4 = ̺21̺
2
2. Note that to leading order (γ = 0), this

theory reduces to a single characteristic length ω, i.e. to GE-1 with ℓ1 = ℓ2 = ω.

This formulation has been exploited to obtain analytical solutions, e.g., for dislocation-

induced deformations, which will be used in the following.
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3. Swift-Hohenberg and phase-field crystal models

3.1. Free Energy for the microscopic density field

The Swift-Hohenberg (SH) and phase-field crystal (PFC) models describe the

nonconservative and conservative dynamics of a periodic order parameter ψ ≡ ψ(r),

respectively. The dynamical equation can be written in terms of the variation of a free

energy functional F that, in its simplest form, can be written [30, 35]

F =

∫

Ω

dr

[
1

2
ψLψ +

1

4
ψ4

]
, (24)

with L = (q20 +∇2)2 − ǫ. This differential operator enforces a periodicity in agreement

with the first peak in the structure factor (at q0) for periodic patterns like stripes or

crystalline phases. ǫ is a phenomenological temperature parameter. The so-called SH

equation corresponds to the nonconservative L2-gradient flow

∂tψ = −δF
δψ

= [ǫ− (q20 +∇2)2]ψ − ψ3. (25)

The dynamics equation in the PFC model is instead given by the conservative

H−1-gradient flow

∂tψ = ∇2 δF

δψ
= ∇2

{
[(q20 +∇2)2 − ǫ]ψ + ψ3

}
. (26)

Eq. (24) realizes the minimal free energy to model order-disorder phase transition as

its minimizers are either constant or periodic fields. As such, its form emerges in different

contexts. F can be obtained as the nondimensional form of the free energy describing

liquid-solid transition with the order parameter corresponding to the microscopic density

field [36]. It may also be derived—upon approximations—from the classical density

functional theory [53–55] as discussed, e.g., in Refs. [37, 56–58]. In this approach, the

differential operator can be obtained as an approximation of an n-point correlation

function. Other approximations may also be considered, like the multimode SH energy

functional [59], effectively reproducing M peaks at wavenumbers qm of the structure

factor via a differential operator

LM =
M∏

m=1

[
(q2m +∇2)2 + bm

]
, (27)

where the bm are additional constants controlling the stability of the corresponding

modes. Without loss of generality, we consider here the multimode SH free-energy

functional with the following generalized parameterization

Fψ =

∫

Ω

dr

[
AψLMψ +Bψ2 + Cψ3 +Dψ4

]
. (28)
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3.2. Amplitude expansion

The density ψ can generally be expressed in terms of a small set of Fourier modes

ψ(r) = ψ0(r) +

N∑

n=1

ηn(r)e
ikn·r + c.c., (29)

with kn the reciprocal space vectors and c.c. denoting the complex conjugate. For a

relaxed crystal, amplitudes are real functions ηn = ϕn with ϕi = ϕj if |ki| = |kj|. A

deformed crystal can be described by Eq. (29) with amplitudes being complex functions

ηn(r) = ϕn(r)e
−ikn·u(r) [47, 60, 61]. These complex amplitudes allow for the separation

of different physical features [42]. For small deformations, the phase θn = −kn · u
encodes the deformation field, while ϕn(r) accounts for diffusive phenomena, melting or

solidification (e.g., a transition from finite ϕn(r) to ϕn(r) = 0 would be representative

of an order-disorder / solid-liquid interface).

In the amplitude expansion of the PFC model (APFC) [49], a free energy Fη
dependent on amplitudes can be derived from Fψ. For a one-mode approximation of

ψ (M = 1 in LM), this has been obtained via a renormalization group approach or by

substituting (29) into the expression of the free energy functional and integrating over

the unit cell [62–64]. Here, with the shortest reciprocal-space vector set to |kn| = q1 = 1

and focusing on bulk systems where ψ0(r) can be assumed constant (ψ0(r) = ψ̄), we

consider the amplitude approximation of the multimode SH functional (28) introduced

in [65]

Fη =

∫

Ω

dr

[
N∑

n=1

(
A′Γn|Gnηn|2

)
+ gs({ηn})

]
, (30)

with Gn = ∇2 + 2ikn · ∇, gs = B′

2
ζ2 +

C′

3
ζ3 +

D′

4
ζ4 +E ′, ζp complex polynomials of order

p in the amplitudes depending on the lattice symmetry (see Ref. [49]), and

Γn =

M∏
m=1

qm 6=|kn|

[(q2m − |kn|2)2 + bm]

M∏
m=2

[(q2m − q21)
2 + bm]

(31)

where the denominator is chosen to enforce Γn = 1 for the first mode. Parameters of

(30) relate to the ones entering (28) as A′ = A, B′ = B + 2Cψ̄+3Dψ̄2, C ′ = C + 3Dψ̄,

D′ = D, and E ′ = (A/2)ψ̄2+(C/3)ψ̄3+(D/4)ψ̄4. The dynamic equation for amplitudes

approximating Eq. (26) is

∂tηn = −|kn|2
δFη
δη∗n

. (32)
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4. Elasticity from the SH functional, constants, and characteristic lengths

4.1. Elastic energy with strain-gradient terms

As the displacement field varies over large length scales, elasticity in the SH or PFC

model can be described by looking at amplitudes {ηj} [42, 49]. In this context, the

elastic energy density, namely the part of the energy depending on the displacement u,

is

E =

∫

Ω

w({ηn}) dr =
∫

Ω

∑

n

AΓn|Gnηn|2dr. (33)

To proceed further, we consider two widely adopted simplifications, assuming constant

amplitude moduli (|∇ϕn| = 0) and neglecting nonlinear terms. With the former

assumption, we obtain

|Gnηn|2 =4ϕ2
n(kn)i(kn)j(kn)k(kn)ℓ×

[
(∂iuj)(∂kuℓ)− (∂iuj)(∂kur)(∂ℓur) +

1

4
(∂iur)(∂jur)(∂kus)(∂ℓus)

︸ ︷︷ ︸
U2

]

+ ϕ2
n(kn)i(kn)j (∂rrui)(∂ssuj)︸ ︷︷ ︸

G2

,

(34)

with U a nonlinear strain tensor and G encoding gradient-elasticity contributions. Due

to the nature of the amplitude functions, this simplifying assumption is exact in relaxed

bulk, where the amplitudes are real and constant. However, it is an approximation at

defects and interfaces, where the amplitude moduli vary measurably. Next, neglecting

higher-order nonlinear terms, we have

w = A′
N∑

n=1

Γnϕ
2
n

{
4[(kn)i(kn)j(∂iuj)]

2 + [(kn)i∇2ui]
2
}
, (35)

with the first and second terms in the sum corresponding to linear and strain-

gradient elasticity terms, respectively. Due to the presence of higher-order displacement

derivatives, it is important to check that this approximated expression of the elastic

energy density complies with rotational invariance. Indeed, while the free energy of

the system (30) is rotationally invariant by construction [49], and therefore so is the

elastic energy density implicitly encoded therein, the approximations made to reach

(35) may affect that property. This is, however, not the case, given the form of the

double-derivative terms. Explicitly, if the space coordinates undergo a rigid rotation

with the associated matrix R, the term (kn)i∇2ui transforms as:

Rij(kn)j∇2(Rikuk) = δjk(kn)j∇2uk = (kn)j∇2uj, (36)

i.e., it is rotationally invariant. We refer to Refs. [66, 67] for more detailed discussions.

In the following, we look at the expressions of the elastic energy density obtained for

specific patterns and lattice symmetries.
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4.2. Stripe Phase

Stripe arrangements, e.g., in smectic phases [68–71], are a class of patterns described

by SH and PFC models [30, 35, 72]. The corresponding minimizer of the SH energy

functional is well represented by waves with a single reciprocal lattice vector k, namely

with ψ described as in Eq. (29) with a single term in the sum. Assuming an arbitrarily

oriented wave vector k = k0(cos(φ), sin(φ)), Eq. (35) reduces to:

wstr

Kstr
=4k20(cos

4(φ)ε2xx + sin4(φ)ε2yy + 2 cos2(φ) sin2(φ)εxxεyy + 4 cos2(φ) sin2(φ)ε2xy)

+ (cos(φ)∇2ux + sin(φ)∇2uy)
2,

(37)

with Kstr = A′ϕ2k20. This leads to anisotropic elastic constants

Cstr = 8A′ϕ2k40



cos4(φ) cos2(φ) sin2(φ) cos3(φ) sin(φ)

∗ sin4(φ) cos(φ) sin3(φ)

∗ ∗ cos2(φ) sin2(φ)


 . (38)

Due to major and minor symmetries, there are 21 independent strain-gradient constants

in 2D, reading (with k0 = 1)

2 cos2(φ) = D1,1 = D1,3 = D2,2 = D3,3 = −D1,2 = −D2,3,

2 sin2(φ) = D6,6 = D9,9 = D10,10 = D6,10 = −D6,9 = −D9,10,

2 cos(φ) sin(φ) = D1,6 = D1,10 = D2,9 = D3,6 = D3,10

= −D1,9 = −D3,9 = −D2,6 = −D2,10,

(39)

Notice that the strain-gradient constants cannot be recast into the characteristic lengths

ℓi. Stripe phases exhibit significant anisotropy in diffusive processes, such as marked

directionality during growth [72–74]. Here, we obtain that this phase also exhibits elastic

anisotropy for linear and strain-gradient elasticity contributions.

4.3. Crystalline phases

For crystalline phases, we find that Eq. (35) may be rewritten as

A′
N∑

n=1

Γnϕ
2
n[(kn)i∇2ui]

2 = K
∑

i

(∇2ui)
2, (40)

given that, for each mode m (i.e., for each family such that |kn| = qm), the symmetry of

the corresponding reciprocal lattice vectors (see also below explicit examples) imposes

N∑

n=1
qm=|kn|

(kn)
2
i = Qm, and

N∑

n=1
qm=|kn|

(kn)i(kn)j = 0, ∀i 6= j, (41)
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where K and Qm depend on the specific lattice symmetry and the number of modes

considered. To determine GE constants and characteristic lengths, we then need to

express the quantity (40) in terms of strain derivatives. In 2D systems, we have that

(∇2ux)
2 + (∇2uy)

2 =(∂xεxx + ∂2yyux)
2 + (∂yεyy + ∂2xxuy)

2

=[(∂xεxx)
2 + (∂yεyy)

2] + 4[∂yεxy∂xεxx + ∂xεxy∂yεyy]

− 2[∂xεyy∂xεxx + ∂yεxx∂yεyy] + [(∂xεyy)
2 + (∂yεxx)

2]

+ 4[(∂xεxy)
2 + (∂yεxy)

2]− 4[∂yεxy∂xεyy + ∂xεxy∂yεxx],

(42)

where we exploited the identity ∂2iiuj = ∂i(2εij − ∂jui) = 2∂iεij − ∂jεii. We may then

compare terms of w from Eq. (35) to the general form of the elastic energy for isotropic

materials (12):




a1 + a2 + a3 + a4 + a5 = K from (∂xεxx)
2,

a1 + 2a3 = 4K from (∂yεxy∂xεxx + ∂xεxy∂yεyy),

a1 + 2a2 = −2K from (∂xεyy∂xεxx + ∂yεxx∂yεyy),

a2 + a4 = K from (∂xεyy)
2 + (∂yεxx)

2,

a3 + 2a4 + a5 = 4K from (∂xεxy)
2 + (∂yεxy)

2,

a1 + 2a5 = −4K from (∂xεyy∂yεxy + ∂yεxx∂xεxy).

(43)

By solving this system of (dependent) equations for ai we obtain

2a2 = −2K − a1, 2a3 = 4K − a1, 2a4 = K + a1, 2a5 = −4K − a1. (44)

For three-dimensional systems, the expressions of the coefficients ai are analogous. This

follows by considering the additional term (∇2uz)
2 on the left-hand side of Eq. (42) and

proper extension of the right-hand side. The material characteristic length scales, as

can be directly deduced from the first and fifth equations in (43), are

ℓ1 =

√
2K

λ+ 2µ
, ℓ2 =

√
2K

µ
, (45)

with ℓ3 = 0. This means that under the assumptions considered in this section (see

Eqs. (34) and (35)), the minimal SH energy functional encodes isotropic GE-1. We

note that while no centrosymmetric crystal can verify the conditions for isotropic strain-

gradient elasticity (due to the Hermann theorem [75]), for cubic materials that are nearly

isotropic with respect to the constitutive four-rank tensor C, a Voigt-type averaging

procedure may be employed for the sixth-rank constitutive tensor D to compute effective

isotropic GE constants [7].

We consider in the following different crystalline phases: triangular, square, bcc,

and fcc. For some representative cases, we analyze different numbers of modes. We

report the elastic energy density for the different symmetries/approximations (set by

specific choices for kn with minNn=1 |kn| = 1), the corresponding elastic constants, and GE

characteristic lengths for small deformations and neglecting nonlinearities (see Table 1

and Fig. 2). The scaling factor k0 is introduced such that a0 = 2π/k0 is the interatomic

distance.
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Triangular phase, one-mode approximation (tri-1):

k1 = k0(−1,−1/
√
3), k2 = k0(0, 2/

√
3), k3 = k0(1,−1/

√
3).

with k0 =
√
3/2. Elastic energy density:

wtri−1

Ktri−1
= 4k20(ε

2
xx + ε2yy) +

8

3
k20εxxεyy +

16

3
k20ε

2
xy + (∇2ux)

2 + (∇2uy)
2, (46)

with Ktri−1 = 2A′ϕ2
1k

2
0.

Triangular phase, two-mode approximation (tri-2):

k1 = k0(−1,−1/
√
3), k2 = k0(0, 2/

√
3), k3 = k0(1,−1/

√
3),

k4 = k0(−1,−
√
3), k5 = k0(−1,

√
3), k6 = k0(2, 0),

with k0 =
√
3/2. Elastic energy density:

wtri−2

Ktri−2
= 4α2k20(ε

2
xx + ε2yy) +

8

3
α2k20εxxεyy +

16

3
α2k20ε

2
xy + (∇2ux)

2 + (∇2uy)
2, (47)

with Ktri−2 = 2A′(ϕ2
1 + 3ϕ2

2)k
2
0 and α2 = (ϕ2

1 + 9ϕ2
2)/(ϕ

2
1 + 3ϕ2

2).

Square lattice, two-mode approximation (sq-2):

k1 = k0(1, 0), k2 = k0(0, 1), k3 = k0(1, 1), k4 = k0(1,−1),

with k0 = 1. Elastic energy density:

wsq−2

Ksq−2
= 4k20(ε

2
xx + ε2yy) + 16α2k20εxxεyy + 32α2k20ε

2
xy + (∇2ux)

2 + (∇2uy)
2, (48)

with Ksq−2 = A′(ϕ2
1 + 2ϕ2

2)k
2
0 and α2 = ϕ2

2/(ϕ
2
1 + 2ϕ2

2).

BCC lattice, one-mode approximation (bcc-1):

k1 = k0
√
3/2(0, 1, 1), k2 = k0

√
3/2(1, 0, 1), k3 = k0

√
3/2(1, 1, 0),

k4 = k0
√
3/2(0, 1,−1), k5 = k0

√
3/2(1,−1, 0), k6 = k0

√
3/2(−1, 0, 1),

with k0 =
√
2/3. Elastic energy density:

wbcc−1

Kbcc−1

= 3k20(ε
2
xx + ε2yy + ε2zz) + 3k20(εxxεyy + εxxεzz + εyyεzz)

+ 6k20(ε
2
xy + ε2xz + ε2yz) + (∇2ux)

2 + (∇2uy)
2 + (∇2uz)

2,
(49)

with Kbcc−1 = 3A′k20ϕ
2
1.
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BCC lattice, two-mode approximation (bcc-2):

k1 = k0
√
3/2(0, 1, 1), k2 = k0

√
3/2(1, 0, 1), k3 = k0

√
3/2(1, 1, 0),

k4 = k0
√
3/2(0, 1,−1), k5 = k0

√
3/2(1,−1, 0), k6 = k0

√
3/2(−1, 0, 1),

k7 = k0
√
3(1, 0, 0), k8 = k0

√
3(0, 1, 0), k9 = k0

√
3(0, 0, 1),

with k0 =
√
2/3. Elastic energy density:

wbcc−2

Kbcc−2
= 3

ϕ2
1 + 4ϕ2

2

ϕ2
1 + ϕ2

2

k20(ε
2
xx + ε2yy + ε2zz) + 3α2k20(εxxεyy + εxxεzz + εyyεzz)

+ 6α2k20(ε
2
xy + ε2xz + ε2yz) + (∇2ux)

2 + (∇2uy)
2 + (∇2uz)

2,

(50)

with Kbcc−2 = 3A′k20(ϕ
2
1 + ϕ2

2) and α
2 = ϕ2

1/(ϕ
2
1 + ϕ2

2).

FCC lattice, two-mode approximation (fcc-2):

k1 = k0/
√
2(−1, 1, 1), k2 = k0/

√
2(1,−1, 1),

k3 = k0/
√
2(1, 1,−1), k4 = k0/

√
2(−1,−1,−1),

k5 = k0
√
2(1, 0, 0), k6 = k0

√
2(0, 1, 0), k7 = k0

√
2(0, 0, 1),

with k0 =
√
2/3. Elastic energy density:

wfcc−2

Kfcc−2
= 2

ϕ2
1 + 4ϕ2

2

ϕ2
1 + ϕ2

2

k20(ε
2
xx + ε2yy + ε2zz) + 4α2k20(εxxεyy + εxxεzz + εyyεzz)

+ 8α2k20(ε
2
xy + ε2xz + ε2yz) + (∇2ux)

2 + (∇2uy)
2 + (∇2uz)

2,

(51)

with Kfcc−2 = 2A′k20(ϕ
2
1 + ϕ2

2) and α
2 = ϕ2

1/(ϕ
2
1 + ϕ2

2).

The elastic constants and GE characteristic lengths obtained via Eq. (22) from the elastic

energy densities above are reported in Table 1. Note that the constraint C12 = C44 holds

for all lattice symmetries. Interestingly, this corresponds to the Cauchy relation derived

in the lattice-theoretical description of constitutive tensors for central force interaction

between atoms [7, 76].

4.4. Discussion of the results

From the analysis reported above for crystalline phases, we find that ℓ2/ℓ1 =
√
3 as a

result of the general form of the (isotropic) strain-gradient terms; see Eq. (40). Typical

values found or adopted in the literature for this ratio are close to one [77, 78]. For a

one-mode approximation of ψ (one length of k considered), length scales are constants.

For approximations of ψ considering more than one mode, characteristic lengths depend

on ϕi. Figure 1 illustrates the bulk free energy density for the tri-2 (Fig. 1a) and fcc-2

(Fig. 1b) case as a function of ϕ1 and ϕ2 for selected parameters. The global minima of

these free energy densities (blue squares) correspond to the equilibrium phase. Values
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Symmetry C11 (A′k40) C12 = C44 (A′k40) ℓ1 (a0) ℓ2 (a0) α2

tri-1 16ϕ2
1

16
3
ϕ2
1

1
4π

√
3

4π
–

tri-2 16(ϕ2
1 + 9ϕ2

2)
16
3
(ϕ2

1 + 9ϕ2
2)

1
4π

1
α

√
3

4π
1
α

ϕ2

1
+9ϕ2

2

ϕ2

1
+3ϕ2

2

sq-2 8(ϕ2
1 + 2ϕ2

2) 16ϕ2
2

1
4π

√
6
1
α

1
4π

√
2
1
α

ϕ2

2

ϕ2

1
+2ϕ2

2

bcc-1 18ϕ2
1 9ϕ2

1
1

3π
√
2

1
π
√
6

–

bcc-2 18(ϕ2
1 + 4ϕ2

2) 9ϕ2
1

1
3π

√
2
1
α

1
π
√
6
1
α

ϕ2

1

ϕ2

1
+ϕ2

2

fcc-2 8(ϕ2
1 + 4ϕ2

2) 8ϕ2
1

1
2π

√
6
1
α

1
2π

√
2
1
α

ϕ2

1

ϕ2

1
+ϕ2

2

Table 1. Elastic constants and characteristic lengths for the different lattice

symmetries and approximations of the microscopic density with a different number

of modes for triangular and bcc lattices.

of ϕ1 and ϕ2 vary with the free energy parameters as dictated by the energy landscape,

so they are not free parameters entering α. An illustration of their variation is reported

in Fig. 1c (tri-2 ) and 1d (fcc-2 ).

Figure 2 reports the values of ℓ1,2 by varying B in the free energy for a selected

parameter range where all the symmetries can be explored for B < Bc and Bc

corresponding to the order-disorder critical point [49]. Here, the effect of changes in

ϕi is then quantified for a specific choice of parameters. We note that a limited change

is observed among all the explored ranges (. 10%). The lattice symmetry affects the

values of the GE length scales. At small enough B (low “temperature”), the number of

modes considered does not impact the characteristic lengths, whereas a clear deviation

is observed at larger B (Fig. 2). In the context of APFC, these approximations realize

different models as the choice of modes dictates the variables to solve for in the system

(the amplitudes ηj). Instead considering a larger number of modes for the PFC and SH

models results in a better estimation of their elastic properties.

The values of ℓ1,2 in Fig. 2 are reported in terms of the ratio with the spatial

length scale entering the free energy, namely the lattice parameter a0 = 2π/k0, with k0
depending on the lattice symmetry (see specific values together with the definition of

reciprocal space vectors in Sect. 4.3). They all correspond to fractions of the lattice

spacing. Therefore, they are in the order of ∼ 10−10m (Å) when looking at physical units

of common materials, in line with GE literature [19, 78]. From a quantitative point of

view, as we may expect considering the coarse-grained nature of SH and PFC models, we

note that the ratio of the GE length scales with the lattice parameters does not precisely

match typical values computed with ab initio approaches [19]. Suitable extensions by

considering more advanced formulations [79, 80] are outlined in the following section.

An important aspect emerging from this analysis is that the GE length scales (∼
1Å) are typically smaller than the coarse-graining length that should be considered in
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Figure 1. Bulk free energy density f(ϕ1, ϕ2) for (a) triangular (2 modes) and (b)

fcc (2 modes) for B = −0.2, C = −1/2, and D = 1/3. Solid red lines and dashed

black lines are positive and negative values, respectively (values on contour lines are

multiplied by 102). The blue square indicates the global minimum. The variation

of the amplitudes ϕ1,2 minimizing the energy by varying parameters B and C (with

D = 1/3) is also illustrated for (c) triangular (2 modes) and (d) fcc (2 modes). Four

representative configurations are illustrated (black squares). Dashed lines are obtained

by varying the parameter that changes in the squares they connect.

PFC-like approaches to work with continuous elastic fields (filtering out microscopic

fluctuation) or that underlies the derivation of the equations for APFC approaches.

Therefore, while GE is self-consistently encoded, specific features emerging at those

length scales are expected to be coarse-grained. This aspect is discussed further below

with the aid of numerical examples.

4.5. Characteristic lengths from structural PFC: triangular symmetry

Energy functionals generalizing Eq. (28), or Eq. (30) for amplitude formulations, can be

devised by considering correlation function instead of the differential operator [79, 81].

Such an approach proved powerful in devising parametrizations to model specific
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Figure 2. Characteristic lengths ℓ1 and ℓ2 by varying B with C = −1/2 and

D = 1/3 as from Table 1. Dashed lines correspond to the length scales for one-

mode approximations, which are only available for triangular and bcc symmetry.

materials, e.g., in Ref. [80]. Here, we outline the possibility of parametrizing the GE

length scales by designing the correlation function. For a generic two-point correlation

function C2, the elastic energy takes the form:

Fel = F [ψ(r+ u(r))]−F [ψ(r)], (52)

where

F [ψ(r)] =

∫
dr

{
ψ(r)

∫
dr′

[
C2(r− r′)ψ(r′)

]}
. (53)

To allow for the analytical derivation of the elastic and gradient-elastic constants, we

consider a polynomial expansion of C2 in the reciprocal space—corresponding to the

Dirac delta function and its derivatives in real space—so that the convolution can

be carried out explicitly, leading to differentiation of u(r). We consider a polynomial

expansion of the Fourier transform of C2 reading

Ĉ2(|k|) =
N∑

n=0

c2n|k|2n, (54)

where we only consider even terms due to symmetry considerations. For an N -term

expansion, the highest order is thus 2N .

We consider a setting that introduces additional parameters while reproducing the

features of GE obtained by the minimal SH energy functional, focusing on the 1-mode
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triangular symmetry for illustration purposes. We thus impose constraints on the form

of Ĉ2(|k|) to fulfill the following requirements: (i) peak in the correlation function at

|k| = 1 (as above); (ii) value of the peak set to 0 such to have the same phenomenological

temperature/quenching depth (B, see also Sect. 3) as in the minimal models; (iii)

same elastic constants as the triangular 1-mode (see Table 1); (iv) isotropic GE as

obtained in Sect. 4.1. As these requirements are independent, and enforcing isotropic

GE imposes two additional constraints, the coefficients in Eq. (54) must satisfy a total

of 5 conditions. Therefore, a minimum of N = 6 is needed to tune the characteristic

lengths independently, yielding

c2 = 2− 3c12, c4 = 1− 9c12, c6 = −8c12, c8 = 0, c10 = 3c12, (55)

which results in the following length scales, now featuring a free parameter (c12)

ℓ21 =
1

3
− 6c12, ℓ22 = 1− 6c12. (56)

Note that the value and the ratio between length scales now depend on c12. Finally,

to ensure the suppression of higher frequencies and real positive characteristic lengths,

c12 ≥ 0 and c12 ≤ 1/18 must hold, respectively, thus implying ℓ1/ℓ2 ∈ [0, 1/
√
3]. In this

setting, we then obtained a SH energy functional with an extended parameterization,

allowing for tuning GE constants. Following similar procedures, we envisage that

extended parametrization can be devised for models based on a SH free energy encoding

other lattice symmetries or coupling with other terms by considering appropriate

expansions of C2.

5. Effective GE length scales at dislocations

To fully characterize elasticity in the SH and PFC models, linear, nonlinear, and strain-

gradient contributions must be considered. Consequently, the assumptions considered

in Sect. 4 to allow for the derivation of fully analytic expressions need to be relaxed.

Through numerical simulations, we show in this section that the elasticity encoded

in the considered models matches well with known predictions from strain-gradient

elasticity using effective characteristic lengths. These are found to be larger than the

analytical predictions reported above and thus are in better agreement with results from

the literature. Moreover, it allows us to characterize additional effects and unveil their

dependence on model parameters.

5.1. Numerical simulation of a stationary defect configuration

A key evidence concerning GE at the microscale is the regularization of the elastic

fields at dislocations [22], which is also of central interest for crystalline systems. For

simplicity, we consider the APFC model from Sect. 3.2, thus encoding a natural coarse-

graining length in the equation (the lattice parameter [49]). Accordingly, the elastic
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field can be directly computed from ηj rather than upon numerical coarse-graining (see

also Eq. A.4).

An edge dislocation can be simulated by setting the complex amplitudes’ phases as

θn = −kn · udislo [49] and letting the system evolve to equilibrium, with

udislox =
b

2π

[
arctan

(y
x

)
+

xy

2(1− ν)(x2 + y2)

]
,

udisloy = − b

2π

[
(1− 2ν)

4(1− ν)
log

(
x2 + y2

)
+

x2 − y2

4(1− ν)(x2 + y2)

]
,

(57)

the dislocation displacement field, b = bxx̂ the Burgers vector, and ν the Poisson’s

ratio [27]. In general, defect arrangements evolve dynamically [46]. To study elastic

fields at defects, we consider a static configuration. It consists of a checkered pattern,

nominally on a square grid, of dislocations having ±b as Burgers vectors and distance

L/2. Notice, however, that dislocations cannot always be placed exactly on a square

grid, e.g. in the presence of a triangular lattice, and the relaxation of the initial condition

may lead to a small shift in their positions. However, this configuration allows simulating

a static, periodic system by considering an L×L box. We remark that the displacement

field in Eqs. (57) is exact for an isotropic medium within linear elasticity [27]. Here, it is

exploited to introduce dislocation with the desired Burgers vector. By letting the system

relax to equilibrium, the actual solution including the effects outlined in Eq. (34), is

obtained. Analogous results, but with a slower convergence to the equilibrium solution,

can be obtained by setting proper singularities in θn without initial assumption on

elasticity as done, e.g., in Ref. [50]. Numerical results are obtained by exploiting a

simple pseudo-spectral Fourier method as summarized in Appendix A.

5.2. Elastic field at a dislocation

Figure 3 illustrates the stress field of an edge dislocation in a triangular crystal obtained

at equilibrium by APFC simulations compared to the prediction of GE theories with

fitted characteristic lengths. We consider solutions for an edge dislocation in an isotropic

medium obtained within GE-1 and GE-2 as reported in Refs. [23] and [25], respectively.

Corresponding equations are reported in Appendix B. Details of the fitting procedure are

given in Appendix C. Fitted values of the characteristic lengths ℓi and ̺i are indicated

with the subscripts “I” and “II” in the following.

In particular, Fig. 3a shows stress field components in 2D for a selected set of

parameters. Color maps and representative grey contour lines illustrate the value

obtained by numerical APFC simulations. The stress field along lines crossing the

dislocation core parallel to the y-axis for σxx and σyy and the x-axis for σxy are shown in

Fig. 3b. σij from APFC simulations are regularized at the core, and both GE-1 and GE-

2 solutions match very well the results of numerical simulations for some values of the

respective characteristic lengths (ℓi and ̺i). As observed in other works [49], the elastic

field obtained by APFC is asymmetric, a feature that is absent in the considered GE
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Figure 3. Stress field from APFC modeling of an edge dislocation in a triangular

lattice (tri-1 ) compared to the predictions of GE-1 and GE-2 for an isotropic medium.

Characteristic lengths, (ℓI, ℓII) for GE-1 and (̺I, ̺II) for GE-2, are obtained by fitting

Eqs. (B.1)–(B.3) and (B.4)–(B.6), respectively, to the APFC numerical result (see

further details and values obtained by fitting in Appendix C). APFC results are shown

with solid grey contour lines and the underlying colormap to note negative and positive

stress regions. The GE-1 solution with fitted length scales is illustrated via dot-dashed

blue lines, and the GE-2 solution via dashed red lines. Contour lines are set to the

same values in all the 2D plots of the stress to [−7,−3.5, 0.0, 3.5, 7]× 10−3. The same

applies to the range of color maps. (a) 2D contour plots of the stress field components

σxx, σyy, and σxy (from left to right) for A = 1, B = 0.02. (b) Detailed comparison

as 1D curves of the values in panel (a) along y at x = 0 for σxx and σyy, and along

x at y = 0 for σxy (from left to right). (c) σxx illustrated as in panel (a) for three

different parameter choices. From left to right parameters (A,B) are set to: (0.5, 0.02),

(2.0, 0.02) and (1,−0.026). In all plots bx = a0, ψ̄ = 0, C = −1/2, and D = 1/3.
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theories as it results from nonlinearities in the free-energy functional [47]. Accordingly,

this effect is more pronounced for larger stress values, namely for σxx where the stress

field reaches maximum and minimum values two times larger than other components.

Characteristic lengths have been determined by fitting the numerically computed values

for the stress components via the analytical solution for both GE-1 and GE-2 (reported

in Appendix B). Dislocation positions (subject to the small shift mentioned above) are

retained as fitting parameters too. All the values determined via fitting for the plots in

Fig. 3a and Fig. 3b are reported in Table C1.

While our focus here is on the prototypical case of an edge dislocation in an

isotropic lattice, which allows for extended comparisons with analytical expressions and,

in principle, connections to other theories, it is important to note that other dislocations

(like of screw or mixed type) and lattice symmetries are also naturally described in PFC

models [39, 46, 74, 82, 83]. An extended study covering more cases is out of the scope of

the present work. The analysis of targeted cases is left to future applications.

5.3. Discussion of the results

From a quantitative point of view (see Table C1), characteristic GE-1 lengths obtained

from fitting σxx and σyy are very similar, ℓI ∼ ℓII ∼ 0.55a0. The values for σxy deviate

from this behavior (ℓI ∼ 0.23a0 and ℓII ∼ 0.48a0). Nevertheless, by using the value

obtained for the other components, σxy shows a very similar profile with respect to

the maximum and minimum values as well as the decay far from the core. A small

difference is observed only very close to the core, where the two significantly different

lengths allow for smaller gradients and a better matching of the simulation results.

When enforcing a single characteristic length (ℓ1 = ℓ2)—which would be consistent with

the conclusion of lattice theory with central force interaction between atoms [7,76]—the

fitted values are very similar for the three components of the stress field analyzed (see

the third line in Table C1). We may conclude that GE-1 can match the simulations well

but with characteristic lengths that are not fully consistent among different stress-field

components. Conversely, the values obtained via fitting the characteristic GE-2 lengths

are very close to each other in all three stress components, assessing that the underlying

model accurately describes simulation results. By relaxing the assumption of constant

amplitude moduli underlying the derivation in Sect 4.1, we indeed find that additional

contributions appear, including terms entering GE-2. Further details to substantiate

this argument are reported in Appendix D.

The agreement between the simulated and analytical stress fields holds for a broad

parameter range. This is first shown in Fig. 3c, via 2D stress maps and contour lines

of σxx for three simulations featuring A or B values different from those in Fig. 3a.

The change in the σxx is reflected in a variation of the characteristic lengths determined

by fitting. This aspect is further quantitatively illustrated in Fig. 4, allowing for a

comprehensive analysis of the considered GE theories. For this analysis we consider the

characteristic lengths fitted from σyy. This component is chosen as it features an almost
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Figure 4. Dependence of the characteristic lengths on free energy parameters.

Variation of characteristic lengths with (a) A for B = 0.02, and (b) B for A = 1.

In all simulations, C = −1/2 and D = 1/3. The panels illustrate in particular log-log

plots of ℓ̄ = (ℓI + ℓII)/2 (blue circles), ω (red squares) and γ (orange triangles). Solid

lines are guidelines for the eyes. Values reported here are obtained by fitting σyy.

Dependence on B is illustrated via the quenching depth |B − Bc|. The correlation

length W from Eq. (C.1) is reported for comparison (dashed line).

symmetric profile owing to lower maximum values for the stress field, and thus a limited

contribution of nonlinearities, than σxx (see also Fig. 3). For GE-1, we show the average

of the two characteristic lengths ℓ̄ = (ℓI + ℓII)/2, as their relative difference is below 5%

over the whole range of parameters considered (see Table 1). For GE-2 we report the two

characteristic lengths ω =
√
̺2I + ̺2II and γ = 4

√
̺2I̺

2
II, allowing for direct comparisons

with GE-1 (see also Sect. 2.3). We vary in particular parameters A (Fig. 4a) and B

(Fig. 4b). The variation with B is illustrated in terms of the quenching depth, namely

|B − Bc| with Bc = 8C2/(135D) the value of B at which ordered (periodic ψ with

triangular symmetry) and disordered (constant ψ) phases have the same energy [49].

We note that the parameter range includes most variations typically considered for PFC

models.

We generally find that effective GE characteristic lengths are larger than the one

computed in Sect. 4 and approach common values reported in the literature in terms of

ratio with the lattice parameter [19,78]. Characteristic lengths of GE-1 and GE-2 vary

similarly. Interestingly, ω ∼ 0.9ℓ̄. We remark that ω is the characteristic length to the

lowest order of GE-2, which reduces to GE-1 in the limit γ = 0. The computed value of

γ being greater than zero is thus a further demonstration of the presence of higher-order

corrections from terms specific to GE-2, as supported by the argument in Appendix D.

Importantly, the characteristic lengths are found to be proportional to the

correlation length W , which corresponds to the width of the interface between an

ordered and disordered phase, both in equilibrium and nonequilibrium settings [84].

Dashed black lines in Fig. 4 show the analytic expression of W reported in Eq. (C.1),
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which is derived in an approximated setting similar to the ones considered in Sect. 4.

Ultimately, we find a proportionality constant ℓ̄/W ∼ ω/W ∈ (0.4, 0.6). In models

like SH or PFC, the extension of the defect core scales similarly with the correlation

length [85]. Therefore, the effective characteristic length—which we recall encodes

microscopic effects into (continuum) elasticity—is found to scale de facto with the

core size, consistently with continuum descriptions of the elastic field of dislocations

in GE theories [22, 23, 25]. By recalling that B is a phenomenological temperature

parameter, the effective GE characteristic lengths at dislocations are then connected to

the temperature.

6. Conclusions

We discussed how gradient elasticity (GE) is encoded in Swift-Hohenberg (SH) and

phase-field crystal (PFC) models. The leading order for small deformations consists of

a first strain-gradient elasticity formulation, anisotropic for stripe phases and isotropic

for crystalline phases. We derived analytical or semi-analytical formulations for GE

characteristic lengths for one and multimode expansions of the periodic order parameter

for different crystalline arrangements in an approximated setting.

These characteristic lengths are in the order of fractions of the lattice parameter

(∼1Å) as observed for several materials. From a quantitative point of view, they

are consistent with results reported in the literature. However, they underestimate

the ones commonly found for real materials with the same lattice symmetries [19, 78].

When considering the minimal formulation of the SH energy functional, they can only

be slightly varied, conforming to the known restrictions on tuning elastic constants

in these approaches compared to fully atomistic methods. However, we outlined the

possibility of extending the parametrization via the design of the nonlocal terms in

the free energy. Although these results outline the leading-order GE effects, they are

obtained via simplifying assumptions, namely neglecting nonlinear terms and assuming

constant amplitude moduli everywhere.

Numerical simulations that allow the inspection of GE effects without

approximations show that larger effective GE characteristic lengths emerge. In addition,

they can be significantly varied with the model parameters. We focused on the elastic

field at dislocations, which is of central interest for both GE and SH/PFC theories.

Interestingly, the analytical solutions of stress fields at edge dislocations in both first

and second strain-gradient elasticity closely resemble the results of APFC simulations.

By analyzing the values of the emerging effective characteristic lengths, we found GE-

2 to be a better model for describing the simulated stress field, thus assessing the

underlying GE theory. Overall, we showed that these GE theories, particularly GE-

2, naturally emerge from the minimal framework of the SH energy functional, which

can be considered the simplest free-energy form minimized by a periodic, smooth order

parameter [35].

The effective GE characteristic lengths at dislocations vary with the model
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parameters similarly to the phase correlation length. This closely resembles variations

observed for the size of defect cores in smooth theories for ordered systems [85].

Importantly, the variation in the quenching depth can be interpreted as a dependence

on temperature, which may constitute the input for other theories and establishes a

direct link between GE and the PFC/SH framework for order-disorder phase transition.
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Appendix A. Numerical method

Numerical simulations are computed by exploiting a Fourier pseudo-spectral method.

In brief, we solve the equation(s) (32) rewritten as

∂tηn = Lηn +N({ηn}), (A.1)

with ηn the amplitudes to solve for, L and N the linear operator and polynomial terms

in ηn of Eq. (32), respectively. We recall that N includes nonlinear terms in all the

amplitudes ηn. In the Fourier pseudo-spectral method, we then solve for

∂t[η̂n]k = L̂k[η̂n]k + N̂k, (A.2)

with [η̂n]k the coefficient of the Fourier transform of ηn, N̂k the Fourier transform of

N({ηn}) and L̂k the Fourier transform of L resulting in an algebraic expression of the

wave vector (for instance, in 1D, for Lη = ∂2η

∂x2
one gets L̂k = −k2 with k the coordinate

in the Fourier space). The solution at t+∆t, with ∆t the timestep, is then obtained via

an inverse Fourier transform of [η̂n]k(t+∆t) computed by the following approximation

[η̂n]k(t+∆t) ≈ eLk∆t[η̂n]k(t) +
eLk∆t − 1

Lk
N̂k(t). (A.3)

This method enforces periodic boundary conditions. We implemented it in python (code

openly available, see [86]). An established Fast-Fourier Transform algorithm (FFTW) is

https://www.doi.org/10.5281/zenodo.10351669
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exploited [87]. We use a discretization of 4 mesh points per atomic site with a timestep

∆t = 1.

From {ηn} computed with the method outlined above, we compute the stress field

components. This is achieved via the equation [52]

σij =

N∑

n=1

{[
(∂i + i(kn)i)(∇2 + 2ikn · ∇)ηn

][
(∂j − i(kn)j)η

∗
n

]

−
[
(∇2 + 2ikn · ∇)ηn

][
(∂i − i(kn)i)(∂j − i(kn)j)η

∗
n + c.c.

]}
.

(A.4)

Appendix B. Stress field of an edge dislocation in strain-gradient elasticity

In Toupin-Mindlin first strain-gradient elasticity (GE-1, Sect. 2.1), the stress field in the

xy-plane for an edge dislocation located at the origin with Burgers vector aligned with

the x-axis, b = bxx̂, reads [25]:

σxx = −σ0
y

r2

{
3x2 + y2

r2
− 2νr

ℓ1
K1(r/ℓ1)

+ (1− 2ν)

[
3x2 − y2

r2

(
4ℓ21
r2

− 2K2(r/ℓ1)

)
− 2x2

ℓ1r
K1(r/ℓ1)

]

− 2(1− ν)

[
3x2 − y2

r2

(
4ℓ22
r2

− 2K2(r/ℓ2)

)
− x2 − y2

ℓ2r
K1(r/ℓ2)

]
,

(B.1)

σyy = σ0
y

r2

{
x2 − y2

r2
+

2νr

ℓ1
K1(r/ℓ1)

+ (1− 2ν)

[
3x2 − y2

r2

(
4ℓ21
r2

− 2K2(r/ℓ1)

)
+

2y2

ℓ1r
K1(r/ℓ1)

]

− 2(1− ν)

[
3x2 − y2

r2

(
4ℓ22
r2

− 2K2(r/ℓ2)

)
− x2 − y2

ℓ2r
K1(r/ℓ2)

]
,

(B.2)

σxy = σ0
x

r2

{
x2 − y2

r2

+ (1− 2ν)

[
x2 − 3y2

r2

(
4ℓ21
r2

− 2K2(r/ℓ1)

)
+

2y2

ℓ1r
K1(r/ℓ1)

]

− 2(1− ν)

[
x2 − 3y2

r2

(
4ℓ22
r2

− 2K2(r/ℓ2)

)
+

2y2

ℓ2r
K1(r/ℓ2)

]
,

(B.3)

with σ0 = (µbx)/(2π(1−ν)), r =
√
x2 + y2, and Kn(x) are the modified Bessel functions

of the second kind (n = 1, 2 here). The classical (singular) stress field obtained in linear

elasticity is recovered for ℓ1 = ℓ2 = ℓ→ 0 [27].

In the special second strain-gradient elasticity theory (GE-2) outlined in Sect. 2.3,
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the stress field components for the same dislocation read [23]

σxx = −σ0
y

r4

{(
y2 + 3x2

)
+

4 (̺21 + ̺22)

r2
(
y2 − 3x2

)
− 2ry2

̺21 − ̺22

[
̺1K1

(
r

̺1

)
− ̺2K1

(
r

̺2

)]

− 2 (y2 − 3x2)

̺21 − ̺22

[
̺21K2

(
r

̺1

)
− ̺22K2

(
r

̺2

)]}
,

(B.4)

σyy = −σ0
y

r4

{(
y2 − x2

)
− 4 (̺21 + ̺22)

r2
(
y2 − 3x2

)
− 2rx2

̺21 − ̺22

[
̺1K1

(
r

̺1

)
− ̺2K1

(
r

̺2

)]

+
2 (y2 − 3x2)

̺21 − ̺22

[
̺21K2

(
r

̺1

)
− ̺22K2

(
r

̺2

)]}
,

(B.5)

σxy = σ0
x

r4

{(
x2 − y2

)
− 4 (̺21 + ̺22)

r2
(
x2 − 3y2

)
− 2ry2

̺21 − ̺22

[
̺1K1

(
r

̺1

)
− ̺2K1

(
r

̺2

)]

+
2 (x2 − 3y2)

̺21 − ̺22

[
̺21K2

(
r

̺1

)
− ̺22K2

(
r

̺2

)]}
.

(B.6)

An illustration of the stress field components for GE-1, GE-2, and the continuum

elasticity limit CE, is reported in Fig. B1.
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Figure B1. Stress field components σxx, σyy, and σxy (left to right) from GE-1 and

GE-2, namely Eqs. (B.1)–(B.3) [25] and (B.4)–(B.6) [23], respectively. Two ratios

for characteristic lengths are showcased, where ℓ1 = ̺1 = 1. The linear continuum

elasticity solution (CE) [27] is obtained with Eqs. (B.1)–(B.3) in the limit ℓ1 = ℓ2 → 0.

Appendix C. Details of fitting procedures for characteristic lengths

The equations reported in Appendix B, upon centering the frame of reference at the

dislocation core in (x0, y0), illustrate functions σij(x, y, x0, y0, E, ν, ξ1, ξ2) with ξi = ℓi
for GE-1 and ξi = ̺i for GE-2. They are fitted (exploiting scipy.optimize [88])

on σij(x, y) in a squared region 15a0 × 15a0 centered on a defect to determine ξi.
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Exploiting the elastic constants obtained in Table 1, and in agreement with [42,61], we

have that for the one-mode approximation of the triangular lattice the Lamé constants

read µ = λ = 3Aϕ2
1, which results in the Young modulus E = 5Aϕ2

1/2 and Poisson

ratio ν = 1/4 (under the plane strain assumption). ϕ can be computed analytically

for one-mode approximations [49]. The value for the considered triangular lattice is

ϕ = (−C +
√
C2 − 15BD)/(15D). The dislocation in the APFC simulations moves

slightly upon reaching equilibrium. In general, x0 and y0 must be considered as fitting

parameters as well. The fit results for the fields illustrated in Fig. 3 are reported in

Table C1. The fitted values of the characteristic lengths ℓi and ̺i are indicated with the

subscripts “I” and “II”.

σxx σyy σxy Average

ℓI 0.5413 0.5600 0.2275 0.4429

ℓII 0.5800 0.5789 0.4303 0.5290

ℓI = ℓII 0.5630 0.5597 0.5692 0.5640

̺I 0.4472 0.4227 0.4275 0.4325

̺II 0.2415 0.2673 0.2746 0.2612

xGE-1
0 −0.0216 0.0072 0.0450 0.0101

xGE-2
0 −0.0204 0.0065 0.0452 0.0104

yGE-1
0 −0.2079 −0.1951 −0.2088 −0.2039

yGE-2
0 −0.2000 −0.1839 −0.21103 −0.1983

Table C1. Results of the fits illustrated in Fig. 3(a). Values (ℓI, ℓII, x
GE-1
0 , yGE-1

0 )

are obtained by fitting Eqs (B.1)–(B.3) with characteristic lengths and positions as

fitting parameters. The values ℓI = ℓII are obtained from fitting the same equation

but enforcing equal characteristic lengths. Values (̺I, ̺II, x
GE-2
0 , yGE-2

0 ) are obtained

by fitting Eqs (B.4)–(B.6), also in this case with characteristic lengths and positions

as fitting parameters. All quantities are expressed in a0 units (fraction of the lattice

parameter). For all these values, the standard deviation does not exceed 2× 10−4.

The values of fitted parameters are overall consistent across different stress

components, with just GE-1 characteristic lengths obtained by fitting σxy deviating from

other components, as discussed in the main text. Note that x0 differs from 0 by less than

5% of the lattice parameter. The shift along the x direction could then be considered

negligible. Instead, we obtain a shift along y of ∼ 20% of the lattice parameter. Note

that the dislocation core location (x0, y0) is quantitatively consistent across the fitted

values on both GE-1 and GE-2 stress field components, where indeed x0 and y0 have

the same meaning. In the plots reported in the main text, the stress field from GE
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solutions for dislocations are centered in the (x0, y0) values obtained from fitting the

corresponding stress component. We remark that in GE-2, the two length scales ̺1,2 are

fully equivalent as it follows from Eq. (23), so their values could be exchanged. Also, in

some parameter ranges, e.g., for small A values, the best fit is given by ̺1 ∼ ̺2 while

in other cases a significant difference, as in Table C1 above, is obtained. The physically

meaningful lengths entering the theory are, however, ω(̺1, ̺2) and γ(̺1, ̺2) as defined

in Sect. 2.3 and these are the quantities illustrated in Fig. 4. This figure also reports

the correlation length W for triangular lattice when varying A and B. For this lattice

symmetry in the one-mode approximation, an analytic solution connecting W to the

model parameter exists [84]

W (A,B) =

√
A

|B|
4
√
2

ζ +
√
ζ2 − 4ι

, (C.1)

with ι = ∓1 for B ≶ 0 and ζ = 2C/
√
15|B|D.

Appendix D. On higher order GE terms from nonconstant amplitudes

In Sect. 4, we show that under the assumption of constant magnitude of the amplitudes

(|∇ϕn| = 0) typically considered for small deformations, GE is encoded in the SH

energy functional via first strain-gradient terms only. This assumption, however, does

not strictly hold in numerical simulations [47,89,90]. While refraining from a complete

derivation of the theory, we report here a simplified argument to show how including

the amplitude gradients leads to second strain-gradient terms in the elastic energy.

In one spatial dimension, by assuming that the gradient of the amplitude is of

the same order as the gradient of the displacement while still ignoring all higher-order

nonlinear terms as in Sect. 3, the elastic energy density reads:

w

A′ =k
2[4k2u′(x)2 + u′′(x)2]ϕ(x) + 4k2[ϕ′(x)− ϕ(x)u′′(x)]ϕ′(x)

+ [ϕ′′(x) + 4k2ϕ(x)u′(x)]ϕ′′(x).
(D.1)

Minimizing this expression with respect to the amplitude ϕ(x), we obtain:

ϕ′′(x) =

{
B + 3Dϕ(x)2

A′(1 + 4k2)
+

A′k2

A′(1 + 4k2)

[
4k2u′(x)2 − (2− u′′(x))u′′(x) + 2u′′′(x)

] }
ϕ(x).

(D.2)

Therefore, ϕ′′(x) and, by extension, the elastic energy density, contain a contribution

from u′′′(x), i.e. the second derivative of the strain field, which is the higher-order term

entering GE-2 but absent in GE-1. As such, GE-2 effects may be ascribed to gradients

in the amplitude, while their presence is anyhow corroborated by numerical results and,

importantly, a detailed comparison with specific analytical solutions as discussed in

Sect. 5.
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Phys. 61 665–743

[39] Berry J, Provatas N, Rottler J and Sinclair C W 2014 Phys. Rev. B 89 214117

[40] Backofen R, Barmak K, Elder K R and Voigt A 2014 Acta Mater. 64 72
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