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Close to the superfluid plane-wave (PW) - supersolid stripe (ST) phase transition point of a zero temperature
quasi-one-dimensional spin-orbit-coupled Bose gas, we find that an increase in temperature induces a phase
transition to the supersolid phase with a broken translational symmetry from the superfluid plane-wave phase.
We use the Hartree-Fock-Bogoliubov theory with the Popov approximation to investigate the effect of thermal
fluctuations on the collective excitation spectrum and investigate the softening of the spin-dipole mode corre-
sponding to the shift in the quantum critical point. This is in stark contrast to the PW-ST phase transition in a
homogeneous system where non-zero temperatures facilitate the melting of the stripe phase.

Supersolid is a state of matter exhibiting simultaneously su-
perfluid properties and periodic spatial modulation in the par-
ticle density. With a quest to corroborate supersolidity in solid
helium [1] at ultracold temperatures, supersolid features have
been demonstrated in the stripe phase of spin-orbit (SO) cou-
pled spinor Bose-Einstein condensates (BECs) [2, 3], dipo-
lar Bose gases [4–8], and BECs inside optical resonators [9].
A Chester-type supersolid formed by the excitons in a semi-
conductor double-layer heterostructure is also studied [10].
The interplay of interaction between the atoms and the cou-
pling strength induces a supersolid stripe (ST) phase in SO-
coupled pseudospin-1/2 BECs [11–16] at zero temperature,
apart from the superfluid plane-wave (PW) and superfluid
zero-momentum (ZM) phases. The ST phase [14, 17, 18]
is characterized by the two gapless Goldstone modes associ-
ated with the spontaneous breaking of U(1) gauge and spatial
translation symmetries [2, 14, 19]. The transition from the ST
to the PW phase is accompanied by the softening of the spin-
dipole mode [20–22]. Non-zero temperatures are expected to
shift the critical point, and previous works have confirmed
that finite temperatures enhance the PW phase’s domain in
homogeneous SO-coupled systems [23–25]. That is, the su-
persolid melts and loses the ordered crystalline structure with
the increase in temperature. This prediction, however, leaves
out investigating the ST phase under external confinement,
which we undertake in this paper. For which, we calculate
the excitation spectrum of a harmonically trapped quasi-one-
dimensional (q1D) SO-coupled pseudo-spin-1/2 BEC at zero
and finite temperatures using the Hartree-Fock-Bogoliubov
(HFB) theory with the Popov approximation [26]. Our main
results are shown in Fig. 1, where a non-zero temperature in-
duces a phase transition from the superfluid PW to the super-
solid ST phase, as demonstrated by the emergence of periodic
density modulations. Additionally, by detecting the minima of
the spin-dipole mode at a shifted critical point, we confirm this
temperature-induced supersolidity in the system. This is quite
intriguing as, intuitively, one would expect the supersolid to
melt with increased temperature.
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With an aim to study the effects of temperature on the quan-
tum phases of SO-coupled BECs, we start with the dimen-
sionless grand canonical Hamiltonian describing a q1D SO-
coupled pseudo-spinor BEC extended along the x direction in
the second-quantized form [27]

H =

∫
dxψ̂†

i (x)

[{
−1

2

∂2

∂x2
− µ+ V (x)

}
δij

− ιkR(σz)ij
∂

∂x
+

Ω

2
(σx)ij

]
ψ̂j(x)

+
1

2

∫
dxgijψ̂

†
i (x)ψ̂

†
j (x)ψ̂j(x)ψ̂i(x), (1)

where length, energy, and time are in units of l0 =
√
ℏ/mωx,

ℏωx, and ω−1
x , respectively, with ωx as the harmonic trap-

ping angular frequency along the extended direction and m
as the atomic mass. In Eq. (1), µ is the chemical potential,
V (x) = x2/2 is the trapping potential along the extended di-
rection, recoil momentum kR =

√
2ER is a measure of the

SO-coupling strength fixed by the recoil energy ER trans-
ferred to the atoms with spin indices i, j ∈ (↑, ↓) by the
two counter-propagating laser beams, Ω is the Raman cou-
pling strength, σx,z are the 2 × 2 Pauli spin−1/2 matrices,
and gij denote the interaction strengths [27]. The renormal-
ized interaction strengths in terms of the s-wave scattering
lengths aij are gij = 2aijω⊥/ωx with ω⊥ being the angu-
lar trapping frequency along the tightly confined y and z di-
rections. To study the effects of quantum and thermal fluc-
tuations on the supersolid phase, we extend the HFB theory
using the Popov approximation [26, 28, 29] to the harmoni-
cally confined SO-coupled pseudo-spinor BEC. Here we start
with the Heisenberg equations of motion for the field opera-
tors, ι∂ψ̂i/∂t = [ψ̂i,H], and split the Bose field operator into
a mean-field and a fluctuation operator, i.e. ψ̂i = ϕi + δψ̂i.
The ensemble average of the equations of motion (along with
the mean-field approximation for the terms which are cubic in
fluctuation operators) yields the following time-independent
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coupled generalized Gross-Pitaevskii (GP) equations [29]:

µϕ↑ =

[
−1

2
∂2x + V + g↑↑(n↑ + ñ↑) + g↑↓n↓

]
ϕ↑

− ιkR
∂ϕ↑
∂x

+

(
g↑↓ñ↑↓ +

Ω

2

)
ϕ↓, (2a)

µϕ↓ =

[
−1

2
∂2x + V + g↓↓(n↓ + ñ↓) + g↑↓n↑

]
ϕ↓

+ ιkR
∂ϕ↓
∂x

+

(
g↑↓ñ↓↑ +

Ω

2

)
ϕ↑, (2b)

where ñij ≡ ⟨δψ̂†
i δψ̂j⟩, ni = |ϕi|2 + ñi is the total density of

ith spin, and the total number of atoms N =
∑

i

∫
nidx. For

simplicity of notations, we use ñi instead of ñii to denote the
thermal density of ith spin.

-8 -4 0 4 8
x (units of l0)

0

150

300

450

n
i

(u
n

it
s

of
l−

1
0

)

(a)

T = 0Tc

-8 -4 0 4 8
x (units of l0)

(b)

T = 0.5Tc
n↑
n↓

0 0.6 1.2 1.8 2.4 3
Ω/ER

0

0.1

0.2

0.3

0.4

0.5

T
/T

c

(c)

ST PW

FIG. 1. Emergence of density modulation (supersolid phase) at non-
zero temperature. The component total densities ni(x) for Ω =
2.45ER are shown in (a) at zero temperature (T = 0) illustrating
the plane-wave (PW) phase, and in (b) at T = 0.5Tc illustrating the
supersolid stripe (ST) phase. Ωcr = 2.4ER marks the critical tran-
sition point from PW to ST phase at T = 0. (c) Finite-temperature
phase diagram, in temperature T versus Raman coupling strength Ω
plane, illustrating the temperature-induced supersolidity in a trapped
SO-coupled Bose gas. The indicator for such a transition through the
softening of the spin-dipole mode, roton gap, and extraction of Tc

have been elaborated in the text.

We subtract the generalized GP equations from the
equations of motion for the field operators and then
use the mean-field approximations δψ̂iδψ̂

†
j ≃ ⟨δψ̂iδψ̂

†
j ⟩,

δψ̂iδψ̂j ≃ ⟨δψ̂iδψ̂j⟩ for the quadratic and δψ̂†
i δψ̂jδψ̂k ≃〈

δψ̂†
i δψ̂j

〉
δψ̂k +

〈
δψ̂†

i δψ̂k

〉
δψ̂j + ⟨δψ̂jδψ̂k⟩δψ̂†

i for a typ-
ical cubic term in the fluctuation operators [26]. The
anomalous average terms ⟨δψ̂iδψ̂j⟩ are negelected using
Popov approximation to get the gapless spectrum [26, 30].
This leads to the equations of motion for the fluctua-

tion operators, which, by the Bogoliubov transformation,
δψ̂i(x, t) =

∑
λ

[
uλi (x)α̂λ(x)e

−iωλt − v∗λi (x)α̂†
λ(x)e

iωλt
]
,

where α̂†
λ(α̂λ) is the quasi-particle creation (annihilation) op-

erator, lead to the Bogoliubov-de Gennes (BdG) equations for
the quasi-particle amplitudes uλ and vλ. These BdG equa-
tions are [26, 29](

A −B
B∗ −A∗

)(
uλ

vλ

)
= ωλ

(
uλ

vλ

)
, (3)

where

A =

(
h0 + 2g↑↑n↑ + g↑↓n↓ g↑↓(ϕ

∗
↓ϕ↑ + ñ↑↓) +

Ω
2

g↑↓(ϕ
∗
↑ϕ↓ + ñ↓↑) +

Ω
2 h0 + 2g↓↓n↓ + g↑↓n↑

)
,

B =

(
g↑↑ϕ

2
↑ g↑↓ϕ↓ϕ↑

g↑↓ϕ↑ϕ↓ g↓↓ϕ
2
↓

)
, uλ =

(
uλ↑
uλ↓

)
, vλ =

(
vλ↑
vλ↓

)
.

Here h0 = − 1
2∂

2
x ∓ ιkR∂x + V − µ, ñij ≡ ⟨δψ̂†

i δψ̂j⟩ =∑
λ

{(
uλ∗i uλj + vλi v

λ∗
j

)
fωλ

+ vλi v
λ∗
j

}
with fωλ

as the Bose-
Einstein distribution function. The λth quasiparticle ampli-
tudes are normalized as

∫ ∑
i(|uλi |2 − |vλi |2)dx = 1. Eqs. (2)

and (3) are to be solved self-consistently to calculate finite-
temperature densities and excitation spectrum. In the first step
of the self-consistent iterative calculation, we numerically
solve Eqs. (2a) and (2b) to obtain ϕ↑(ϕ↓) using split time-
step imaginary-time method [31]. These condensate wave-
functions are input to Eq. (3) in the second step. With the
quasiparticle, amplitudes expanded in terms of the harmonic
oscillator eigenfunctions, Eq. (3) yields a generalized matrix
eigenvalue problem for the expansion coefficients [32, 33].
We solve the eigenvalue problem using the standard matrix
diagonalization algorithms to obtain the eigenenergies (ωλ)
and quasiparticle amplitudes (uλ and vλ ), which are used to
evaluate (updated) ñij and renormalize the condensate wave-
functions to ensure

∫
(|ϕ↑|2 + |ϕ↓|2)dx = N −

∑
i

∫
ñidx.

The ñij and the updated ϕ↑(ϕ↓) are fed back to Eqs. (2a)
and (2b) to repeat the previous two steps. This procedure is
executed iteratively until thermal densities converge within a
chosen tolerance limit [29, 32, 33]. We consider a spatial grid
consisting of 4096 points with a spatial step size of ∆x = 0.01
and imaginary-time step of 10−5 to solve Eqs. (2a)-(2b), and
200 harmonic oscillator basis states to solve BdG equation (3).
We have checked that increasing the size of the basis does not
affect the results.

With these definitions and considerations, we consider a
pseudo-spinor system consisting of two hyperfine spin states
of 23Na in a highly anisotropic harmonic trap with ωx =
2π × 5 Hz, ω⊥ = ωy = ωz = 20ωx such that ω⊥ ≫ ωx,
and N = 2000 at T = 0. In this case, we can integrate out
the y and z coordinates from the condensate wave function
and describe the system as a q1D system along the x axis.
We consider a↑↑ = a↓↓ = 54.54a0/l0 as the (dimension-
less) intra-spin s-wave scattering length, where a0 is Bohr
radius [34]. To enhance the visibility of the stripe phase,
we consider reduced interspecies interactions. This may be
achieved by reducing the spatial overlap between the wave
functions of the two spin components. One way to accom-
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plish this is by employing a spin-dependent trapping poten-
tial separating the two components [35]. Another method is
to utilize pseudo-spin orbital states within a superlattice po-
tential, which has already been implemented in an experi-
ment with spinor BEC of 23Na. [2]. Given these we consider
g↑↓ = g↓↑ = 0.6g↑↑, where g↑↑ = 2a↑↑ω⊥/ωx. We will
use the pseudo-spinor BEC with these parameters (N , g↑↑,
g↑↓, ωx, ω⊥, and kR) throughout this paper, except if specif-
ically stated otherwise. To investigate the effects of temper-
ature on phase transition, at the outset, we vary the Raman
coupling strength Ω while keeping the SO-coupling strength
fixed at kR = 6 in this work. At T = 0, with an increase
in Ω, the system first undergoes a phase transition from the
ST to the PW phase at a critical Raman coupling strength
Ωcr ≈ 2.4ER, which is followed by a second phase transi-
tion to the ZM phase [12, 13]. As ST and PW phases have
qualitatively distinct density profiles, we first examine the to-
tal densities (condensate plus thermal density) of the two spin
states obtained by solving Eqs. (2a)-(2b) and (3). In Figs. 1(a)
and 1(b), we present the total density ni for Ω = 2.45ER at
two different temperatures: T = 0 and T = 0.5Tc, where Tc
is the critical temperature for the SO-coupled BEC calculated
using the HFB-Popov method and discussed in the follow-
ing paragraph. At zero temperature, the densities in Fig. 1(a)
correspond to the PW phase (as Ω > 2.4ER) with a non-
zero magnetization [

∫
{n↑(x) − n↓(x)}dx ]. Surprisingly, at

T = 0.5Tc in Fig. 1(b), the densities ni exhibit distinctive
modulations of the ST phase with zero magnetization, indicat-
ing that the system is in the stripe phase. This suggests a shift
in the ST-PW phase boundary with temperature [cf. Fig. 1(c)].
Furthermore, we calculate the excitation spectrum of the sys-
tem to determine the phase boundary between the two phases
at different temperatures. In the ST phase of a harmonically
trapped BEC, the spin-dipole mode softens with an increase
in Ω and acquires a minimum at the ST-PW phase boundary.
Across the same phase boundary, there is a slight jump in the
dipole and breathing modes, indicating a first-order transition
between supersolid and superfluid states [20, 21].

Before elaborating on the role of the excitation spectrum at
non-zero temperatures indicating the modified ST-PW phase
boundary, it is worthwhile to outline the procedure involved
in the computation of Tc and illustrate the reliability of the
present theoretical framework by ascertaining the domain of
applicability of the HFB Popov theory. For which, first, using
the HFB-Popov theory, we calculate the condensate fraction
N0(T )/N of the pseudo-spinor BEC as a function of temper-
ature T , but without SO and Raman couplings, i.e. kR =
Ω = 0, by solving Eqs. (2a), (2b), and (3) self-consistently
with N0 =

∑
i

∫
|ϕi|2dx being the total number of atoms in

the condensate. We then extract the critical temperature Tc
by fitting the condensate fraction data points using the func-
tion f(T ) = 1 − T ln(2kBT/ℏωx)/Tc ln (2kBTc/ℏωx) (an-
alytic estimate for the condensate fraction) [36] with Tc as
the fitting parameter. We observe that for N0(T )/N ≈ 0.45
as obtained from the HFB-Popov theory, we find an excel-
lent agreement of the extracted Tc with the analytical predic-
tion T ana.

c = ℏωxN/(2kB lnN) [36]. We set this value of
N0(T )/N ⩾ 0.45 as the benchmark for the validity of the

HFB-Popov theory and use it to compute Tc in the presence
of SO and Raman couplings. In Fig. 2(a), we plot the fitting
function f(T ) and N0(T )/N for the pseudo-spinor BEC with
Ω = 2 as a demonstrative example. As expected, the critical
temperature varies with Ω as shown in Fig. 2(b) [37, 38].
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FIG. 2. (a) shows the plot of the condensate fraction N0(T )/N ob-
tained from the HFB-Popov theory for the pseudo-spinor BEC with
Ω = 2 and the fitting function f(T ), where N0(T )/N ⩾ 0.45 (cri-
terion for the applicability of the HFB-Popov theory as discussed in
the main text), f(T ) = 1 − T ln(2kBT/ℏωx)/Tc ln (2kBTc/ℏωx)
with Tc(= 26.21 nK) as the fitting parameter. (b) Variation of Tc

with Ω/ER.
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FIG. 3. The excitation spectrum of the harmonically trapped SO-
coupled q1D BEC at (a) T = 0 and (b) T = 0.5Tc(Ω). The dark
green triangles are the markers for the spin-dipole mode, which gets
softened as one approaches the ST-PW phase boundary at a critical
coupling strength of Ωcr ≈ 2.4ER in (a) and Ωcr ≈ 2.5ER in (b).
The light red stars mark the dipole mode, which shows a disconti-
nuity at the ST-PW phase boundary, reflecting the first-order nature
of the transition. (c) The softening of spin dipole modes with the Ω
for different temperatures. For a fixed Ω/ER, the energy of the spin-
dipole mode increases with temperature in the ST phase.

In Fig. 3(a), we present the variation in the excitation fre-
quencies at zero temperature with the increase in the Raman
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coupling strength Ω. We focus on the spin-dipole and density-
dipole modes to map out the phase boundary [20, 21]. The
dipole mode (marked by the light red star) in the limit Ω → 0
is ωD = ωx, satisfying the Kohn theorem. The spin-dipole
mode (marked by the dark green triangle) in Fig. 3(a) de-
creases as Ω increases and acquires a minimum value at the
ST-PW phase boundary (Ωcr ≈ 2.4ER). Furthermore, the
spin-dipole mode is identified by extracting the oscillation fre-
quency of

∫
x[n↑(x, t)−n↓(x, t)]dx during the time evolution

of the ST ground-state phase governed by T = 0 GP equations
corresponding to the perturbed Hamiltonian [39], where per-
turbation ∝ xσz . The density-dipole mode in Fig. 3(a) shows
a discontinuous change at the ST-PW phase boundary, reflect-
ing the first-order nature of the transition [21, 22]. The dipole
mode is similarly identified by extracting the oscillation fre-
quency of

∫
x[n↑(x, t) + n↓(x, t)]dx after a perturbation ∝ x

is added to the Hamiltonian. It is to be noted that the ST phase
has two Goldstone modes: the density-Goldstone mode due to
the U(1) gauge-symmetry breaking and the spin-Goldstone
mode due to the breaking of translational invariance symme-
try. We obtained two Goldstone modes from our calculations,
which serve as a consistency check of our numerical calcula-
tions. In the PW phase (Ω > Ωcr), a single density-Goldstone
mode is identified corresponding to theU(1) gauge-symmetry
breaking. In this phase, as bosons condense into one of the
minima of the single-particle dispersion, it breaks the discrete
Z2 symmetry, acquiring non-zero magnetization [16]. The
spin-dipole mode is absent in this phase, whereas the non-zero
density-dipole mode decreases with increasing Ω.

Fig. 3(b) shows the excitation spectrum at T = 0.5Tc(Ω),
where, like T = 0, the ST-PW phase boundary is character-
ized by the minima of the spin-dipole mode in the ST phase
and a discontinuous change in the density-dipole mode across
the phase boundary. The phase boundary has shifted to the
right with Ωcr ≈ 2.5ER, which is consistent with the ST
phase in Fig. 1(b). It is to be noted that the condensate frac-
tion N0(T )/N ≈ 0.55 for the range of Ω considered. Fur-
thermore, the spin-Goldstone mode, nearly zero at T = 0 in
Fig. 3(a), is now non-zero, possibly due to the thermal ef-
fects. To see the shifting of phase boundary with temper-
ature distinctly, we calculate spin-dipole modes at T = 0,
0.1Tc, 0.3Tc, and 0.5Tc, shown in Fig. 3(c). The Ωcr increases
with an increase in temperature, resulting in the ST phase ex-
panding into the domain of the PW phase. This temperature-
induced enhancement of the ST phase in q1D condensates,
and the emergence of supersolidity is the key result of this
work. On the contrary, the ST phase shrinks with temperature
for a three-dimensional SO-coupled homogeneous pseudo-
spinor BEC [24, 25]. To substantiate this, we compute the
dispersion to monitor the variation of the roton gap in the ho-
mogeneous and the q1D trapped spinor system with similar
parameters. It is to be noted that for the trapped BEC, we
arrive at the dispersion relation using the Fourier transforms
of the Bogoliubov quasiparticle amplitudes uλi (x) and vλi (x),
and then calculate the root-mean-square wave number krms of
the λth quasiparticle mode as given in Ref. [40]. At T = 0,
the phase transition from the ST to the PW phase is marked
by the opening of the roton gap (∆) at a finite wavenumber

k [41, 42]. We use this measure as an additional indicator to
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FIG. 4. (a) shows the increase (decrease) of the roton gap ∆ in the
SO-coupled homogeneous (q1D trapped pseudo-spinor) BEC with
temperature. (b) Dispersion of the trapped pseudo-spinor BEC’s at
temperature T = 0.5Tc revealing roton fingers [43]. (c) shows the
dispersion for the homogeneous SO-coupled pseudo-spinor BEC.
For the homogeneous system, the uniform density considered in
(a) and (c) equals the peak density [n(x = 0) = 467.46] of
the trapped SO-coupled BEC. This gives g↑↑n = 0.48034ER and
g↑↓n = 0.6g↑↑n for the homogeneous SO-coupled BEC. T 3D

c =

2πℏ2[(n/2)/ζ(3/2)]2/3/mkB is the critical temperature of ideal
three-dimensional two-component Bose gas. In (a)-(c), Raman cou-
pling strength Ω = 2.8ER. Contrary to the trapped SO-coupled
BEC, the roton mode increases with temperature for the homoge-
neous SO-coupled Bose gas.

emphasize that the domain of the ST phase indeed increases
at finite temperatures for the system considered in this work.
As illustrated in Fig. 4(a), we find that the roton gap increases
(decreases) in the homogeneous (harmonically-trapped q1D
pseudo-spinor BEC) with temperature. The increase in the
gap confirms the melting of the ST phase into the PW phase
with temperature [24, 25], whereas the decrease affirms the
emergence of the ST phase with temperature in the q1D sys-
tem. In Figs. 4(b) and 4(c), we have shown the dispersion
curve for the q1D trapped and homogeneous SO-coupled BEC
at zero and a finite temperature of T = 0.5Tc. For the trapped
SO-coupled system, Fig. 4(b) reveals the so-called roton fin-
ger [43].

These observations strengthen the fact that at non-zero tem-
peratures, the PW phase undergoes a transition to the super-
solid phase identified by density stripes. By using the Hartree-
Fock-Bogoliubov theory with the Popov approximation and
including the interactions between the thermal atoms of the
different components, we have demonstrated the softening of
the spin-dipole mode accompanied by a shift of the quantum
critical point. The domain of the PW phase, characterized
by a finite roton gap (∆), decreases with increasing temper-
ature and is consistent with the emergence of supersolidity
at finite temperatures. Possible areas for future research in-
clude the effects of dimensionality and finite-size scaling of
the quantum-critical point. Recently, we became aware of
such temperature-induced transition in a dipolar BEC, where
non-zero temperatures induce a transition from a dipolar su-
perfluid to a supersolid state [44, 45]. This suggests that
temperature-induced supersolidity manifests the semblance
between the dipolar and SO-coupled supersolids. Recently,
a generic mechanism for a thermally-driven reentrant super-
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solidity has also been proposed [46].
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[4] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabban-
ini, R. N. Bisset, L. Santos, and G. Modugno, Phys. Rev. Lett.
122, 130405 (2019).
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H. P. Büchler, T. Langen, and T. Pfau, Nature 574, 386 (2019).

[8] G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter,
M. J. Mark, L. Chomaz, and F. Ferlaino, Phys. Rev. Lett. 123,
050402 (2019).
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