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BEYOND PLANARITY
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Abstract. We study geometric and topological properties of infinite graphs that
are quasi-isometric to a planar graph of bounded degree. We prove that every
locally finite quasi-transitive graph excluding a minor is quasi-isometric to a planar
graph of bounded degree. We use the result to give a simple proof of the result that
finitely generated minor-excluded groups have Assouad-Nagata dimension at most
2 (this is known to hold in greater generality, but all known proofs use significantly
deeper tools). We also prove that every locally finite quasi-transitive graph that
is quasi-isometric to a planar graph is k-planar for some k (i.e. it has a planar
drawing with at most k crossings per edge), and discuss a possible approach to
prove the converse statement.

1. Introduction

Our work is motivated by a conjecture and a problem raised recently by Geor-
gakopoulos and Papasoglu [GP23], lying at the intersection of metric graph theory
and graph minor theory. Before we state them, we first need to introduce some
terminology.

We say that a graph H is a k-fat minor of a graph G if there exists a family of
connected subsets (Mv)v∈V (H) of V (G) such that

(1) for each u ̸= v ∈ V (H), dG(Mu,Mv) ⩾ k;
(2) for each e = uv ∈ E(H) there is a path Pe whose two endpoints lie in Mu

and Mv and internal vertices are not in
⋃

v∈V (H) Mv, and
(3) for every e ̸= e′ ∈ E(H), dG(Pe, Pe′) ⩾ k and for every e = uv ∈ E(H) and

w /∈ {u, v}, dG(Pe,Mw) ⩾ k.
A graph H is an asymptotic minor of G if for every k ⩾ 0, H is a k-fat minor of G.

Let (X, dX) and (Y, dY ) be two metric spaces. We say that X is quasi-isometric
to Y if there is a map f :X → Y and constants ε⩾ 0, λ⩾ 1, and C ⩾ 0 such that (i)
for any y ∈ Y there is x ∈X such that dY (y, f(x))⩽ C, and (ii) for every x1, x2 ∈X,

1

λ
dX(x1, x2)− ε ⩽ dY (f(x1), f(x2)) ⩽ λdX(x1, x2) + ε.

It is not difficult to check that the definition is symmetric, and we often simply say
that X and Y are quasi-isometric. If condition (i) is omitted in the definition above,
we say that f is a quasi-isometric embedding of X in Y .

We can view each graph G as a metric space, by considering the natural shortest-
path metric associated to G. A graph is locally finite if every vertex has finite degree.
Georgakopoulos and Papasoglu conjectured the following [GP23].

The authors are partially supported by the French ANR Project GrR (ANR-18-CE40-0032),
TWIN-WIDTH (ANR-21-CE48-0014-01), and by LabEx PERSYVAL-lab (ANR-11-LABX-0025).
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2 L. ESPERET AND U. GIOCANTI

Conjecture 1.1 (Conjecture 9.3 in [GP23]). If G is locally finite, vertex-transitive
and excludes some finite graph H as an asymptotic minor, then G is quasi-isometric
to a planar graph.

It is natural to first prove this conjecture when G excludes some minor H (instead
of an asymptotic minor, as defined above). This suggests the following:

Question 1.2. Is it true that if G is locally finite, vertex-transitive and excludes
some finite graph H as a minor, then G is quasi-isometric to a planar graph?

Our first result is a positive answer to this question, in a slightly stronger form. An
infinite graph is quasi-transitive if its vertex set has finitely many orbits under the
action of its automorphism group. Note that any vertex-transitive graph is quasi-
transitive, and that for quasi-transitive graphs, being locally finite is equivalent to
having bounded degree.

The countable clique K∞ is the graph with vertex set N in which every two vertices
are adjacent (every graph which excludes a finite or countable graph H as a minor
also excludes K∞ as a minor). We prove the following.

Theorem 1.3. Every locally finite quasi-transitive K∞-minor free graph is quasi-
isometric to a planar graph of bounded degree.

The main technical tool that we use is a recent structural theorem on locally finite
quasi-transitive graphs excluding the countable clique as a minor [EGLD23], which
shows that such graphs have a canonical tree-decomposition in which all torsos are
planar or finite (see the next section for the definitions). Most importantly, this
result does not use the Robertson-Seymour graph minor structure theorem.

We note that the result which allows us to construct the quasi-isometry using
the canonical tree-decomposition was also proved recently (and independently) by
MacManus [Mac23] in a slightly different form (the “if” direction in his Corollary
C). Our proof is very similar to his.

We now discuss several applications of Theorem 1.3.

Application 1. Beyond planarity. A graph is k-planar if it has a drawing in
the plane in which each edge is involved in at most k crossings (note that with this
terminology, being planar is the same as being 0-planar). The local crossing number
of a graph G, denoted by lcr(G), is the infimum integer k such that G is k-planar.

Georgakopoulos and Papasoglu raised the following problem [GP23].

Problem 1.4 (Problem 9.4 in [GP23]). For any quasi-transitive graph G of bounded
degree, G is quasi-isometric to a planar graph if and only if G has finite local crossing
number.

We prove that for any integer k, every bounded degree graph which is quasi-
isometric to a k-planar graph is k′-planar for some integer k′. In the particular case
k = 0, we immediately obtain the “only if” direction of Problem 1.4 (we recently
learned from Agelos Georgakopoulos that he also proved the case k = 0 indepen-
dently). In Section 6, we raise a number of conjectures whose validity would imply
a positive answer to the “if” direction of Problem 1.4. In the case k = 0, we also
obtain our second application of Theorem 1.3:

Theorem 1.5. Every locally finite quasi-transitive graph G which is K∞-minor-free
has finite local crossing number.
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The assumption that G is locally finite is necessary, as shown by the graph ob-
tained from the square grid by adding a universal vertex (this graph is K6-minor
free, but is not k-planar for any k < ∞). The assumption that G is quasi-transitive
is also crucial: consider for each integer ℓ a graph Gℓ obtained from the square grid
by adding an edge between two vertices at distance ℓ in the grid (if Gℓ is k-planar
then k = Ω(ℓ)), and take the disjoint union of all graphs Gℓ, ℓ ∈ N.

Note that in the other direction, there exist 1-planar graphs that are vertex-
transitive and locally finite, but which contain all graphs as minors (the square grid
with all diagonals is such an example).

Application 2. Assouad-Nagata dimension. Our second application of Theo-
rem 1.3 requires the notions of asymptotic dimension and Assouad-Nagata dimension
of metric spaces, which we introduce now. Let (X, d) be a metric space, and let U
be a family of subsets of X. We say that U is D-bounded if each set U ∈ U has
diameter at most D. We say that U is r-disjoint if for any a, b belonging to different
elements of U we have d(a, b) > r.

We say that DX : R+ → R+ is an n-dimensional control function for (X, d) if for
any r > 0, (X, d) has a cover U =

⋃n+1
i=1 Ui, such that each Ui is r-disjoint and each

element of U is DX(r)-bounded. A control function DX for a metric space X is said
to be a dilation if there is a constant c > 0 such that DX(r) ⩽ cr, for any r > 0.

The asymptotic dimension of (X, d), introduced by Gromov in [Gro93], is the least
integer n such that (X, d) has an n-dimensional control function. If no such integer
n exists, then the asymptotic dimension is infinite. The Assouad-Nagata dimension
of (X, d), introduced by Assouad in [Ass82], is the least n such that (X, d) has an n-
dimensional control function which is a dilation. Clearly the asymptotic dimension
is at most the Assouad-Nagata dimension.

It was proved in [BBE+20] that every bounded degree graph excluding a minor
has asymptotic dimension at most 2, and that any planar graph has asymptotic
dimension at most 2. This was improved in [BBE+23], where it was shown that
any graph excluding a minor has asymptotic dimension at most 2, and any planar
graph has Assouad-Nagata dimension at most 2. This was finally extended by Liu in
[Liu23], who proved that any graph avoiding a minor has Assouad-Nagata dimension
at most 2 (a different proof was then given by Distel in [Dis23]). All the results
on graphs excluding a minor mentioned above (even for bounded degree graphs)
crucially rely on the Graph minor structure theorem by Robertson and Seymour
[RS03], a deep result proved in a series of 16 papers.

Using the invariance of Assouad-Nagata dimension under bilipschitz embedding
[LS05], we will give a short proof of the fact that minor-excluded quasi-transitive
graphs have Assouad-Nagata dimension at most 2. A finitely generated group is said
to be minor-excluded if it has a Cayley graph which excludes a minor. Our result
directly implies that finitely generated minor-excluded groups have Assouad-Nagata
dimension at most 2, and thus asymptotic dimension at most 2 (which was originally
conjectured by Ostrovskii and Rosenthal in [OR15]). We will only use Theorem 1.3
and a few simple tools from [BBE+20, BBE+23] based on the work of Brodskiy,
Dydak, Levin and Mitra [BDLM08]. In particular we will give a short proof of the
fact that planar graphs of bounded degree have Assouad-Nagata dimension at most
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2. Crucially, our proof for quasi-transitive graphs excluding a minor does not rely
on the Graph minor structure theorem of Robertson and Seymour.

2. Preliminaries

All graphs in this paper are assumed to be infinite, unless stated otherwise.
A tree-decomposition of a graph G is a pair (T,V) such that T is a tree and V is

a collection (Vt : t ∈ V (T )) of subsets of V (G), called the bags, such that
•
⋃

t∈V (T ) Vt = V (G),
• for every uv ∈ E(G), there exists t ∈ V (T ) such that u, v ∈ Vt, and
• for every v ∈ V (G), the set {t ∈ V (T ) : v ∈ Vt} induces a connected subgraph

of T .

For a tree-decomposition (T,V), the width of (T,V) is supt∈V (T )|Vt|−1 ∈N∪{∞}.
The treewidth of G is the minimum width of a tree-decomposition of G.

The sets Vt∩Vt′ for every tt′ ∈ E(T ) are called the adhesion sets of (T,V) and the
adhesion of (T,V) is the supremum of the sizes of its adhesion sets (possibly infinite).
For t ∈ V (T ), the torso GJVtK is the graph obtained from G[Vt] (the subgraph of G
induced by the bag Vt) by adding all edges uv with u, v ∈ Vt for which there exist t′
such that u and v lie in the adhesion set Vt ∩ Vt′ .

We say that a tree-decomposition (T,V) is canonical, if for every automorphism
γ of G, γ sends bags of (T,V) to bags, and adhesion sets to adhesion sets. In other
words, the automorphism group of G induces a group action on T .

A separation in a graph G = (V,E) is a triple (Y, S, Z) such that Y, S, Z are
pairwise disjoint, V = Y ∪ S ∪ Z and there is no edge between vertices of Y and
Z. The separation (Y, S, Z) is said to be tight if there are some components CY , CZ

respectively of G[Y ], G[Z] such that NG(CY ) = NG(CZ) = S.

Consider a tree-decomposition (T,V) of a graph G, with V = (Vt)t∈V (T ). Let A
be an orientation of the edges of E(T ), i.e. a choice of either (t1, t2) or (t2, t1) for
every edge t1t2 of T . For a pair (t1, t2) ∈ A, and for each i ∈ {1, 2}, let Ti denote the
component of T −{t1t2} containing ti. Then the edge-separation of G associated to
(t1, t2) is (Y1, S, Y2) with S := Vt1 ∩ Vt2 and Yi :=

⋃
s∈V (Ti)

Vs \ S for i ∈ {1, 2}.

We will need the main result of [EGLD23], which gives the structure of locally
finite quasi-transitive graph excluding a minor (note that this result does not use
the Graph minor structure theorem by Robertson and Seymour [RS03]).

Theorem 2.1 ([EGLD23]). Let G be a locally finite quasi-transitive graph excluding
K∞ as a minor. Then there is an integer k such that G admits a canonical tree-
decomposition (T,V) of adhesion at most k, whose torsos have size at most k or are
planar. Moreover, the edge-separations of (T,V) are tight.

The property that the edge-separations (T,V) are tight in the statement of The-
orem 2.1 will be particularly useful in combination with the following result of
Thomassen and Woess [TW93] (which was explicitly proved for transitive graphs,
but the same proof also holds for quasi-transitive graphs).

Lemma 2.2 (Corollary 4.3 in [TW93]). Let G be a locally finite graph. Then for
every v ∈ V (G) and k ⩾ 1, there is only a finite number of tight separations (Y, S, Z)
of order k in G such that v ∈ S. Moreover, if G is quasi-transitive then for any k⩾ 1,
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there is only a finite number of orbits of tight separations of order at most k in G
under the action of the automorphism group of G.

3. Proof of Theorem 1.3

We assume that G is connected, since otherwise we can consider each connected
component separately. By Theorem 2.1, G has a canonical tree-decomposition (T,V)
whose torsos GJVtK, t ∈ V (T ), are either planar or finite and whose adhesion sets
have bounded size. For each u ∈ V (G), we let Tu be the subtree of T with vertex set
{t ∈ V (T ), u ∈ Vt}. Note that as the edge-separations of (T,V) are tight, Lemma
2.2 implies that Tu is finite for each u.

We let G′ be the graph constructed as follow: for each t ∈ V (T ), we let V ′
t be

a copy of Vt and G′
t (with vertex set V ′

t ) be a copy of GJVtK if Vt is infinite, or
a spanning tree of GJVtK if Vt is finite. For each u ∈ V (G) and t ∈ V (Tu), we let
u(t) denote the copy of u in V ′

t . We let V (G′) :=
⊎

t∈V (T ) V
′
t . Now for every edge

st ∈ E(T ), we choose an arbitrary vertex ust ∈ Vt ∩Vs (such a vertex exists, since G
is assumed to be connected). We let:

E(G′) :=

 ⊎
t∈V (T )

E(G′
t)

 ⊎ {u(s)
st u

(t)
st , st ∈ E(T )}.

We also let T ′ be the 1-subdivision of T (the graph obtained from T by replacing
each edge e = st by a two-edge path s, te, t). Finally, for each e = st ∈ E(T ), we set
V ′
te := {u(s)

st , u
(t)
st } and V ′ := (V ′

t )t∈V (T ′). We observe that by definition, (T ′,V ′) is a
tree-decomposition of G′ whose adhesion sets all have size 1. In particular, for every
t ∈ V (T ′), G′[V ′

t ] = G′JV ′
t K. We also note that by the definition of G′ and Lemma

2.2, G′ has bounded degree.

Claim 3.1. For every graph G, if G has a tree-decomposition (T,V) such that every
torso is planar and adhesion sets have size at most 1, then G is planar.

Proof of the Claim: If G contains K5 or K3,3 as a minor, then some torso of (T,V)
must also contain K5 or K3,3 as a minor, which is a contradiction. The result then
follows from Wagner’s theorem [Wag37] stating that any graph excluding K5 and
K3,3 is planar. ♢

We now construct a quasi-isometry f from G to G′. For each u ∈ V (G), we choose
some tu ∈ V (Tu) and set f(u) := u(tu). We also let A1 :=max{diamG(Vt), Vt is finite},
A2 := max(1,max{|Vt|, Vt is finite}) and B := max{diamT (Tu), u ∈ V (T )}, which all
exist by Lemma 2.2, as the edge-separations of (T,V) are tight. We note that for
each t ∈ V (T ) such that Vt is finite, since G′[V ′

t ] = G′JV ′
t K is connected, its diameter

is at most A2.
We first show the following:

Claim 3.2. There exists a constant C ⩾ 0 such that for each t ∈ V (T ), u, v ∈ Vt:

dG(u, v) ⩽ C · dGJVtK(u, v).

Proof of the Claim: By Lemma 2.2, E(T ) has finitely many orbits under the action
of the automorphism group of G. Hence, up to automorphism there are only finitely
many pairs {u, v} such that u, v lie in a common adhesion set of (T,V). In particular,
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as G is connected this means that the set of values {dG(u, v),∃st ∈ E(T ), u, v ∈
Vs ∩ Vt} admits a maximum C. The claim follows from this observation. ♢

We now show that there is a constant α > 0 such that for every u, v ∈ V (G) and
every f(u)f(v)-path P ′ in G′, there exists a uv-path P of size at most α · |P ′| in
G. By taking P ′ to be a shortest path from f(u) to f(v) in G′, this will imply in
particular that dG(u, v) ⩽ α · dG′(f(u), f(v)).

Claim 3.3. For every u, v ∈ V (G) and t, s ∈ V (T ) such that u(t)v(s) ∈ E(G′) we
have

dG(u, v) ⩽ α := max(A1, C).

Proof of the Claim: Assume first that s = t. If Vt is finite, then dG(u, v) ⩽ A1. If Vt

is infinite we must have uv ∈ E(GJVtK), and thus dG(u, v) ⩽ C by Claim 3.2.
Assume now that s ̸= t. Then by definition of G′, we must have st ∈ E(T ) and

u = v, and thus dG(u, v) = 0. ♢

We now show that there exists a constant β > 0 such that for every u, v ∈ V (G)
and every uv-path P in G, there exists a f(u)f(v)-path P ′ of size at most β|P | in
G′. This directly implies that dG′(f(u), f(v)) ⩽ β · dG(u, v).

Claim 3.4. For every u, v ∈ V (G) and t, s ∈ V (T ) such that uv ∈ E(G), u ∈ Vt and
v ∈ Vs we have:

dG′(u(t), v(s)) ⩽ β := (4A2 + 2)B + A2.

Proof of the Claim: First note that if Vt is finite, then for each u, v ∈ Vt we have:

dG′(u(t), v(t)) = dG′[V ′
t ]
(u(t), v(t)) ⩽ A2.

If Vt is infinite, then for each u, v ∈ Vt such that uv ∈ E(G), we have u(t)v(t) ∈ E(G′)
and thus dG′(u(t), v(t)) ⩽ 1. Since A2 ⩾ 1, it follows that for each t ∈ V (T ) and
u, v ∈ Vt such that uv ∈ E(G), we have

(1) dG′(u(t), v(t)) ⩽ A2.

Now let u ∈ V (G) and s, t ∈ V (Tu). We let (s = t0, t1, . . . , t = tℓ) be the shortest
st-path in T . Note that it is also a path in Tu, hence ℓ ⩽ B. Recall that in the
construction of G′, we have chosen for each edge st ∈ E(T ) a vertex ust ∈ Vs ∩ Vt

and we have added an edge in G′ between u
(s)
st ∈ V ′

s and u
(t)
st ∈ V ′

t . For each i ∈ [ℓ],
we write xi := uti−1ti ∈ Vti−1

∩ Vti for the sake of readability. Note that for each
i ∈ [ℓ], xi might be equal to u and that both u and xi lie in the adhesion set
Vti−1

∩ Vti . This implies that u(ti) and x
(ti)
i are adjacent in G′ if Vti is infinite, and

dG′(u(ti), x
(ti)
i ) ⩽ A2 otherwise. So dG′(u(ti), x

(ti)
i ) ⩽ A2 in both cases, and similarly

dG′(u(ti−1), x
(ti−1)
i ) ⩽ A2. It follows that for each i ∈ [ℓ], we have

dG′(u(ti−1), u(ti)) ⩽ dG′(u(ti−1), x
(ti−1)
i ) + dG′(x

(ti−1)
i , x

(ti)
i ) + dG′(x

(ti)
i , u(ti)) ⩽ 2A2 + 1.

This implies that for every u ∈ V (G) and s, t ∈ V (Tu)

(2) dG′(u(s), u(t)) ⩽ (2A2 + 1)B.

To conclude the proof of the claim, let uv ∈E(G). As (T,V) is a tree-decomposition,
there exists some t ∈ V (T ) such that u, v ∈ Vt. Then:

dG′(f(u), f(v)) ⩽ dG′(u(tu), u(t)) + dG′(u(t), v(t)) + dG′(v(t), v(tv)),

thus by inequalities (1) and (2) we obtain dG′(f(u), f(v)) ⩽ (4A2 + 2)B + A2. ♢
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To prove that f is a quasi-isometry, it remains to prove that each y ∈ V (G′) is at
bounded distance in G′ from f(V (G)). For this, let y ∈ V (G′) and t∈ V (T ), u∈ V (G)
be such that y= u(t). Then by inequality (2), dG′(y, f(u))⩽ (2A2+1)B so f is indeed
a quasi-isometry. This concludes the proof of Theorem 1.3. □

4. Beyond planarity

In this section we prove Theorem 1.5. We first show that for graphs of bounded
degree, having finite local crossing number is preserved under quasi-isometry.

Theorem 4.1. Let G be a graph of bounded degree which is quasi-isometric to
a graph H of finite local crossing number. Then G also has finite local crossing
number.

Note that in general, the property of being locally finite, or even of having count-
ably many vertices is not preserved under quasi-isometry. The next lemma will be
useful to make sure that we can restrict ourselves to locally finite graphs in the
remainder of the proof.

Lemma 4.2. Let G be a graph of bounded degree which is quasi-isometric to a graph
H. Then G is quasi-isometric to a subgraph H ′ of H of bounded degree.

Proof. We let f : V (G) → V (H) and A ⩾ 1 be such that for each x, x′ ∈ V (G):
1

A
· dG(x, x′)− A ⩽ dH(f(x), f(x

′)) ⩽ A · dG(x, x′) + A,

and such that the A-neighborhood of f(V (G)) covers H. We also let ∆ ∈ N denote
the maximum degree of G. Note that for each xy ∈ E(G), there exists a f(x)f(y)-
path Pxy in H such that |Pxy| ⩽ A · 1 + 1 = 2A. We let H ′ be the subgraph of H
given by the union of all such paths Pxy.

We first observe that H ′ is quasi-isometric to G, and that f gives the corresponding
quasi-isometric embedding. Note that for every z ∈ V (H ′), by construction there
must be some edge xy ∈ E(G) such that z ∈ Pxy. In particular, dH′(z, f(x)) ⩽ 2A.
Note that by construction we clearly have dH′(f(x), f(y)) ⩽ 2AdG(x, y) for each
x, y ∈ V (G), and as dH′(f(x), f(y)) ⩾ dH(f(x), f(y)), f indeed induces a quasi-
isometric embedding between G and H ′.

Now we show that H ′ has bounded degree. Let z ∈ V (H ′) and xy ∈E(G) such that
z ∈ V (Pxy). Then dH′(z, f(x))⩽ 2A so X := {x∈ V (G), z ∈ V (Pxy)} has diameter at
most 4A in G. Note that as G degree at most ∆, we have |X| ⩽ ∆4A. In particular
it implies that H ′ has degree at most ∆4A. □

Given a graph G and an integer k ⩾ 1, the k-th power of G, denoted by Gk, is the
graph with the same vertex set as G in which two vertices are adjacent if and only
if they are at distance at most k in G. The k-blow-up of G, denoted by G⊠Kk, is
the graph obtained from G by replacing each vertex u by a copy Cu of the complete
graph Kk, and by adding all edges between pairs Cu, Cv if and only if u and v are
adjacent in G (so that each edge of G is replaced by a complete bipartite graph Kk,k

in G⊠Kk). Quasi-isometries of bounded degree graphs are related to graph powers
and blow-ups by the following lemma.

Lemma 4.3. Let H be a graph, and let G be a graph of degree at most ∆ ∈ N which
is quasi-isometric to H. Then there is an integer k such that G is a subgraph of
Hk ⊠Kk.
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Proof. We let A ⩾ 1 and f : V (G) → V (H) be such that for each x, x′ ∈ V (G):

1

A
· dG(x, x′)− A ⩽ dH(f(x), f(x

′)) ⩽ A · dG(x, x′) + A,

and such that the A-neighborhood of f(V (G)) covers H. Note that for each x, x′ ∈
V (G) such that f(x) = f(x′) = y we must have dG(x, x

′) ⩽ A2, hence

|f−1(y)| ⩽ B := ∆A2

for every y ∈ V (H). We now show that G is a subgraph of H ′ := H2A ⊠KB, which
implies the lemma for k := max(2A,B).

As in the definition of a blow-up, for each v ∈ V (H) we denote by Cv the associated
clique of size B in H ′. For every v ∈ V (H) we fix an arbitrary injection gv : f

−1(v)→
Cv, and define an injective mapping g : V (G) → V (H ′) by letting g(x) := gf(x)(x)
for each x ∈ V (G). In other words every two vertices of G having the same image
v by f are sent by g in the same clique Cv in H ′. By construction g is injective, so
we just need to check that it defines a graph homomorphism to conclude that G is
a subgraph of H ′. Let xy ∈ E(G). Then dH(f(x), f(y)) ⩽ 2A so in particular every
vertex in Vf(x) is at distance at most 2A to every vertex in Vf(y) in H ′. In particular,
this means that g(x)g(y) ∈ E(H ′), as desired. □

The next observation will allow us to slightly simplify the statement of Lemma 4.3.

Observation 4.4. For every graph H of bounded maximum degree, and every integer
k, there exists a graph G of bounded maximum degree such that lcr(G) = lcr(H) and
Hk ⊠Kk is a subgraph of Gk+2.

Proof. Let G be the graph obtained from H by attaching to each vertex k pendant
vertices of degree 1. Note that the graph Hk⊠Kk is a subgraph of Gk+2. To see this,
one can bijectively map each clique Cv of H for v ∈ V (H) to the k pendant vertices
we attached to v in G, and observe that it gives an isomorphism between the graph
induced by these vertices in G3, and H ⊠Kk. Since adding pendant vertices does
not change the local crossing number, lcr(G) = lcr(H). Moreover G has bounded
maximum degree if and only if H has bounded maximum degree. □

We can now combine the results above to deduce the following corollary.

Corollary 4.5. If a graph G with bounded degree is quasi-isometric to a graph
of bounded local crossing number, then there exists a planar graph H of bounded
maximum degree and an integer k, such that G is a subgraph of Hk.

Proof. By Lemmas 4.2 and 4.3, there is a graph H1 of bounded local crossing number
and maximum degree and an integer ℓ such that G is a subgraph of Hℓ

1 ⊠Kℓ. By
Observation 4.4, there is a graph H2 of bounded local crossing number and maximum
degree such that G is a subgraph of Hℓ+2

2 . Observe that every s-planar graph F1

is a subgraph of F s+1
2 , where F2 is the planar graph obtained from F1 by placing a

new vertex at each crossing (and note that if F1 has bounded degree, then F2 also
has bounded degree). It follows that there is a planar graph H of bounded degree
and an integer k, such that G is a subgraph of Hk. □

We now prove that bounded powers of planar graphs of bounded degree are ℓ-
planar for some ℓ. This was proved for finite graphs in [DMW23, Lemma 12].
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Lemma 4.6 ([DMW23]). Let H be a finite planar graph of maximum degree at
most ∆ and let G be a subgraph of Hk, for some integer k. Then G is ℓ-planar, for
ℓ := 2k(k + 1)∆k.

However, we need a version of Lemma 4.6 for infinite locally finite graphs. The
first option is to simply follow the proof of [DMW23], which starts with a planar
drawing of G, and adds for any path P of length at most k, an edge between the
endpoints of P , drawn in a close neighborhood around P . However in the locally
finite case this approach requires that the original planar drawing has the property
that every edge has a small neighborhood which does not intersect any other vertices
or edges of the graph. Such a drawing always exists but it requires a little bit of
work. So instead, we chose to extend Lemma 4.6 to infinite locally finite graphs
using a simple compactness argument.

Lemma 4.7. Let G be a locally finite graph. If there is an integer ℓ such that all
finite induced subgraphs of G are ℓ-planar, then G is also ℓ-planar.

Proof. We first observe that any ℓ-planar embedding of a graph H can be described
combinatorially, by considering the planar graph H+ obtained from H by replacing
all crossings by new vertices. The corresponding planar embedding of H+ can be
completely described (up to homeomorphism) by its rotation system (the clockwise
cyclic ordering of the neighbors around each vertex), and there are only finitely
many such rotation systems if H (and thus H+) is finite.

We are now ready to prove the lemma. We can assume that G is connected,
since otherwise we can consider each connected component independently. Since G
is locally finite and connected, it is countable and we can write V (G) = {v1, v2, . . .}.
We define a rooted tree T as follows. The root of T is the unique ℓ-planar embedding
of G[{v1}], up to homeomorphism. For every k ⩾ 1, and any ℓ-planar embedding
of Gk := G[{v1, . . . , vk}] we add a node in the tree and connect it to the node
corresponding to the resulting ℓ-planar embedding of Gk−1 =Gk−vk (the embedding
obtained by deleting vk in the embedding of Gk). The resulting tree T is infinite
(since every graph Gk is ℓ-planar by assumption), and locally finite (since every graph
Gk has only finitely many different ℓ-planar embeddings, up to homeomorphism).
By König’s infinity lemma [Kön27] (or by repeated applications of the pigeonhole
principle), T has an infinite path starting at the root. This infinite path corresponds
to a sequence of ℓ-planar embeddings of Gk, k ⩾ 0, with the property that for every
k ⩾ 0, the ℓ-planar embedding of Gk can be obtained from the ℓ-planar embedding
of Gk+1 by deleting vk+1 (and all edges incident to vk+1). By taking the union of all
the ℓ-planar embeddings of Gk, k ⩾ 0, we thus obtain an ℓ-planar embedding of G,
as desired. □

We obtain the following as a direct consequence.

Corollary 4.8. Let H be a locally finite planar graph of maximum degree at most
∆ and let G be a subgraph of Hk, for some integer k. Then G is ℓ-planar, for
ℓ := 2k(k + 1)∆k.

Proof. Let X be a finite subset of V (G) ⊆ V (H) and for any pair x, x′ ∈ X with
dH(x, x

′) ⩽ k, consider a path Px,x′ of length at most k between x and x′ in H. Let
Y be the union of X and the vertex sets of all the paths Px,x′ defined above. Then
H[Y ] is a finite planar graph, and G[X], the finite subgraph of G induced by X, is
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a subgraph of H[Y ]k. By Lemma 4.6, G[X] is ℓ-planar with ℓ := 2k(k+1)∆k. Since
this holds for any finite set X, it follows from Lemma 4.7 that G itself is ℓ-planar,
as desired. □

Theorem 4.1 is now a direct consequence of Corollary 4.5 and Corollary 4.8. By
combining Theorems 1.3 and 4.1, we then immediately deduce Theorem 1.5.

5. Assouad-Nagata dimension of minor-excluded groups

For two graphs G and H, we say that a function f : V (G)→ V (H) is a bilipschitz
mapping from G to H if there are constants c1, c2 > 0 such that for any x, y ∈ V (G),

c1 · dG(x, y) ⩽ dH(f(x), f(y)) ⩽ c2 · dG(x, y).
When such a function f exists we also say that the graph G has a bilipschitz

embedding in H. Since graphs are uniformly discrete metric spaces (in the sense
that any two distinct elements lie at distance at least 1 apart), any quasi-isometric
embedding of a graph G in a graph H is also a bilipschitz embedding of G in H.
Hence, Theorem 1.3 has the following immediate consequence.

Corollary 5.1. Every locally finite quasi-transitive K∞-minor free graph has a bilip-
schitz embedding in a planar graph of bounded degree.

We first prove that planar graphs of bounded degree have Assouad-Nagata di-
mension at most 2 (a stronger version of this result, without the bounded degree
assumption, was proved in [BBE+23]).

We need the following result, first proved in [BST12] in a slightly different form.
Another proof can be found in [BBE+20, BBE+23] based on a result of Ding and
Oporowski [DO95] which states that every graph of treewidth at most t and maxi-
mum degree at most ∆ is a subgraph of the strong product of a tree with a complete
graph on 24t∆ vertices. The proofs of all these results are fairly short.

Theorem 5.2 ([BST12]). If a graph G has bounded degree and bounded treewidth,
then G has Assouad-Nagata dimension at most 1.

A layering of a graph G is a partition of the vertex set of G into sets L0, L1, . . .,
called layers, so that any pair of adjacent vertices in G either lies in the same layer
or in consecutive layers (i.e. layers Li, Li+1 for some i ⩾ 1). A simple example of
layering is given by a BFS-layering of G, obtained by choosing one root vertex vC
in each connected component C of G, and then defining Li (for all i ⩾ 0) as the set
of vertices of G at distance exactly i from one of the vertices vC .

It was proved by Bodlaender [Bod88] that planar graphs of bounded diameter
have bounded treewidth. This directly implies the following.

Lemma 5.3. For any BFS-layering of a planar graph G, and any integer k, the
subgraph of G induced by k consecutive layers of L has bounded treewidth.

Proof. Let L0, L1, . . . be a BFS-layering of G. Consider the planar subgraph H
of G induced by k consecutive layers Li, Li+1, . . . , Li+k−1. If i = 0, then H is a
disjoint union of graphs of radius at most k, and thus has bounded treewidth by
Bodlaender’s result [Bod88]. Assume now that i ⩾ 1, and let H+ be the supergraph
of H obtained by adding a vertex r that dominates all the vertices of Li. Note that
H+ can be obtained from the subgraph of G induced by the layers L0, L1, . . . , Li+k−1,
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by contracting all layers L0, L1, . . . , Li−1 (which induce a connected subgraph of G,
by definition of a BFS-layering) into a single vertex. Thus H+ is a minor of G, which
implies that H+ is planar. Moreover, it follows from the definition of a BFS-layering
that each vertex of H+ lies at distance at most k from r, and thus H+ has diameter
at most 2k. By Bodlaender’s result [Bod88], H+ has bounded treewidth, and thus
H (as a subgraph of H+) also has bounded treewidth. □

The next result appears as Theorem 4.3 in [BBE+23], and is a simple application
of the main result in [BDLM08] (which has a nice and short combinatorial proof).

Theorem 5.4 ([BBE+23]). If a graph G has a layering L = (L0, L1, . . .) such that
for any integer k, the disjoint union of all subgraphs of G induced by k consecutive
layers of L has Assouad-Nagata dimension at most n, then G has Assouad-Nagata
dimension at most n+ 1.

We immediately deduce the following.

Corollary 5.5. Every planar graph G of bounded degree has Assouad-Nagata di-
mension at most 2.

Proof. Consider a BFS-layering L of G. By Lemma 5.3, for any k ⩾ 1, the disjoint
union of all subgraphs of G induced by k consecutive layers of L has bounded
treewidth. As G has bounded degree, this disjoint union of subgraphs of G also has
bounded degree, and thus by Theorem 5.2 it has Assouad-Nagata dimension at most
1. Hence, it follows from Theorem 5.4 that G itself has Assouad-Nagata dimension
at most 2. □

We are now ready to prove the main result of this section. Recall that a stronger
version (without the quasi-transitivity assumption) was proved in [Liu23, Dis23],
but the version below has a reasonably simple proof that does not rely on the
Robertson-Seymour graph minor structure theorem.

Theorem 5.6. Every locally finite quasi-transitive K∞-minor free graph has Assouad-
Nagata dimension at most 2.

Proof. By Corollary 5.1, every locally finite quasi-transitive K∞-minor free graph G
has a bilipschitz embedding in some planar graph H of bounded degree, which has
Assouad-Nagata dimension at most 2. Since Assouad-Nagata dimension is invariant
under bilipschitz embedding [LS05], G has Assouad-Nagata dimension at most 2. □

6. Open problems

We now discuss possible extensions or variants of Theorem 1.3.

Quasi-isometries to quasi-transitive planar graphs. It was proved by Mac-
Manus [Mac23] that if a finitely generated group has a Cayley graph which is quasi-
isometric to a planar graph, then it is quasi-isometric to a planar Cayley graph.
In the same spirit, it is natural to ask whether we can require the planar graph of
bounded degree in Theorem 1.3 to be quasi-transitive, or even a Cayley graph. Our
current proof does not preserve symmetries, as we do a number of non-canonical
choices for the images of the vertices. As remarked by a referee, the stronger ques-
tion above, whether we can require the planar graph in Theorem 1.3 to be a Cayley
graph, is a special case of a Problem of Woess [Woe91, Problem 1], which asked
whether every transitive graph is quasi-isometric to a Cayley graph. This turned
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out to have a negative answer [EFW12] in general, but the question restricted to
(quasi-)transitive graphs excluding a minor might still have a positive answer.

A finite list of obstructions. MacManus [Mac23] recently gave a precise char-
acterization of quasi-transitive graphs which are quasi-isometric to a planar graph,
in terms of the existence of a canonical tree-decomposition sharing similarities with
that of Theorem 2.1. It would be interesting to also find a characterization in
terms of obstructions. For instance, it was conjectured in [GP23] that a graph is
quasi-isometric to a planar graph if and only if it does not contain K5 or K3,3 as
an asymptotic minor (see also Question 1.1 for a version of this problem in the
particular case of transitive graphs).

Examples of quasi-transitive graphs that are not quasi-isometric to any planar
graph include Cayley graphs of a group of Assouad-Nagata dimension at least 3,
for instance any grid in dimension 3. This rules out any generalization of Theorem
1.3 using classes of polynomial growth or expansion. This example also shows that
we cannot extend Theorem 1.3 to all families of bounded queue-number or stack-
number.

Here is perhaps a more interesting example. The strong product G ⊠ H of two
graphs G and H has vertex set V (G) × V (H), and two distinct vertices (u, x) and
(v, y) are adjacent if and only if (u = v or uv ∈ E(G)) and (x = y or xy ∈ E(H)).
Consider the strong product T ⊠ P of the infinite binary tree T and the infinite
2-way path P . Using Theorems 5.2 and Lemma 5.4, this graph has Assouad-Nagata
dimension at most 2. As it contains a quasi-isometric copy of a 2-dimensional grid,
the Assouad-Nagata dimension of T ⊠ P is indeed equal to 2. On the other hand,
we observe that for any integer k, T ⊠P contains the complete bipartite graph Kk,k

as an asymptotic minor. To see this, remark that T contains an infinite k-claw
(the graph obtained by gluing k infinite 1-way paths at their starting vertex) as an
asymptotic minor (obtained by contracting a subtree of T with k leaves into a single
vertex, and pruning the additional branches). The strong product of this infinite
k-claw with P consists of k copies of an infinite 2-dimensional grid (restricted to
the upper half-plane, say), glued on a common infinite path π. On this path we
can select k vertices, arbitrarily far apart, and on each infinite grid we can select
a single vertex, arbitrarily far from π, and connect it to the k vertices of π via
disjoint paths. By taking a ball of sufficiently large radius around each of the 2k
vertices, we obtain Kk,k as an r-fat minor for arbitrarily large r, and thus Kk,k as
an asymptotic minor. This is illustrated for k = 3 in Figure 1. Since containing
a graph H as an asymptotic minor is invariant under quasi-isometry, any graph G
which is quasi-isometric to T ⊠ P also contains every Kk,k as an asymptotic minor,
and thus every finite graph as a minor (in particular, G cannot be planar).

Recall that any graph excluding a minor has Assouad-Nagata dimension at most
2 [Liu23, Dis23]. It is natural to wonder whether some sort of converse holds, that
is whether any graph of Assoud-Nagata dimension at most 2 is quasi-isometric to a
graph excluding a minor (this would be a natural extension of Theorem 1.3). The
example above shows that this is false, even for vertex-transitive graphs.

As explained above, it was conjectured in [GP23] that graphs that are quasi-
isometric to a planar graph can be characterized by a finite list of forbidden asymp-
totic minors. A natural question is whether this can be replaced by a finite list of
forbidden quasi-isometric graphs, at least in the case of quasi-transitive graphs. We
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Figure 1. A fat K3,3-minor in T ⊠ P .

do not have a good candidate for such a finite list, but it should contain at least the
two examples mentioned above: 3-dimensional grids and the product of the binary
tree with a path. One difficulty is that no such list is even known (or conjectured to
exist) for Assouad-Nagata dimension at most 2, or asymptotic dimension at most 2.

k-planar graphs. We conjecture the following variant of Theorem 1.3 for k-planar
graphs.

Conjecture 6.1. Every quasi-transitive graph of bounded local crossing number and
degree is quasi-isometric to a planar graph.

Using Theorem 4.1, Conjecture 6.1 would imply a positive answer to Problem 1.4.
We observe that it is enough to prove Conjecture 6.1 for 1-planar graphs.

Conjecture 6.2. Every quasi-transitive 1-planar graph of bounded degree is quasi-
isometric to a planar graph.

To see that the case lcr ⩾ 2 reduces to the case lcr = 1, observe that for every
k-planar graph G with k ⩾ 2, its (k−1)-subdivision G(k−1) (the graph obtained from
G by replacing every edge by a path on k edges) is locally finite, quasi-transitive,
quasi-isometric to G, and 1-planar. To see the last point, consider any embedding of
G in R2 in which every edge is involved in at most k crossings and assume without
loss of generality that the crossing points between every two edges are all pairwise
distinct. Then for every edge e ∈E(G), one can add the k−1 corresponding vertices
of G(k−1) subdividing e in the drawing by putting at least one vertex on each of the
curves connecting two consecutive crossing points of e with other edges.

We note that Conjecture 6.2 (and thus Conjecture 6.1) would be a direct conse-
quence of the following.

Conjecture 6.3. Let G be a quasi-transitive 1-planar graph of bounded degree. Then
there is an integer k and an embedding of G in the plane with at most 1 crossing per
edge such that for every pair of crossing edges uv, xy in G, we have dG(u, x) ⩽ k.

In a previous version of this manuscript we were conjecturing something stronger,
namely that for any embedding of G with at most 1 crossing per edge, there is an
integer k such that all pairs of crossing edges lie at distance at most k in G. But
this is false (as shown by the two-way infinite path, drawn in such a way that it
self-intersects at more and more distant points).

In this paper we have mainly considered graphs with finite local crossing number.
A natural generalization is the following: a graph is (< ω)-planar if it has a drawing
in the plane in which each edge is involved in finitely many crossings. This raises
the following question.
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Question 6.4. Let G be a quasi-transitive graph of bounded degree which is (< ω)-
planar. Is it true that G has finite local crossing number?

It was observed by Kolja Knauer (personal communication) that Question 6.4 has
a negative answer, as indeed any infinite locally finite graph G is (< ω)-planar. To
see this, consider an ordering v1, v2, . . . of V (G), map each vertex vi to the point
with coordinates (i, i2) in the plane, and each edge vivj as a segment joining vi and
vj. Note that by convexity of the function x 7→ x2, every edge crossing an edge vivj
must have an endpoint vk with i < k < j. As for every pair i < j there are only
finitely many such vertices vk and each of them has finite degree, the edge vivj is
crossed by only finitely many other edges.

As there exist quasi-transitive graphs of bounded degree that have unbounded
local crossing number (the 3-dimensional grid for instance, see [DEW17]), the para-
graph above implies that Question 6.4 has a negative answer.
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