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ABSTRACT
Albeit great performance of Transformer-based speech self-

supervised learning (SSL) models, their large parameter size and
computational cost make them unfavorable to utilize. In this study,
we propose to compress the speech SSL models by distilling speech
temporal relation (STaR). Unlike previous works that directly match
the representation for each speech frame, STaR distillation transfers
temporal relation between speech frames, which is more suitable for
lightweight student with limited capacity. We explore three STaR
distillation objectives and select the best combination as the final
STaR loss. Our model distilled from HuBERT BASE achieves an
overall score of 79.8 on SUPERB benchmark, the best performance
among models with up to 27 million parameters. We show that
our method is applicable across different speech SSL models and
maintains robust performance with further reduced parameters.

Index Terms— speech self-supervised learning, model com-
pression, knowledge distillation, speech temporal relation

1. INTRODUCTION

Transformer-based speech self-supervised learning (SSL) models [1,
2, 3] have risen to prominence with great performance in various
speech-related tasks [4, 5]. Nonetheless, the downside of these mod-
els mainly comes from the requirement of substantial computational
resources during the pre-training stage—HuBERT BASE takes over
82 GPU-days for pre-training, and 32 GPUs en masse are utilized
to shorten this [2]. Another downside is their large parameter size
which makes on-device application difficult and renders the speech
SSL models unfavorable for many practical scenarios. The above
issues make compression techniques essential for the speech SSL
models, and several studies have attempted to solve these issues by
applying pruning [6] or quantization [7] technique.

Alternatively, knowledge distillation is another approach for
model compression that trains a student model with a smaller pa-
rameter size to imitate the behavior of a larger teacher model by
matching the student’s representation to the teacher’s. Knowledge
distillation of the Transformer-based speech SSL models is being
actively studied, with previous works of task-specific compression
including automatic speech recognition (ASR) [8], keyword spotting
(KWS) [9], and automatic speaker verification (ASV) [10]. However,
given that the speech SSL models are utilized in various downstream
tasks, their approaches are limited to only a specific task.

On the other hand, approaches that realize task-agnostic com-
pression via knowledge distillation include DistilHuBERT [11] and
FitHuBERT [12], where the former suggests shallow and wide stu-
dent model design, and the latter suggests deep and narrow one.

This work was supported by the National Research Foundation of Korea
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ARMHuBERT [13] proposes to reuse attention maps across Trans-
former [14] layers and utilizes both masked and unmasked speech
frames for masking distillation. Some approaches [15, 16] jointly
conduct distillation with L0 regularization [17] and structured prun-
ing. LightHuBERT [18] implements masking distillation and archi-
tecture search, but it stands apart from other methods due to its ex-
cessive computational demand for creating a teacher-sized supernet.

While the aforementioned studies have demonstrated promising
results, two limitations still exist. First, most approaches neglect the
weak representation capacity of the student and directly match the
complex teacher’s representation for each speech frame by intro-
ducing additional linear heads [11, 12, 13, 15, 19]. This can be an
over-constraint for the lightweight student model, necessitating the
establishment of an alternative distillation objective that better suits
to the student. Some studies even inefficiently discard these trained
linear heads after distillation, although they can convey the teacher’s
knowledge [11, 12, 15, 19]. Second, while pruning allows us to man-
age the size of model parameters by a sparsity ratio, it cannot deter-
mine computational cost of the model at the same time. As a result,
computational overhead can be higher than the vanilla distillation
approaches, in which the model is specified before the training.

In this study, we explore effective distillation objectives that cap-
ture temporal relation between speech frames for lightweight student
model. Additional parameters are not necessary during distillation,
enabling the construction of a more compact and computationally
efficient student model. We verify the task-agnostic compression of
our proposed objectives using SUPERB benchmark [4]. Our model
distilled from HuBERT BASE achieves the best overall score [3] of
79.8 among models with ∼ 27 million parameters, while requiring
only 30.7% multiply-accumulates (MACs) and 28.1% parameters of
its teacher model. It even surpasses LightHuBERT [18], which de-
mands extensive computational resources for compression, in terms
of overall score, number of parameters, and MACs.

2. SPEECH TEMPORAL RELATION DISTILLATION

Speech SSL models are capable of representing speech frames
into features that function as specific acoustic units for every time
step. This can be attributed to the pre-training scheme of a speech
SSL model, predicting the corresponding cluster of each masked
frame [2, 3]. The pre-processing procedure of wav2vec-U [20] also
involves grouping the speech frames from the same cluster for
phonemic segmentation. As such, speech SSL models generate the
representations for each frame that are closely tied to specific acous-
tic units, and how to represent these units is the core knowledge
of the models. However, directly learning the teacher’s represen-
tations, which convey the characteristics of these units, can be an
over-constraint for the student with limited representation capacity.
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Fig. 1. We propose three STaR distillation objectives: average attention map, layer-wise TGM, and intra-layer TGM. TGM captures the
temporal relation by aggregating the channel information at two time steps. Each individual loss is summed up across all Transformer layers.

To this end, we propose to distill the knowledge from the
teacher in a more flexible manner by focusing on the relation be-
tween speech frames instead. We explore three Speech Temporal
Relation (STaR) distillation objectives (Fig. 1), by which the dis-
tillation transfers pairwise temporal relation of the speech frames.
We first suggest average attention map distillation, a naı̈ve way to
distill the temporal relation. Then, temporal Gram matrix (TGM) is
introduced as a distillation target, and on top of this, we propose
two TGM distillation objectives: layer-wise TGM distillation and
intra-layer TGM distillation. We highlight that our methods are
task-agnostic compression and do not require additional parameters
during distillation stage unlike previous works [11, 12, 13, 15, 19].

2.1. Average Attention Map Distillation

Attention map in Transformer [14] structure captures the temporal
relation between key and query. Each entry in the attention map in-
dicates a level of the relationship between two associated frames of
the sequence, therefore, distilling this map can be an intuitive way
to transfer the temporal relation from the teacher. Given key and
query matrices for head h, Kh, Qh ∈ Rdh×N , in multi-head self-
attention (MHSA), the corresponding attention map Ah ∈ RN×N is
Ah = softmax

(
Q⊤

h Kh/
√
dh

)
. dh is the width of the key matrix for

head h, and N is the sequence length. Several studies have lever-
aged the attention maps of all heads in the last Transformer layer for
knowledge distillation [21, 22]; nevertheless, this is not ideal for the
speech SSL models where each layer plays an essential role in dif-
ferent speech-related task [3, 4]. Distilling the attention maps of all
heads across all layers would be an ideal way, but it leads to exces-
sive computational overhead for training.

Accordingly, we propose to distill the attention map averaged
across all heads from each Transformer layer as an alternative. From
each Transformer layer, the proposed loss calculates Kullback-
Leibler (KL) divergence between the average attention maps of
teacher T and student S.

Lavg-attn =

L∑
ℓ=1

N∑
t=1

DKL

 1

HT

HT∑
h=1

Aℓ,T
h,t

∥∥∥∥ 1

HS

HS∑
h=1

Aℓ,S
h,t

 , (1)

where H and L denote the total number of attention heads and Trans-
former layers, respectively. Aℓ

h,t represents the attention distribution
at time step t within the attention head h of Transformer layer ℓ.

2.2. Temporal Gram Matrix Distillation

While distilling the attention maps can transfer their temporal rela-
tion to the student, it might not provide sufficient hints since these
maps are not the direct features used for inference. In order to pro-
vide stronger hints, we present the distillation objectives regarding
temporal relation within each Transformer [14] layer output by com-
puting a Gram matrix. Correlation between two samples can be ex-
pressed via Gram matrix, defined as an inner product between sam-
ple representations [23]. Let F ∈ Rd×N be a representation of the
channel width d. Then, the Gram matrix G̃ is

G̃ij =
∑
k

FikFjk, G̃ ∈ Rd×d, (2)

where F·k denotes the k-th time step’s representation.
Gram matrix has been utilized in speech and vision domain to

represent the properties of data, referred to as style. Beginning with
the proposal of artistic style transfer via Gram matrix [23], numerous
studies advocate leveraging the matrix for speaker embedding [24,
25] or voice conversion [26, 27]. The style loss [23] minimizes the
correlation between channels by aggregating positional information
within a sample, as in Eq. 2. The key strength of this loss lies in
its objective which can be seen as a distribution alignment process,
minimizing maximum mean discrepancy [28] between two sets [29].

Gram matrix or its variant is also exploited as an objective for
conducting knowledge distillation [30, 31]. Prior works share the
idea that they aggregate temporal or spatial information to illustrate
the relation between channels when computing the Gram matrix. In
contrast, we propose a temporal Gram matrix (TGM) which ag-
gregates channel information at two time steps to take into account
temporal relation between speech frames. Note that this differs from
other works [32, 33] which capture relation between samples within
the same batch. The temporal Gram matrix G is defined as

Gij =
∑
k

FkiFkj , G ∈ RN×N . (3)

Layer-wise TGM distillation Layer-wise TGM distillation takes
the TGM of each Transformer layer output as an objective. We also
include the first Transformer layer input to distill the front-end con-
volutional layers more directly. This approach effectively transfers
the information encoded in each layer of the speech SSL models [34]



to the corresponding layer of the student model. Indeed, previous
studies have confirmed the effectiveness of layer-wise distillation for
the speech SSL models that targets intermediate layers [12, 13, 19].
Regarding the first Transformer layer input as the zeroth output, the
layer-wise TGM distillation loss is the mean squared error (MSE)
between the TGMs of teacher and student across all layers.

Llayer-wise =

L∑
ℓ=0

∥∥Gℓ,T − Gℓ,S∥∥2

2
(4)

Intra-layer TGM distillation To offer a more flexible distillation
objective for the student model with reduced parameter size, we pro-
pose intra-layer TGM distillation. Inspired by a flow of solution pro-
cedure matrix [30], we modify the TGM as computing the temporal
relation between the input and output of a single Transformer layer,
specifically emphasizing its intra-layer role. This matrix captures the
progression of speech representation within every individual layer,
providing a more flexible objective based on two different represen-
tations. The modified TGM Ǧ of the Transformer layer ℓ and the
intra-layer TGM distillation loss are defined as

Ǧℓ
ij =

∑
k

F ℓ−1
ki F ℓ

kj , Ǧℓ ∈ RN×N , (5)

Lintra-layer =

L∑
ℓ=1

∥∥Ǧℓ,T − Ǧℓ,S∥∥2

2
. (6)

The advantage of the objectives introduced in this section is
needlessness of additional parameters for implementing distillation.
Even if the channel width of the student model is not equal to the
teacher’s, our losses can be formulated without additional linear pro-
jections, provided their time lengths N are the same. As a result, we
can create a more compact student and fully transfer the teacher’s
temporal relation knowledge, unlike previous works that discard the
projection heads carrying the teacher’s knowledge [11, 12, 15, 19].

3. RESULTS

3.1. Experimental Details

Training details HuBERT BASE [2], comprising 12 Transformer
[14] layers, is our primary speech SSL model to distill. We train our
student model with LibriSpeech [35] train-clean-100 dataset (100h)
for 200 epochs, and full dataset (960h) for 100 epochs. We follow
the student’s training recipe of [13], except for the cosine scheduler
and the learning rate of 1e-3. Effective batch size including gradient
accumulation is 48, using two NVIDIA RTX 4090 GPUs.
Student description We create the student model by reducing the
width of attention layer and feed-forward network (FFN) while re-
taining the number of layers in the teacher model. This is to perform
layer-to-layer (L2L) distillation for every layer, as in Eqs. 1, 4, and 6.
The width of (attention, FFN) is set as (432, 976) or (432, 1392) to
match the parameter size with prior works [13, 15, 18].
Evaluation Once distilled, the student model is evaluated on
the SUPERB benchmark [4] to verify its task-agnostic characteris-
tic. The benchmark consists of 10 speech-related tasks, including
phoneme recognition (PR), ASR, KWS, query by example spoken
term detection (QbE), speaker identification (SID), ASV, speaker
diarization (SD), intent classification (IC), slot filling (SF), and emo-
tion recognition (ER). We fine-tune the model with default SUPERB
recipes, except for enabling the learning rate scheduler and setting
the learning rate of the SID task as 5e-3. For the metrics that assess
the entire tasks, we use overall score from [3] and generalizability

Table 1. Results of the SUPERB benchmark for different STaR dis-
tillation objectives. “Overall” and “General.” denote the overall and
generalizability scores. “Ranking” is the average rank over all SU-
PERB tasks proposed in [11]. Llast-attn is the last layer’s attention map
distillation [21]. We have reproduced MaskHuBERT-100h [13].

Methods Overall ↑ General. ↑ Ranking ↓

LibriSpeech 100h distillation
FitHuBERT [12] 74.5 695 -
MaskHuBERT 76.3 789 -
Llast-attn 75.7 750 -
Lavg-attn 76.5 766 4.4
Llayer-wise 77.8 829 2.7
Lintra-layer 77.7 820 3.2
Llayer-wise + Lintra-layer 77.8 831 2.2
Llayer-wise + Lintra-layer + Lavg-attn 77.7 827 2.6

LibriSpeech 960h distillation
Llayer-wise 79.4 887 2.1
Llayer-wise + Lintra-layer 79.5 887 1.7
Llayer-wise + Lintra-layer + Lavg-attn 78.8 871 2.3

score from [5]; the former is the absolute average of each task’s
performance, while the latter uses the linearly mapped scores in
the range 0 (log mel filterbank)∼ 1000 (SOTA reported in [4]). We
follow the implementation of [5] for estimating MACs.

3.2. Selection of STaR Loss

Table 1 compares the performance of the student models including
our proposed STaR distillations. Average attention map distillation
outperforms FitHuBERT [12] and is on par with MaskHuBERT [13],
while requiring 4.6% and 16.3% fewer parameters than FitHuBERT
and MaskHuBERT, respectively. It also reveals that L2L distilla-
tion for every layer is more effective than addressing only the last
layer (Llast-attn) [21]. Besides, layer-wise and intra-layer TGM distil-
lation outperform the average attention map distillation, as matching
the TGMs synchronizes temporal relation of the features that serve
as direct outputs in fine-tuning. Incorporating the consideration of
the average rank [11] among the STaR students, we set the default
STaR loss as the combination of layer-wise and intra-layer losses
and denote this student as STaRHuBERT.

3.3. Detailed SUPERB Benchmark Results

In Table 2, STaRHuBERT outperforms other methods [13, 15] by a
large margin for both 100h and 960h distillations, presenting the su-
periority of our distillation objectives. Among the models with less
than 24 million parameters, STaRHuBERT shows the best perfor-
mance in both overall [3] and generalizability [5] scores with the
fewest parameters. STaRHuBERT-L, which has the wider FFN width
of 1392, attains an overall score of 79.8, even surpassing LigthHu-
BERT [18] for the first time as an approach that does not demand
excessive computational resources for compression.

Delving into specific tasks, STaRHuBERT excels in 5 out of
10 downstream tasks compared to ARMHuBERT-S [13] and DPHu-
BERT [15]. Especially for both PR and ASR, the performance of
STaRHuBERT notably surpasses these approaches, verifying that
the temporal relation is crucial in learning speech representations as-
sociated with acoustic units for lightweight SSL model. Our student
models also achieve the outstanding performance in the speaker-
related tasks, indicating that the TGMs can also capture speaker
information by distinguishing the temporal relations of different



Table 2. Detailed evaluation results on the SUPERB benchmark. Metrics include number of parameters, number of MACs, phoneme error
rate (PER,%), word error rate (WER,%) without language model, accuracy (Acc,%), maximum term weighted value (MTWV), equal error
rate (EER,%), diarization error rate (DER,%), F1 score (F1,%), and concept error rate (CER,%). The best performance is bolded, and the
second place is underlined. LightHuBERT [18] stands apart from other works, requiring extensive computational resources for compression.

Computation Performance Content Speaker Semantics Paral.

Params MACs Overall General. PR ASR KS QbE SID ASV SD IC SF ER

Models Millions ↓ Giga ↓ Score ↑ Score ↑ PER ↓ WER ↓ Acc ↑ MTWV ↑ Acc ↑ EER ↓ DER ↓ Acc ↑ F1 ↑ CER ↓ Acc ↑

Baselines
SOTA [4] - - 82.8 1000 3.53 3.62 96.66 0.0736 90.33 5.11 5.62 98.76 89.81 21.76 67.62
FBANK (log mel filterbank) 0 0.4791 46.5 0 82.01 23.18 8.63 0.0058 8.5E-4 9.56 10.55 9.1 69.64 52.94 35.39
HuBERT BASE [2] 94.70 1669 80.8 941 5.41 6.42 96.30 0.0736 81.42 5.11 5.88 98.34 88.53 25.20 64.92
LightHuBERT aSmall [18] 27.00 860.7 79.1 900 6.60 8.33 96.07 0.0764 69.70 5.42 5.85 98.23 87.58 26.90 64.12

LibriSpeech 960h distillation
ARMHuBERT-S [13] 22.39 449.4 77.5 828 8.63 10.82 96.82 0.0720 63.76 5.58 7.01 97.02 86.34 29.02 62.96
DPHuBERT [15] 23.59 654.1 78.9 866 9.67 10.47 96.36 0.0693 76.83 5.84 5.92 97.92 86.86 28.26 63.16
STaRHuBERT (ours) 22.31 463.5 79.5 887 8.16 9.35 96.27 0.0688 77.58 5.39 6.05 97.55 87.94 25.31 63.01
STaRHuBERT-L (ours) 26.63 511.9 79.8 896 7.97 8.91 96.56 0.0677 78.66 5.45 5.83 97.50 88.01 25.36 63.48

LibriSpeech 100h distillation
ARMHuBERT-S [13] 22.39 449.4 76.8 800 9.17 11.83 96.01 0.0569 66.48 5.92 6.23 95.97 83.89 33.29 63.29
DPHuBERT [15] 23.59 654.1 77.7 819 10.02 11.38 96.36 0.0634 73.37 6.25 6.03 97.42 84.83 33.03 62.78
STaRHuBERT (ours) 22.31 463.5 77.8 831 9.17 10.92 96.46 0.0626 72.26 5.66 5.97 97.21 84.89 30.77 61.22

speakers. Taken together, our proposed STaR distillation allows us
to construct a more compact model with strong performance and
lightweight characteristics.

Our methodology also involves fewer MACs for inference com-
pared to approaches that conduct both pruning and distillation.
STaRHuBERT exhibits a parameter reduction of only 5.43% com-
pared to DPHuBERT [15], but requires 29.1% fewer MACs. The rel-
atively high number of MACs observed in pruning approach is also
evident in the comparison between STaRHuBERT-L and LightHu-
BERT [18], wherein the former requires 40.2% fewer MACs. This
implies that pruning technique can achieve good model performance
and desired number of parameters by adjusting the sparsity ratio,
however, it is challenging to control the computational cost of the
pruned model. Hence, our approach, which is one of the vanilla
distillation approaches with a predefined model configuration, has a
benefit in terms of efficient and lightweight inference.

3.4. Examination on Universality

We confirm the universality of the STaR loss by replacing the teacher
model with wav2vec 2.0 BASE [1] or wavLM BASE [3]. Table 3 de-
picts the SUPERB benchmark results for LibriSpeech [35] 960h dis-
tillation. STaRW2V2 offers stronger representation overall with only
70.5% parameters of FitW2V2 [12]. STaRwavLM also outperforms
previous methods [13, 16], even with the fewest parameters. These
student models corroborate that the proposed STaR distillation is ag-
nostic to other Transformer-based speech SSL models.

3.5. Compression for Smaller Parameter Sizes

To further support that our proposed STaR distillation is effective
for lightweight models, we compare the performance of the models
compressed to less than 20 million parameters [15, 19]. Fig. 2 com-
pares ASR, SID, and IC performances on the SUPERB benchmark
using LibriSpeech [35] 960h distillation. Our model performs best in
all three tasks among the models with 9 million parameters and also
shows the least performance degradation as the number of parame-
ters decreased. Based on our findings, distillation of speech tempo-
ral relation is preferable than directly matching the complex teacher
representation for lightweight student model with limited capacity.

Table 3. Comparisons of the SUPERB benchmark results for differ-
ent speech SSL models, wav2vec 2.0 BASE and wavLM BASE.

Models Params (M) ↓ Overall ↑ General. ↑

wav2vec 2.0 BASE [1] 95.04 79.0 818

FitW2V2 [12] 31.63 76.5 766
STaRW2V2 (ours) 22.31 77.2 797

wavLM BASE [3] 94.70 81.9 1019

Structured Pruning [16] 26.57 78.9 863
ARMwavLM-S [13] 22.39 78.9 851
STaRwavLM (ours) 22.31 79.4 899

(a) ASR (b) SID (c) IC

Fig. 2. Performance comparisons of models with fewer parameters.

4. CONCLUSION

In this study, we have proposed to distill speech temporal relation,
STaR, from the Transformer-based speech SSL models. We combine
the distillation of layer-wise and intra-layer TGMs as the STaR loss,
which does not require any additional parameters for distillation.
STaRHuBERT-L achieves the SOTA overall score of 79.8 among
models with ∼ 27 million parameters, in particular showing favor-
able results on PR, ASR, and speaker-related tasks. Further experi-
ments reveal that our method is agnostic to other speech SSL mod-
els and is more suitable to lightweight students. To sum up, our re-
sults present the effectiveness of distilling STaR rather than directly
matching the output representation for lightweight SSL models.
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