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Abstract
This work seeks to make explicit the operational connection between the preparation of two-level

quantum systems with their corresponding description (as states) in a Hilbert space. This may
sound outdated, but we show there is more to this connection than common sense may lead us to
believe. To bridge these two separated realms—the actual laboratory and the space of states—we
rely on a paradigmatic mathematical object: the Hopf fibration. We illustrate how this connection
works in practice with a simple optical setup. Remarkably, this optical setup also reflects the
necessity of using two charts to cover a sphere. Put another way, our experimental realization
reflects the bi-dimensionality of a sphere seen as a smooth manifold.

Keywords:Two-level quantum systems, Bloch sphere, Hopf fibration, Quantum Foundations.

I. INTRODUCTION

Quantum phenomena do not occur in a Hilbert space,
they occur in the laboratory. Asher Peres’s famous re-
minder [1] clearly stands out among the many ways of
dispelling misconceptions about the philosophical con-
tent of quantum mechanics. Granted, it is difficult to
pinpoint why it is so; is it because of the apparent sim-
plicity and putative form in which it is formulated, or is
it because of the hidden profoundness of his interjection?

Putting the explanation of its popularity aside for the
moment, the fact we want to emphasise is that Peres’s
observation accomplishes two things at once. It not only
brings to the surface the idea that quantum theory may
have a descriptive aspect [2], but it also dispels the com-
mon mistake of equating that descriptive characteristic
to the underlying physical reality it is supposed to de-
scribe [3]. Put another way, quantum theory is so far
the best available framework to describe the microscopic
world—its predictive power is undeniable [4]. Nonethe-
less, and here is the caveat, we must stress that it consists
of a normative set of assumptions and rules designed to
describe and deal with phenomena having no classical
explanation.

That is to say that unless we put forward a realist in-
terpretation of quantum mechanics—with its inherent
difficulties and that falls short in explaining satisfacto-
rily all the striking quantum phenomena [5]—the (sub-
jective) take-home message from Peres’s remark is that
quantum theory is a descriptive theory, that its mathe-
matical framework merely formalises a probabilistic de-
scription of certain phenomena that happen in the phys-
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ical space—very much like in the same spirit of strongly
subjectivist interpretations of (classical) probability the-
ory [6–11].

That said, what cannot be forgotten, though, is that
there is an intricate connection between the physical
space where, in Peres’s language, quantum phenomena
happen and the Hilbert space where our (probabilistic)
description of those phenomena lives in. That is exactly
what we set out to do in this contribution. Our intro-
ductory contribution intends to fill the gap that is left
behind by the ordinary, textbook approaches to quantum
physics, which does not bridge the physical space to the
Hilbert space—as if the former was just an auxiliary way
to motivate and introduce the mathematical machinery
of the latter. Using a universal gadget for SU(2) polar-
ization optics [12], together with the Hopf fibration [13],
we will establish a connection between indistinguishable
states in S3 and S2 ⊂ R3, and interpret this connection
beyond the mere mathematical construct.

This work closely follows the scholarship pursued by some
of the authors, where we set out to recast, and sometimes
reconstruct, mathematical objects that are accepted as
‘givens’ directly from our surrounding physical world [14–
17]. In all of those works in this line of inquiry, we have
so far kept in mind that our primary target audience
is composed of students caught in the crossfire of ad-
vanced technical texts and ordinary approaches that, for
one reason or another, rush through part of the subtleties
involved with the foundations of physics—although we
also feel that experienced researchers will also find our
works as rewarding auxiliary texts where we introduce
novelties while dispelling some missteps.

In this sense, we subdivide this work as follows. In
sec. II, we motivate the connection between the physical
space and the Hilbert space through a paradigmatic ex-
ample we will employ recurrently throughout the text. In
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sec. III we flesh out the mathematical machinery we will
use to bridge those two spaces. In sec. IV and sec. V we
argue that mathematical machinery has a deeper physical
meaning. Sec. VI brings out other approaches that have
already been considered in the literature concerning geo-
metrical methods for description of quantum systems as
well as re-deriving quantum theory from simpler axioms.
The last section contains our concluding remarks.

II. MOTIVATION

Our motivation for this approach stems from the fact
that two-level pure quantum systems qubits are rep-
resented by normalised vectors |ψ⟩ ∈ C2, and usually
parametrised by [18]

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ . (1)

Here, B = {|0⟩ , |1⟩} is the canonical basis of C2 and |ψ⟩
lies in the so-called Bloch sphere [19, 20]. The param-
eters θ and φ are borrowed from spherical coordinates,
so as usual: θ ∈ [0, π] and φ ∈ [0, 2π]. We name it S
[21]. This sphere provides a visual, geometrical and in-
tuitive way to analyze qubits: every point on the sphere
represents a pure state, the north and south poles are
but |0⟩ and |1⟩ and more generally, antipodes represents
a pair of orthogonal vectors. One possible way to explore
the geometrical connection between S and R3 can be es-
tablished by looking to the density matrix ρ constructed
from (1). A direct calculation shows that

ρ = |ψ⟩ ⟨ψ| = 1

2
(I + r̂ · σ⃗) , (2)

where σ⃗ = (σ1, σ2, σ3) is the collection of the Pauli ma-
trices. As usual, σk, k = 1, 2, 3 and we use the represen-
tation,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3)

Moreover, r̂ ∈ R3 in (2), known as the Bloch vector, so
obtained is just the unit vector pointing in an arbitrary
radial direction,

r̂ = (sin θ cosφ, sin θ sinφ, cos θ). (4)

Beyond a mere mathematical construction, we will delve
into the physical content of the relationship between the
physical space—where quantum phenomena are carried
out—and the Bloch sphere—where the states involved in
those experiments are represented in.

We emphasise that, for simplicity, throughout the text,
we consider only quantum systems described by pure
states. In doing so, given any vector

|ψ⟩ = a |0⟩+ b |1⟩ (5)

with complex coefficients a = x1+ix2, b = x3+ix4, xµ ∈
R, µ = 1, 2, 3, 4, we demand its normalization, ⟨ψ|ψ⟩ = 1.
Thus, we have

x21 + x22 + x23 + x24 = 1. (6)

That way, S is (topologically) identified with the com-
pact sphere S3 ⊂ R4 [22].

Leveraging on an operational procedure, what actually
defines a state is its corresponding experimental prepa-
ration [23]. Consequently, we anticipate that the param-
eters θ and φ in equation (1) possess both physical and
geometrical meaning in terms of a list of procedures in a
laboratory.

Qubits quantum systems are not just toy models or con-
venient mathematical abstractions belonging exclusively
to textbooks. Two-level quantum systems abound in na-
ture, can be easily created in the laboratory [24–26], and
are also fundamental building blocks of paradigmatic ap-
plications of quantum information and quantum foun-
dations to tasks with no classical analogue [27–31] or
that provide significant speed-ups and gains in relation
to their classical counterparts [32–35]. However, circling
back to Peres’s provocation, it is not always the case
that a direct a physical interpretation of θ and φ —see
eq.(1)— in these contexts is readily discerned.

Let us give a concrete example of what we mean by state
from our standpoint. In a recent paper [21], to give a new
purpose to the Stern-Gerlach (SG) experiments, we uti-
lized that traditional setup [36–39] as a standard example
of how to prepare a qubit as well as to provide a physi-
cal meaning to the pair θ and φ. These parameters are
connected to the orientation of the (non-homogeneous)
magnetic field through which the beam of silver atoms
passes through. When the beam of atoms is directed
into a region permeated by a magnetic field oriented as
defined in R3 by (θ, φ), it splits into two branches. Upon
selecting one of them, the state of the system is repre-
sented by equation (1).

Clearly, the parametrization for pure states on S is not
unique. In fact, we may consider the entire equivalence
class of vectors differing by a constant global phase factor
and they are indistinguishable in the sense of providing
the same expectation values to any observable. We can
rephrase it by saying that pure states can also be rep-
resented by orbits of the action of the group U(1) on S
defined by standard multiplication of vectors by a global
phase factor (for more details on group actions and re-
lated concepts, see Appendix A). With more details, the
orbits are equivalence classes of vectors in S differing by
a phase, say, eiα ∈ U(1). The geometry of indistinguish-
able states is illuminated by the Hopf fibration [13]. Far
from being only a mathematical construct, this fibration
explores the intrinsic connection between the dimension
of the Hilbert space C2 where qubits’s representation live
and the dimension of the physical spaceR3 where the sys-
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tem is prepared—in ref.[21], the authors partially address
this relationship.

Strengthening this relationship, our primary objective is
to uncover the operational meaning of the parameters
(θ, φ) for concrete examples. This requires finding an
experimental prescription that associates these parame-
ters with physical significance, specifically for polarized
photons.

To achieve this, we need to take several steps. To begin
with, we delve into the details of the Hopf fibration—this
more mathematical argument will clear the path for what
is to come. Next, we will present a kind of universal de-
vice for polarization optics, similarly to what has been
proposed in [12]. This device comprises two half-wave
and two quarter-wave plates coaxially mounted, allowing
for the generation of any SU(2) polarization transforma-
tion. Following that, we directly apply this device to
obtain the parametrization (1), providing a straightfor-
ward interpretation of θ and φ in terms of adjustable
parameters within the plates.

III. THE RELATION BETWEEN PHYSICAL
SPACE AND SPACE OF STATES: HOPF

FIBRATION

Our starting point comes from the geometry of indistin-
guishable states on S. Two state vectors |ψ⟩ and |ψ′⟩
that exclusively differ by a global phase factor

|ψ′⟩ = eiα |ψ⟩ , α ∈ R (7)

are said to be indistinguishable. Such indistinguishability
results from the fact that both states provide the same
expectation values of an observable:

⟨ψ′| A |ψ′⟩ = ⟨ψ| A |ψ⟩ , (8)

where A denotes a self-adjoint operator representing a
given physical observable. In this way, (pure) states can
be seen as the equivalence classes, or orbits [40], of the
action of the group U(1) on S,1 defined by

|ψ⟩ 7→ eiα |ψ⟩ . (9)

Given a representative |ψ⟩ = a |0⟩ + b |1⟩, we label its
unique corresponding orbit [(a, b)] ⊂ C2/{(0, 0)}. Each
orbit, in turn, can be identified by the complex number
given by the ratio

h : C2/{(0, 0)} → C

[(a, b)] 7→ h ([(a, b)]) =
b

a
, a ̸= 0. (10)

1 The details of some set theory concepts and action of groups on
the latter are presented in the Appendix A.

Clearly, h is well-defined for equivalence classes, as its
action is independent of the class representative - see Ap-
pendix A.

Since the map h takes its values on the space C, which, in
turn, can be bijectively mapped onto the sphere S2 ⊂ R3,
we have a clue for connecting S2 to S3 ⊂ R4. First, let
us consider the equatorial (bijective) stereographic pro-
jection

T : S2 ⊂ R3 −→ C

(x1, x2, x3) 7−→ T (x1, x2, x3) = X + iY = Reiθ. (11)

(x1, x2, x3) are the coordinates of a point on the sphere
S2, while X and Y are the real and imaginary (resp.)
parts of a complex number with magnitude R and phase
θ. The inverse map is given by

T−1(z = X + iY ) =

=

(
2X

X2 + Y 2 + 1
,

2Y

X2 + Y 2 + 1
,
X2 + Y 2 − 1

X2 + Y 2 + 1

)
. (12)

The anticipated connection between the space of states
and the physical space is established through the follow-
ing composition T−1 ◦h : C2/{(0, 0)} ⊂ S3 → S2, explic-
itly given by

(T−1 ◦ h) ([(a, b)]) =
(
2Re(ba∗), 2Im(ba∗), |b|2 − |a|2

)
.

(13)
We emphasize that eq. (13) is a consistent operation
for equivalence classes, as the three entries on its r.h.s.
depend on combinations of the form z1z

∗
2 , which renders

it independent of the phase factor for different elements
within the class. The details of this specific calculation
may be found in [21].

The triple (T−1◦h, S3, S2) defines the Hopf fibration [41].
We interpret the composition T−1 ◦ h as a projection π
from S3 onto the base space S2. On one hand, indis-
tinguishable states are projected onto the same point P
in S2. On the other hand, the inverse image π−1(P )
contains subsets that correspond to the orbits resulting
from the action of U(1) on S3, which are great circles:
π−1(P ) ∼= S1—for the action of a group over a set, see
Appendix A. In geometric terms, we summarize this as
S1 ↪→ S3 → S2. The representation of such construction
is depicted in the Fig. 1.

This mathematical characterization implies that qubit
states within S ∼= S3 ⊂ C2 can be prepared in the phys-
ical space represented by S2 ⊂ R3.

In ref.[21], focusing exclusively on the Stern-Gerlach ex-
perimental setup, the authors have established a simi-
lar connection between the state space and the physical
space. There they give a prescription on how an ideal
Stern-Gerlach apparatus, with a magnetic field pointing
in a specific direction

r̂ = (sin θ cosφ, sin θ sinφ, cos θ) (14)
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FIG. 1. Geometrical representation of the Hopf fibration.

can be controlled to prepare the generic qubit state given
by eq. (1).

Also in ref. [21], the authors have shown how to turn
dimension witnesses on their heads so they could be used
to bound the dimension of the physical space-instead of
bounding a target quantum system’s dimension. The
core of their analysis resided on the particularities of
the Stern-Gerlach experiment. In this sense, their ap-
proach may leave room for criticism for being apparently
too system-dependent—more on this issue later. In the
present work, although dimensionality does play a fun-
damental role, we will not focus on dimension witnesses,
in other words, we will put aside any probabilistic data
to restore the dimensionality of Hilbert spaces. In this
sense, the central question we will address here then, is:
what implications can we draw for other quantum sys-
tems? Put another way, does the Hopf fibration suggest
a ‘universal’ approach to preparing states in C2 within
a laboratory embedded in physical space represented by
R3?

Consider another simple two-level quantum system in-
volving a beam of light passing through a tourmaline
crystal, borrowed from Dirac’s seminal work [42]. In this
experiment, it is observed that when the beam is polar-
ized at an angle α to the optic axis of the crystal, only
a fraction, sin2 α, passes through according to classical
electrodynamics. In terms of a single photon, this im-
plies a probability of sin2 α for it to be found on the back
of the crystal, while cos2 α represents the probability of
absorption.

However oversimplified this description is, the experi-
mental scenario we borrowed from Dirac’s study suggests
that photons can be described by a state vector in C2,
which we will use in a while. This is nothing new, but we
needed a concrete and easy-to-digest case to work with.
That is exactly what we will do — and we will see that
in working with a concrete case, we can devise a truly
universal and system-independent argument.

The polarization of an electromagnetic wave can be de-
scribed in the laboratory through the vector structure
of the corresponding electric field. Consider the simplest
case of a monochromatic wave with frequency ω traveling

in the z direction. The complete description of polariza-
tion can be provided, among others, by the electric field
given by

E⃗(t) = (E0x cos(ωt− δx), E0y cos(ωt− δy)) . (15)

In this case, we observe the most general form of elliptical
polarization. However, we should emphasize that there is
a missing dimension. In the following sense: if we naively
equal degrees of freedom to the dimension of environment
space, then the preparation of the polarized beam of light
is confined to a plane, a two-dimensional space where the
electric field resides, despite the fact that it can be im-
mersed in three dimensions, we only need two degrees of
freedom to completely describe the polarized light. Yet,
in line with the prescription of the Hopf fibration, one
would anticipate a three-dimensional background. How
can we reconcile these two perspectives? We will address
this issue in the forthcoming sections.

IV. BUILDING A UNIVERSAL GADGET FOR
POLARIZATION OF STATES

Expanding our previous discussion, we start with the
assumption that a beam of polarized photons can be
represented by a state in S ⊂ C2. As we seek to de-
scribe a preparation of states that not only align with
the parametrization in eq. (1), but that also addresses
the missing (background) dimension in the space of state
preparation hinted out at the end of the previous sec-
tion, we turn to a tool known as the ‘universal gadget for
polarization optics’ [12].

The universal gadget consists of two half-wave and two
quarter-wave plates that are coaxially aligned—see fig. 2.
This setup is capable of realizing every SU(2) polariza-
tion transformation. This particular group represents lin-
ear transformations on field vector components of light
beams, keeping the intensity untouched. Thus, SU(2)
is key in polarization optics. Leveraging on operational
grounds, how can we realize such transformations in a
laboratory? Putting aside the technical and experimental
intricacies inherent to the realization of this setup in the
actual laboratories, we turn our attention to the math-
ematical structure of this tool. One may use quarter-
wave and half-wave plates, which introduce (mathemat-
ically) rotations of π/2 and π, respectively, as particu-
lar instances of SU(2) elements. The gadget generalizes
these transformations for any SU(2) polarization. For
that, one rotates the plates around the common axis, ob-
taining, any particular SU(2) polarized state. The corre-
sponding angular positions of the plates not only realize
uniquely the group polarization transformation as well as
prepare arbitrary states, represented by a vector on the
Bloch sphere.

Both half (H) and quarter-wave (Q) plates are repre-
sented by the conjugation
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FIG. 2. Schematic drawing for the preparation of a state
|ψout⟩ from an arbitrary initial state |ψin⟩. Note that |ψin⟩
and |ψout⟩ represent physical entities actually prepared in the
laboratory.

Hφ = ϑ(φ)iσ3ϑ(φ)
−1 (16)

Qφ = ϑ(φ)

(
eiπ/4 0
0 e−iπ/4

)
ϑ(φ)−1 (17)

where ϑ(φ) is the SO(2) element

ϑ(φ) = e−iφσ2 =

(
cosφ − sinφ
sinφ cosφ

)
. (18)

The main result from ref. [12], that we are using here,
is that any element U(ξ, η, ζ) representing an arbitrary
SU(2) polarization transformation can be written as the
composition

U(ξ, η, ζ) = Q ξ
2+

π
4
H ξ

2+
η
4∓

π
4
Q ξ

2−
π
4
H ξ−ζ

4 ±π
4
. (19)

The parameters ξ, η, ζ are the known Euler angles, and
one can re-write2 eq.(19) in a neater format:

U(ξ, η, ζ) = e−
i
2 ξσ2e

i
2ησ3e−

i
2 ζσ2 . (20)

According to ref. [12], while ξ and ζ range in [0, 2π],
η is restricted to [0, π]. As we will argue in the next
section, this latter restriction will strongly impact the
functioning of our universal gadget, we will need to input
at least two states through it to cover the entirety of the
Bloch sphere—additionally, the same restriction on η will
also unexpectedly reflect the fact that spheres are two-
dimensional objects.

These parameters are viewed as adjustable values that an
experimentalist can handle within the plates to prepare
arbitrary SU(2) polarized states.

2 Different decompositions of unitary operations are allowed, see
for example refs. [18, 43].

The example above is but a concrete proxy of a quantum
circuit. Within this context, the word universal means
that any quantum computation on qubits (be it photons,
ion trap, superconductors, quantum dots, etc) can be
generated by a finite set of unitary gates. Mathemati-
cally, it means to decompose a SU(2) operator in terms
of rotations (

cosα/2 − sinα/2
sinα/2 cosα/2

)
(21)

and ẑ rotations (
e−iβ/2 0

0 e−iβ/2

)
(22)

together with a (global) phase shift - see eq. (1.17) of [18].
Hence, with this prescription, we can obtain an arbitrary
quantum logic gate acting on single qubits. What our
work provides is an operational meaning to the param-
eters involved in the qubit state in terms of laboratory
tasks for the particular example above of polarization
optics.

In the next section, we will show how we can prepare the
whole Bloch sphere as an outcome of the universal gadget
when we input through it a particular set of states.

V. PREPARING ARBITRARY SU(2) STATE
POLARIZATION

Interpreting the Euler angles as accessible parameters for
state preparation enables us to apply U(ξ, η, ζ) to a spe-
cific initial state |ψin⟩ and examine the resulting outcome
of this preparation. We express this as follows,

|ψout⟩ = U(ξ, η, ζ) |ψin⟩ . (23)

This can be visualized as allowing the incident state to
pass through the universal gadget, as illustrated in Figure
2.

As our starting point, we select |ψin⟩ = |0⟩. We also set 3

ξ = 0. That way, we calculate |ψout⟩ in the canonical
representation of the basis {|0⟩ , |1⟩}.

|ψout⟩ = U(0, η, ζ) |0⟩ = e
i
2ησ3e−

i
2 ζσ2 |0⟩

=

(
ei

η
2 0
0 e−i η

2

)(
cos ζ/2 − sin ζ/2
sin ζ/2 cos ζ/2

)(
1
0

)
=

(
ei

η
2 cos ζ/2

e−i η
2 sin ζ/2

)
. (24)

3 The motivation for such choice stems from the fact that any di-
rection in the three-dimensional spaceR3 can be defined uniquely
by the two angles θ and φ. Thus, by fixing ξ = 0, we are left
with two parameters, η and ζ, to be identified in one way or the
other with θ and φ.
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Because global phase factors are statistically irrelevant,
we can factor out ei

η
2 , resulting in the equivalent state

|ψ′
out⟩ = cos

ζ

2
|0⟩+ e−iη sin

ζ

2
|1⟩ . (25)

A comparison between eq. (1) and eq. (25) indicates that
our universal gadget can, indeed, generate any state on
the Bloch sphere’s Western hemisphere. We are half-way
through the claimed universality of such gadget, as we
still need to cover its Eastern hemisphere.

To do so, we similarly select a second initial state |ψin⟩ =
|1⟩ and set ξ = 0. With an analogous calculation, we
obtain

|ψ′′
out⟩ = − sin

ζ

2
|0⟩+ e−iη cos

ζ

2
|1⟩ . (26)

We notice that ⟨ψ′′
out|ψ′

out⟩ = 0, which allows us to con-
clude that the |ψ′

out⟩ and |ψ′′
out⟩ are antipodes onS. Since

the former lies on the Western hemisphere, the latter is
in fact in the Eastern hemisphere, sweeping all the points
on the Bloch sphere.

VI. OTHER APPROACHES

At this stage, what we have done so far should be clear.
Assuming quantum theory’s textbook abstract formal-
ism and taking Peres’ dictum seriously—the fact that
quantum phenomena happen in the laboratory, in the
physical space we live in—we wanted to investigate and
give a physical interpretation to the connection between
these two separate worlds. Perhaps what is less clear, and
that we could not emphasise enough, is that we are not
the first to take this path. This section contains a non-
comprehensible review of other works that are similar to
the approach we are using here.

Others works seek to explicit the connection between the
preparation of qubits an their description in the Hilbert
space, focusing on purely geometric grounds, putting
aside any operational appeal. In this fashion, the articles
[44, 45] show a Hopf fibration for two an three qubits (re-
spectively) laying on the S7 and S15 spheres. As a matter
of fact, in both papers, the authors replaced the complex
numbers in the one qubit Hopf fibration with quaternions
and octonions, essentially expressing two new mappings
labeled as S7 and S15 fibrations. These apparently sim-
ple changes not only had the consequence of allowing a
geometric interpretation for two and three qubits, but
also showed a interesting fact about the sensitivity of
both new mappings when it comes to entanglement of
said qubits. So instead of the usual Hopf fibration that
was extensively explored on this paper with S3 as the
Hilbert space, S2 base and S1 as fibers, we now have,
with quaternions, an S7 Hilbert space with S4 base and
S3 as fibers, and with octonions, an S15 Hilbert space
with S8 base and S7 as fibers.

Recall that we are not only building upon Peres’ famous
reminder but we are also drawing from former instru-
mental reframings of physical concepts [16, 17, 21]. In
this sense, there are four paradigmatic works that also
bear some resemblance to our approach. In ref. [46], the
author is interested in reconstructing textbook quantum
mechanics from physically oriented axioms. Quantum
theory is considered a generalization of classical proba-
bility theory, and its reconstruction is based on the oper-
ational prepare (transform) and measure scenario. With
the same perspective, in [47], quantum theory is recon-
structed from three axioms. The former is separated
from other probability theories by exhibiting entangle-
ment without contradicting the other axioms. The simi-
larity with the work we do here stops at the operational
flavour refs. [46, 47] are based on. We are not inter-
ested in re-deriving the abstract Hilbert space underlying
quantum phenomena, as we remarked earlier, we assume
all the usual machinery of quantum theory and want to
give an operational meaning to the connection between
the abstract and the real world. Similarly, in ref. [48]
the authors also re-derive parts of quantum theory from
simpler axioms. Their axioms are requirements (informa-
tionally motivated) imposed on general probabilistic the-
ories, that in turn are best understood when modelling
prepare (transform) and measure scenarios. The same
line of thought is also followed by [49], where a broad
class of information-processing operational theories can
be traced out in an axiomatic perspective; quantum me-
chanics is singled out among the class representatives
by imposing purification as a postulate. Granted, in all
of those works, besides reconstructing parts of quantum
theory, they were also able to talk about the dimension-
ality of the state space for qubits—a topic we marginally
touch upon in this work—but we emphasise that this is
not what we set out to do here. By giving a physical
meaning to the connection between the state space and
the physical space, we wanted to start making actual
sense of the extra Hilbert space’s dimensions squeezed
into the three-dimensional physical space we live in—in
a rigorous way. Although the low dimensional instance
considered here, all other higher-dimensional systems can
be reconstructed out of the two-dimensional ones (ac-
cording to [47]), the latter being considered underlying
constituents of the world, reinforcing our focus on low-
dimensional systems.

It is undeniable that some aspects of quantum theory are
still up for debate, including its own axiomatic formula-
tion and reconstruction through simpler and physically
more appealing postulates—besides, obviously, other
fundamental and possibly inherent characteristics: Bell
non-locality, contextuality, quantum steering, and entan-
glement to mention a few. What is usually set aside or
partially forgotten in many debates about quantum the-
ory is that quantum effects happen in the laboratory, in
the physical space we live in, and accordingly each and
every piece of mathematical abstraction should find its
counterpart in that physical realm. It is exactly this task
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we are addressing with this contribution—it is exactly
this task that sets us apart from the previous works we
elaborate on above.

VII. CONCLUSION

In this paper, we have investigated the intricate relation-
ship between the state space of two-level quantum sys-
tems and the physical space in which these systems are
prepared. The necessity of such presentation arises when
we adopt a universal character of the Hopf fibration in
the following sense. By one side the mathematical con-
struct indicates that any two-level quantum system could
be prepared in a three-dimensional physical space. A
concrete example of this connection was explored in [21],
where the authors showed, through a modern rereading of
the Stern-Gerlach experiment, how the orientation of the
magnetic field in an arbitrary direction in space prepares
a qubit state represented by (1). On the other hand, it
seems that there is a missing dimension when we think
of polarized light as another example of qubit being de-
scribed by the two-dimensional - and not three - plane
where its electric field oscillates. With more details:

1. Using the Hopf fibration, we establish a connection be-
tween indistinguishable pure states in S3 and S2 ⊂ R3.
Our interpretation demonstrates that this connection is
more than a mere mathematical construct. Rather, we
view the fibration as a description of how states are pre-
pared, with adjustable parameters in a laboratory defin-
ing the Bloch vector (14). The corresponding inverse
image leads to the states parameterized by (1).

2. While the fibration does not discriminate among spe-
cific two-level quantum systems, we have chosen to fo-
cus on an illustrative example in our work: polarized
light. Initially, one might think that the plane of os-
cillation of the electric field fully specifies polarization.
However, this notion contradicts the structure revealed
by the fibration, which implies a three-dimensional space
of preparation. To reconcile this contradiction, we em-
ployed a universal gadget for SU(2) polarization optics.
Our investigation demonstrated that the adjustable pa-
rameters within this device define a state in the Bloch
sphere. Consequently, we have successfully ascribed a
practical, operational interpretation to the parametriza-
tion (1), aligning with our objectives.

To conclude, we stress that in our manuscript we were
more concerned with the operationalization and prepa-
ration of states in the laboratory, instead of focusing in
technical details such as interaction of spin and external
magnetic field in the case of Stern-Gerlach setup or even
interaction of electric field of the photon and the electric
dipole moment implied by the charges of a polarizing
plate. The consistency of maintaining the “prepare and
certify” structure, present in both the sequential combi-
nation of two SG’s, and in the universal gadget, allows

us to formulate a generalization that is even applicable
in quantum computer circuits.
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Appendix A: Basic set theory and the action of
groups on arbitrary sets

In this appendix, we briefly introduce a selection of topics
concerning set theory: equivalence relations, equivalence
classes, the action of a group on a set and related con-
cepts. Although the points we address here are not new,
our intention is to make the manuscript as self-consistent
as possible. For an in-depth description, we direct the
reader to [23, 40].

We start our overview by reviewing an alternative way of
turning elements of a set into equivalent elements. Pre-
sumably, the first and foremost notion of equivalence is
the one commonly connected with the concept of equal-
ity. Disguised by common sense, equality is a binary rela-
tion—a relation between two objects—which is reflexive
(an object is equal to itself), symmetric (if an object is
equal to another, then the latter is also equal to the for-
mer) and transitive (if an object is equal to a second,
and this second to a third, then the original and the final
objects also are so). What is crucial here is that equality,
as we know it, is only a special case of a larger class of
binary relations intended to capture and classify distinc-
tive characteristics of a collection of objects. The next
definitions rigorously address these points.

Definition A.1 (Equivalence Relations). Let X be a
non-empty set and ∼⊂ X×X a relation. We say that ∼
is an equivalence relation whenever the three properties
below hold true,

i. ∼ is reflexive: x ∼ x, ∀x ∈ X.

ii. ∼ is symmetric: x ∼ y ⇒ y ∼ x, ∀x, y ∈ X

iii. ∼ is transitive: if x ∼ y and y ∼ z, then x ∼ z,
∀x, y, z ∈ X.
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Remark. Any relation over a given set X is a subset R
of X×X. In this sense, R is a collection of ordered pairs
(x, y) where x, y ∈ X. Mainly because we want to express
the relational aspect of R and also retain the parallel with
the notion of equality, it is usual to write xRy instead
of (x, y) ∈ R—the reader will certainly appreciate this
change in notation.

Definition A.2 (Equivalence Classes). Let ∼ be an
equivalence relation over X. Given an element y we de-
fine the following subsets of X,

[y] := {x ∈ X |x ∼ y}. (A1)

Because y ∼ y, y ∈ [y], for all elements of X. Thus, these
subsets are well-defined and we name them equivalence
classes. In particular, for a given y ∈ X, the subset [y]
is called the equivalence class of y.

One of the main consequences of establishing an equiva-
lence relation on a set resides in the theorem below. It
guarantees that equivalence classes provide a partition
of the set they are defined over—that is, a cover of the
entire set formed by disjoint subsets.

Theorem A.1 (Partition via Equivalence Classes). If
∼ is an equivalence relation on X, then

1)x ∼ y ⇒ [x] = [y], (A2)

2)x ≁ y ⇒ [x] ∩ [y] = ∅, (A3)

3)X =
⋃
x∈X

[x]. (A4)

Remark. A useful notation to the disjoint union in eq.
(A4) is X/ ∼, as it denotes that the set has been parti-
tioned across the many equivalence classes defined by the
equivalence relation. For both an intuitive interpretation
and formal demonstration, we direct the reader to [14].

Now we turn our attention to group actions on sets. Fol-
lowing the natural steps of introducing sets and relations,
we could start with functions (or mappings), which are a
special type of relation. However, we would like to do so
bearing in mind that the elements of the set should trans-
form guided by a group structure, retaining not only the
symmetry properties but also the special transformations
the latter usually conveys. Hence, we define the

Definition A.3 (Action of a Group). Let G be a group
and X be a non-empty set. The action of G on X is a
map φ : G ×X→ X, satisfying the following conditions,

i. φ(e, x) = x, ∀ x ∈ X, where e stands for the group
identity element.

ii. For each g ∈ G, φ(g, ·) : X→ X is a bijection.

iii. φ(g1, φ(g2, x)) = φ(g1g2, x), ∀ x ∈ and ∀ g1, g2 ∈ G.

Now, in X×X we introduce the following relation,

x ∼ y ⇔ y = φ(g, x), for some g ∈ G. (A5)

We affirm that ∼ is an equivalence relation. In fact, ∼
is reflexive because i : φ(e, x) = x. The symmetry comes
from

y = φ(g, x) ⇒ x = φ(g−1, y).

Finally, the transitivity can also be promptly deduced.
It suffices to note that if y = φ(g1, x) and z = φ(g2, y),
then z = φ(g3, x), where g3 = g2g1.

With the equivalence relation defined by the action, we
define the equivalence classes by

[x] := {y ∈ X | y = φ(g, x) for some g ∈ G}. (A6)

Due to its special role, an equivalence class of such type
is called an orbit through x.

Crucially, according to the theorem A.1 above, X is par-
titioned by its disjoint orbits. All in all, that is to say,
starting from the action of a group over a set, we can par-
tition that set across the orbits of each of its elements.

Next, we will present some examples of interest not only
to our previous discussion per se, but also to quantum
mechanics in general.

Example 1. For our first example, we consider X = C2

and G = U(1) = {eiα α ∈ R}. Define the map

φ : U(1)× C2 → C2

(eiα, |ψ⟩) 7→ |ψ⟩′ = eiα |ψ⟩ .

To check that φ is indeed an action, we have

i. U(1) ∋ e = 1 ⇒ φ(e, |ψ⟩) = |ψ⟩.

ii. Given α ∈ R, φ(eiα, ·) : C2 → C2 is a bijection. In
effect,

eiα |ψ1⟩ = eiα |ψ2⟩ ⇒ |ψ1⟩ = |ψ2⟩

which guarantees that the map is injective. In turn, we
point out that any |ψ⟩ ∈ C2 is reached by e−iα |ψ⟩ under
φ(eiα, ·). Thus, the map is surjective as well.

iii. At last,

φ(eiα1 , eiα2 |ψ⟩) = ei(α1+α2) |ψ⟩ = φ(eiα1eiα2 , |ψ⟩),

which concludes the proof.

The importance of the case in point lies on the fact that
the orbits consists of indistinguishable states for two-level
quantum systems as well as fibers in the Hopf fibration,
as previously discussed in section III.

Example 2. Our second example is given by X = Rn and
G = R∗ = R∖ {0}, where the group product is the usual
multiplication of non-zero real numbers. Define

φ : R∗ ×Rn → Rn

(λ, v⃗) 7→ λv⃗.
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It is not difficult to conclude that φ is an action. In fact,
we have,

i. R∗ ∋ e = 1 ⇒ φ(1, v⃗) = v⃗.

ii. Given λ ∈ R∗, φ(λ, ·) is a bijection for

λv⃗1 = λv⃗2 ⇒ v⃗1 = v⃗2,

which shows the injection. Moreover, any v⃗ ∈ Rn can be
obtained by applying φ(λ, ·) to λ−1v⃗. Hence, the map is
also surjective.

iii. Finally, φ(λ1, λ2v⃗) = φ(λ1λ2v⃗).

The classes, or orbits, here are straight lines crossing
the origin, although 0⃗ ̸= [v⃗], for every non-zero vector
v⃗ in Rn. Their union forms what is called the projective
space, named RPn−1. The generalization for Cn and,
accordingly, to CPn−1 is straightforward. The value of
the latter to quantum mechanics stems from its intrinsic
connection to entanglement [50].
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