A homomorphism from the affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ to the affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n+1))$

Mamoru Ueda*

Department of Mathematical and Statistical Sciences, University of Alberta, 11324 89 Ave NW, Edmonton, AB T6G 2J5, Canada

Abstract

We construct a homomorphism from the affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ to the standard degreewise completion of the affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n+1))$. We also give the relationship between this homomorphism and the one from the affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ to the universal enveloping algebra of the rectangular algebra $\mathcal{W}^k(\mathfrak{gl}(2n),(2^n))$ constructed by the author [19].

1 Introduction

Drinfeld ([6], [7]) introduced the Yangian associated with a finite dimensional simple Lie algebra \mathfrak{g} in order to solve the Yang-Baxter equation. The Yangian is a quantum group which is a deformation of the current algebra $\mathfrak{g} \otimes \mathbb{C}[z]$. The Yangian of type A has several presentations: the RTT presentation, the current presentation, and so on. By using the current presentation of the Yangian, we can extend the definition of the Yangian $Y_{\hbar}(\mathfrak{g})$ to a symmetrizable Kac-Moody Lie algebra \mathfrak{g} . For general symmetrizable Kac-Moody Lie algebra \mathfrak{g} , it has not been resolved whether the Yangian $Y_{\hbar}(\mathfrak{g})$ has a quantum group structure or not. However, in the case that \mathfrak{g} is of affine type, this problem has been affirmatively resolved ([2], [13], and [16]).

Recently, relationships between affine Yangians and W-algebras have been studied. A Walgebra $\mathcal{W}^k(\mathfrak{g}, f)$ is a vertex algebra associated with a finite dimensional reductive Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$. It appeared in the study of two dimensional conformal field theories ([20]). We call a W-algebra associated with $\mathfrak{gl}(n)$ (resp. $\mathfrak{gl}(ln)$) and a principal nilpotent element (resp. a nilpotent element of type of (l^n)) a principal (resp. rectangular) W-algebra. The AGT (Alday-Gaiotto-Tachikawa) conjecture suggests that there exists a representation of the principal W-algebra of type A on the equivariant homology space of the moduli space of U(r)-instantons. Schiffmann and Vasserot [15] gave this representation by using an action of the affine Yangian associated with $\widehat{\mathfrak{gl}}(1)$ on this homology space.

In the rectangular case, the author [19] constructed a surjective homomorphism from the Guay's affine Yangian ([11] and [12]) to the universal enveloping algebra of a rectangular W-algebra of type A:

$$\Phi^n: Y_{\hbar,\varepsilon}(\mathfrak{sl}(n)) \to \mathcal{U}(\mathcal{W}^k(\mathfrak{gl}(ln), (l^n))).$$

The Guay's affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ is a 2-parameter affine Yangian associated with $\widehat{\mathfrak{sl}}(n)$. The Guay's affine Yangian has a quantum group structure and is the deformation of the universal enveloping algebra of the central extension of $\mathfrak{sl}(n)[u^{\pm 1}, v]$. It is known that the Guay's affine Yangian has a representation on the equivariant homology space of affine Laumon spaces ([8] and [9]). Similarly to principal W-algebras, we expect that we can construct geometric representations of rectangular W-algebras by using the homomorphism Φ^n .

^{*}mueda@ualberta.ca

In non-rectangular cases, it is conjectured in Creutzig-Diaconescu-Ma [4] that a geometric representation of an iterated W-algebra of type A on the equivariant homology space of the affine Laumon space will be given through an action of an affine shifted Yangian constructed in [9]. Based on this conjecture, we can expect that there exists a non-trivial homomorphism from the affine shifted Yangian to an iterated W-algebra associated with any nilpotent element. However, tackling this issue is very difficult and has not been resolved.

In [18], we constructed a homomorphism from the Guay's affine Yangian $Y_{h,\varepsilon}(\mathfrak{sl}(n))$ to the universal enveloping algebra of a non-rectangular W-algebra. This is the affine version of De Sole-Kac-Valeri [5]. In [5], De Sole, Kac and Valeri constructed a homomorphism from the finite Yangian of type A to a finite W-algebras of type A by using the Lax operator. The homomorphism in De Sole-Kac-Valeri [5] is a restriction of the one from the shifted Yangian to a finite W-algebra given by Brundan-Kleshchev in [3]. We expect that we can extend the homomorphism given in [18] to the affine shifted Yangian and this extended homomorphism coincides with the homomorphism conjectured in Creutzig-Diaconescu-Ma [4].

For this purpose, it is helpful to give a homomorphism from the affine Yangian to the affine shifted Yangian. As a first step, in this article, we construct a homomorphism

$$\Psi\colon Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))\to \widetilde{Y}_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n+1)),$$

where $\widetilde{Y}_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n+1))$ is the standard degreewise completion of $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n+1))$. In finite setting, by using the RTT presentation, there exists a natural embedding from the Yangian associated with $\mathfrak{gl}(n)$ to the one associated with $\mathfrak{gl}(n+1)$. However, the Guay's affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ does not have the RTT presentation. For the construction of Ψ , we use the finite presentation called the *minimalistic presentation* given by Guay-Nakajima-Wendlandt [13].

As for one of the rectangular cases, we can construct a relationship with Ψ and Φ^n . There exists an embedding

$$\iota\colon \mathcal{W}^{k+1}(\mathfrak{gl}(2n),(2^n)) \to (\mathcal{W}^k(\mathfrak{gl}(2n+2),(2^{n+1})).$$

In the last section of this article, we show the following relation:

$$\Phi^{n+1} \circ \Psi = \iota \circ \Phi^n.$$

We expect that the similar relation holds in the non-rectangular case.

2 Affine Yangian

Let us recall the definition of the affine Yangian of type A (Definition 3.2 in [11] and Definition 2.3 of [12]). Here after, we identify $\{0, 1, 2, \dots, n-1\}$ with $\mathbb{Z}/n\mathbb{Z}$.

Definition 2.1. Suppose that $n \geq 3$. The affine Yangian $Y_{\varepsilon_1,\varepsilon_2}(\mathfrak{sl}(n))$ is the associative algebra over generated by $x_{i,r}^+, x_{i,r}^-, h_{i,r}$ $(i \in \{0, 1, \dots, n-1\}, r \in \mathbb{Z}_{\geq 0})$ with two parameters $\varepsilon_1, \varepsilon_2 \in \mathbb{C}$ subject to the following defining relations:

$$[h_{i,r}, h_{j,s}] = 0, (2.2)$$

$$[x_{i,r}^+, x_{j,s}^-] = \delta_{i,j} h_{i,r+s}, \qquad (2.3)$$

$$[h_{i,0}, x_{j,r}^{\pm}] = \pm a_{i,j} x_{j,r}^{\pm}, \qquad (2.4)$$

$$[h_{i,r+1}, x_{j,s}^{\pm}] - [h_{i,r}, x_{j,s+1}^{\pm}] = \pm a_{i,j} \frac{\varepsilon_1 + \varepsilon_2}{2} \{h_{i,r}, x_{j,s}^{\pm}\} - m_{i,j} \frac{\varepsilon_1 - \varepsilon_2}{2} [h_{i,r}, x_{j,s}^{\pm}], \qquad (2.5)$$

$$[x_{i,r+1}^{\pm}, x_{j,s}^{\pm}] - [x_{i,r}^{\pm}, x_{j,s+1}^{\pm}] = \pm a_{ij} \frac{\varepsilon_1 + \varepsilon_2}{2} \{ x_{i,r}^{\pm}, x_{j,s}^{\pm} \} - m_{ij} \frac{\varepsilon_1 - \varepsilon_2}{2} [x_{i,r}^{\pm}, x_{j,s}^{\pm}],$$
(2.6)

$$\sum_{w \in \mathfrak{S}_{1+|a_{ij}|}} [x_{i,r_{w(1)}}^{\pm}, [x_{i,r_{w(2)}}^{\pm}, \dots, [x_{i,r_{w(1+|a_{ij}|)}}^{\pm}, x_{j,s}^{\pm}] \dots]] = 0 \quad \text{if } i \neq j,$$

$$(2.7)$$

where $\{X, Y\} = XY + YX$ and

$$a_{i,j} = \begin{cases} 2 & \text{if } i = j, \\ -1 & \text{if } j = i \pm 1, \\ 0 & \text{otherwise,} \end{cases} \begin{cases} -1 & \text{if } i = j - 1, \\ 1 & \text{if } i = j + 1, \\ 0 & \text{otherwise.} \end{cases}$$

Guay-Nakajima-Wendland [13] gave the new presentation of the affine Yangian $Y_{\varepsilon_1,\varepsilon_2}(\mathfrak{sl}(n))$ whose generators are

$${h_{i,r}, x_{i,r}^{\pm} \mid 0 \le i \le n-1, r \in \mathbb{Z}}.$$

Proposition 2.8. Suppose that $n \geq 3$. The affine Yangian $Y_{\varepsilon_1,\varepsilon_2}(\widehat{\mathfrak{sl}}(n))$ is isomorphic to the associative algebra $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ generated by $X_{i,r}^+, X_{i,r}^-, H_{i,r}$ $(i \in \{0, 1, \cdots, n-1\}, r=0, 1)$ subject to the following defining relations:

$$[H_{i,r}, H_{j,s}] = 0, (2.9)$$

$$[X_{i,0}^+, X_{j,0}^-] = \delta_{ij} H_{i,0}, \tag{2.10}$$

$$[X_{i,1}^+, X_{j,0}^-] = \delta_{ij} H_{i,1} = [X_{i,0}^+, X_{j,1}^-],$$
(2.11)

$$X_{j,0}^{-} = \delta_{ij} H_{i,1} = [X_{i,0}^{+}, X_{j,1}^{-}], \qquad (2.11)$$
$$[H_{i,0}, X_{j,r}^{\pm}] = \pm a_{ij} X_{j,r}^{\pm}, \qquad (2.12)$$

$$[\tilde{H}_{i,1}, X_{j,0}^{\pm}] = \pm a_{ij} \left(X_{j,1}^{\pm} \right), \ if \ (i,j) \neq (0,n-1), (n-1,0),$$
(2.13)

$$[\tilde{H}_{0,1}, X_{n-1,0}^{\pm}] = \mp \left(X_{n-1,1}^{\pm} + (\varepsilon + \frac{n}{2}\hbar) X_{n-1,0}^{\pm} \right),$$
(2.14)

$$[\tilde{H}_{n-1,1}, X_{0,0}^{\pm}] = \mp \left(X_{0,1}^{\pm} - (\varepsilon + \frac{n}{2}\hbar) X_{0,0}^{\pm} \right), \qquad (2.15)$$

$$[X_{i,1}^{\pm}, X_{j,0}^{\pm}] - [X_{i,0}^{\pm}, X_{j,1}^{\pm}] = \pm a_{ij} \frac{\hbar}{2} \{X_{i,0}^{\pm}, X_{j,0}^{\pm}\} \text{ if } (i,j) \neq (0, n-1), (n-1,0),$$
(2.16)

$$[X_{0,1}^{\pm}, X_{n-1,0}^{\pm}] - [X_{0,0}^{\pm}, X_{n-1,1}^{\pm}] = \mp \frac{\hbar}{2} \{X_{0,0}^{\pm}, X_{n-1,0}^{\pm}\} + (\varepsilon + \frac{n}{2}\hbar)[X_{0,0}^{\pm}, X_{n-1,0}^{\pm}],$$
(2.17)

$$(\operatorname{ad} X_{i,0}^{\pm})^{1+|a_{i,j}|}(X_{j,0}^{\pm}) = 0 \quad \text{if } i \neq j,$$

$$(2.18)$$

where $\tilde{H}_{i,1} = H_{i,1} - \frac{\hbar}{2}H_{i,0}^2$, $\hbar = \varepsilon_1 + \varepsilon_2$ and $\varepsilon = -n\varepsilon_1$.

Proposition 2.8 is a little different from the presentation given by Guay-Nakajima-Wendland [13]. The isomorphism $\Xi: Y_{\varepsilon_1,\varepsilon_2}(\widehat{\mathfrak{sl}}(n)) \to Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ is given by

$$\Xi(h_{i,0}) = H_{i,0}, \quad \Xi(x_{i,0}^{\pm}) = X_{i,0}^{\pm},$$
$$\Xi(h_{i,1}) = \begin{cases} H_{0,1} & \text{if } i = 0, \\ H_{i,1} - \frac{i}{2}(\varepsilon_1 - \varepsilon_2)H_{i,0} & \text{if } i \neq 0. \end{cases}$$

Thus, Proposition 2.8 is derived from Guay-Nakajima-Wendland [13]. By this corresponding, we find that

$$[X_{i,r}^{\pm}, X_{j,s}^{\pm}] = 0 \text{ if } |i - j| > 1,$$
(2.19)

$$[X_{i,1}^{\pm}, [X_{i,0}^{\pm}, X_{j+1,r}^{\pm}]] + [X_{i,0}^{\pm}, [X_{i,1}^{\pm}, X_{j+1,r}^{\pm}]] = 0.$$
(2.20)

Remark 2.21. In [17], the author gave the similar presentation for the affine super Yangian. We note that (2.29) in [17] contains a typo. We should replace (2.29) with

$$[X_{0,1}^{\pm}, X_{n-1,0}^{\pm}] - [X_{0,0}^{\pm}, X_{n-1,1}^{\pm}] = \mp (-1)^{p(m+n)} \frac{\hbar}{2} \{X_{0,0}^{\pm}, X_{n-1,0}^{\pm}\} - (\varepsilon + \frac{n}{2}\hbar) [X_{0,0}^{\pm}, X_{n-1,0}^{\pm}].$$

We also note that $\varepsilon = -n\varepsilon_2$ in [17]. This makes the difference between (2.14), (2.15) and (2.17) in Proposition 2.8 and (2.26), (2.27) and (2.29) in [17].

By the definition of the affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$, we find that there exists a natural homomorphism from the universal enveloping algebra of $\widehat{\mathfrak{sl}}(n)$ to $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$. In order to simplify the notation, we denote the image of $x \in U(\widehat{\mathfrak{sl}}(n))$ by x.

We take one completion of $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$. We set the degree of $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ by

$$\deg(H_{i,r}) = 0, \ \deg(X_{i,r}^{\pm}) = \begin{cases} \pm 1 & \text{if } i = 0, \\ 0 & \text{if } i \neq 0. \end{cases}$$

We denote the standard degreewise completion of $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ by $\widetilde{Y}_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$. Let us set $A_i \in \widetilde{Y}_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ as

$$\begin{split} A_{i} &= \frac{\hbar}{2} \sum_{\substack{s \geq 0 \\ u > v}} E_{u,v} t^{-s} [E_{i,i}, E_{v,u} t^{s}] + \frac{\hbar}{2} \sum_{\substack{s \geq 0 \\ u < v}} E_{u,v} t^{-s-1} [E_{i,i}, E_{v,u} t^{s+1}] \\ &= \frac{\hbar}{2} \sum_{\substack{s \geq 0 \\ u > i}} E_{u,i} t^{-s} E_{i,u} t^{s} - \frac{\hbar}{2} \sum_{\substack{s \geq 0 \\ i > v}} E_{i,v} t^{-s} E_{v,i} t^{s} \\ &+ \frac{\hbar}{2} \sum_{\substack{s \geq 0 \\ u > i}} E_{u,i} t^{-s-1} E_{i,u} t^{s+1} - \frac{\hbar}{2} \sum_{\substack{s \geq 0 \\ i > v}} E_{i,v} t^{-s-1} E_{v,i} t^{s+1}, \end{split}$$

where $E_{i,j}$ is a matrix unit whose (a, b) component is $\delta_{a,i}\delta_{b,j}$ Similarly to Section 3 in [13], we define

$$J(h_i) = \widetilde{H}_{i,1} - A_i + A_{i+1} \in \widetilde{Y}_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$$

We also set $J(x_i^{\pm}) = \pm \frac{1}{2} [J(h_i), x_i^{\pm}]$. Guay-Nakajima-Wendland [13] defined the automorphism of $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ by

$$\overline{x}_i = \exp(\operatorname{ad}(x_{i,0}^+)) \exp(-\operatorname{ad}(x_{i,0}^-)) \exp(\operatorname{ad}(x_{i,0}^+))$$

Let α be a positive real root. By definition of the Weyl algebra, there is an element w of the Weyl group of $\widehat{\mathfrak{sl}}(n)$ and a simple root α_j such that $\alpha = w\alpha_j$. Then we define a corresponding root vector by

$$x_{\alpha}^{\pm} = \tau_{i_1} \tau_{i_2} \cdots \tau_{i_{p-1}} (x_j^{\pm}),$$

where $w = s_{i_1} s_{i_2} \cdots s_{i_{p-1}}$ is a reduced expression of w. We can define $J(x_{\alpha}^{\pm})$ as

$$J(x_{\alpha}^{\pm}) = \tau_{i_1}\tau_{i_2}\cdots\tau_{i_{p-1}}J(x_j^{\pm}).$$

Lemma 2.22 (Proposition 3.21 in [13]). The following relation holds:

$$[J(h_i), x_{\alpha}^{\pm}] = \pm(\alpha_i, \alpha) J(x_{\alpha}^{\pm}) \pm c_{\alpha, i} x_{\alpha}^{\pm}$$

for some $c_{\alpha,i} \in \mathbb{C}$.

3 A homomorphism from the affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ to the affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n+1))$

In this section, we will construct a homomorphism from the affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))$ to the degreewise completion of the affine Yangian $Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n+1))$.

Theorem 3.1. There exists an algebra homomorphism

$$\Psi \colon Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n)) \to \widetilde{Y}_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n+1))$$

 $determined \ by$

$$\Psi(H_{i,0}) = \begin{cases} H_{0,0} + H_{n,0} & \text{if } i = 0, \\ H_{i,0} & \text{if } i \neq 0, \end{cases}$$
$$\Psi(X_{i,0}^+) = \begin{cases} E_{n,1}t & \text{if } i = 0, \\ E_{i,i+1} & \text{if } i \neq 0, \end{cases} \Psi(X_{i,0}^-) = \begin{cases} E_{1,n}t^{-1} & \text{if } i = 0, \\ E_{i+1,i} & \text{if } i \neq 0, \end{cases}$$

and

$$\begin{split} \Psi(H_{i,1}) &= H_{i,1} - \hbar \sum_{s \ge 0} E_{i,n+1} t^{-s-1} E_{n+1,i} t^{s+1} + \hbar \sum_{s \ge 0} E_{i+1,n+1} t^{-s-1} E_{n+1,i+1} t^{s+1}, \\ \Psi(X_{i,1}^+) &= X_{i,1}^+ - \hbar \sum_{s \ge 0} E_{i,n+1} t^{-s-1} E_{n+1,i+1} t^{s+1}, \\ \Psi(X_{i,1}^-) &= X_{i,1}^- - \hbar \sum_{s \ge 0} E_{i+1,n+1} t^{-s-1} E_{n+1,i} t^{s+1} \end{split}$$

for $i \neq 0$. In particular, we have

$$\Psi(\widetilde{H}_{i,1}) = \widetilde{H}_{i,1} - \hbar \sum_{s \ge 0} E_{i,n+1} t^{-s-1} E_{n+1,i} t^{s+1} + \hbar \sum_{s \ge 0} E_{i+1,n+1} t^{-s-1} E_{n+1,i+1} t^{s+1}$$

for $i \neq 0$.

By Theorem 3.1, we can easily compute $\Psi(X_{0,1}^+)$ and $\Psi(H_{0,1})$.

Corollary 3.2. The following equations hold:

$$\Psi(X_{0,1}^{+}) = [X_{n,0}^{+}, X_{0,1}^{+}] - \hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1},$$

$$\Psi(X_{0,1}^{-}) = [X_{0,1}^{-}, X_{n,0}^{-}] - \hbar \sum_{s \ge 0} E_{1,n+1} t^{-s-1} E_{n+1,n} t^{s},$$

$$\Psi(H_{0,1}) = H_{0,1} + H_{n,1} + (\varepsilon + \frac{\hbar}{2}n) H_{n,0} + \hbar H_{n,0} H_{0,0}$$

$$- \hbar \sum_{s \ge 0} E_{n,n+1} t^{-s-1} E_{n+1,n} t^{s+1} + \hbar \sum_{s \ge 0} E_{1,n+1} t^{-s-1} E_{n+1,1} t^{s+1}.$$

In particular, we obtain

$$\Psi(\widetilde{H}_{0,1}) = \widetilde{H}_{0,1} + \widetilde{H}_{n,1} + (\varepsilon + \frac{\hbar}{2}n)H_{n,0} - \hbar \sum_{s \ge 0} E_{n,n+1}t^{-s-1}E_{n+1,n}t^{s+1} + \hbar \sum_{s \ge 0} E_{1,n+1}t^{-s-1}E_{n+1,1}t^{s+1}.$$

Proof. By the definition of Ψ and (2.13), we have

$$\Psi(X_{0,1}^{+}) = -[\Psi(\widetilde{H}_{1,1}), \Psi(X_{0,0}^{+})]$$

= $-[\widetilde{H}_{1,1}, [X_{n,0}^{+}, X_{0,0}^{+}]] + \hbar[\sum_{s \ge 0} E_{1,n+1}t^{-s-1}E_{n+1,1}t^{s+1}, E_{n,1}t]$
 $- \hbar[\sum_{s \ge 0} E_{2,n+1}t^{-s-1}E_{n+1,2}t^{s+1}, E_{n,1}t]$

$$= [X_{n,0}^+, X_{0,1}^+] - \hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1},$$

where the second equality is due to $E_{n,1}t = [X_{n,0}^+, X_{0,0}^+]$. Similarly to $\Psi(X_{0,1}^+)$, we can compute $\Psi(X_{0,1}^-)$.

By (2.11), we obtain

$$\Psi(H_{0,1}) = [\Psi(X_{0,1}^{+}), \Psi(X_{0,0}^{-})]$$

$$= [[X_{n,0}^{+}, X_{0,1}^{+}], [X_{0,0}^{-}, X_{n,0}^{-}]] - [\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1}, E_{1,n} t^{-1}]$$

$$= [[X_{n,0}^{+}, H_{0,1}], X_{n,0}^{-}] + [X_{0,0}^{-}, [H_{n,0}, X_{0,1}^{+}]] - [\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1}, E_{1,n} t^{-1}], \quad (3.3)$$

where the last equality is due to (2.10) and (2.11). By (2.11) and (2.12), we have

$$[X_{0,0}^{-}, [H_{n,0}, X_{0,1}^{+}]] = -[X_{0,0}^{-}, X_{0,1}^{+}] = H_{0,1}.$$
(3.4)

By (2.11) and (2.13)-(2.15), we have

$$\begin{split} & [[X_{n,0}^{+}, H_{0,1}], X_{n,0}^{-}] \\ &= -[[\tilde{H}_{0,1} + \frac{\hbar}{2}H_{0,0}^{2}, X_{n,0}^{+}], X_{n,0}^{-}] \\ &= [X_{n,1}^{+} + (\varepsilon + \frac{\hbar}{2}(n+1))X_{n,0}^{+}, X_{n,0}^{-}] + \frac{\hbar}{2}[\{H_{0,0}, X_{n,0}^{+}\}, X_{n,0}^{-}] \\ &= H_{n,1} + (\varepsilon + \frac{\hbar}{2}(n+1))H_{n,0} + \frac{\hbar}{2}\{X_{n,0}^{-}, X_{n,0}^{+}\} + \frac{\hbar}{2}\{H_{0,0}, H_{n,0}\} \\ &= H_{n,1} + (\varepsilon + \frac{\hbar}{2}(n+1))H_{n,0} + \hbar X_{n,0}^{+}X_{n,0}^{-} - \frac{\hbar}{2}H_{n,0} + \hbar H_{0,0}, H_{n,0}, \end{split}$$
(3.5)

where the second equality is due to (2.14) and (2.12), the third equality is due to (2.10) and (2.11) and the last equality is due to (2.9) and the relation

$$\frac{\hbar}{2} \{ X_{n,0}^{-}, X_{n,0}^{+} \} = \hbar X_{n,0}^{+} X_{n,0}^{-} - \frac{\hbar}{2} H_{n,0}.$$

By a direct computation, we obtain

$$- \left[\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1}, E_{1,n} t^{-1}\right]$$

= $-\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,n} t^{s} + \hbar \sum_{s \ge 0} E_{1,n+1} t^{-s-1} E_{n+1,1} t^{s+1}.$ (3.6)

Applying (3.4) and (3.6) to (3.3), we obtain

$$\Psi(H_{0,1}) = H_{0,1} + H_{n,1} + (\varepsilon + \frac{\hbar}{2}n)H_{n,0} + \hbar H_{n,0}H_{0,0} - \hbar \sum_{s\geq 0} E_{n,n+1}t^{-s-1}E_{n+1,n}t^{s+1} + \hbar \sum_{s\geq 0} E_{1,n+1}t^{-s-1}E_{n+1,1}t^{s+1}.$$

We complete the proof.

In order to prove Theorem 3.1, it is enough to show that Ψ is compatible with (2.9)-(2.18). By the definition of Ψ , Ψ is compatible with (2.10), (2.12) and (2.18). We will prove the compatibility with other relations of Proposition 2.8 in the following subsections.

3.1 Compatibility with (2.11)

The case that i = j = 0 has already been proved in the proof of Corollary 3.2. We only show the case that $i, j \neq 0$. Other cases are proven in a similar way. We obtain

$$\begin{split} & [\Psi(X_{i,1}^{+}), \Psi(X_{j,0}^{-})] \\ &= [X_{i,1}^{+} - \hbar \sum_{s \ge 0} E_{i,n+1} t^{-s-1} E_{n+1,i+1} t^{s+1}, E_{j+1,j}] \\ &= \delta_{i,j} H_{i,1} - \delta_{i,j} \hbar \sum_{s \ge 0} E_{i,n+1} t^{-s-1} E_{n+1,i} t^{s+1} + \delta_{i,j} \hbar \sum_{s \ge 0} E_{i+1,n+1} t^{-s-1} E_{n+1,i+1} t^{s+1} \\ &= \delta_{i,j} \Psi(H_{i,1}), \end{split}$$

where the first and last equalities are due to the definition of Ψ and the second equality is due to (2.11).

3.2 Compatibility with (2.13)

We only show the case that i = j = 0 and the sign is +, The other cases are proven in a similar way. By the definition of Ψ , we have

$$\begin{aligned} & [\Psi(\widetilde{H}_{0,1}), \Psi(X_{0,0}^{+})] \\ &= [\widetilde{H}_{0,1} + \widetilde{H}_{n,1}, E_{n,1}t] + (\varepsilon + \frac{\hbar}{2}n)[H_{n,0}, E_{n,1}t] \\ &- [\hbar \sum_{s \ge 0} E_{n,n+1}t^{-s-1}E_{n+1,n}t^{s+1}, E_{n,1}t] + [\hbar \sum_{s \ge 0} E_{1,n+1}t^{-s-1}E_{n+1,1}t^{s+1}, E_{n,1}t]. \end{aligned}$$
(3.7)

By a direct computation, we obtain

$$\left(\varepsilon + \frac{\hbar}{2}n\right)\left[H_{n,0}, E_{n,1}t\right] = \left(\varepsilon + \frac{\hbar}{2}n\right)E_{n,1}t\tag{3.8}$$

and

$$- \left[\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s-1} E_{n+1,n} t^{s+1}, E_{n,1} t\right] + \left[\hbar \sum_{s \ge 0} E_{1,n+1} t^{-s-1} E_{n+1,1} t^{s+1}, E_{n,1} t\right]$$
$$= -\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s-1} E_{n+1,1} t^{s+2} - \hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1}$$
$$= -2\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1} + \hbar X_{n,0}^+ X_{0,0}^+.$$
(3.9)

By (2.13)-(2.15), we have

$$\begin{split} & [\tilde{H}_{0,1} + \tilde{H}_{n,1}, E_{n,1}t] = [\tilde{H}_{0,1} + \tilde{H}_{n,1}, [X_{n,0}^+, X_{0,0}^+]] \\ &= [X_{n,0}^+, X_{0,1}^+ - (\varepsilon + \frac{n+1}{2}\hbar)X_{0,0}^+] + [X_{n,1}^+ + (\varepsilon + \frac{n+1}{2}\hbar)X_{n,0}^+, X_{0,0}^+] \\ &= [X_{n,0}^+, X_{0,1}^+] + [X_{n,1}^+, X_{0,0}^+] \\ &= 2[X_{n,0}^+, X_{0,1}^+] - \frac{\hbar}{2}\{X_{0,0}^+, X_{n,0}^+\} + (\varepsilon + \frac{n+1}{2}\hbar)[X_{0,0}^+, X_{n,0}^+] \\ &= 2[X_{n,0}^+, X_{0,1}^+] - \frac{\hbar}{2}\{X_{0,0}^+, X_{n,0}^+\} - (\varepsilon + \frac{n+1}{2}\hbar)E_{n,1}t \\ &= 2[X_{n,0}^+, X_{0,1}^+] - \hbar X_{n,0}^+ X_{0,0}^+ - \frac{\hbar}{2}[X_{0,0}^+, X_{n,0}^+] - (\varepsilon + \frac{n+1}{2}\hbar)E_{n,1}t, \end{split}$$
(3.10)

where the first equality is due to $[X_{n,0}^+, X_{0,0}^+] = E_{n,1}t$, the second equality is due to (2.13)-(2.15), the 4-th equality is due to (2.17). Applying (3.8)-(3.10) to (3.7), we obtain

$$[\Psi(\widetilde{H}_{0,1}), \Psi(X_{0,0}^+)] = 2[X_{n,0}^+, X_{0,1}^+] - 2\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1}$$
$$= 2\Psi(X_{0,1}^+).$$

3.3 Compatibility with (2.14)

We only prove the + case. The + case can be shown in the same way. By the definition of Ψ , we have

$$\begin{split} &[\Psi(\widetilde{H}_{0,1}), \Psi(X_{n-1,0}^{+})] \\ &= [\widetilde{H}_{0,1} + \widetilde{H}_{n,1}, X_{n-1,0}^{+}] + (\varepsilon + \frac{\hbar}{2}n)[H_{n,0}, E_{n-1,n}] \\ &- [\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s-1} E_{n+1,n} t^{s+1}, E_{n-1,n}] + [\hbar \sum_{s \ge 0} E_{1,n+1} t^{-s-1} E_{n+1,1} t^{s+1}, E_{n-1,n}] \\ &= -X_{n-1,1}^{+} - (\varepsilon + \frac{\hbar}{2}n) E_{n-1,n} + \hbar \sum_{s \ge 0} E_{n-1,n+1} t^{-s-1} E_{n+1,n} t^{s+1} \\ &= -(\Psi(X_{n-1,1}^{+}) + (\varepsilon + \frac{\hbar}{2}n) \Psi(X_{n-1,0}^{+})), \end{split}$$

where the first last equalities are due to the definition of Ψ and the second equality is due to (2.13).

3.4 Compatibility with (2.15)

By the definition of Ψ , we have

$$\begin{aligned} & [\Psi(\widetilde{H}_{n-1,1}), \Psi(X_{0,0}^{+})] \\ &= [\widetilde{H}_{n-1,1}, E_{n,1}t] - [\hbar \sum_{s \ge 0} E_{n-1,n+1}t^{-s-1}E_{n+1,n-1}t^{s+1}, E_{n,1}t] \\ &+ [\hbar \sum_{s \ge 0} E_{n,n+1}t^{-s-1}E_{n+1,n}t^{s+1}, E_{n,1}t]. \end{aligned}$$
(3.11)

By a direct computation, we obtain

$$- \left[\hbar \sum_{s \ge 0} E_{n-1,n+1} t^{-s-1} E_{n+1,n-1} t^{s+1}, E_{n,1} t\right] + \left[\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s-1} E_{n+1,n} t^{s+1}, E_{n,1} t\right]$$
$$= 0 + \hbar \sum_{s \ge 0} E_{n,n+1} t^{-s-1} E_{n+1,1} t^{s+2}$$
$$= \hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1} - \hbar X_{n,0}^+ X_{0,0}^+.$$
(3.12)

By (2.13) and (2.15), we have

$$[\widetilde{H}_{n-1,1}, E_{n,1}t] = [\widetilde{H}_{n-1,1}, [X_{n,0}^+, X_{0,0}^+]] = -[X_{n,1}^+, X_{0,0}^+]$$

$$= -[X_{n,0}^+, X_{0,1}^+] + \frac{\hbar}{2} \{X_{0,0}^+, X_{n,0}^+\} + (\varepsilon + \frac{\hbar}{2}(n+1))[X_{n,0}^+, X_{0,0}^+]$$

$$= -[X_{n,0}^+, X_{0,1}^+] + \hbar X_{n,0}^+ X_{0,0}^+ + \frac{\hbar}{2} [X_{0,0}^+, X_{n,0}^+] + (\varepsilon + \frac{\hbar}{2}(n+1))[X_{n,0}^+, X_{0,0}^+]$$
(3.13)

By applying (3.12) and (3.13) to (3.11), we have

$$\begin{aligned} & [\Psi(H_{n-1,1}), \Psi(X_{0,0}^+)] \\ &= -[X_{n,0}^+, X_{0,1}^+] + \hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1} + (\varepsilon + \frac{\hbar}{2} n) [X_{n,0}^+, X_{0,0}^+] \\ &= -(\Psi(X_{0,1}^+) - (\varepsilon + \frac{\hbar}{2} n) \Psi(X_{0,0}^+)), \end{aligned}$$

3.5 Compatibility with (2.16)

We only show the case that i = 0 and the sign is +. The other cases are proven in a similar way. Case 1: $i = 0, j \neq 0, n - 1$

By the definition of Ψ and the assumption that $j \neq 0, n-1$, we have

$$\begin{aligned} & [\Psi(X_{0,0}^+), \Psi(X_{j,1}^+)] \\ &= [[X_{n,0}^+, X_{0,0}^+], X_{j,1}^+] - [E_{n,1}t, \hbar \sum_{s \ge 0} E_{j,n+1}t^{-s-1}E_{n+1,j+1}t^{s+1}] \\ &= [[X_{n,0}^+, X_{0,0}^+], X_{j,1}^+] - \delta_{j,1}\hbar \sum_{s \ge 0} E_{n,n+1}t^{-s}E_{n+1,j+1}t^{s+1}. \end{aligned}$$

and

$$\begin{aligned} &[\Psi(X_{0,1}^{+}), \Psi(X_{j,0}^{+})] \\ &= [[X_{n,0}^{+}, X_{0,1}^{+}], X_{j,0}^{+}] - [\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1}, E_{j,j+1}] \\ &= [[X_{n,0}^{+}, X_{0,1}^{+}], X_{j,0}^{+}] - \delta_{j,1} \hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,2} t^{s+1}. \end{aligned}$$

Thus, by a direct computation, we have

$$[\Psi(X_{0,1}^+), \Psi(X_{j,0}^+)] - [\Psi(X_{0,0}^+), \Psi(X_{j,1}^+)]$$

= $[[X_{n,0}^+, X_{0,1}^+], X_{j,0}^+] - [[X_{n,0}^+, X_{0,0}^+], X_{j,1}^+].$

We obtain

$$\begin{split} & [[X_{n,0}^{+}, X_{0,1}^{+}], X_{j,0}^{+}] - [[X_{n,0}^{+}, X_{0,0}^{+}], X_{j,1}^{+}] \\ &= [X_{n,0}^{+}, ([X_{0,1}^{+}, X_{j,0}^{+}] - [X_{0,0}^{+}, X_{j,1}^{+}])] \\ &= \frac{\hbar}{2} a_{0,j} [X_{n,0}^{+}, \{X_{0,0}^{+}, X_{j,0}^{+}\}] \\ &= \frac{\hbar}{2} a_{0,j} \{ [X_{n,0}^{+}, X_{0,0}^{+}], X_{j,0}^{+} \} \\ &= \frac{\hbar}{2} a_{0,j} \{ \Psi(X_{0,0}^{+}), \Psi(X_{j,0}^{+}) \}, \end{split}$$
(3.14)

where the first equality is due to (2.19) and the assumption that $j \neq 0, n-1$, the second equality is due to (2.16) and the last equility is due to the assumption that $j \neq 0, n-1$.

Case 2: i = j = 0

In this case, (2.16) is equivalent to

$$[X_{0,1}^+, X_{0,0}^+] = \hbar (X_{0,0}^+)^2.$$
(3.15)

We will prove the compatibility with (3.15). By the definition of Ψ , we have

$$[\Psi(X_{0,1}^+), \Psi(X_{0,0}^+)]$$

$$= [[X_{n,0}^+, X_{0,1}^+], [X_{n,0}^+, X_{0,0}^+]] - [\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1}, E_{n,1} t]$$

$$= [[X_{n,0}^+, X_{0,1}^+], [X_{n,0}^+, X_{0,0}^+]] - 0.$$
(3.16)

By (2.18), we obtain

$$\begin{split} & [[X_{n,0}^+, X_{0,1}^+], [X_{n,0}^+, X_{0,0}^+]] \\ &= [X_{n,0}^+, [X_{0,1}^+, [X_{n,0}^+, X_{0,0}^+]]] + [[X_{n,0}^+, [X_{n,0}^+, X_{0,0}^+]], X_{0,1}^+] \\ &= [X_{n,0}^+, [X_{0,1}^+, [X_{n,0}^+, X_{0,0}^+]]] + 0, \end{split}$$
(3.17)

where the last equality is due to (2.18). We obtain

$$\begin{split} & [X_{0,1}^{+}, [X_{n,0}^{+}, X_{0,0}^{+}]] \\ &= \frac{1}{2} [X_{0,1}^{+}, [X_{n,0}^{+}, X_{0,0}^{+}]] + \frac{1}{2} ([[X_{0,1}^{+}, X_{n,0}^{+}], X_{0,0}^{+}] + [X_{n,0}^{+}, [X_{0,1}^{+}, X_{0,0}^{+}]]) \\ &= \frac{1}{2} ([X_{0,1}^{+}, [X_{n,0}^{+}, X_{0,0}^{+}]] + [[X_{0,1}^{+}, X_{n,0}^{+}], X_{0,0}^{+}]) + \frac{1}{2} [X_{n,0}^{+}, [X_{0,1}^{+}, X_{0,0}^{+}]] \\ &= 0 + \frac{\hbar}{2} [X_{n,0}^{+}, (X_{0,0}^{+})^{2}] \\ &= \frac{\hbar}{2} \{ [X_{n,0}^{+}, X_{0,0}^{+}], X_{0,0}^{+} \}, \end{split}$$
(3.18)

where the third equality is due to (2.20) and (3.15). By applying (3.17) and (3.18) to (3.16), we obtain

$$\begin{split} & [\Psi(X_{0,1}^+), \Psi(X_{0,0}^+)] \\ &= [X_{n,0}^+, \frac{\hbar}{2} \{ [X_{n,0}^+, X_{0,0}^+], X_{0,0}^+] \} \\ &= \frac{\hbar}{2} \{ [X_{n,0}^+, X_{0,0}^+], [X_{n,0}^+, X_{0,0}^+] \} = \hbar (\Psi(X_{0,0}^+))^2 \end{split}$$

by (2.18).

3.6 Compatibility with (2.17)

We only show the + case. The – case can be proven in a similar way. By the definition of Ψ , we have

$$[\Psi(X_{0,0}^{+}), \Psi(X_{n-1,1}^{+})] = [[X_{n,0}^{+}, X_{0,0}^{+}], X_{n-1,1}^{+}] - [E_{n,1}t, \hbar \sum_{s \ge 0} E_{n-1,n+1}t^{-s-1}E_{n+1,n}t^{s+1}] = [[X_{n,0}^{+}, X_{0,0}^{+}], X_{n-1,1}^{+}] + \hbar \sum_{s \ge 0} E_{n-1,n+1}t^{-s-1}E_{n+1,1}t^{s+2}$$
(3.19)

and

$$[\Psi(X_{0,1}^+), \Psi(X_{n-1,0}^+)]$$
(3.20)

$$= [[X_{n,0}^+, X_{0,1}^+], X_{n-1,0}^+] - [\hbar \sum_{s \ge 0} E_{n,n+1} t^{-s} E_{n+1,1} t^{s+1}, E_{n-1,n}]$$
(3.21)

$$= [[X_{n,0}^+, X_{0,1}^+], X_{n-1,0}^+] + \hbar \sum_{s \ge 0} E_{n-1,n+1} t^{-s} E_{n+1,1} t^{s+1}.$$
(3.22)

By comparing the right hand sides of (3.19) and (3.22), we have

$$[\Psi(X_{0,1}^+),\Psi(X_{n-1,0}^+)]-[\Psi(X_{0,0}^+),\Psi(X_{n-1,1}^+)]$$

$$= [[X_{n,0}^+, X_{0,1}^+], X_{n-1,0}^+] + \hbar E_{n-1,n+1} E_{n+1,1} t - [[X_{n,0}^+, X_{0,0}^+], X_{n-1,1}^+].$$
(3.23)

We obtain

$$\begin{split} & [[X_{n,0}^{+}, X_{0,1}^{+}], X_{n-1,0}^{+}] \\ &= [[X_{n,1}^{+}, X_{0,0}^{+}] + \frac{\hbar}{2} \{X_{0,0}^{+}, X_{n,0}^{+}\} - (\varepsilon + \frac{\hbar}{2}(n+1))[X_{0,0}^{+}, X_{n-1,0}^{+}], X_{n-1,0}^{+}] \\ &= [[X_{n,1}^{+}, X_{0,0}^{+}], X_{n-1,0}^{+}] + \frac{\hbar}{2} \{X_{0,0}^{+}, [X_{n,0}^{+}, X_{n-1,0}^{+}]\} - (\varepsilon + \frac{\hbar}{2}(n+1))[[X_{0,0}^{+}, X_{n,0}^{+}], X_{n-1,0}^{+}] \\ &= [[X_{n,1}^{+}, X_{0,0}^{+}], X_{n-1,0}^{+}] - \frac{\hbar}{2} \{E_{n+1,1}t, E_{n-1,n+1}\} - (\varepsilon + \frac{\hbar}{2}(n+1))E_{n-1,1}t, \end{split}$$
(3.24)

where the second equality is due to (2.17). By the similar way to (3.14), we have

$$[[X_{n,1}^+, X_{0,0}^+], X_{n-1,0}^+] - [[X_{n,0}^+, X_{0,0}^+], X_{n-1,1}^+]$$

= $-\frac{\hbar}{2} \{ [X_{n,0}^+, X_{0,0}^+], X_{n-1,0}^+ \}.$ (3.25)

By applying (3.25) to (3.23), we have

$$\begin{split} & [\Psi(X_{0,1}^{+}), \Psi(X_{n-1,0}^{+})] - [\Psi(X_{0,0}^{+}), \Psi(X_{n-1,1}^{+})] \\ &= -\frac{\hbar}{2} \{ [X_{n,0}^{+}, X_{0,0}^{+}], X_{n-1,0}^{+} \} - \frac{\hbar}{2} \{ E_{n+1,1}t, E_{n-1,n+1} \} \\ &- (\varepsilon + \frac{\hbar}{2}(n+1))E_{n-1,1}t + \hbar E_{n-1,n+1}E_{n+1,1}t \\ &= -\frac{\hbar}{2} \{ [X_{n,0}^{+}, X_{0,0}^{+}], X_{n-1,0}^{+} \} - (\varepsilon + \frac{\hbar}{2}n)E_{n-1,1}t \\ &= -\frac{\hbar}{2} \{ \Psi(X_{0,0}^{+}), \Psi(X_{n-1,0}^{+}) \} + (\varepsilon + \frac{\hbar}{2}n) [\Psi(X_{0,0}^{+}), \Psi(X_{n-1,0}^{+})]. \end{split}$$

3.7 Compatibility with (2.9)

By the definition of $\Psi(H_{i,1})$, Ψ is compatible with (2.9) in the case that $r + s \leq 1$. Thus, it is enough to prove $[\Psi(\tilde{H}_{i,1}), \Psi(\tilde{H}_{j,1})] = 0$. We only show the case that $i, j \neq 0$. The case that i = 0or j = 0 can be proven in a similar way. By the definition of Ψ , we have

$$[\Psi(\tilde{H}_{i,1}), \Psi(\tilde{H}_{j,1})] = [\tilde{H}_{i,1}, \tilde{H}_{j,1}] - [\tilde{H}_{i,1}, P_j - P_{j+1}] + [\tilde{H}_{j,1}, P_i - P_{i+1}] + [P_i - P_{i+1}, P_j - P_{j+1}],$$

where $P_i = \hbar \sum_{s \ge 0} E_{i,n+1} t^{-s-1} E_{n+1,i} t^{s+1}$. By the definition of $J(h_i)$, we have

$$- [\tilde{H}_{i,1}, P_j - P_{j+1}] + [\tilde{H}_{j,1}, P_i - P_{i+1}]$$

= -[J(h_i), P_j - P_{j+1}] + [J(h_j), P_i - P_{i+1}] + [A_i - A_{i+1}, P_j - P_{j+1}] - [A_j - A_{j+1}, P_j - P_{j+1}]. (3.26)

By Lemma 2.22 and the definition of P_i , we find that the sum of the first two terms of the right hand side of (3.26) are equal to zero. Thus, it is enough to show that

$$[A_i, P_j] - [A_j, P_i] + [P_i, P_j] = 0.$$
(3.27)

By a direct computation, we obtain

$$[P_i, P_j] = \hbar^2 \sum_{s,v \ge 0} E_{j,n+1} t^{-v-1} E_{i,j} t^{v-s} E_{n+1,i} t^{s+1} - \hbar^2 \sum_{s,v \ge 0} E_{i,n+1} t^{-s-1} E_{j,i} t^{s-v} E_{n+1,j} t^{v+1}.$$
(3.28)

By the definition of A_i , we can divide $[A_i, P_j]$ into four pieces:

$$[A_{i}, P_{j}] = \left[\frac{\hbar}{2} \sum_{\substack{s \ge 0 \\ u > i}} E_{u,i} t^{-s} E_{i,u} t^{s}, P_{j}\right] - \left[\frac{\hbar}{2} \sum_{\substack{s \ge 0 \\ i > u}} E_{i,u} t^{-s} E_{u,i} t^{s}, P_{j}\right] + \left[\frac{\hbar}{2} \sum_{\substack{s \ge 0 \\ u < i}} E_{u,i} t^{-s-1} E_{i,u} t^{s+1}, P_{j}\right] - \left[\frac{\hbar}{2} \sum_{\substack{s \ge 0 \\ i < u}} E_{i,u} t^{-s-1} E_{u,i} t^{s+1}, P_{j}\right].$$
(3.29)

We compute the right hand side of (3.29). By a direct computation, we obtain

$$\begin{split} & \left[\frac{\hbar}{2}\sum_{\substack{s>2\\v>1}} E_{u,i}t^{-s}E_{i,u}t^{s}, P_{j}\right] \\ &= \delta(j>i)\frac{\hbar^{2}}{2}\sum_{s,v\geq0} E_{j,i}t^{-s}E_{i,n+1}t^{s-v-1}E_{n+1,j}t^{v+1} \\ &+ \frac{\hbar^{2}}{2}\sum_{s,v\geq0} E_{n+1,i}t^{-s}E_{j,n+1}t^{-v-1}E_{i,j}t^{s+v+1} - \frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{u,i}t^{-s}E_{j,n+1}t^{-v-1}E_{n+1,u}t^{s+v+1} \\ &+ \frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{u,n+1}t^{-s-v-1}E_{n+1,j}t^{v+1}E_{i,u}t^{s} - \frac{\hbar^{2}}{2}\sum_{s,v\geq0} E_{j,i}t^{-s-v-1}E_{n+1,j}t^{v+1}E_{i,n+1}t^{s} \\ &- \delta(j>i)\frac{\hbar^{2}}{2}\sum_{s,v\geq0} E_{j,n+1}t^{-v-1}E_{n+1,i}t^{v+1-s}E_{i,j}t^{s}, \end{split} \tag{3.30} \\ &- \left[\frac{\hbar}{2}\sum_{s,v\geq0} \delta_{i,j}E_{i,u}t^{-s}E_{u,i}t^{s}, P_{j}\right] \\ &= -\frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{i,u}t^{-s}E_{u,i}t^{s}, P_{j}\right] \\ &= -\frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{i,u}t^{-s}E_{u,n+1}t^{s-v-1}E_{n+1,j}t^{v+1} \\ &+ \delta(i>j)\frac{\hbar^{2}}{2}\sum_{s,v\geq0} E_{i,n+1}t^{-s-v-1}E_{n+1,j}t^{v+1}E_{j,i}t^{s} \\ &+ \frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{j,n+1}t^{-v-1}E_{n+1,j}t^{v+1}E_{j,i}t^{s} \\ &+ \frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{j,n+1}t^{-v-1}E_{n+1,j}t^{v+1}E_{j,i}t^{s} \\ &+ \frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{j,n+1}t^{-s-v}E_{n+1,j}t^{v+1} \\ &+ \frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{u,i}t^{-s-1}E_{i,n+1}t^{s-v}E_{n+1,j}t^{v+1} \\ &+ \frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{u,i}t^{-s-1}E_{j,n+1}t^{-v-1}E_{n+1,i}t^{s+v+1} \\ &+ \frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{u,i}t^{-s-1}E_{j,n+1}t^{-v-1}E_{n+1,j}t^{v+1} \\ &+ \frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{u,i+1}t^{-s-v-2}E_{n+1,j}t^{v+1}E_{i,u}t^{s+v} \\ &+ \frac{\hbar^{2}}{2}\sum_{s,v\geq0} \delta_{i,j}E_{u,n+1}t^{-s-v-2}E_{n+1,j}t^{v+1}E_{i,u}t^{s+1} \\ &- \delta(j$$

$$-\left[\frac{\hbar}{2}\sum_{\substack{s\geq0\\i

$$=-\frac{\hbar^{2}}{2}\sum_{s,v\geq0}\delta_{i,j}E_{i,u}t^{-s-1}E_{u,n+1}t^{s-v}E_{n+1,j}t^{v+1} + \frac{\hbar^{2}}{2}\sum_{s,v\geq0}E_{i,n+1}t^{-s}E_{j,i}t^{s-v-1}E_{n+1,j}t^{v+1}$$

$$+\delta(i

$$-\delta(i

$$-\frac{\hbar^{2}}{2}\sum_{s,v\geq0}E_{j,n+1}t^{-v-1}E_{i,j}t^{v-s}E_{n+1,i}t^{s+1} + \frac{\hbar^{2}}{2}\sum_{s,v\geq0}\delta_{i,j}E_{j,n+1}t^{-v-1}E_{n+1,u}t^{v-s}E_{u,i}t^{s+1}.$$
(3.33)$$$$$$

Here after, we denote (equation number)_{*a,b*} means that the value of (equation number) at i = a, j = b. Moreover, we denote the *r*-th term of the right hand side of (equation number) by (equation number)_{*r*}.

By the definition of A_i , we have

$$[A_i, P_j] - [A_j, P_i] = (3.30)_{i,j} + (3.31)_{i,j} + (3.32)_{i,j} + (3.33)_{i,j} - (3.30)_{j,i} - (3.31)_{j,i} - (3.32)_{j,i} - (3.33)_{j,i}.$$
(3.34)

By the definition, we find that the terms containing $\delta_{i,j}$ in the right hand side of (3.34) vanish. By a direct computation, we can compute the sum of the terms containing $\delta(j > i)$ in the right hand side of (3.34):

$$(3.30)_{i,j,1} + (3.30)_{i,j,6} - (3.31)_{j,i,2} - (3.31)_{j,i,3} - (3.32)_{j,i,1} - (3.32)_{j,i,4} + (3.33)_{i,j,3} + (3.33)_{i,j,4} = \delta(j > i) \frac{\hbar^2}{2} \sum_{s,v \ge 0} E_{j,i} t^{-s-v-1} E_{i,n+1} t^s E_{n+1,j} t^{v+1} - \delta(j > i) \frac{\hbar^2}{2} \sum_{s,v \ge 0} E_{j,n+1} t^{-v-1} E_{n+1,i} t^{-s} E_{i,j} t^{s+v+1} - \delta(i < j) \frac{\hbar^2}{2} \sum_{s,v \ge 0} E_{i,j} t^{-s-v-1} E_{j,n+1} t^s E_{n+1,i} t^{v+1} + \delta(i < j) \frac{\hbar^2}{2} \sum_{s,v \ge 0} E_{i,n+1} t^{-v-1} E_{n+1,j} t^{-s} E_{j,i} t^{s+v+1}.$$
(3.35)

Similarly, we can compute the sum of the terms containing $\delta(j < i)$ in the right hand side of (3.34):

$$\begin{aligned} &-(3.30)_{j,i,1} - (3.30)_{j,i,6} + (3.31)_{i,j,2} + (3.31)_{i,j,3} \\ &+ (3.32)_{i,j,1} + (3.32)_{i,j,4} - (3.33)_{j,i3} - (3.33)_{j,i,4} \\ &= -\delta(i > j) \frac{\hbar^2}{2} \sum_{s,v \ge 0} E_{i,j} t^{-s-v-1} E_{j,n+1} t^s E_{n+1,i} t^{v+1} \\ &+ \delta(i < j) \frac{\hbar^2}{2} \sum_{s,v \ge 0} E_{i,n+1} t^{-v-1} E_{n+1,j} t^{-s} E_{j,i} t^{s+v+1} \\ &+ \delta(j < i) \frac{\hbar^2}{2} \sum_{s,v \ge 0} E_{j,i} t^{-s-v-1} E_{i,n+1} t^s E_{n+1,j} t^{v+1} \end{aligned}$$

$$-\delta(j
(3.36)$$

By a direct computation, we obtain

$$(3.35)_2 + (3.36)_4 + (3.30)_{i,j,2}$$

= $\delta(i \neq j) \frac{\hbar^2}{2} \sum_{s,v \ge 0} [E_{n+1,i}t^{-s}, E_{j,n+1}t^{-v-1}]E_{i,j}t^{s+v+1} = 0.$

Similarly, we have

$$(3.35)_3 + (3.36)_1 - (3.30)_{j,i,5} = 0.$$

Then, we find that $[A_i, P_j] - [A_j, P_i] + [P_i, P_j]$ is equal to the sum of the following four terms:

$$\begin{aligned} &(3.35)_1 + (3.36)_3 + (3.30)_{i,j,5}, \\ &(3.35)_4 + (3.36)_2 - (3.30)_{j,i,2}, \\ &(3.28)_1 - (3.33)_{j,i,2} + (3.33)_{i,j,5}, \\ &(3.28)_2 + (3.33)_{i,j,2} - (3.33)_{j,i,5}. \end{aligned}$$

By a direct computation, these four sums are equal to zero. We complete the proof of the compatibility with (2.9).

4 The rectangular W-algebra $\mathcal{W}^k(\mathfrak{gl}(2n),(2^n))$

Let us set some notations of a vertex algebra. For a vertex algebra V, we denote the generating field associated with $v \in V$ by $v(z) = \sum_{n \in \mathbb{Z}} v_{(n)} z^{-n-1}$. We also denote the OPE of V by

$$u(z)v(w) \sim \sum_{s \ge 0} \frac{(u_{(s)}v)(w)}{(z-w)^{s+1}}$$

for all $u, v \in V$. We denote the vacuum vector (resp. the translation operator) by $|0\rangle$ (resp. ∂).

We denote the universal affine vertex algebra associated with a finite dimensional Lie algebra \mathfrak{g} and its inner product κ by $V^{\kappa}(\mathfrak{g})$. By the PBW theorem, we can identify $V^{\kappa}(\mathfrak{g})$ with $U(t^{-1}\mathfrak{g}[t^{-1}])$. In order to simplify the notation, here after, we denote the generating field $(ut^{-1})(z)$ as u(z). By the definition of $V^{\kappa}(\mathfrak{g})$, the generating fields u(z) and v(z) satisfy the OPE

$$u(z)v(w) \sim \frac{[u,v](w)}{z-w} + \frac{\kappa(u,v)}{(z-w)^2}$$
(4.1)

for all $u, v \in \mathfrak{g}$. For a matrix unit $e_{i,j}$, we denote $e_{i,j}t^{-m} \in U(t^{-1}\mathfrak{g}[t^{-1}]) = V^{\kappa}(\mathfrak{g})$ by $e_{i,j}[-m]$.

The W-algebra $\mathcal{W}^k(\mathfrak{g}, f)$ is a vertex algebra associated with the reductive Lie algebra \mathfrak{g} and a nilpotent element f. We call the W-algebra associated with $\mathfrak{gl}(ln)$ and a nilpotent element of type (l^n) the rectangular W-algebra and denote it by $\mathcal{W}^k(\mathfrak{gl}(ln), (l^n))$. In this article, we only consider the case that l = 2. The nilpotent element is

$$f = \sum_{u=1}^{n} e_{n+u,u}.$$

By Theorem 3.1 and Corollary 3.2 in [1], we obtain the following theorem.

Theorem 4.2 (Theorem 3.1 and Corollary 3.2 in [1]). 1. We define the inner product on $\mathfrak{gl}(n)$ by

$$\kappa(e_{i,j}, e_{p,q}) = \delta_{j,p} \delta_{i,q} \alpha + \delta_{i,j} \delta_{p,q},$$

where $\alpha = k + n$. Then, the rectangular W-algebra $\mathcal{W}^k(\mathfrak{gl}(2n), (2^n))$ can be realized as a vertex subalgebra of $V^{\kappa}(\mathfrak{gl}(n))^{\otimes 2}$.

2. The W-algebra $\mathcal{W}^k(\mathfrak{g}, f)$ has the following strong generators:

$$\begin{split} W_{i,j}^{(1)} &= e_{i,j}^{(1)}[-1] + e_{i,j}^{(2)}[-1], \\ W_{i,j}^{(2)} &= \sum_{1 \le u \le n} e_{u,j}^{(1)}[-1] e_{i,u}^{(2)}[-1] - \alpha e_{i,j}^{(1)}[-1] \end{split}$$

for $1 \leq i, j \leq n$, where $e_{i,j}^{(1)}[-1] = e_{i,j}[-1] \otimes 1 \in V^{\kappa}(\mathfrak{gl}(n))^{\otimes 2}$ and $e_{i,j}^{(2)}[-1] = 1 \otimes e_{i,j}[-1] \in V^{\kappa}(\mathfrak{gl}(n))^{\otimes 2}$.

Remark 4.3. We note that $W_{i,j}^{(2)}$ in this article is different from the one in [1]. We shift $W_{i,j}^{(2)}$ in this article is corresponding to $W_{j,i}^{(2)} - \alpha \partial W_{j,i}^{(1)}$ in [1].

We can compute all OPEs of these strong generators. The computation can be done by using the computation process in the appendix of [17].

Theorem 4.4. *1. The following equations hold:*

$$\begin{split} (W^{(1)}_{p,q})_{(0)}W^{(1)}_{i,j} &= \delta_{q,i}W^{(1)}_{p,j} - \delta_{p,j}W^{(1)}_{i,q}, \\ (W^{(1)}_{p,q})_{(1)}W^{(1)}_{i,j} &= 2\delta_{q,i}\delta_{p,j}\alpha|0\rangle + \delta_{p,q}\delta_{i,j}(1+1)|0\rangle, \\ (W^{(1)}_{p,q})_{(s)}W^{(1)}_{i,j} &= 0 \ for \ all \ s > 1. \end{split}$$

2. The following four equations hold:

$$\begin{split} (W_{p,q}^{(1)})_{(0)}W_{i,j}^{(2)} &= -\delta_{p,j}W_{i,q}^{(2)} + \delta_{i,q}W_{p,j}^{(2)}, \\ (W_{p,q}^{(1)})_{(1)}W_{i,j}^{(2)} &= \delta_{p,j}\alpha W_{i,q}^{(1)} + \delta_{p,q}W_{i,j}^{(1)}, \\ (W_{p,q}^{(1)})_{(2)}W_{i,j}^{(2)} &= -2\delta_{q,i}\delta_{p,j}\alpha^2|0\rangle - 2\delta_{p,q}\delta_{i,j}\alpha|0\rangle, \\ (W_{p,q}^{(1)})_{(s)}W_{i,j}^{(2)} &= 0 \text{ for all } s > 2. \end{split}$$

3. The following relations hold:

$$(W_{p,q}^{(2)})_{(0)}W_{i,j}^{(2)} = (W_{p,j}^{(2)})_{(-1)}W_{i,q}^{(1)} - (W_{p,j}^{(1)})_{(-1)}W_{i,q}^{(2)} + \alpha(\partial W_{p,j}^{(1)})_{(-1)}W_{i,q}^{(1)} + (\partial W_{p,q}^{(1)})_{(-1)}W_{i,j}^{(1)} - \delta_{q,i}\alpha\partial W_{p,j}^{(2)} - \delta_{i,q}\frac{2\alpha^2 + 1}{2}\partial^2 W_{p,j}^{(1)} - \delta_{i,j}\partial W_{p,q}^{(2)} - \frac{3}{2}\delta_{i,j}\alpha\partial^2 W_{p,q}^{(1)},$$

$$(W_{p,q}^{(2)})_{(1)}W_{i,j}^{(2)}$$

$$(W_{p,q}^{(1)})_{(1)}W_{i,j}^{(1)}$$

$$(W_{p,q}^{(1)})_{(1)}W_{i,j}^{(1)}$$

$$(W_{p,q}^{(1)})_{(1)}W_{i,j}^{(1)}$$

$$(W_{p,q}^{(1)})_{(1)}W_{i,j}^{(1)}$$

$$(4.5)$$

$$= \alpha(W_{p,j}^{(1)})_{(-1)}W_{i,q}^{(1)} + (W_{p,q}^{(1)})_{(-1)}W_{i,j}^{(1)} - \delta_{q,i}\alpha W_{p,j}^{(2)} - 2\delta_{q,i}\alpha^2 \partial W_{p,j}^{(1)} - \delta_{p,j}\alpha W_{i,q}^{(2)} - \delta_{i,j}(1)W_{p,q}^{(2)} - 2\delta_{i,j}\alpha \partial W_{p,q}^{(1)} - \delta_{p,q}W_{i,j}^{(2)}, \quad (4.6)$$
$$(W_{p,q}^{(2)})_{(2)}W_{i,j}^{(2)}$$

$$= \delta_{p,j} \alpha (2\alpha - 1) W_{i,q}^{(1)} - \delta_{i,j} \alpha W_{p,q}^{(1)} - \delta_{i,q} \alpha (2\alpha - 1) W_{i,q}^{(1)} + \delta_{p,q} \alpha W_{i,j}^{(1)}, \qquad (4.7)$$

$$(W_{p,q}^{(2)})_{(3)} W_{i,j}^{(2)}$$

$$= (1 + \alpha^2 - 6\alpha^2)\delta_{p,q}\delta_{i,j}|0\rangle + (2\alpha - 6\alpha^3)\delta_{p,j}\delta_{i,q}|0\rangle,$$

$$(4.8)$$

$$(W_{p,q}^{(2)})_{(s)}W_{i,j}^{(2)} = 0 \text{ for all } s > 0.$$

$$(4.9)$$

We note that these OPEs are only dependent on α and independent of n. Thus, by Theorem 4.4, we find the following embedding:

$$\mathcal{W}^{k+1}(\mathfrak{gl}(2n), (2^n)) \to \mathcal{W}^k(\mathfrak{gl}(2(n+1)), (2^{n+1})), \ W_{i,j}^{(u)} \mapsto W_{i,j}^{(u)}$$

5 The relationship between homomorphism Ψ and the rectangular W-algebra $\mathcal{W}^k(\mathfrak{gl}(2n), (2^n))$

Let us recall the definition of a universal enveloping algebra of a vertex algebra in the sense of [10] and [14]. For any vertex algebra V, let L(V) be the Borchards Lie algebra, that is,

$$L(V) = V \otimes \mathbb{C}[t, t^{-1}] / \operatorname{Im}(\partial \otimes \operatorname{id} + \operatorname{id} \otimes \frac{d}{dt}),$$
(5.1)

where the commutation relation is given by

$$[ut^a, vt^b] = \sum_{r \ge 0} \binom{a}{r} (u_{(r)}v)t^{a+b-r}$$

for all $u, v \in V$ and $a, b \in \mathbb{Z}$. Now, we define the universal enveloping algebra of V.

Definition 5.2 (Section 6 in [14]). We set $\mathcal{U}(V)$ as the quotient algebra of the standard degreewise completion of the universal enveloping algebra of L(V) by the completion of the two-sided ideal generated by

$$(u_{(a)}v)t^{b} - \sum_{i\geq 0} \binom{a}{i} (-1)^{i} (ut^{a-i}vt^{b+i} - (-1)^{a}vt^{a+b-i}ut^{i}),$$
(5.3)

$$|0\rangle t^{-1} - 1.$$
 (5.4)

We call $\mathcal{U}(V)$ the universal enveloping algebra of V.

In [19] Theorem 5.1, the author constructed a surjective homomorphism from the affine super Yangian to the universal enveloping algebra of a rectangular W-superalgebra. Setting m = n, n = 0 and l = 2, we obtain the following theorem.

Theorem 5.5. Suppose that $\hbar = -1$ and $\varepsilon = -\alpha$. There exists an algebra homomorphism

$$\Phi^n \colon Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n)) \to \mathcal{U}(\mathcal{W}^k(\mathfrak{gl}(2n),(2^n)))$$

determined by

$$\Phi^{n}(H_{i,0}) = \begin{cases} W_{n,n}^{(1)} - W_{1,1}^{(1)} + 2\alpha & \text{if } i = 0, \\ W_{i,i}^{(1)} - W_{i+1,i+1}^{(1)} & \text{if } i \neq 0, \end{cases}$$

$$\Phi^{n}(X_{i,0}^{+}) = \begin{cases} W_{n,1}^{(1)}t & \text{if } i = 0, \\ W_{i,i+1}^{(1)} & \text{if } i \neq 0, \end{cases} \quad \Phi^{n}(X_{i,0}^{-}) = \begin{cases} W_{1,n}^{(1)}t^{-1} & \text{if } i = 0, \\ W_{i+1,i}^{(1)} & \text{if } i \neq 0, \end{cases}$$

$$\Phi^{n}(H_{i,1}) = \begin{cases} W_{n,n}^{(2)}t - W_{1,1}^{(2)}t + \alpha W_{n,n}^{(1)} - 2\alpha \Phi^{n}(H_{0,0}) + W_{n,n}^{(1)}(W_{1,1}^{(1)} - 2\alpha) \\ -\sum_{s \ge 0} \sum_{u=1}^{n} W_{n,u}^{(1)}t^{-s}W_{u,n}^{(1)}t^{s} + \sum_{s \ge 0} \sum_{u=1}^{n} W_{1,u}^{(1)}t^{-s-1}W_{u,1}^{(1)}t^{s+1}, \\ if i = 0, \end{cases}$$

$$\Phi^{n}(H_{i,1}) = \begin{cases} W_{i,i}^{(2)}t - W_{i+1,i+1}^{(2)}t + \frac{i}{2}\Phi^{n}(H_{i,0}) + W_{i,i}^{(1)}W_{i+1,i+1}^{(1)} \\ -\sum_{s \ge 0} \sum_{u=1}^{i} W_{i,u}^{(1)}t^{-s}W_{u,i}^{(1)}t^{s} - \sum_{s \ge 0} \sum_{u=i+1}^{n} W_{i,u}^{(1)}t^{-s-1}W_{u,i}^{(1)}t^{s+1} \\ +\sum_{s \ge 0} \sum_{u=1}^{i} W_{i+1,u}^{(1)}t^{-s}W_{u,i+1}^{(1)}t^{s} + \sum_{s \ge 0} \sum_{u=i+1}^{n} W_{i+1,u}^{(1)}t^{-s-1}W_{u,i+1}^{(1)}t^{s+1} \\ +\sum_{s \ge 0} \sum_{u=1}^{i} W_{i+1,u}^{(1)}t^{-s}W_{u,i+1}^{(1)}t^{s} + \sum_{s \ge 0} \sum_{u=i+1}^{n} W_{i+1,u}^{(1)}t^{-s-1}W_{u,i+1}^{(1)}t^{s+1} \\ i \neq 0, \end{cases}$$

$$\Phi^{n}(X_{i,1}^{+}) = \begin{cases} W_{n,1}^{(2)}t^{2} + \alpha W_{n,1}^{(1)}t - 2\alpha \Phi^{n}(X_{0,0}^{+}) - \sum_{s \ge 0} \sum_{u=1}^{n} W_{n,u}^{(1)}t^{-s}W_{u,1}^{(1)}t^{s+1} & \text{if } i = 0, \\ W_{i,i+1}^{(2)}t + \frac{i}{2}\Phi^{n}(X_{i,0}^{+}) & -\sum_{s \ge 0} \sum_{u=1}^{i} W_{i,u}^{(1)}t^{-s}W_{u,i+1}^{(1)}t^{s} - \sum_{s \ge 0} \sum_{u=i+1}^{n} W_{i,u}^{(1)}t^{-s-1}W_{u,i+1}^{(1)}t^{s+1} & \text{if } i \neq 0, \end{cases}$$

$$\Phi^{n}(X_{i,1}^{-}) = \begin{cases} W_{1,n}^{(2)} - 2\alpha \Phi^{n}(X_{0,0}^{-}) - \sum_{s \ge 0} \sum_{u=1}^{n} W_{1,u}^{(1)} t^{-s-1} W_{u,n}^{(1)} t^{s}, & \text{if } i = 0, \\ \\ W_{i+1,i}^{(2)} t + \frac{i}{2} \Phi^{n}(X_{i,0}^{-}) & \\ - \sum_{s \ge 0} \sum_{u=1}^{i} W_{i+1,u}^{(1)} t^{-s} W_{u,i}^{(1)} t^{s} - \sum_{s \ge 0} \sum_{u=i+1}^{n} W_{i+1,u}^{(1)} t^{-s-1} W_{u,i}^{(1)} t^{s+1} & \\ & \text{if } i \neq 0. \end{cases}$$

By the definition of Ψ^n , we obtain the following theorem.

Theorem 5.6. Suppose that $\hbar = -1$ and $\varepsilon = -k - (n+1)$. We obtain the following commutative diagram:

 $\Phi^{n+1} \circ \Psi = \iota \circ \Phi^n.$

Proof. The affine Yangian is generated by $X_{i,0}^{\pm}$ for $0 \le i \le n-1$ and $X_{j,1}^{+}$ for $1 \le j \le n-1$ by the defining relations (2.9)-(2.18). Thus, it is enough to show that

$$\Phi^{n+1} \circ \Psi(X_{i,0}^{\pm}) = \iota \circ \Phi^n(X_{i,0}^{\pm}), \tag{5.7}$$

$$\Phi^{n+1} \circ \Psi(X_{j,1}^+) = \iota \circ \Phi^n(X_{j,1}^+).$$
(5.8)

By the definition of Φ^n , ι and Ψ , (5.7) holds. By the definition of Φ^n and Ψ , we have

$$\Phi^{n+1} \circ \Psi(X_{j,1}^+)$$

= $\Phi^{n+1}(X_{j,1}^+ + \sum_{s \ge 0} E_{j,n+1}t^{-s-1}E_{n+1,j+1}t^{s+1})$
= $W_{j,j+1}^{(2)}t + \frac{i}{2}\Phi^{n+1}(X_{j,0}^+)$

$$\begin{split} &-\sum_{s\geq 0}\sum_{u=1}^{j}W_{j,u}^{(1)}t^{-s}W_{u,j+1}^{(1)}t^{s}-\sum_{s\geq 0}\sum_{u=j+1}^{n+1}W_{j,u}^{(1)}t^{-s-1}W_{u,j+1}^{(1)}t^{s+1} \\ &+\sum_{s\geq 0}W_{j,n+1}^{(1)}t^{-s-1}W_{n+1,j+1}^{(1)}t^{s+1} \\ &=W_{j,j+1}^{(2)}t+\frac{i}{2}\Phi^{n+1}(X_{j,0}^{+}) \\ &-\sum_{s\geq 0}\sum_{u=1}^{j}W_{j,u}^{(1)}t^{-s}W_{u,j+1}^{(1)}t^{s}-\sum_{s\geq 0}\sum_{u=j+1}^{n}W_{j,u}^{(1)}t^{-s-1}W_{u,j+1}^{(1)}t^{s+1}. \end{split}$$

On the other hand, by the definition of Φ^n and ι , we obtain

$$\iota \circ \Phi^{n}(X_{j,1}^{+}) = W_{j,j+1}^{(2)}t + \frac{i}{2}\Phi^{n+1}(X_{j,0}^{+}) - \sum_{s \ge 0}\sum_{u=1}^{j}W_{j,u}^{(1)}t^{-s}W_{u,j+1}^{(1)}t^{s} - \sum_{s \ge 0}\sum_{u=j+1}^{n}W_{j,u}^{(1)}t^{-s-1}W_{u,j+1}^{(1)}t^{s+1}$$

Thus, the relation (5.8) holds.

Acknowledgement

The author expresses his sincere thanks to Thomas Creutzig, Nicolas Guay, Shigenori Nakatsuka, Tomoyuki Arakawa, Naoki Genra and Junichi Matsuzawa for the helpful discussion.

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Declarations

Funding

This work was supported by JSPS Overseas Research Fellowships, Grant Number JP2360303.

Conflicts of interests/Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

References

- T. Arakawa and A. Molev. Explicit generators in rectangular affine W-algebras of type A. Lett. Math. Phys., 107(1):47–59, 2017, https://doi.org/10.1007/s11005-016-0890-2.
- [2] S. I. Boyarchenko and S. Z. Levendorskii. On affine Yangians. Lett. Math. Phys., 32(4):269–274, 1994, https://doi.org/10.1007/BF00761137.
- J. Brundan and A. Kleshchev. Shifted Yangians and finite W-algebras. Adv. Math., 200(1):136–195, 2006, https://doi.org/10.1016/j.aim.2004.11.004.

- [4] T. Creutzig, D. E. Diaconescu, and M. Ma. Affine Laumon spaces and iterated W-algebras. Comm. Math. Phys., 402(3):2133–2168, 2023.
- [5] A. De Sole, V. G. Kac, and D. Valeri. A Lax type operator for quantum finite W-algebras. Selecta Math. (N.S.), 24(5):4617–4657, 2018.
- [6] V. G. Drinfeld. Hopf algebras and the quantum Yang-Baxter equation. Dokl. Akad. Nauk SSSR, 283(5):1060-1064, 1985, https://doi.org/10.1142/9789812798336.0013.
- [7] V. G. Drinfeld. A new realization of Yangians and of quantum affine algebras. Dokl. Akad. Nauk SSSR, 296(1):13–17, 1987.
- [8] B. Feigin, M. Finkelberg, A. Negut, and L. Rybnikov. Yangians and cohomology rings of Laumon spaces. Selecta Math. (N.S.), 17(3):573-607, 2011, https://doi.org/10.1007/s00029-011-0059-x.
- [9] M. Finkelberg and A. Tsymbaliuk. Multiplicative slices, relativistic Toda and shifted quantum affine algebras. In *Representations and nilpotent orbits of Lie algebraic systems*, volume 330 of *Progr. Math.*, pages 133–304. Birkhäuser/Springer, Cham, 2019.
- [10] I. B. Frenkel and Y. Zhu. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J., 66(1):123–168, 1992, https://doi.org/10.1215/S0012-7094-92-06604-X.
- [11] N. Guay. Cherednik algebras and Yangians. Int. Math. Res. Not., (57):3551-3593, 2005, https://doi.org/10.1155/IMRN.2005.3551.
- [12] N. Guay. Affine Yangians and deformed double current algebras in type A. Adv. Math., 211(2):436–484, https://doi.org/10.1016/j.aim.2006.08.007, 2007.
- [13] N. Guay, H. Nakajima, and C. Wendlandt. Coproduct for Yangians of affine Kac-Moody algebras. Adv. Math., 338:865–911, 2018, https://doi.org/10.1016/j.aim.2018.09.013.
- [14] A. Matsuo, K. Nagatomo, and A. Tsuchiya. Quasi-finite algebras graded by Hamiltonian and vertex operator algebras. London Math. Soc. Lecture Note Ser., 372:282–329, 2010, https://doi.org/10.1017/CBO9780511730054.015.
- [15] O. Schiffmann and E. Vasserot. Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A². Publ. Math. Inst. Hautes Études Sci., 118:213–342, 2013, https://doi.org/10.1007/s10240-013-0052-3.
- [16] M. Ueda. Coprodut for the Yangian of type $A_2^{(2)}$. the master thesis of Kyoto University.
- [17] M. Ueda. An Example of Homomorphisms from the Guay's affine Yangians to non-rectangular W-algebras. to appear in Transformation Groups(arXiv:2211.14968).
- [18] M. Ueda. Guay's affine yangians and non-rectangular W-algebras. arXiv:2301.00035.
- [19] M. Ueda. Affine super Yangians and rectangular W-superalgebras. J. Math. Phys., 63(5):Paper No. 051701, 34, 2022.
- [20] A. B. Zamolodchikov. Infinite extra symmetries in two-dimensional conformal quantum field theory. *Teoret. Mat. Fiz.*, 65(3):347–359, 1985, https://doi.org/10.1007/BF01036128.