
ar
X

iv
:2

31
2.

09
93

3v
2 

 [
m

at
h.

R
T

] 
 1

 F
eb

 2
02

4

A homomorphism from the affine Yangian Y~,ε(ŝl(n)) to the

affine Yangian Y~,ε(ŝl(n + 1))
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11324 89 Ave NW, Edmonton, AB T6G 2J5, Canada

Abstract

We construct a homomorphism from the affine Yangian Y~,ε(ŝl(n)) to the standard degree-

wise completion of the affine Yangian Y~,ε(ŝl(n + 1)). We also give the relationship between

this homomorphism and the one from the affine Yangian Y~,ε(ŝl(n)) to the universal enveloping
algebra of the rectangular algebra W

k(gl(2n), (2n)) constructed by the author [19].

1 Introduction

Drinfeld ([6], [7]) introduced the Yangian associated with a finite dimensional simple Lie algebra
g in order to solve the Yang-Baxter equation. The Yangian is a quantum group which is a
deformation of the current algebra g⊗C[z]. The Yangian of type A has several presentations: the
RTT presentation, the current presentation, and so on. By using the current presentation of the
Yangian, we can extend the definition of the Yangian Y~(g) to a symmetrizable Kac-Moody Lie
algebra g. For general symmetrizable Kac-Moody Lie algebra g, it has not been resolved whether
the Yangian Y~(g) has a quantum group structure or not. However, in the case that g is of affine
type, this problem has been affirmatively resolved ([2], [13], and [16]).

Recently, relationships between affine Yangians and W -algebras have been studied. A W -
algebra Wk(g, f) is a vertex algebra associated with a finite dimensional reductive Lie algebra g

and a nilpotent element f ∈ g. It appeared in the study of two dimensional conformal field theories
([20]). We call a W -algebra associated with gl(n) (resp. gl(ln)) and a principal nilpotent element
(resp. a nilpotent element of type of (ln)) a principal (resp. rectangular) W -algebra. The AGT
(Alday-Gaiotto-Tachikawa) conjecture suggests that there exists a representation of the principal
W -algebra of type A on the equivariant homology space of the moduli space of U(r)-instantons.
Schiffmann and Vasserot [15] gave this representation by using an action of the affine Yangian

associated with ĝl(1) on this homology space.
In the rectangular case, the author [19] constructed a surjective homomorphism from the Guay’s

affine Yangian ([11] and [12]) to the universal enveloping algebra of a rectangular W -algebra of
type A:

Φn : Y~,ε(ŝl(n)) → U(Wk(gl(ln), (ln))).

The Guay’s affine Yangian Y~,ε(ŝl(n)) is a 2-parameter affine Yangian associated with ŝl(n). The
Guay’s affine Yangian has a quantum group structure and is the deformation of the universal
enveloping algebra of the central extension of sl(n)[u±1, v]. It is known that the Guay’s affine
Yangian has a representation on the equivariant homology space of affine Laumon spaces ([8] and
[9]). Similarly to principal W -algebras, we expect that we can construct geometric representations
of rectangular W -algebras by using the homomorphism Φn.
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In non-rectangular cases, it is conjectured in Creutzig-Diaconescu-Ma [4] that a geometric
representation of an iterated W -algebra of type A on the equivariant homology space of the affine
Laumon space will be given through an action of an affine shifted Yangian constructed in [9].
Based on this conjecture, we can expect that there exists a non-trivial homomorphism from the
affine shifted Yangian to an iterated W -algebra associated with any nilpotent element. However,
tackling this issue is very difficult and has not been resolved.

In [18], we constructed a homomorphism from the Guay’s affine Yangian Y~,ε(ŝl(n)) to the
universal enveloping algebra of a non-rectangular W -algebra. This is the affine version of De
Sole-Kac-Valeri [5]. In [5], De Sole, Kac and Valeri constructed a homomorphism from the finite
Yangian of type A to a finite W -algebras of type A by using the Lax operator. The homomorphism
in De Sole-Kac-Valeri [5] is a restriction of the one from the shifted Yangian to a finite W -algebra
given by Brundan-Kleshchev in [3]. We expect that we can extend the homomorphism given in [18]
to the affine shifted Yangian and this extended homomorphism coincides with the homomorphism
conjectured in Creutzig-Diaconescu-Ma [4].

For this purpose, it is helpful to give a homomorphism from the affine Yangian to the affine
shifted Yangian. As a first step, in this article, we construct a homomorphism

Ψ: Y~,ε(ŝl(n)) → Ỹ~,ε(ŝl(n+ 1)),

where Ỹ~,ε(ŝl(n+1)) is the standard degreewise completion of Y~,ε(ŝl(n+1)). In finite setting, by
using the RTT presentation, there exists a natural embedding from the Yangian associated with
gl(n) to the one associated with gl(n + 1). However, the Guay’s affine Yangian Y~,ε(ŝl(n)) does
not have the RTT presentation. For the construction of Ψ, we use the finite presentation called
the minimalistic presentation given by Guay-Nakajima-Wendlandt [13].

As for one of the rectangular cases, we can construct a relationship with Ψ and Φn. There
exists an embedding

ι : Wk+1(gl(2n), (2n)) → (Wk(gl(2n+ 2), (2n+1)).

In the last section of this article, we show the following relation:

Φn+1 ◦Ψ = ι ◦ Φn.

We expect that the similar relation holds in the non-rectangular case.

2 Affine Yangian

Let us recall the definition of the affine Yangian of type A (Definition 3.2 in [11] and Definition 2.3
of [12]). Here after, we identify {0, 1, 2, · · · , n− 1} with Z/nZ.

Definition 2.1. Suppose that n ≥ 3. The affine Yangian Yε1,ε2(ŝl(n)) is the associative algebra
over generated by x+

i,r, x
−
i,r, hi,r (i ∈ {0, 1, · · · , n − 1}, r ∈ Z≥0) with two parameters ε1, ε2 ∈ C

subject to the following defining relations:

[hi,r, hj,s] = 0, (2.2)

[x+
i,r, x

−
j,s] = δi,jhi,r+s, (2.3)

[hi,0, x
±
j,r] = ±ai,jx

±
j,r, (2.4)

[hi,r+1, x
±
j,s]− [hi,r, x

±
j,s+1] = ±ai,j

ε1 + ε2
2

{hi,r, x
±
j,s} −mi,j

ε1 − ε2
2

[hi,r, x
±
j,s], (2.5)

[x±
i,r+1, x

±
j,s]− [x±

i,r , x
±
j,s+1] = ±aij

ε1 + ε2
2

{x±
i,r, x

±
j,s} −mij

ε1 − ε2
2

[x±
i,r , x

±
j,s], (2.6)

∑

w∈S1+|aij |

[x±
i,rw(1)

, [x±
i,rw(2)

, . . . , [x±
i,rw(1+|aij |)

, x±
j,s] . . . ]] = 0 if i 6= j, (2.7)
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where {X,Y } = XY + Y X and

ai,j =





2 if i = j,

−1 if j = i ± 1,

0 otherwise,

mi,j =





−1 if i = j − 1,

1 if i = j + 1,

0 otherwise.

Guay-Nakajima-Wendland [13] gave the new presentation of the affine Yangian Yε1,ε2(ŝl(n))
whose generators are

{hi,r, x
±
i,r | 0 ≤ i ≤ n− 1, r ∈ Z}.

Proposition 2.8. Suppose that n ≥ 3. The affine Yangian Yε1,ε2(ŝl(n)) is isomorphic to the

associative algebra Y~,ε(ŝl(n)) generated by X+
i,r, X

−
i,r, Hi,r (i ∈ {0, 1, · · · , n− 1}, r = 0, 1) subject

to the following defining relations:

[Hi,r, Hj,s] = 0, (2.9)

[X+
i,0, X

−
j,0] = δijHi,0, (2.10)

[X+
i,1, X

−
j,0] = δijHi,1 = [X+

i,0, X
−
j,1], (2.11)

[Hi,0, X
±
j,r] = ±aijX

±
j,r, (2.12)

[H̃i,1, X
±
j,0] = ±aij

(
X±

j,1

)
, if (i, j) 6= (0, n− 1), (n− 1, 0), (2.13)

[H̃0,1, X
±
n−1,0] = ∓

(
X±

n−1,1 + (ε+
n

2
~)X±

n−1,0

)
, (2.14)

[H̃n−1,1, X
±
0,0] = ∓

(
X±

0,1 − (ε+
n

2
~)X±

0,0

)
, (2.15)

[X±
i,1, X

±
j,0]− [X±

i,0, X
±
j,1] = ±aij

~

2
{X±

i,0, X
±
j,0} if (i, j) 6= (0, n− 1), (n− 1, 0), (2.16)

[X±
0,1, X

±
n−1,0]− [X±

0,0, X
±
n−1,1] = ∓

~

2
{X±

0,0, X
±
n−1,0}+ (ε+

n

2
~)[X±

0,0, X
±
n−1,0], (2.17)

(adX±
i,0)

1+|ai,j |(X±
j,0) = 0 if i 6= j, (2.18)

where H̃i,1 = Hi,1 −
~

2
H2

i,0, ~ = ε1 + ε2 and ε = −nε1.

Proposition 2.8 is a little different from the presentation given by Guay-Nakajima-Wendland
[13]. The isomorphism Ξ: Yε1,ε2(ŝl(n)) → Y~,ε(ŝl(n)) is given by

Ξ(hi,0) = Hi,0, Ξ(x±
i,0) = X±

i,0,

Ξ(hi,1) =




H0,1 if i = 0,

Hi,1 −
i

2
(ε1 − ε2)Hi,0 if i 6= 0.

Thus, Proposition 2.8 is derived from Guay-Nakajima-Wendland [13]. By this corresponding, we
find that

[X±
i,r, X

±
j,s] = 0 if |i− j| > 1, (2.19)

[X±
i,1, [X

±
i,0, X

±
j+1,r]] + [X±

i,0, [X
±
i,1, X

±
j+1,r]] = 0. (2.20)

Remark 2.21. In [17], the author gave the similar presentation for the affine super Yangian. We
note that (2.29) in [17] contains a typo. We should replace (2.29) with

[X±
0,1, X

±
n−1,0]− [X±

0,0, X
±
n−1,1] = ∓(−1)p(m+n)~

2
{X±

0,0, X
±
n−1,0} − (ε+

n

2
~)[X±

0,0, X
±
n−1,0].

We also note that ε = −nε2 in [17]. This makes the difference between (2.14), (2.15) and (2.17)
in Proposition 2.8 and (2.26), (2.27) and (2.29) in [17].
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By the definition of the affine Yangian Y~,ε(ŝl(n)), we find that there exists a natural homo-

morphism from the universal enveloping algebra of ŝl(n) to Y~,ε(ŝl(n)). In order to simplify the

notation, we denote the image of x ∈ U(ŝl(n)) by x.

We take one completion of Y~,ε(ŝl(n)). We set the degree of Y~,ε(ŝl(n)) by

deg(Hi,r) = 0, deg(X±
i,r) =

{
±1 if i = 0,

0 if i 6= 0.

We denote the standard degreewise completion of Y~,ε(ŝl(n)) by Ỹ~,ε(ŝl(n)). Let us set Ai ∈

Ỹ~,ε(ŝl(n)) as

Ai =
~

2

∑

s≥0
u>v

Eu,vt
−s[Ei,i, Ev,ut

s] +
~

2

∑

s≥0
u<v

Eu,vt
−s−1[Ei,i, Ev,ut

s+1]

=
~

2

∑

s≥0
u>i

Eu,it
−sEi,ut

s −
~

2

∑

s≥0
i>v

Ei,vt
−sEv,it

s

+
~

2

∑

s≥0
u>i

Eu,it
−s−1Ei,ut

s+1 −
~

2

∑

s≥0
i>v

Ei,vt
−s−1Ev,it

s+1,

where Ei,j is a matrix unit whose (a, b) component is δa,iδb,j Similarly to Section 3 in [13], we
define

J(hi) = H̃i,1 −Ai +Ai+1 ∈ Ỹ~,ε(ŝl(n))

We also set J(x±
i ) = ±

1

2
[J(hi), x

±
i ]. Guay-Nakajima-Wendland [13] defined the automorphism of

Y~,ε(ŝl(n)) by
τi = exp(ad(x+

i,0)) exp(− ad(x−
i,0)) exp(ad(x

+
i,0)).

Let α be a positive real root. By definition of the Weyl algebra, there is an element w of the Weyl
group of ŝl(n) and a simple root αj such that α = wαj . Then we define a corresponding root
vector by

x±
α = τi1τi2 · · · τip−1(x

±
j ),

where w = si1si2 · · · sip−1 is a reduced expression of w. We can define J(x±
α ) as

J(x±
α ) = τi1τi2 · · · τip−1J(x

±
j ).

Lemma 2.22 (Proposition 3.21 in [13]). The following relation holds:

[J(hi), x
±
α ] = ±(αi, α)J(x

±
α )± cα,ix

±
α

for some cα,i ∈ C.

3 A homomorphism from the affine Yangian Y~,ε(ŝl(n)) to

the affine Yangian Y~,ε(ŝl(n+ 1))

In this section, we will construct a homomorphism from the affine Yangian Y~,ε(ŝl(n)) to the

degreewise completion of the affine Yangian Y~,ε(ŝl(n+ 1)).
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Theorem 3.1. There exists an algebra homomorphism

Ψ: Y~,ε(ŝl(n)) → Ỹ~,ε(ŝl(n+ 1))

determined by

Ψ(Hi,0) =

{
H0,0 +Hn,0 if i = 0,

Hi,0 if i 6= 0,

Ψ(X+
i,0) =

{
En,1t if i = 0,

Ei,i+1 if i 6= 0,
Ψ(X−

i,0) =

{
E1,nt

−1 if i = 0,

Ei+1,i if i 6= 0,

and

Ψ(Hi,1) = Hi,1 − ~

∑

s≥0

Ei,n+1t
−s−1En+1,it

s+1 + ~

∑

s≥0

Ei+1,n+1t
−s−1En+1,i+1t

s+1,

Ψ(X+
i,1) = X+

i,1 − ~

∑

s≥0

Ei,n+1t
−s−1En+1,i+1t

s+1,

Ψ(X−
i,1) = X−

i,1 − ~

∑

s≥0

Ei+1,n+1t
−s−1En+1,it

s+1

for i 6= 0. In particular, we have

Ψ(H̃i,1) = H̃i,1 − ~

∑

s≥0

Ei,n+1t
−s−1En+1,it

s+1 + ~

∑

s≥0

Ei+1,n+1t
−s−1En+1,i+1t

s+1

for i 6= 0.

By Theorem 3.1, we can easily compute Ψ(X+
0,1) and Ψ(H0,1).

Corollary 3.2. The following equations hold:

Ψ(X+
0,1) = [X+

n,0, X
+
0,1]− ~

∑

s≥0

En,n+1t
−sEn+1,1t

s+1,

Ψ(X−
0,1) = [X−

0,1, X
−
n,0]− ~

∑

s≥0

E1,n+1t
−s−1En+1,nt

s,

Ψ(H0,1) = H0,1 +Hn,1 + (ε+
~

2
n)Hn,0 + ~Hn,0H0,0

− ~

∑

s≥0

En,n+1t
−s−1En+1,nt

s+1 + ~

∑

s≥0

E1,n+1t
−s−1En+1,1t

s+1.

In particular, we obtain

Ψ(H̃0,1) = H̃0,1 + H̃n,1 + (ε+
~

2
n)Hn,0

− ~

∑

s≥0

En,n+1t
−s−1En+1,nt

s+1 + ~

∑

s≥0

E1,n+1t
−s−1En+1,1t

s+1.

Proof. By the definition of Ψ and (2.13), we have

Ψ(X+
0,1) = −[Ψ(H̃1,1),Ψ(X+

0,0)]

= −[H̃1,1, [X
+
n,0, X

+
0,0]] + ~[

∑

s≥0

E1,n+1t
−s−1En+1,1t

s+1, En,1t]

− ~[
∑

s≥0

E2,n+1t
−s−1En+1,2t

s+1, En,1t]
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= [X+
n,0, X

+
0,1]− ~

∑

s≥0

En,n+1t
−sEn+1,1t

s+1,

where the second equality is due to En,1t = [X+
n,0, X

+
0,0]. Similarly to Ψ(X+

0,1), we can compute

Ψ(X−
0,1).
By (2.11), we obtain

Ψ(H0,1) = [Ψ(X+
0,1),Ψ(X−

0,0)]

= [[X+
n,0, X

+
0,1], [X

−
0,0, X

−
n,0]]− [~

∑

s≥0

En,n+1t
−sEn+1,1t

s+1, E1,nt
−1]

= [[X+
n,0, H0,1], X

−
n,0] + [X−

0,0, [Hn,0, X
+
0,1]]− [~

∑

s≥0

En,n+1t
−sEn+1,1t

s+1, E1,nt
−1], (3.3)

where the last equality is due to (2.10) and (2.11). By (2.11) and (2.12), we have

[X−
0,0, [Hn,0, X

+
0,1]] = −[X−

0,0, X
+
0,1] = H0,1. (3.4)

By (2.11) and (2.13)-(2.15), we have

[[X+
n,0, H0,1], X

−
n,0]

= −[[H̃0,1 +
~

2
H2

0,0, X
+
n,0], X

−
n,0]

= [X+
n,1 + (ε+

~

2
(n+ 1))X+

n,0, X
−
n,0] +

~

2
[{H0,0, X

+
n,0}, X

−
n,0]

= Hn,1 + (ε+
~

2
(n+ 1))Hn,0 +

~

2
{X−

n,0, X
+
n,0}+

~

2
{H0,0, Hn,0}

= Hn,1 + (ε+
~

2
(n+ 1))Hn,0 + ~X+

n,0X
−
n,0 −

~

2
Hn,0 + ~H0,0, Hn,0, (3.5)

where the second equality is due to (2.14) and (2.12), the third equality is due to (2.10) and (2.11)
and the last equality is due to (2.9) and the relation

~

2
{X−

n,0, X
+
n,0} = ~X+

n,0X
−
n,0 −

~

2
Hn,0.

By a direct computation, we obtain

− [~
∑

s≥0

En,n+1t
−sEn+1,1t

s+1, E1,nt
−1]

= −~

∑

s≥0

En,n+1t
−sEn+1,nt

s + ~

∑

s≥0

E1,n+1t
−s−1En+1,1t

s+1. (3.6)

Applying (3.4) and (3.6) to (3.3), we obtain

Ψ(H0,1) = H0,1 +Hn,1 + (ε+
~

2
n)Hn,0 + ~Hn,0H0,0

− ~

∑

s≥0

En,n+1t
−s−1En+1,nt

s+1 + ~

∑

s≥0

E1,n+1t
−s−1En+1,1t

s+1.

We complete the proof.

In order to prove Theorem 3.1, it is enough to show that Ψ is compatible with (2.9)-(2.18). By
the definition of Ψ, Ψ is compatible with (2.10), (2.12) and (2.18). We will prove the compatibility
with other relations of Proposition 2.8 in the following subsections.
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3.1 Compatibility with (2.11)

The case that i = j = 0 has already been proved in the proof of Corollary 3.2. We only show the
case that i, j 6= 0. Other cases are proven in a similar way. We obtain

[Ψ(X+
i,1),Ψ(X−

j,0)]

= [X+
i,1 − ~

∑

s≥0

Ei,n+1t
−s−1En+1,i+1t

s+1, Ej+1,j ]

= δi,jHi,1 − δi,j~
∑

s≥0

Ei,n+1t
−s−1En+1,it

s+1 + δi,j~
∑

s≥0

Ei+1,n+1t
−s−1En+1,i+1t

s+1

= δi,jΨ(Hi,1),

where the first and last equalities are due to the definition of Ψ and the second equality is due to
(2.11).

3.2 Compatibility with (2.13)

We only show the case that i = j = 0 and the sign is +, The other cases are proven in a similar
way. By the definition of Ψ, we have

[Ψ(H̃0,1),Ψ(X+
0,0)]

= [H̃0,1 + H̃n,1, En,1t] + (ε+
~

2
n)[Hn,0, En,1t]

− [~
∑

s≥0

En,n+1t
−s−1En+1,nt

s+1, En,1t] + [~
∑

s≥0

E1,n+1t
−s−1En+1,1t

s+1, En,1t]. (3.7)

By a direct computation, we obtain

(ε+
~

2
n)[Hn,0, En,1t] = (ε+

~

2
n)En,1t (3.8)

and

− [~
∑

s≥0

En,n+1t
−s−1En+1,nt

s+1, En,1t] + [~
∑

s≥0

E1,n+1t
−s−1En+1,1t

s+1, En,1t]

= −~

∑

s≥0

En,n+1t
−s−1En+1,1t

s+2 − ~

∑

s≥0

En,n+1t
−sEn+1,1t

s+1

= −2~
∑

s≥0

En,n+1t
−sEn+1,1t

s+1 + ~X+
n,0X

+
0,0. (3.9)

By (2.13)-(2.15), we have

[H̃0,1 + H̃n,1, En,1t] = [H̃0,1 + H̃n,1, [X
+
n,0, X

+
0,0]]

= [X+
n,0, X

+
0,1 − (ε+

n+ 1

2
~)X+

0,0] + [X+
n,1 + (ε+

n+ 1

2
~)X+

n,0, X
+
0,0]

= [X+
n,0, X

+
0,1] + [X+

n,1, X
+
0,0]

= 2[X+
n,0, X

+
0,1]−

~

2
{X+

0,0, X
+
n,0}+ (ε+

n+ 1

2
~)[X+

0,0, X
+
n,0]

= 2[X+
n,0, X

+
0,1]−

~

2
{X+

0,0, X
+
n,0} − (ε+

n+ 1

2
~)En,1t

= 2[X+
n,0, X

+
0,1]− ~X+

n,0X
+
0,0 −

~

2
[X+

0,0, X
+
n,0]− (ε+

n+ 1

2
~)En,1t, (3.10)
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where the first equality is due to [X+
n,0, X

+
0,0] = En,1t, the second equality is due to (2.13)-(2.15),

the 4-th equality is due to (2.17). Applying (3.8)-(3.10) to (3.7), we obtain

[Ψ(H̃0,1),Ψ(X+
0,0)] = 2[X+

n,0, X
+
0,1]− 2~

∑

s≥0

En,n+1t
−sEn+1,1t

s+1

= 2Ψ(X+
0,1).

3.3 Compatibility with (2.14)

We only prove the + case. The + case can be shown in the same way. By the definition of Ψ, we
have

[Ψ(H̃0,1),Ψ(X+
n−1,0)]

= [H̃0,1 + H̃n,1, X
+
n−1,0] + (ε+

~

2
n)[Hn,0, En−1,n]

− [~
∑

s≥0

En,n+1t
−s−1En+1,nt

s+1, En−1,n] + [~
∑

s≥0

E1,n+1t
−s−1En+1,1t

s+1, En−1,n]

= −X+
n−1,1 − (ε+

~

2
n)En−1,n + ~

∑

s≥0

En−1,n+1t
−s−1En+1,nt

s+1

= −(Ψ(X+
n−1,1) + (ε+

~

2
n)Ψ(X+

n−1,0)),

where the first last equalities are due to the definition of Ψ and the second equality is due to
(2.13).

3.4 Compatibility with (2.15)

By the definition of Ψ, we have

[Ψ(H̃n−1,1),Ψ(X+
0,0)]

= [H̃n−1,1, En,1t]− [~
∑

s≥0

En−1,n+1t
−s−1En+1,n−1t

s+1, En,1t]

+ [~
∑

s≥0

En,n+1t
−s−1En+1,nt

s+1, En,1t]. (3.11)

By a direct computation, we obtain

− [~
∑

s≥0

En−1,n+1t
−s−1En+1,n−1t

s+1, En,1t] + [~
∑

s≥0

En,n+1t
−s−1En+1,nt

s+1, En,1t]

= 0 + ~

∑

s≥0

En,n+1t
−s−1En+1,1t

s+2

= ~

∑

s≥0

En,n+1t
−sEn+1,1t

s+1 − ~X+
n,0X

+
0,0. (3.12)

By (2.13) and (2.15), we have

[H̃n−1,1, En,1t] = [H̃n−1,1, [X
+
n,0, X

+
0,0]] = −[X+

n,1, X
+
0,0]

= −[X+
n,0, X

+
0,1] +

~

2
{X+

0,0, X
+
n,0}+ (ε+

~

2
(n+ 1))[X+

n,0, X
+
0,0]

= −[X+
n,0, X

+
0,1] + ~X+

n,0X
+
0,0 +

~

2
[X+

0,0, X
+
n,0] + (ε+

~

2
(n+ 1))[X+

n,0, X
+
0,0] (3.13)
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By applying (3.12) and (3.13) to (3.11), we have

[Ψ(H̃n−1,1),Ψ(X+
0,0)]

= −[X+
n,0, X

+
0,1] + ~

∑

s≥0

En,n+1t
−sEn+1,1t

s+1 + (ε+
~

2
n)[X+

n,0, X
+
0,0]

= −(Ψ(X+
0,1)− (ε+

~

2
n)Ψ(X+

0,0)),

3.5 Compatibility with (2.16)

We only show the case that i = 0 and the sign is +. The other cases are proven in a similar way.
Case 1: i = 0, j 6= 0, n− 1
By the definition of Ψ and the assumption that j 6= 0, n− 1, we have

[Ψ(X+
0,0),Ψ(X+

j,1)]

= [[X+
n,0, X

+
0,0], X

+
j,1]− [En,1t, ~

∑

s≥0

Ej,n+1t
−s−1En+1,j+1t

s+1]

= [[X+
n,0, X

+
0,0], X

+
j,1]− δj,1~

∑

s≥0

En,n+1t
−sEn+1,j+1t

s+1.

and

[Ψ(X+
0,1),Ψ(X+

j,0)]

= [[X+
n,0, X

+
0,1], X

+
j,0]− [~

∑

s≥0

En,n+1t
−sEn+1,1t

s+1, Ej,j+1]

= [[X+
n,0, X

+
0,1], X

+
j,0]− δj,1~

∑

s≥0

En,n+1t
−sEn+1,2t

s+1.

Thus, by a direct computation, we have

[Ψ(X+
0,1),Ψ(X+

j,0)]− [Ψ(X+
0,0),Ψ(X+

j,1)]

= [[X+
n,0, X

+
0,1], X

+
j,0]− [[X+

n,0, X
+
0,0], X

+
j,1].

We obtain

[[X+
n,0, X

+
0,1], X

+
j,0]− [[X+

n,0, X
+
0,0], X

+
j,1]

= [X+
n,0, ([X

+
0,1, X

+
j,0]− [X+

0,0, X
+
j,1])]

=
~

2
a0,j [X

+
n,0, {X

+
0,0, X

+
j,0}]

=
~

2
a0,j{[X

+
n,0, X

+
0,0], X

+
j,0}

=
~

2
a0,j{Ψ(X+

0,0),Ψ(X+
j,0)}, (3.14)

where the first equality is due to (2.19) and the assumption that j 6= 0, n− 1, the second equality
is due to (2.16) and the last equlity is due to the assumption that j 6= 0, n− 1.

Case 2: i = j = 0
In this case, (2.16) is equivalent to

[X+
0,1, X

+
0,0] = ~(X+

0,0)
2. (3.15)

We will prove the compatibility with (3.15). By the definition of Ψ, we have

[Ψ(X+
0,1),Ψ(X+

0,0)]
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= [[X+
n,0, X

+
0,1], [X

+
n,0, X

+
0,0]]− [~

∑

s≥0

En,n+1t
−sEn+1,1t

s+1, En,1t]

= [[X+
n,0, X

+
0,1], [X

+
n,0, X

+
0,0]]− 0. (3.16)

By (2.18), we obtain

[[X+
n,0, X

+
0,1], [X

+
n,0, X

+
0,0]]

= [X+
n,0, [X

+
0,1, [X

+
n,0, X

+
0,0]]] + [[X+

n,0, [X
+
n,0, X

+
0,0]], X

+
0,1]

= [X+
n,0, [X

+
0,1, [X

+
n,0, X

+
0,0]]] + 0, (3.17)

where the last equality is due to (2.18). We obtain

[X+
0,1, [X

+
n,0, X

+
0,0]]

=
1

2
[X+

0,1, [X
+
n,0, X

+
0,0]] +

1

2
([[X+

0,1, X
+
n,0], X

+
0,0] + [X+

n,0, [X
+
0,1, X

+
0,0]])

=
1

2
([X+

0,1, [X
+
n,0, X

+
0,0]] + [[X+

0,1, X
+
n,0], X

+
0,0]) +

1

2
[X+

n,0, [X
+
0,1, X

+
0,0]]

= 0 +
~

2
[X+

n,0, (X
+
0,0)

2]

=
~

2
{[X+

n,0, X
+
0,0], X

+
0,0}, (3.18)

where the third equality is due to (2.20) and (3.15). By applying (3.17) and (3.18) to (3.16), we
obtain

[Ψ(X+
0,1),Ψ(X+

0,0)]

= [X+
n,0,

~

2
{[X+

n,0, X
+
0,0], X

+
0,0}]

=
~

2
{[X+

n,0, X
+
0,0], [X

+
n,0, X

+
0,0]} = ~(Ψ(X+

0,0))
2

by (2.18).

3.6 Compatibility with (2.17)

We only show the + case. The − case can be proven in a similar way. By the definition of Ψ, we
have

[Ψ(X+
0,0),Ψ(X+

n−1,1)]

= [[X+
n,0, X

+
0,0], X

+
n−1,1]− [En,1t, ~

∑

s≥0

En−1,n+1t
−s−1En+1,nt

s+1]

= [[X+
n,0, X

+
0,0], X

+
n−1,1] + ~

∑

s≥0

En−1,n+1t
−s−1En+1,1t

s+2 (3.19)

and

[Ψ(X+
0,1),Ψ(X+

n−1,0)] (3.20)

= [[X+
n,0, X

+
0,1], X

+
n−1,0]− [~

∑

s≥0

En,n+1t
−sEn+1,1t

s+1, En−1,n] (3.21)

= [[X+
n,0, X

+
0,1], X

+
n−1,0] + ~

∑

s≥0

En−1,n+1t
−sEn+1,1t

s+1. (3.22)

By comparing the right hand sides of (3.19) and (3.22), we have

[Ψ(X+
0,1),Ψ(X+

n−1,0)]− [Ψ(X+
0,0),Ψ(X+

n−1,1)]
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= [[X+
n,0, X

+
0,1], X

+
n−1,0] + ~En−1,n+1En+1,1t− [[X+

n,0, X
+
0,0], X

+
n−1,1]. (3.23)

We obtain

[[X+
n,0, X

+
0,1], X

+
n−1,0]

= [[X+
n,1, X

+
0,0] +

~

2
{X+

0,0, X
+
n,0} − (ε+

~

2
(n+ 1))[X+

0,0, X
+
n−1,0], X

+
n−1,0]

= [[X+
n,1, X

+
0,0], X

+
n−1,0] +

~

2
{X+

0,0, [X
+
n,0, X

+
n−1,0]} − (ε+

~

2
(n+ 1))[[X+

0,0, X
+
n,0], X

+
n−1,0]

= [[X+
n,1, X

+
0,0], X

+
n−1,0]−

~

2
{En+1,1t, En−1,n+1} − (ε+

~

2
(n+ 1))En−1,1t, (3.24)

where the second equality is due to (2.17). By the similar way to (3.14), we have

[[X+
n,1, X

+
0,0], X

+
n−1,0]− [[X+

n,0, X
+
0,0], X

+
n−1,1]

= −
~

2
{[X+

n,0, X
+
0,0], X

+
n−1,0}. (3.25)

By applying (3.25) to (3.23), we have

[Ψ(X+
0,1),Ψ(X+

n−1,0)]− [Ψ(X+
0,0),Ψ(X+

n−1,1)]

= −
~

2
{[X+

n,0, X
+
0,0], X

+
n−1,0} −

~

2
{En+1,1t, En−1,n+1}

− (ε+
~

2
(n+ 1))En−1,1t+ ~En−1,n+1En+1,1t

= −
~

2
{[X+

n,0, X
+
0,0], X

+
n−1,0} − (ε+

~

2
n)En−1,1t

= −
~

2
{Ψ(X+

0,0),Ψ(X+
n−1,0)}+ (ε+

~

2
n)[Ψ(X+

0,0),Ψ(X+
n−1,0)].

3.7 Compatibility with (2.9)

By the definition of Ψ(Hi,1), Ψ is compatible with (2.9) in the case that r + s ≤ 1. Thus, it is

enough to prove [Ψ(H̃i,1),Ψ(H̃j,1)] = 0. We only show the case that i, j 6= 0. The case that i = 0
or j = 0 can be proven in a similar way. By the definition of Ψ, we have

[Ψ(H̃i,1),Ψ(H̃j,1)] = [H̃i,1, H̃j,1]− [H̃i,1, Pj − Pj+1] + [H̃j,1, Pi − Pi+1] + [Pi − Pi+1, Pj − Pj+1],

where Pi = ~

∑

s≥0

Ei,n+1t
−s−1En+1,it

s+1. By the definition of J(hi), we have

− [H̃i,1, Pj − Pj+1] + [H̃j,1, Pi − Pi+1]

= −[J(hi), Pj − Pj+1] + [J(hj), Pi − Pi+1] + [Ai −Ai+1, Pj − Pj+1]− [Aj −Aj+1, Pj − Pj+1].
(3.26)

By Lemma 2.22 and the definition of Pi, we find that the sum of the first two terms of the right
hand side of (3.26) are equal to zero. Thus, it is enough to show that

[Ai, Pj ]− [Aj , Pi] + [Pi, Pj ] = 0. (3.27)

By a direct computation, we obtain

[Pi, Pj ] = ~
2
∑

s,v≥0

Ej,n+1t
−v−1Ei,jt

v−sEn+1,it
s+1

− ~
2
∑

s,v≥0

Ei,n+1t
−s−1Ej,it

s−vEn+1,jt
v+1. (3.28)
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By the definition of Ai, we can divide [Ai, Pj ] into four pieces:

[Ai, Pj ] = [
~

2

∑

s≥0
u>i

Eu,it
−sEi,ut

s, Pj ]− [
~

2

∑

s≥0
i>u

Ei,ut
−sEu,it

s, Pj ]

+ [
~

2

∑

s≥0
u<i

Eu,it
−s−1Ei,ut

s+1, Pj ]− [
~

2

∑

s≥0
i<u

Ei,ut
−s−1Eu,it

s+1, Pj ]. (3.29)

We compute the right hand side of (3.29). By a direct computation, we obtain

[
~

2

∑

s≥0
u>i

Eu,it
−sEi,ut

s, Pj ]

= δ(j > i)
~2

2

∑

s,v≥0

Ej,it
−sEi,n+1t

s−v−1En+1,jt
v+1

+
~2

2

∑

s,v≥0

En+1,it
−sEj,n+1t

−v−1Ei,jt
s+v+1 −

~2

2

∑

s,v≥0
u>i

δi,jEu,it
−sEj,n+1t

−v−1En+1,ut
s+v+1

+
~2

2

∑

s,v≥0

δi,jEu,n+1t
−s−v−1En+1,jt

v+1Ei,ut
s −

~2

2

∑

s,v≥0

Ej,it
−s−v−1En+1,jt

v+1Ei,n+1t
s

− δ(j > i)
~2

2

∑

s,v≥0

Ej,n+1t
−v−1En+1,it

v+1−sEi,jt
s, (3.30)

− [
~

2

∑

s≥0
i>u

Ei,ut
−sEu,it

s, Pj ]

= −
~2

2

∑

s,v≥0

δi,jEi,ut
−sEu,n+1t

s−v−1En+1,jt
v+1

+ δ(i > j)
~2

2

∑

s,v≥0

Ei,jt
−sEj,n+1t

−v−1En+1,it
s+v+1

− δ(i > j)
~2

2

∑

s,v≥0

Ei,n+1t
−s−v−1En+1,jt

v+1Ej,it
s

+
~2

2

∑

s,v≥0

δi,jEj,n+1t
−v−1En+1,ut

v+1−sEu,it
s, (3.31)

[
~

2

∑

s≥0
u<i

Eu,it
−s−1Ei,ut

s+1, Pj ]

= δ(j < i)
~2

2

∑

s,v≥0

Ej,it
−s−1Ei,n+1t

s−vEn+1,jt
v+1

+
~2

2

∑

s,v≥0

δi,jEu,it
−s−1Ej,n+1t

−v−1En+1,ut
s+v+1

+
~2

2

∑

s,v≥0
u<i

δi,jEu,n+1t
−s−v−2En+1,jt

v+1Ei,ut
s+1

− δ(j < i)
~2

2

∑

s,v≥0

Ej,n+1t
−v−1En+1,it

v−sEi,jt
s+1, (3.32)
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− [
~

2

∑

s≥0
i<u

Ei,ut
−s−1Eu,it

s+1, Pj ]

= −
~2

2

∑

s,v≥0

δi,jEi,ut
−s−1Eu,n+1t

s−vEn+1,jt
v+1 +

~2

2

∑

s,v≥0

Ei,n+1t
−sEj,it

s−v−1En+1,jt
v+1

+ δ(i < j)
~2

2

∑

s,v≥0

Ei,jt
−s−1Ej,n+1t

−v−1En+1,it
s+v+2

− δ(i < j)
~2

2

∑

s≥0

Ei,n+1t
−s−v−2En+1,jt

v+1Ej,it
s+1

−
~2

2

∑

s,v≥0

Ej,n+1t
−v−1Ei,jt

v−sEn+1,it
s+1 +

~2

2

∑

s,v≥0

δi,jEj,n+1t
−v−1En+1,ut

v−sEu,it
s+1.

(3.33)

Here after, we denote (equation number)a,b means that the value of (equation number) at i =
a, j = b. Moreover, we denote the r-th term of the right hand side of (equation number) by
(equation number)r.

By the definition of Ai, we have

[Ai, Pj ]− [Aj , Pi] = (3.30)i,j + (3.31)i,j + (3.32)i,j + (3.33)i,j

− (3.30)j,i − (3.31)j,i − (3.32)j,i − (3.33)j,i. (3.34)

By the definition, we find that the terms containing δi,j in the right hand side of (3.34) vanish.
By a direct computation, we can compute the sum of the terms containing δ(j > i) in the right
hand side of (3.34):

(3.30)i,j,1 + (3.30)i,j,6 − (3.31)j,i,2 − (3.31)j,i,,3

− (3.32)j,i,1 − (3.32)j,i,4 + (3.33)i,j,3 + (3.33)i,j,4

= δ(j > i)
~2

2

∑

s,v≥0

Ej,it
−s−v−1Ei,n+1t

sEn+1,jt
v+1

− δ(j > i)
~2

2

∑

s,v≥0

Ej,n+1t
−v−1En+1,it

−sEi,jt
s+v+1

− δ(i < j)
~2

2

∑

s,v≥0

Ei,jt
−s−v−1Ej,n+1t

sEn+1,it
v+1

+ δ(i < j)
~
2

2

∑

s,v≥0

Ei,n+1t
−v−1En+1,jt

−sEj,it
s+v+1. (3.35)

Similarly, we can compute the sum of the terms containing δ(j < i) in the right hand side of
(3.34):

− (3.30)j,i,1 − (3.30)j,i,6 + (3.31)i,j,2 + (3.31)i,j,3

+ (3.32)i,j,1 + (3.32)i,j,4 − (3.33)j,i3 − (3.33)j,i,4

= −δ(i > j)
~2

2

∑

s,v≥0

Ei,jt
−s−v−1Ej,n+1t

sEn+1,it
v+1

+ δ(i < j)
~2

2

∑

s,v≥0

Ei,n+1t
−v−1En+1,jt

−sEj,it
s+v+1

+ δ(j < i)
~2

2

∑

s,v≥0

Ej,it
−s−v−1Ei,n+1t

sEn+1,jt
v+1
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− δ(j < i)
~2

2

∑

s,v≥0

Ej,n+1t
−v−1En+1,it

−sEi,jt
s+v+1. (3.36)

By a direct computation, we obtain

(3.35)2 + (3.36)4 + (3.30)i,j,2

= δ(i 6= j)
~2

2

∑

s,v≥0

[En+1,it
−s, Ej,n+1t

−v−1]Ei,jt
s+v+1 = 0.

Similarly, we have

(3.35)3 + (3.36)1 − (3.30)j,i,5 = 0.

Then, we find that [Ai, Pj ]− [Aj , Pi] + [Pi, Pj ] is equal to the sum of the following four terms:

(3.35)1 + (3.36)3 + (3.30)i,j,5,

(3.35)4 + (3.36)2 − (3.30)j,i,2,

(3.28)1 − (3.33)j,i,2 + (3.33)i,j,5,

(3.28)2 + (3.33)i,j,2 − (3.33)j,i,5.

By a direct computation, these four sums are equal to zero. We complete the proof of the com-
patibility with (2.9).

4 The rectangular W -algebra Wk(gl(2n), (2n))

Let us set some notations of a vertex algebra. For a vertex algebra V , we denote the generating

field associated with v ∈ V by v(z) =
∑

n∈Z

v(n)z
−n−1. We also denote the OPE of V by

u(z)v(w) ∼
∑

s≥0

(u(s)v)(w)

(z − w)s+1

for all u, v ∈ V . We denote the vacuum vector (resp. the translation operator) by |0〉 (resp. ∂).
We denote the universal affine vertex algebra associated with a finite dimensional Lie algebra g

and its inner product κ by V κ(g). By the PBW theorem, we can identify V κ(g) with U(t−1g[t−1]).
In order to simplify the notation, here after, we denote the generating field (ut−1)(z) as u(z). By
the definition of V κ(g), the generating fields u(z) and v(z) satisfy the OPE

u(z)v(w) ∼
[u, v](w)

z − w
+

κ(u, v)

(z − w)2
(4.1)

for all u, v ∈ g. For a matrix unit ei,j , we denote ei,jt
−m ∈ U(t−1g[t−1]) = V κ(g) by ei,j [−m].

The W -algebra Wk(g, f) is a vertex algebra associated with the reductive Lie algebra g and a
nilpotent element f . We call the W -algebra associated with gl(ln) and a nilpotent element of type
(ln) the rectangular W -algebra and denote it by Wk(gl(ln), (ln)). In this article, we only consider
the case that l = 2. The nilpotent element is

f =

n∑

u=1

en+u,u.

By Theorem 3.1 and Corollary 3.2 in [1], we obtain the following theorem.
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Theorem 4.2 (Theorem 3.1 and Corollary 3.2 in [1]). 1. We define the inner product on gl(n)
by

κ(ei,j , ep,q) = δj,pδi,qα+ δi,jδp,q,

where α = k + n. Then, the rectangular W -algebra Wk(gl(2n), (2n)) can be realized as a
vertex subalgebra of V κ(gl(n))⊗2.

2. The W -algebra Wk(g, f) has the following strong generators:

W
(1)
i,j = e

(1)
i,j [−1] + e

(2)
i,j [−1],

W
(2)
i,j =

∑

1≤u≤n

e
(1)
u,j[−1]e

(2)
i,u[−1]− αe

(1)
i,j [−1]

for 1 ≤ i, j ≤ n, where e
(1)
i,j [−1] = ei,j [−1]⊗ 1 ∈ V κ(gl(n))⊗2 and e

(2)
i,j [−1] = 1 ⊗ ei,j [−1] ∈

V κ(gl(n))⊗2.

Remark 4.3. We note that W
(2)
i,j in this article is different from the one in [1]. We shift W

(2)
i,j in

this article is corresponding to W
(2)
j,i − α∂W

(1)
j,i in [1].

We can compute all OPEs of these strong generators. The computation can be done by using
the computation process in the appendix of [17].

Theorem 4.4. 1. The following equations hold:

(W (1)
p,q )(0)W

(1)
i,j = δq,iW

(1)
p,j − δp,jW

(1)
i,q ,

(W (1)
p,q )(1)W

(1)
i,j = 2δq,iδp,jα|0〉+ δp,qδi,j(1 + 1)|0〉,

(W (1)
p,q )(s)W

(1)
i,j = 0 for all s > 1.

2. The following four equations hold:

(W (1)
p,q )(0)W

(2)
i,j = −δp,jW

(2)
i,q + δi,qW

(2)
p,j ,

(W (1)
p,q )(1)W

(2)
i,j = δp,jαW

(1)
i,q + δp,qW

(1)
i,j ,

(W (1)
p,q )(2)W

(2)
i,j = −2δq,iδp,jα

2|0〉 − 2δp,qδi,jα|0〉,

(W (1)
p,q )(s)W

(2)
i,j = 0 for all s > 2.

3. The following relations hold:

(W (2)
p,q )(0)W

(2)
i,j

= (W
(2)
p,j )(−1)W

(1)
i,q − (W

(1)
p,j )(−1)W

(2)
i,q + α(∂W

(1)
p,j )(−1)W

(1)
i,q + (∂W (1)

p,q )(−1)W
(1)
i,j

− δq,iα∂W
(2)
p,j − δi,q

2α2 + 1

2
∂2W

(1)
p,j − δi,j∂W

(2)
p,q −

3

2
δi,jα∂

2W (1)
p,q , (4.5)

(W (2)
p,q )(1)W

(2)
i,j

= α(W
(1)
p,j )(−1)W

(1)
i,q + (W (1)

p,q )(−1)W
(1)
i,j

− δq,iαW
(2)
p,j − 2δq,iα

2∂W
(1)
p,j − δp,jαW

(2)
i,q − δi,j(1)W

(2)
p,q − 2δi,jα∂W

(1)
p,q − δp,qW

(2)
i,j , (4.6)

(W (2)
p,q )(2)W

(2)
i,j

= δp,jα(2α− 1)W
(1)
i,q − δi,jαW

(1)
p,q − δi,qα(2α− 1)W

(1)
i,q + δp,qαW

(1)
i,j , (4.7)

(W (2)
p,q )(3)W

(2)
i,j

= (1 + α2 − 6α2)δp,qδi,j |0〉+ (2α− 6α3)δp,jδi,q|0〉, (4.8)

(W (2)
p,q )(s)W

(2)
i,j = 0 for all s > 0. (4.9)
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We note that these OPEs are only dependent on α and independent of n. Thus, by Theorem 4.4,
we find the following embedding:

Wk+1(gl(2n), (2n)) → Wk(gl(2(n+ 1)), (2n+1)), W
(u)
i,j 7→ W

(u)
i,j .

5 The relationship between homomorphism Ψ and the rect-
angular W -algebra Wk(gl(2n), (2n))

Let us recall the definition of a universal enveloping algebra of a vertex algebra in the sense of [10]
and [14]. For any vertex algebra V , let L(V ) be the Borchards Lie algebra, that is,

L(V ) = V⊗C[t, t−1]/Im(∂ ⊗ id+ id⊗
d

dt
), (5.1)

where the commutation relation is given by

[uta, vtb] =
∑

r≥0

(
a
r

)
(u(r)v)t

a+b−r

for all u, v ∈ V and a, b ∈ Z. Now, we define the universal enveloping algebra of V .

Definition 5.2 (Section 6 in [14]). We set U(V ) as the quotient algebra of the standard degreewise
completion of the universal enveloping algebra of L(V ) by the completion of the two-sided ideal
generated by

(u(a)v)t
b −

∑

i≥0

(
a
i

)
(−1)i(uta−ivtb+i − (−1)avta+b−iuti), (5.3)

|0〉t−1 − 1. (5.4)

We call U(V ) the universal enveloping algebra of V .

In [19] Theorem 5.1, the author constructed a surjective homomorphism from the affine super
Yangian to the universal enveloping algebra of a rectangular W -superalgebra. Setting m = n,
n = 0 and l = 2, we obtain the following theorem.

Theorem 5.5. Suppose that ~ = −1 and ε = −α. There exists an algebra homomorphism

Φn : Y~,ε(ŝl(n)) → U(Wk(gl(2n), (2n)))

determined by

Φn(Hi,0) =

{
W

(1)
n,n −W

(1)
1,1 + 2α if i = 0,

W
(1)
i,i −W

(1)
i+1,i+1 if i 6= 0,

Φn(X+
i,0) =

{
W

(1)
n,1t if i = 0,

W
(1)
i,i+1 if i 6= 0,

Φn(X−
i,0) =

{
W

(1)
1,nt

−1 if i = 0,

W
(1)
i+1,i if i 6= 0,
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Φn(Hi,1) =





W
(2)
n,nt−W

(2)
1,1 t+ αW

(1)
n,n − 2αΦn(H0,0) +W

(1)
n,n(W

(1)
1,1 − 2α)

−
∑

s≥0

n∑

u=1

W (1)
n,ut

−sW (1)
u,nt

s +
∑

s≥0

n∑

u=1

W
(1)
1,ut

−s−1W
(1)
u,1t

s+1,

if i = 0,

W
(2)
i,i t−W

(2)
i+1,i+1t+

i

2
Φn(Hi,0) +W

(1)
i,i W

(1)
i+1,i+1

−
∑

s≥0

i∑

u=1

W
(1)
i,u t

−sW
(1)
u,i t

s −
∑

s≥0

n∑

u=i+1

W
(1)
i,u t

−s−1W
(1)
u,i t

s+1

+
∑

s≥0

i∑

u=1

W
(1)
i+1,ut

−sW
(1)
u,i+1t

s +
∑

s≥0

n∑

u=i+1

W
(1)
i+1,ut

−s−1W
(1)
u,i+1t

s+1

i 6= 0,

Φn(X+
i,1) =





W
(2)
n,1t

2 + αW
(1)
n,1t− 2αΦn(X+

0,0)−
∑

s≥0

n∑

u=1

W (1)
n,ut

−sW
(1)
u,1t

s+1

if i = 0,

W
(2)
i,i+1t+

i

2
Φn(X+

i,0)

−
∑

s≥0

i∑

u=1

W
(1)
i,u t

−sW
(1)
u,i+1t

s −
∑

s≥0

n∑

u=i+1

W
(1)
i,u t

−s−1W
(1)
u,i+1t

s+1

if i 6= 0,

Φn(X−
i,1) =





W
(2)
1,n − 2αΦn(X−

0,0)−
∑

s≥0

n∑

u=1

W
(1)
1,ut

−s−1W (1)
u,nt

s,

if i = 0,

W
(2)
i+1,it+

i

2
Φn(X−

i,0)

−
∑

s≥0

i∑

u=1

W
(1)
i+1,ut

−sW
(1)
u,i t

s −
∑

s≥0

n∑

u=i+1

W
(1)
i+1,ut

−s−1W
(1)
u,i t

s+1

if i 6= 0.

By the definition of Ψn, we obtain the following theorem.

Theorem 5.6. Suppose that ~ = −1 and ε = −k− (n+1). We obtain the following commutative
diagram:

Φn+1 ◦Ψ = ι ◦ Φn.

Proof. The affine Yangian is generated by X±
i,0 for 0 ≤ i ≤ n − 1 and X+

j,1 for 1 ≤ j ≤ n − 1 by
the defining relations (2.9)-(2.18). Thus, it is enough to show that

Φn+1 ◦Ψ(X±
i,0) = ι ◦ Φn(X±

i,0), (5.7)

Φn+1 ◦Ψ(X+
j,1) = ι ◦ Φn(X+

j,1). (5.8)

By the definition of Φn, ι and Ψ, (5.7) holds. By the definition of Φn and Ψ, we have

Φn+1 ◦Ψ(X+
j,1)

= Φn+1(X+
j,1 +

∑

s≥0

Ej,n+1t
−s−1En+1,j+1t

s+1)

= W
(2)
j,j+1t+

i

2
Φn+1(X+

j,0)
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−
∑

s≥0

j∑

u=1

W
(1)
j,u t

−sW
(1)
u,j+1t

s −
∑

s≥0

n+1∑

u=j+1

W
(1)
j,u t

−s−1W
(1)
u,j+1t

s+1

+
∑

s≥0

W
(1)
j,n+1t

−s−1W
(1)
n+1,j+1t

s+1

= W
(2)
j,j+1t+

i

2
Φn+1(X+

j,0)

−
∑

s≥0

j∑

u=1

W
(1)
j,u t

−sW
(1)
u,j+1t

s −
∑

s≥0

n∑

u=j+1

W
(1)
j,u t

−s−1W
(1)
u,j+1t

s+1.

On the other hand, by the definition of Φn and ι, we obtain

ι ◦ Φn(X+
j,1)

= W
(2)
j,j+1t+

i

2
Φn+1(X+

j,0)

−
∑

s≥0

j∑

u=1

W
(1)
j,u t

−sW
(1)
u,j+1t

s −
∑

s≥0

n∑

u=j+1

W
(1)
j,u t

−s−1W
(1)
u,j+1t

s+1.

Thus, the relation (5.8) holds.
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