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We theoretically discover possible emergence of reentrant Walker breakdowns for current-driven
domain walls in layered antiferromagnets in striking contrast to the unique Walker breakdown in
ferromagnets. We reveal that the Lorentz contraction of domain-wall width in antiferromagnets
gives rise to nonlinear current-dependence of the wall velocity and the predicted multiple Walker
breakdowns. The dominant efficiency of the current-induced staggered spin-orbit torque over the
spin-transfer torque to drive the domain-wall motion is also demonstrated. These findings are
expected to be observed in synthetic antiferromagnets experimentally and provide an important
contribution to the growing research field of antiferromagnetic spintronics.

PACS numbers:

Introduction.—Spintronics based on antiferromagnets
has attracted significant attention in recent decades.
Compared with ferromagnets, antiferromagnets possess
several advantages for spintronics application, including
the absence of stray fields and high-speed operation in
terahertz domains [1, 2]. Methods for manipulating and
detecting spin textures in antiferromagnets including do-
main walls (DWs), skyrmions, bimerons, etc., have been
proposed [3–12]. It is known that a moving ferromag-
netic DW suffers from Walker breakdown when driven
by large current or strong magnetic field, beyond which
the DW oscillates between the Bloch and Néel types and
its velocity is suppressed [13, 14]. Recently, it has been
proposed that the antiferromagnetic DW is immune to
Walker breakdown and the maximal DW speed is lim-
ited by the magnon velocity, which is, however, much
higher than the breakdown threshold velocity in ferro-
magnets [15–19].

In this work, we theoretically study the current-driven
motion of DWs in layered antiferromagnets with anti-
ferromagnetically stacked ferromagnetic layers. We cos-
nider effects of both the spin-transfer torque (STT) and
the staggered field-like spin-orbit torque (SOT) exerted
by electric currents. We first demonstrate overwhelm-
ing efficiency of SOT over STT to drive the DW mo-
tion by numerical simulations. Then we construct an
analytical theory to explain this nontrivial result and re-
veal the Lorentz contraction of DW as its physical ori-
gin. We further find that this DW contraction gives rise
to reentrant emergence of Walker breakdowns separated
by multiple Walker regimes in which the rigid DW mo-
tion is supported. It is found that the upper limit of
DW speed is still governed by magnon velocity when the
Lorentz invariance manifests. Averaged DW velocities in
the breakdown regimes are calculated as another predic-
tion for future experiments. Our findings are expected
to be observed in synthetic antiferromagnets [5, 6].

Domain wall velocity.—We consider antiferromagnet-

ically stacked one-dimensional Néel DWs shown in
Fig. 1(a). The Hamiltonian for this system is given by,

H =
∑

i

[

− JFmi ·mi+x̂ + JAFmi ·mi+ŷ

+Khm
2
iy −Kem

2
iz

]

, (1)

where mi(= Mi/M) is the normalized magnetization
vector at the ith site, Mi is the magnetization, and M
is its norm. Here JF (JAF) is the (anti)ferromagnetic
exchange coupling, and Ke (Kh) is the easy (hard) mag-
netization anisotropy along the z (y) axis. This Hamil-
tonian is a simplified model of Mn2Au [4, 20, 21] and
CuMnAs [3].
We simulate the current-induced DW motion by using

the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equa-
tion [22–25], ∂tMi = −γMi × [Beff

i + (−1)iyBSOẑ] +
α
MMi × ∂tMi − (u ·∇)Mi +

β
MMi × (u ·∇)Mi. Here

α(= 0.001) is the Gilbert-damping coefficient, and β is
the strength of nonadiabatic torque. We introduce the
current vairable u ≡ pγ~a30je/(2eM) where je = jex̂ is
the electric current density vector, p(= 0.5) is the spin
polarization of the current, a0 is the lattice constant,
γ(= gµB/~) is the gyromagnetic ratio. The effective local
magnetic field is calculated by Beff

i = −∂H/∂Mi. The
current-induced SO-fieldBSO alternates between the lay-
ers stacked in the y direction [4, 20]. The parameter val-
ues are set to be those of Mn2Au (see Supplementary
Information (SI) Section (Sec.) I and II).
The injected electric current exerts both SOT and

STT simultaneously to magnetizations constituting DW
in each layer. Strength of the field-like SOT BSO is pro-
portional to the current density as BSO = fSOje. The
density-functional calculations evaluated the coefficient
as fSO ≈ 2×10−10 T cm2/A for Mn2Au [3]. Here, we as-
sume a constant fSO for all the current-density ranges. A
previous study examined the DW motion driven by SOT
only [20]. On the contrary, we investigate the current-
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FIG. 1: (a) Schematics of the system. (b) Numerical and
analytical results of the DW velocities.

density dependence of DW velocity in the presence of (i)
only STT, (ii) only SOT, and (iii) both STT and SOT
to compare the effects of SOT and STT on equal footing
[Fig. 1(b)]. In the simulations, we take a rather unphysi-
cally large value of β as β = 10α on purpose, with which
the effect of STT should be prominent. Even in this ex-
treme condition, the contribution of STT to DW motion
is still much smaller than that of SOT. For instance, when
je = 1.3× 1012 A/m2, the velocity driven solely by STT
(vSTT ≈ 0.75 km/s) is only approximately 7% of that by
SOT (vSOT ≈ 10.4 km/s). This result demonstrates an
overwhelming efficiency of SOT for driving the DW mo-
tion. Intriguingly, when both torques coexist, the DW
velocity (vboth ≈ 10.5 km/s) is not given by a simple ad-
dition of these two velocities (vSTT+vSOT ≈ 11.12 km/s),
although both torques should work additively [13]. To
explain this phenomenon, we analytically derive the for-
mula of DW velocity [plotted with lines in Fig. 1(b)] by
employing a simple two-layer model with presumed rigid
DW profiles during the motion [5, 13]. The DW pro-
files are obtained from the saddle-point equation of the
Hamiltonian as Ml = M(sin θl cosφl, sin θl sinφl, cos θl)

with θL = −2 tan−1[exp x−q(t)
∆ ] and θU = θL + π, where

l(=U, L) is an index of the upper and lower layers. Here
q(t) and ∆ are the center coordinate and the width of
the DW, respectively, and the tilt angle φl(t) is assumed
to be spatially uniform [5, 13]. We plugged this formula
into LLGS equation and confirmed that the DWs in the
upper and lower layers have common q(t) and ∆ when
the antiferromagnetic coupling JAF is sufficiently strong.
After some algebra, we obtain φL = −φU and φ̇U(1 +

α2) = u(α− β)/∆− γBSO − αγ(JAF +Kh) sin(2φU)/M ,
showing a competition between STT, SOT, and antifer-
romagnetic exchange plus anisotropy torques. The con-
dition for terminally static φl, namely φ̇U = 0, is

sin(2φU) = − M

αγ(JAF +Kh)

[u(β − α)

∆
+ γBSO

]

. (2)

Note that this formula has the same form as that in a
ferromagnetic thin film lying on the xy plane [13], where
JAF + Kh plays the same role as the demagnetization
factor Ny − Nx in the latter case. Therefore, we expect
Walker breakdown to occur also in the layered antifer-

romagnets [13, 20]. Using Eq. (2), the DW velocity is
derived as

v ≡ q̇ = u
β

α
+

γBSO∆

α
. (3)

The right-hand side is a sum of two contributions from
STT (the first term as in [26]) and SOT (the second
term). We, therefore, naively expect that the DW veloc-
ity v in the presence of both STT and SOT is given by a
simple sum as vboth = vSTT+vSOT where vSTT (vSOT) is
the velocity in the presence of STT (SOT) only. We also
expect that v is proportional to u or the current density
je because BSO ∝ u. However, the normalized staggered
magnetization l ≡ (MU −ML)/2M in antiferromagnets
follows the Lorentz-invariant equation of motion when
the damping and the current-induced torques are com-
pensated, and thus the DW width ∆ suffers from a rela-

tivistic contraction [15, 17, 27] as ∆(v) ≈ ∆0

√

1− v2/v2g ,

where ∆0(= a0
√

JF/2Ke) is the DW width in the static
case and vg(= a0

√
JFJAF/~) is the magnon velocity in

the exchange limit (|m| ≡ |(MU + ML)/2M | ≪ |l|,
see SI Sec. IX). Therefore, vboth should depend nonlin-
early on the current density u and the SO-field BSO, and
the velocity is no longer given by a simple addition of
vSTT + vSOT.

With the formula of the Lorentz-contracted width
∆(v), Eq. (3) becomes a quadratic equation for v. One
solution of this equation is negative and, thus, is unphysi-
cal because je ∝ +x̂ gives rise to a net torque that should
drive DW motion in the +x̂ direction (SI Sec. VII). The
other solution is positive and thus is physical, which can
be simplified as v = u/(a

√
c+ du2 − b) with constants

a = γfSO/(FJAF), b = 2Keαβ/F , c = 2J2
AFJFKe(a0α)

2,
d = JAF~

2F , and F = JF(γfSOa0)
2 − 2Keβ

2. This sim-
ple analytical solution is the first major result of this
study, which is shown by lines in Fig. 1(b) and coincides
well with the numerical results. We show an alternative
derivation based on the Thiele equation [28] in SI Sec. X,
which turns out to give the same formula for the DW
velocity.

When BSO = 0, v is independent of JAF, which can
be understood intuitively. A finite BSO efficiently tilts
Ml on both layers along the hard axis −ŷ direction
(SI Sec. VII). Subsequently, the JAF coupling induces
a strong exchange torque owing to this tilt to drive DW
motion [21]. This scenario is the same as that in the syn-
thetic antiferromagnets [5], where the damping-like SOT
is the dominant mechanism for the high DW speed. Note
that Eq. (2) indicates that there is still a finite tilt angle
even when BSO = 0 owing to the STT. The DW veloc-
ity in this case is proportional to (JAF +Kh)∆ sin(2φU)
(see SI Sec. II), and thus, the dependence on JAF is can-
celled, resulting in effectively uncoupled ferromagnetic
DWs. In addition, in the limit of u → ∞, we obtain
v → vg

√
1− n, with n = 2Ke

JF
( β
γfSOa0

)2 ≈ 4 × 10−4 using
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β = 10α. Therefore, we find that the DW velocity can-
not exceed the magnon velocity vg as expected and can
reach vg only in the adiabatic limit of β = 0.

Magnon velocity and tilt angle.—We use a saddle-point
solution of θU,L to fit the simulated DW widths and eval-
uate vg numerically, which is close to the analytical value
(SI Sec. III). For je = 1.5 × 1012 A/m2, Eq. (2) leads
to sin(2φU) ≈ −0.16, and the DWs are within Walker
regime to maintain the rigid moving profiles, which self-
consistently justifies our initial substitution of the rigid
DW profiles into the LLGS equation. This corresponds
to MU/L,y ≈ −0.08Msech(x−vt

∆(v) ) with the same sign for

both layers. This analytical result coincides well with the
simulation results (SI Sec. III). The minor discrepancy
in the peak height is attributable to nonzero spin-wave
emissions behind the moving DW indeed observed in the
simulations.

Prediction of multiple Walker regimes.— The Walker
breakdown is defined as a regime in which rigid DW pro-
files are no longer stable when driven by large current or
strong field exceeding a threshold, with which φ̇U,L be-
comes finite. In the breakdown regime, the right-hand
side of Eq. (2) is greater than 1 or less than −1, and thus
the threshold current uc is determined by the condition
sin(2φU(uc)) = ±1. It has been widely believed that the
Walker breakdown should not occur for DWs in antifer-
romagnets [15–19]. However, we find that it can occur
in layered antiferromagnets with exchange coupling JAF

because Eqs. (2) and (3) have the same form as that
for DWs in ferromagnetic thin films [13]. Substituting
the analytical solution of v into Eq. (2), we obtain its

u-dependence as sin(2φU) = −c0u
[

1 + (β−α)(c1+c2u
2)

x1

√

1+c5u2
−x2u2

]

with coefficients specified in SI Sec. IV. This indicates
nonlinear u dependence of sin(2φU) and possible emer-
gence of multiple Walker regimes separated by break-
down regimes with boundaries defined by sin(2φU(uc)) =
±1. This is in striking contrast to the case of ferro-
magnets, in which sin(2φ) shows a monotonic behavior
against u and, thus, only a unique threshold current den-
sity appears [13, 14].

For better data visualization, Fig. 2 shows the current-
density dependence of sin(2φU) when α = 0.005, β =
0.5α, and JAF = 10−3JAF,Mn2Au with JAF,Mn2Au being
the AF exchange coupling in Mn2Au, in which we find
multiple Walker regimes in (i) 0 < u < uc1 with uc1 ≈ u0

and (ii) uc2 < u < uc3 with uc2 ≈ 5.4u0 and uc3 ≈ 6.3u0,
where u0 ≡ (pγ~a30/2eM)×1012 A/m2. There is a singu-
lar point of sin(2φU) at us = vgα/β ≈ 11.8u0, at which
the denominator vanishes as x1

√
1 + c5u2−x2u

2 = 0 that
causes sin(2φU) abruptly crosses from a positive to a neg-
ative value. This us is a criterion of u for the stability
of DW. Equation (3) leads to ∆ = (αv − βu)/γfSOu. At
the singular current, ∆(us) = (αv(us) − βus)/γfSOus ≤
(αvg−βus)/γfSOus = 0, thus the DW already shrinks to
zero width before the current reaches us. Therefore, for

Walker regime Breakdown regime Instable DW
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 (1012A/m2)Current density
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FIG. 2: Thick solid (black) curves show sin(2φU) when
β = 0.5α. Horizontal dotted lines label the values ±1. Grey
areas indicate the Walker breakdown regimes, and red area
the instable DW regime.

current u > us, even if there is a self-consistent Walker
regime, it does not support a stable DW. The equation
for the threshold current, sin(2φU(uc)) = ±1, has no an-

alytical solutions since it has a form
∑6

n=1 γnu
n
c = 0 with

the sixth-order polynomial of uc and coefficients γn. Nev-
ertheless, it evidently implies that more than one Walker
regimes can exist. This is another central result of this
work. Note that there is also self-consistent solution of
multiple Walker breakdowns when β > α (SI Sec. IV),
but it cannot be observed since the second Walker regime
occurs at currents larger than us. For α = β, only a sin-
gle breakdown regime appears similar to the ferromag-
netic case, which leads to sin(2φU) = −c0u and a unique
threshold current density of uc = 1/c0.
The physical mechanism of reentrant Walker regime

can be seen by the equation of φ̇U in the paragraph above
Eq. (2). The strength of STT due to angular momen-
tum conservation when electrons pass through the DW
is proportional to u/∆ which characterizes the rate of
electron spin reverse, since ∆ is the length scale of local
magnetization reverse in a DW, and u relates to polar-
ized electron’s velocity. Due to the Lorentz contraction
of ∆ in antiferromagnets, the competition between STT
(∝ u/∆) and SOT (∝ u) can bend the right-hand side
of Eq. (2) from less than −1 to exactly −1, driving the
DW from breakdown into second Walker regime, as con-
firmed by numerical integration of LLGS equation with
fourth-order Runge-Kutta (RK) method [see SI Sec. V].
Averaged velocity in breakdown regime.—In break-

down regime, φU,L(t) depends on time such that both
sin(2φU,L(t)) and v(t) oscillate in time, and it is no longer
permissible to use Eq. (2) to obtain Eq. (3). From RK
calculation (SI Sec. VI), we get the time-averaged DW
velocity as shown in black dots in Fig. 3. Besides a
quantitative agreement with the analytical velocities in
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FIG. 3: Curves represent analytical DW velocities in Walker
regimes, and dots represent terminal (time-averaged) veloci-
ties in Walker (breakdown) regimes by RK calculation.

Walker regimes, in breakdown regime we find a drop of
time-averaged velocity similar to the case in ferromag-
nets [13, 14].
There is an intuitive way to expect this velocity drop in

breakdown regime. In the presence of STT and staggered
SOT, we can extend the consideration in [29–31] to write
the Lagrangian density for our layered antiferromagnet
as,

L = −Jm · [l× (∂t + u∂x)l]− 4JAFm
2/a0 − U(l), (4)

where J = M/γa0 and U = JFa0(∂xl)
2 − Kel

2
z/a0 +

Khl
2
y/a0 − (M/a0)l ·BSO is the energy density of l. The

J term is the spin Berry phase in a gauge with op-
posite Dirac strings n0,l for the two sublattices in the
monopole representation

∑

l LB,l = 1
γa0

∑

l[n0,l · Ml ×
(∂t + u∂x)Ml]/(1 − n0,l · Ml) and is expanded up to
the second order of m. (The next finite order of m is
the third order which can be proved by choosing, e.g.,
n0 = ±ẑ for the two sublattices, respectively.) [29, 30].
The adiabatic STT contributes to the second term of
the convective derivative (∂t + u∂x) [32]. Neglecting the
nonadiabatic STT and Rayleigh dissipation (∝ αṁ2),
we obtain m = −J a0l × (∂t + u∂x)l/(8JAF) from the
Lagrange equation. Using the saddle-point DW pro-
file of l, the m-dependent terms after integrating over
x become M0

2 (v − u)2 + I
2 φ̇

2
U, which are the transla-

tional and rotational kinetic energies of a soliton with
mass M0 = M2/(4γ2a0∆JAF) and moment of inertia
I = M0∆

2. In this derivation, we assume a time-
independent terminal ∆.
Near uc1 ≈ 0.06 km/s, v is close to vg ≈ 0.34 km/s,

thus v(uc1) is greater than uc1. When the system crosses
the threshold uc1 and enters the breakdown regime, the
soliton angular frequency φ̇U changes abruptly from zero
to finite, which causes a nonzero rotational energy. To
preserve the kinetic energy of the soliton in a narrow
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FIG. 4: Threshold currents as functions of the interlayer an-
tiferromagnetic coupling for various Gilbert dampings. Inset
shows enlarged view.

current-density range near uc1, the DW velocity should
decrease as Fig. 3 shows. From the experimental point
of view, however, it should be mentioned that with cur-
rents close to uc1, several other instabilities and effects
may appear such as spin-wave emissions [33] and DW
proliferations [20] (SI. Sec. VII). Indeed, it was theoret-
ically argued that an effective gyrofield induced by the
kinetic energies of DW can cause the DW proliferation
together with the transient Lorentz-invariance breaking
with DW speeds exceeding vg [20, 34].

Proposal for experimental observations.—In synthetic
antiferromagnets [5, 6], an underlying Pt layer induces
a damping-like SOT ∝ M × M × ẑ (using our coordi-
nate convention) in the same direction but with differ-
ent strengths for the two magnetic layers on top of it
(stacked along −ŷ) [5]. One can fabricate another Pt
layer above the upper magnetic layer which, by symme-
try, generates an opposite SOT when applying the cur-
rent. In this situation, each layer is driven by opposite
damping-like SOT. After taking a curl product of the
LLGS equation with M to cancel time derivatives on
its right-hand side, it induces a staggered field-like SOT
∝ ±M × (M ×M × ẑ) ∝ ∓M × ẑ, which mimics the
staggered SO-field BSO in our case. Therefore, we expect
similar results of multiple Walker breakdowns to occur in
synthetic antiferromagnets with both top and bottom Pt
layers.

Since JAF can be tuned in synthetic antiferromagnets
by changing the thickness of metallic layer sandwiched by
two magnetic layers, we investigate the dependence of ucj

on JAF as well as the Gilbert damping α when β = 0.5α
with other parameters following that of Mn2Au. The
results plotted in Fig. 4 show nearly monotonic decrease
of ucj as JAF decreases, since a smaller antiferromagnetic
exchange torque requires a smaller STT (and thus smaller
ucj) to compensate as shown in the equation for φ̇U above
Eq. (2). It requires roughly JAF ≤ 10−3JAF,Mn2Au to
get experimentally feasible current below ∼ 1013 A/m2



5

to observe the second Walker regime. We have checked
the Lorentz contraction of DW width still manifests in
this small exchange regime by micromagnetic simulation.
Moreover, for larger dampings, second Walker regime be-
tween uc2 and uc3 appears in a wider range, appropriate
for experimental observations, although one should note
that for α = 0.01, there is no longer real solution of ucj

for JAF < 9× 10−4JAF,Mn2Au in our parameter set.
Conclusion.—We have theoretically studied the DW

motion in layered antiferromagnets driven by electric cur-
rent, which exerts both STT and staggered SOT. We
have discovered possible reentrant emergence of multi-
ple Walker breakdowns, which is in sharp contrast to the
unique Walker breakdown for the current-driven DWmo-
tion in ferromagnets. We have revealed that the Lorentz
contraction of DW width in antiferromagnets gives rise
to nonlinear current-dependence of the DW velocity and
the predicted multiple Walker breakdowns. The domi-
nant efficiency of SOT over STT and their non-additive
effects in driving the DW motion have been also demon-
strated. It should be mentioned that the present theory
can be generalized in the straightforward way for intrinsic
antiferromagnetic systems in which STT is not applicable
or for the cases in which other torques due to additional
effects are present (e.g., Dzyaloshinskii-Moriya interac-
tion, Rashba spin-orbit interaction, spin Hall effect). Our
findings are expected to be observed in synthetic antifer-
romagnets experimentally and provide siginificant con-
tributions to development of the antiferromagnetic spin-
tronics.
This work is supported by Japan Society for the Pro-

motion of Science KAKENHI (Grant No. 20H00337 and
No. 23H04522), CREST, the Japan Science and Tech-
nology Agency (Grant No. JPMJCR20T1) , and the
Waseda University Grant for Special Research Project
(Project No. 2023C-140). M.K.L. is grateful for illumi-
nating discussions with Rintaro Eto, Collins A. Akosa,
and Xichao Zhang.
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I. DETAILS OF MICROMAGNETIC SIMULATION

For micromagnetic simulations, we take a system containing one-dimensional chains each with 60000 atomic sites
along x-direction as shown in Fig. 1 (a) in the main text. The open boundary condition (BC) is used for x- and
z-directions, while periodic BC is used for the y-direction. Initial domain wall (DW) configuration is obtained by
relaxing for a sufficiently long time a presumed saddle-point antiferromagnetically-coupled DW profile close to the left
edge of the chains using the static DW width ∆0 = a0

√

JF/2Ke ≈ 25a0, where JF, Ke, and a0 are the ferromagnetic
exchange constant, easy-axis anisotropy, and lattice constant, respectively, with magnitudes being specified in the
next section. The electric current is applied along the x-direction, with a linear ramp-up time as 100 ps from zero
to the full magnitude to reduce spin wave emissions or other transient effects. The LLGS equation for magnetization
dynamics under current is numerically solved by using the fourth-order Runge-Kutta (RK) method. DW center as a
function of time is measured by the site with the maximal Mx component in time. We have checked in our current
model parameters (see next section) and range of currents that each DWs have the same center during motion. DW
velocity is calculated by subtracting the DW center at 1000 ps and that at 900 ps and dividing it by the time difference
of 100 ps. We have checked the velocities in this time range have already saturated.

II. ANALYTICAL CALCULATION OF DW VELOCITY

We consider a system of two antiferromagnetically (AF) coupled one-dimensional domain walls (DWs), with their
magnetizations in the discrete lattice written as ml,i = Ml,i/M = (sin θl,i cosφl,i, sin θl,i sinφl,i, cos θl,i), where sub-
script l = U(L) stands for the upper (lower) layer, subscript i is the site index along x direction, and M(= 4µB) is

http://arxiv.org/abs/2312.10337v2
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the magnetization (µB stands for the Bohr magneton). Define the magnetization density vector in the continuous
limit as ml(x) = ml,i/a0 (and Ml(x) = Ml,i/a0, θl(x) = θl,i, φl(x) = φl,i) with lattice constant a0 = 0.3328 nm in
the following. We consider the Hamiltonian density along x̂ direction, H(x, t), as

H(x, t) =
∑

l=U,L

{

JFa0
2

[

(∂xθl)
2 + sin2 θl(∂xφi)

2
]

+
1

a0

[

Kh sin
2 θl sin

2 φl −Ke cos
2 θl

]
}

+
BSOM

a0

[

cos θU − cos θL

]

+
JAF

a0

[

sin θL sin θU cos(φL − φU) + cos θL cos θU

]

(1)

where JF(= 9.91×10−3 eV) and JAF(= 4.58×10−2 eV) are the ferromagnetic and AF exchange constant along x̂ and
ŷ direction, respectively. Kh(= 8.1× 10−4 eV) is hard-axis anisotropy along ŷ, and Ke(= 8.1× 10−6 eV) is easy-axis
anisotropy along ẑ. All model parameters are referred from the values in Mn2Au [1].
The effective field is calculated by Beff

l (x, t) = −1
a0

δ[
∫
dx′H(x′)]/δMl(x, t). Plugging the presumed DW solution

θL = −2 tan−1[exp x−qL(t)
∆(q̇L)

] and θU = −2 tan−1[exp x−qU(t)
∆(q̇U) ] + π into the LLGS equation as shown in the main text,

we can derive the equations of motion for DW velocity q̇i and hard-axis tilt angle φi. To this end, we assume (i)
both DWs in upper and lower chains have the same center during motion, qU,L(t) = q(t), which has been confirmed
by simulation within our model parameters and excitation protocol; (ii) since φU,L(t) is the conjugate momentum of

qU,L(t) when the Lagrangian density contains only the spin Berry phase, φ̇l(cos θl−1), it should only depends on time
but not on space in that case [2]. Here we also assume φU,L(t) only depends on time but not on x and take ∂xφU,L = 0
as in [3]. This is a rather strong assumption, since the Hamiltonian density as Eq. (1), taking the DW profile, includes
interaction terms between ql and φl [2], thus φl is no longer strictly the conjugate momentum of ql and there is no
guarantee that φl should not depend on space. Nevertheless, this assumption works well in several works when we

focus on the motion of DW center [3, 4]. Lastly, we assume (iii) the relativistic DW width ∆(q̇) =

√

JFa2
0

2Ke
(1− q̇2

v2
g
) is

independent of time; namely, we take the terminal velocity limit in which q̇ approaches a constant v. In this case,
∂Ml,i/∂t in LLGS equation only contains time derivatives of q, but not of ∆.
Although in assumption (iii) we approximate DWwidth ∆ as being time-independent, first let us consider the general

case when ∆ = ∆(t) also depends on time. Substituting the DW profiles into LLGS equation in the continuous limit,
we get [denote “()” as “(x−q

∆ )”]

Ṁl,x =
M

a0∆
sech()tanh()(± cosφi)

(

q̇l +
x− ql
∆

∆̇
)

+
M

a0
sech()(∓ sinφl)φ̇l = τl,x,

Ṁl,y =
M

a0∆
sech()tanh()(± sinφl)

(

q̇l +
x− ql
∆

∆̇
)

+
M

a0
sech()(± cosφl)φ̇l = τl,y,

Ṁl,z = ∓ M

a0∆
sech2()

(

q̇l +
x− ql
∆

∆̇
)

= τl,z,

where we write τl as the torque and the upper (lower) sign is for upper (lower) layer. From these equations we get

q̇U/L +
x− qU/L

∆
∆̇ =

±a0∆

M

(cosφU/L)τU/L,x + (sinφU/L)τU/L,y

sech()tanh()
=

∓a0∆τU/L,z

Msech2()
, (2)

φ̇U/L =
a0
M

∓(sinφU/L)τU/L,x ± (cosφU/L)τU/L,y

sech()
. (3)

Substituting all the torques in LLGS equation τl derived from the Hamiltonian and spin transfer torques into right-
hand sides, we find from above equations

q̇U,L =
u(1 + αβ)

1 + α2
+

BSOαγ∆

(1 + α2)
+

JAFγ∆sin(φL − φU)

M(1 + α2)
∓ Khγ∆sin(2φU,L)

M(1 + α2)
−
(x− qU,L

∆

)

∆̇ (4)

− tanh
(x− qU,L

∆

) αγ

M(1 + α2)

[

∆
(

JAF + 2Ke +Kh − JAF cos(φL − φU)−Kh cos(2φU,L)
)

− JFa
2
0

∆

]

, (5)

φ̇U,L = ± u(α− β)

∆(1 + α2)
∓ BSOγ

(1 + α2)
± JAFαγ sin(φL − φU)

M(1 + α2)
− Khαγ sin(2φU,L)

M(1 + α2)
(6)

± tanh
(x− qU,L

∆

) γ

M(1 + α2)

[(

JAF + 2Ke +Kh − JAF cos(φL − φU)−Kh cos(2φU,L)
)

− JFa
2
0

∆2

]

, (7)
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where the upper (lower) signs are for the upper (lower) layer. In the end of this section we will show that we need to
set x = ql(t) on all right-hand sides such that all tanh(x−ql

∆ ) terms are zero, and remaining terms are independent of x.
This is equivalent to focusing on the DW center, an approximate approach commonly adopted when there are external
current or magnetic fields which make the formula of θl no longer the exact solution of the LLGS equation [3, 4]. For
now we just take this procedure and get the following equations

q̇U,L =
u(1 + αβ)

1 + α2
+

BSOαγ∆

(1 + α2)
+

JAFγ∆sin(φL − φU)

M(1 + α2)
∓ Khγ∆sin(2φU,L)

M(1 + α2)
, (8)

φ̇U,L = ± u(α− β)

∆(1 + α2)
∓ BSOγ

(1 + α2)
± JAFαγ sin(φL − φU)

M(1 + α2)
− Khαγ sin(2φU,L)

M(1 + α2)
. (9)

The requirement of qL = qU ≡ q (assumption (i) above) leads from the first equation to sin(2φU) = − sin(2φL),
with two solutions as (i) φU = −φL, or (ii) φU = φL + (2n + 1)π/2 with n being integers. Only solution (i) can

simultaneously fulfill the second equation for φ̇l. After static motion, setting φ̇l = 0, we get from the second equation,

0 =
u(α− β)

∆(1 + α2)
+

−γBSO

(1 + α2)
− αγ(JAF +Kh)

M(1 + α2)
sin(2φU), (10)

sin(2φU) =
−M

αγ(JAF +Kh)

[u(β − α)

∆(q̇)
+ γBSO

]

. (11)

This is Eq. (1) in the main text. Note that for self-consistency, in the end we need to plug ∆(q̇l) into this equation
to check whether −1 ≤ sin(2φl) ≤ 1, the condition for Walker limit that corresponds to the existence of a constant-φl

DW during motion, since this equation comes from setting φ̇l = 0. For now, we first assume that this condition is
fulfilled and plug the term sin(2φU) into Eq. (8) to get

q̇ = u
β

α
+

BSOγ∆(q̇)

α
= u

β

α
+

BSOγa0
α

√

JF
2Ke

(

1− q̇2

v2g

)

. (12)

⇒ q̇ =
2uαβKeJAF

(~γBSO)2 + 2KeJAFα2
±

γBSO

√

JAF

[

JF(a0~γBSO)2 + 2JFJAFKe(αa0)2 − 2Ke(uβ~)2
]

(~γBSO)2 + 2KeJAFα2
. (13)

where vg = a0
√
JFJAF/~ is the maximal magnon group velocity of the model derived in SI Sec. IX. This is Eq. (3) in

the main text.
In the following we show the necessity of taking x = ql. If we were not taking this substitution, since both sides

in Eq. (4,6) should be independent of x, the requirements that the factors of tanh(x−ql
∆ ) should be zero leads to the

equation

cos(2φU) = cos(2φL) =
−JFa

2
0 +∆2(JAF + 2Ke +Kh)− JAF∆

2 cos(φL − φU)

Kh∆2
, (14)

while the requirement of qL = qU (assumption (i) above), when considering x-independent parts in above equations,
leads to sin(2φU) = − sin(2φL), with two solutions as (i) φU = −φL, or (ii) φU = φL + (2n + 1)π/2 (n = integers).
Only solution (i) can satisfy the two equalities in above equation, which can be solved to get

cos(2φU) = cos(2φL) =
−JFa

2
0 +∆2(JAF + 2Ke +Kh)

(JAF +Kh)∆2
. (15)

This is actually an equation that determines the static DW width ∆. When the current is absent, u = 0, the DW is
in the steady state, thus q̇U = 0. From Eq. (4) and above solution (i), it requires φU = φL = 0 which means the DWs
are lying on xz plane only. From the above equation with φU = 0 such that cos(2φU) = 1, we get

1 = cos(2φL) =
−JFa

2
0 +∆2(JAF + 2Ke +Kh)

(JAF +Kh)∆2
⇒ ∆ = a0

√
JF
2Ke

, (16)

which is simply the well-known static DWwidth. This is expectable since we plugged θL = −2 tan−1[exp x−qL(t)
∆(q̇L)

], θU =

θL + π into the LLGS equation. When there is no current this is simply the saddle-point solution of the Hamiltonian
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containing only the JF and Ke terms, thus the x-dependent tanh(x−ql
∆ ) term in Eq. (5) should vanish by using the

form of static DW width. The additional JAF and Kh terms do not affect this saddle-point solution, since they
favor the DWs to be antiferromagnetically coupled and to lie on xz plane, and the lowest-energy configuration is still
described by this θl.
However, when there is a finite current, u 6= 0, we will see Eq. (15) is not consistent with the terminal solution of

sin(2φU). Setting φ̇U = 0 in Eq. (6) and from Eq. (4), we get (set BSO = ufSO as described in the main text)

sin(2φU) =
−uM

αγ(JAF +Kh)

[β − α

∆
+ γfSO

]

, (17)

q̇l ≡ v = u
(β

α
+

γfSO∆

α

)

⇒ u =
αv

β + γfSO∆
⇒ sin(2φU) =

−vM(β − α+ γfSO∆)

γ∆(JAF +Kh)(β + γfSO∆)
. (18)

We consider the Lorentz-contracted DW width as

∆ = a0

√
JF
2Ke

√

1− v2

v2g
⇒ v = vg

√

1− 2Ke∆2

JFa20
. (19)

Using Eq. (19), we can express sin(2φU) in Eq. (18) as a function of ∆ only, without the explicit dependence on v
and u. Now we can check whether the mathematical rule F (∆) ≡ sin2(2φU) + cos2(2φU)− 1 = 0 is satisfied or not by
using Eq. (18,15). After some algebra,

F (∆) =
(JFa

2
0 − 2Ke∆

2)(A+ v2gM
2B)

(a0γ∆2)2JF(JAF +Kh)2(β + γfSO∆)2
, (20)

A = a20γ
2JF(β + γfSO∆)2(JFa

2
0 − 2(JAF +Ke +Kh)∆

2), B = ∆2(β − α+ γfSO∆)2.

The solution of ∆ to fulfill the condition F (∆) = 0 is ∆ = a0

√
JF

2Ke
, which is the static DW width. However, this

solution contradicts with the Lorentz-contracted width in Eq. (19) which we already used for the derivation of F (∆).
Therefore, it means we cannot fulfill the condition sin2(2φU) + cos2(2φU) = 1 using Eq. (18) and Eq. (15). This

means that, θL = −2 tan−1[exp x−qL(t)
∆(q̇L)

], θU = θL + π are no longer the the saddle-point solutions when the external

current is finite. To circumvent this difficulty, we focus on DW center (as in [3, 4]), then Eq. (18) becomes the only
approximate solution of sin(2φU), then the above Eq. (11) and Eq. (12) follow.

II.1. Large current limit of DW velocity

Dependence on current u of the DW velocity can be seen as (setting q̇ = v)

v =
u(c3 + c4

√
1 + c5u2)

c1 + c2u2
, c1 = 2KeJAFα

2, c2 = (~γfSO)
2, (21)

c3 = 2αβKeJAF, c4 = αγfSOJAFa0
√

2JFKe, c5 =
~
2[JF(γfSOa0)

2 − 2Keβ
2]

2JAFJFKe(αa0)2
,

where we have used BSO = fSOu from density-functional calculation [5]. More concisely, we find the DW velocity can
be exactly reduced to the form

v =
u

a
√
c+ du2 − b

, a = γfSO/(FJAF), b = 2Keαβ/F, (22)

c = 2J2
AFJFKe(a0α)

2, d = JAF~
2F, F = JF(γfSOa0)

2 − 2Keβ
2.

If we fix β = 2α, the dependence of v on u is illustrated in Supplementary Fig. 1 (a). At present stage, we ignore the
Walker breakdown, and assume this formula is exact for all u. Then in the large u limit, we get

lim
u→∞

v → c4
√
c5

c2
=

a0
~

√

JFJAF

√

1− 2Ke

JF

( β

γfSOa0

)2

< vg =
a0
~

√

JFJAF, (23)
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Supplementary Fig. 1: (a) Domain Wall (DW) velocity vs current density, with β = 2α. (b) Hard-axis tilted magnetization
component mU/L,y as a function of the site position after applying the current for 1000 ps. The blue curve represents the
mU/L,y for both upper and lower layers (they have nearly the same value), while orange dotted curve shows a fit with the
saddle-point DW profile taking ∆ = 6a0 and peak magnitude as that of simulated mU/L,y. Inset shows the enlarged view of
the spin waves behind the DW.

with 2Ke

JF

(
β

γfSOa0

)2

≈ 0.0004 using our parameters with β = 10α. Therefore, the DW velocity cannot exceed the

maximal magnon velocity as expected, and limu→∞ v → vg only when β = 0, namely the adiabatic limit.

III. MAGNON VELOCITY AND DW HARD-AXIS TILT ANGLE

In addition to the good agreement among the analytical and simulated DW velocities as shown in Fig. 1 in the main
text, we find the analytical hard-axis tilt angle (tilted in y-direction in Supplementary Fig. 1 (b)) can also match the
simulated one. For example, with J = 1.5 × 1012 A/m2, in the presence of both SOT and STT, from Eq. (11) we
find sin(2φU) = −0.16. The value of sin(2φU) corresponds to an angle φU,L ≈ ∓3.63◦, inducing a nonzero normalized
mU/L,y = sin θU,L sinφU,L ≈ −0.07sech(x−vt

∆(v) ). This analytical tilted component matches well with simulation as

shown in Supplementary Fig. 1 (b), as (i) simulated mU/L,y has the same negative sign for both upper and lower
layers, (ii) the shape of mU/L,y is of a form of hyperbolic secant centered nearly on the DW center, and (iii) the minor
discrepancy is that numerically the minimal value of mU/L,y is −0.044, about only half of the analytical value −0.08,
but with the same order of magnitude. This may be attributed to nonzero spin wave emission behind the moving
DW as can be seen by the ripples on the left side of the DW profile in Supplementary Fig. 1 (b). We have used a
saddle-point solution of θU,L to fit the numerical DW width during motion, which takes a value of ∆fit ≈ 6a0. From
this fitted width and the velocity v measured by the position of peak of mU,x, which is v ≈ 10.5 km/s, we can extract

the numerical vg as vg = v/
√

1−∆2
fit/∆0 ≈ 10.83 km/s, with ∆0 ≡ a0

√

JF/2Ke ≈ 25a0. This is very close to the

analytical one, vg = a0
√
JFJAF/~ = 10.77 km/s. These aspects together with the good prediction of DW velocities

support the accuracy of our analytical theory on the DW dynamics.

IV. CALCULATION OF WALKER BREAKDOWN THRESHOLD CURRENT

To find the threshold current of Walker breakdown, first note from Eq. (12) that we can write the DW width as

∆(v(u)) = αv(u)−βu
γfSOu , then from Eq. (11,13), after some calculations we get

sin(2φU) = −c0u
[

1 +
(β − α)(c1 + c2u

2)

x1

√
1 + c5u2 − x2u2

]

, c0 =
fSOM

α(JAF +Kh)
, x1 = αc4, x2 = βc2, (24)

using cn’s defined in Eq. (21). This is one of the major results claimed in the main text. The equation satisfied by
the threshold (or termed as critical) current, sin(2φU(uc)) = ±1, has no exact solution of uc since it can be reduced

to a sixth-order polynomial equation of uc,
∑6

n=1 γnu
n
c = 0 with some tedious coefficients γn by rearranging terms

and taking squares on both sides in Eq. (24). Supplementary Fig. 2 shows sin(2φU) for (a) β > α, (b) β = α, and (c)
β < α. Comparing (a) and (c), we find the singular current us occurs before (behind) the second Walker regime for
β > α (β < α). Therefore the second Walker regime can only be observed for the case of β < α. When β = α, we
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Supplementary Fig. 2: The sin(2φU) diagram in SI for α = 0.001 and JAF being the value in Mn2Au. As shown in the main
text, with current larger than us, the DW is unstable. Therefore, only in the case with β < α can the second Walker regime be
observed.

obtain sin(2φU) = −c0u from Eq. (24), which becomes linearly dependent on u, and there is only one threshold current
uc = 1/c0, above which the system is driven into a unique breakdown regime, similar to the case in ferromagnetic
DWs.

V. PHYSICAL MECHANISM OF REENTRANT WALKER REGIME

We explain the physical mechanism that drives the system into reentrant Walker regime by considering the dynamics
of φ ≡ φU = −φL which can be written as

φ̇ =
1

1 + α2

[

− u
(β − α

∆
+ γfSO

)

− αγ(JAF +Kh)

M
sin(2φ)

]

. (25)

Mechanism for the first Walker regime and first Walker breakdown. Initially without current (u = 0), φ is zero to
fulfill the DW saddle-point solution. When a finite current, u > 0, is applied for β > α, the first torque in the bracket
is negative, while initially the second torque is zero. Then the initially zero φ becomes negative and induces a positive
torque from the second term. The two torques in the bracket thus compete, since the AF exchange coupling and
ŷ-directional hard axis anisotropy both prefer a zero φ as the lowest-energy state. When |φ| becomes large enough,
the two torques completely compensate, leading to a constant-φ motion of the DWs in the Walker regime. For a
larger u, DW velocity increases and its width ∆ decreases, then the first torque decreases. The Walker breakdown

occurs when the current is large enough such that the second torque with the maximal magnitude of αγ(JAF+Kh)
M(1+α2) can

no longer compensate the first torque from STT and SOT.
Mechanism for reentrant Walker regime. In the breakdown regime, the dynamics of φ is still governed by Eq. (25)

when ignoring spin wave emissions. Consider the β < α case and we write

φ̇ =
1

1 + α2

{

− u
[

γfSO − (α − β)

∆

]

− αγ(JAF +Kh)

M
sin(2φ)

}

. (26)

φ̇ = 0 ⇒ sin(2φ) =
−uM

αγ(JAF +Kh)

[

γfSO − (α− β)

∆

]

. (27)

Now the bracket [γfSO − (α−β)
∆ ] can be either positive or negative depending on magnitude of ∆. Regardless of

its sign, the terminal state with φ̇ = 0 and Walker breakdown can occur by the same argument in the previous
paragraph. Supposed initially without current the bracket is positive. In Fig. 2 in main text, above uc1 we have the
RHS of Eq. (27) being less than −1, which means the bracket is positive. To explain the reentrant Walker regime,
we numerically solved the DW dynamics by RK method (see below), with the time-averaged velocity shown as black
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Supplementary Fig. 3: DW velocity (averaged velocity) in Walker (breakdown) regimes. Inset shows the enlarged view.

Supplementary Fig. 4: Runge-Kutta calculation results for three different current values as u = 0.5u0, 4u0, 5.8u0 in the first
Walker regime (WR), breakdown regime, and second WR, respectively. (e-h) show the enlarged view of DW velocities.

dots in Supplementary Fig. 3.
In RK calculation, the current is linearly ramped up from zero to target value in 3 ns. Figure 4 shows the DW

position, velocity and tilt angle. In breakdown regime (red curves), both DW velocity ratio v/vg and tilt angle φ
oscillate in time as expected. Interestingly, in the second Walker regime (green curves), although v/vg and φ oscillate
when the current is ramped through the values in breakdown regime, after current is ramped to a specific value, the
oscillation stops, and v and φ become static again, meaning the Walker regime is retrieved.
How the Walker regime is re-entered can be shown by Supplementary Fig. 4 (e-h) as enlarged views of velocities.

Orange dotted lines show the critical velocity vc at which the RHS of Eq. (27) increases from less than −1 to exactly
−1. In Supplementary Fig. 4 (g), the velocity peak increases when current is ramped, leading to a decreasing ∆,
giving the possibility for RHS of Eq. (27) to increase. Comparing Supplementary Fig. 4 (e) and (g), we find for current
within the second Walker (first breakdown) regime, the velocity can (cannot) reach the critical current vc, leading to
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(a) (b)

Supplementary Fig. 5: Runge-Kutta calculation results for (a) DW velocity v/vg and (b) acceleration v̇/vg in breakdown regime
with u = 3u0.

the presence (absence) of the second Walker regime.
The origin of this phenomenon is the dependence of STT on domain wall width ∆ in Eq. (25). The STT is induced by

angular momentum conservation when electron spins in the current rotate to align with local magnetizations. The rate
of reverse of electron spin is roughly proportional to u/∆, since ∆ characterizes the length scale of the reverse of local
magnetizations in a DW, and u characterizes the polarized electron’s velocity. Therefore, there is a u/∆ dependence
in Eq. (25) that characterizes the strength of STT. Due to the Lorentz contraction of ∆ in antiferromagnets, the
competition between STT (∝ u/∆) and SOT (∝ u) in Eq. (25) contribute to the reentrant Walker regime.
We note the drastic oscillation of v/vg between ±1 in Supplementary Fig. 4 is a surprising behavior, since one

may expect it as a small oscillation close to +1 without crossing into negative values. In Supplementary Fig. 5 (b-c),
the DW acceleration (v̇/vg) shows alternative peaks with a temporal width measured as around 10 ps, which stems
from its formula in Eq. (31) whose denominator could approach zero. This leads to the oscillating v/vg between ±1.
Realistically, this drastic motion of DW which changes its moving direction in the time scale of 10 ps may excite spin
waves that hinder the second Walker regime to be observed experimentally. It is our future scope to include the spin
wave excitations in theory.

VI. RUNGE-KUTTA CALCULATION OF DW DYNAMICS

Assuming ∆ is Lorentz contracted relative to the time-varying velocity, we can numerically solve the dynamics of
DW center q(t) and tilt angel φ(t) driven by a time-dependent current u(t) in both Walker and breakdown regimes.
Time derivatives of φ, q, v are

φ̇ =
1

1 + α2

{

− u
[

γfSO − (α− β)

∆

]

− αγ(JAF +Kh)

M
sin(2φ)

}

, (28)

q̇ = v =
1

1 + α2

{

u(1 + αβ) +
(

uαγfSO − γ(JAF +Kh)

M
sin(2φ)

)

∆
}

, (29)

v̇ =
1

1 + α2

{

u̇(1 + αβ) + αγfSO

(

u̇∆+ u∆̇
)

− γ(JAF +Kh)

M

(

2 cos(2φ)φ̇∆+ ∆̇ sin(2φ)
)}

. (30)

By using ∆ = ∆0

√

1− (v/vg)2 with ∆0 = a0
√

JF/2Ke, we get ∆̇ = −∆0vv̇/(vg
√

v2g − v2), so the RHS of Eq. (30)

for v̇ also depends on v̇ itself via ∆̇. Rearranging all v̇-dependent terms on one side, we obtain the DW acceleration

v̇ =
u̇
(

A+B
√

1− (v/vg)2
)

− 2C cos(2φ)
√

1− (v/vg)2φ̇

1 + v
(

Bu− C sin(2φ)
)/(

v2g
√
1− (v/vg)2

) , (31)

A =
1+ αβ

1 + α2
, B =

αγfSO∆0

1 + α2
, C =

γ(JAF +Kh)∆0

(1 + α2)M
. (32)

The three coupled differential equations Eq. (28,29,31) are solved by the fourth-order RK method with integration
time step as 0.01 ps. The averaged velocities in Supplementary Fig. 4 (b) are calculated in the time range from 10 to
40 ns in which the DW motion is already stable.



9

VI.1. Approximate analytical calculation of DW velocity in breakdown regime

We can estimate the time-averaged DW velocity vavg by assuming that ∆(v(t)) has reached a terminal value and
it depends roughly on the averaged velocity as ∆(v(t)) ≈ ∆(vavg) via Lorentz contraction. By solving the differential

equation φ̇U = A sin(2φU) +B with constants A = −αγ(JAF+Kh)
M(1+α2) and B = −u

1+α2 (
β−α
∆ + γfSO), we obtain the solution

φU(t) = arctan[−A
B +

√
B2−A2

B tan[
√
B2 −A2(t+ c)]] with an integration constant c. Real solutions require B2 ≥ A2,

which leads to a criterion u ≥ uth = αγ(JAF+Kh)∆(uth)
M [γfSO∆(uth)+(β−α)] . This equation is exactly the same as that for uc1, i.e.,

sin(2φU(uc1)) = −1, thus we have uth = uc1, which allows us to draw vavg(u) in the first breakdown regime starting

almost from uc1. By averaging over the period π/
√
B2 −A2, we obtain 〈sin(2φU )〉 = (−B−

√
B2 −A2)/A [? ]. Using

this formula, we can obtain

vavg =
u(1 + αβ)

1 + α2
+
[ uγfSOα

(1 + α2)
+

−(JAF +Kh)γ〈sin(2φU)〉
M(1 + α2)

]

∆(vavg) (33)

= u
β

α
+ u

γfSO
α

∆(vavg)−

√
(

uM [γfSO∆(vavg) + (β − α)]
)2

−
(

αγ(JAF +Kh)∆(vavg)
)2

Mα(1 + α2)
.

By rearranging terms, vavg satisfies an equation
∑4

n=0 dnv
n = 0 with some coefficients dn. We numerically find the

four solutions of vavg. Two of them are negative or complex and thus unphysical (since current is along +x direction),
whereas the other two are real and positive and plotted by solid (green) and dotted (blue) curves in Supplementary
Fig. 3 as a comparison with RK result. We find the analytical approximation (green curve) is only a very crude
upper bound of the more accurate RK result, while the other solution (blue curve) is larger than the velocity before
breakdown thus should be excluded by the Lagrangian argument in the main text.

VII. COMPARISON OF TORQUES

For φ ≡ φU = −φL, we write the magnetization as [define () ≡ (x−q
∆ )]

MU/L = M
[

sech()
(

± cosφ x̂+ sinφ ŷ
)

± tanh()ẑ
]

. (34)

After taking a curl with M for the LLGS equation; namely, multiplying M× on both sides of it, the STT, SOT, AF
exchange torque (AF-T), and hard-axis anisotropy torque (Kh-T) read

STT =
−1

1 + α2

[ (α − β)

M
MU/L × (u ·∇)MU/L + (1 + αβ)(u ·∇)MU/L

]

, (35)

SOT =
−γ

1 + α2

[

MU/L ×BSO,U/L +
α

M
MU/L × (MU/L ×BSO,U/L)

]

, (36)

AF-T =
JAF

1 + α2

[

MU/L ×ML/U +
α

M
MU/L × (MU/L ×ML/U)

]

, (37)

Kh-T =
2Kh

1 + α2

[

MU/L ×MU/L,yŷ +
α

M
MU/L × (MU/L ×MU/L,yŷ)

]

. (38)

Taking u = ux̂, the STT plus SOT can be shown as a summation of following three torques,

τ1 =
u

1 + α2

[ (β − α)

∆
+ γfSO

]

MU/L × (±ẑ), (39)

τ2 =
uM(1 + αβ + αγfSO∆)

(1 + α2)∆
sech()tanh()

(

± cosφ x̂+ sinφ ŷ
)

, (40)

τ3 =
uM(1 + αβ + αγfSO∆)

(1 + α2)∆
sech2()(∓ẑ), (41)

τ2 + τ3 =
u(1 + αβ + αγfSO∆)

(1 + α2)∆
MU/L ×Beff,U/L, Beff,U/L = sech()

(

± sinφ x̂− cosφ ŷ
)

. (42)
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Supplementary Fig. 6: Schematics of DW profile and torques with the center located at x = 0. The black dots and arrows
indicate the magnetic moments and their in-plane components, respectively, while colored arrows show the torques.

As shown in Supplementary Fig. 6, supposed β > α and u > 0, then τ1 induces a rotation of φ towards −ŷ direction
for both layers, while τ2 and τ3 induce DW movement toward +x̂ direction for both layers. The AF-T and Kh-T can
be summed and separated as following two torques

τAF+Kh,1 =
(JAF +Kh)αM

1 + α2
[sech2() sin(2φ)MU/L × (±ẑ)], (43)

τAF+Kh,2 =
2(JAF +Kh)M

2

1 + α2
sech()tanh() sinφ

(

∓ x̂− α tanh()ŷ
)

(44)

+
2(JAF +Kh)M

2

1 + α2
sech2() sinφ

(

cosφ+ α sinφ tanh()
)

(±ẑ). (45)

We note τAF+Kh,1 induces a rotation of φ to +ŷ direction when φ < 0. It competes with τ1 in Eq. (39). These two

torques give the expression for φ̇ in Eq. (26). Meanwhile, τAF+Kh,2 does not contribute to the rotation of φ for the
central magnetic site located at x = q(t). In our approximation of focusing on the DW center, we do not consider it
here for the dynamics of φ.
To gain some information about the efficiency of STT and SOT, we can estimate their magnitudes shown in Eq. (39-

41). The ratio of SOT over STT in their contributions in τ1 is γfSO∆/(β−α) ≈ 14.7 using α = 0.001, β = 10α, current
density as 1.3×1012 A/m2, BSO = 26 mT, and ∆ ≈ 6.5a0. Therefore, SOT is much efficient to tilt the magnetizations
into hard-axis direction and to bring the AF exchange torque between the two layers into effect. On the other hand,
the ratio between effective fields induced by SOT to that by STT in τ2 + τ3 is αγfSO∆/(1 + αβ) ≈ 1.3 × 10−4, so
BSOT is much inefficient to push DW compared to BSTT. The major effect by SOT is to efficiently induce hard-axis
tilt to generate the large AF exchange torque to drive DW motion, as discussed in the main text.

VIII. MICROMAGNETIC SIMULATION TO ATTEMPT THE BREAKDOWN REGIME

To test the averaged DW velocity in the breakdown regime, we apply a current larger than uc1 to drive the DW
motion. We fix β = 10α, since as can be seen by comparing Supplementary Fig. ?? and Fig. 2 in the main text, uc1 is
smaller in the larger β case. Specifically, for β = 10α we find uc1 ≈ 6.825u0, and we apply a current with magnitude
u = 8.125u0. Supplementary Fig. 7 shows the simulated results. In (a), we show the DW center as a function of time.
To suppress the spin wave emission or other transient effects due to the high current as much as possible, we use a
larger linear ramp-up time as 1000 ps for the current.
Even in this setup, in Supplementary Fig. 7 (c) of the Mx snapshot we still find spin waves being emitted behind

the moving DW. At 800 ps, the magnitude of applied current is 8.125u0× 800/1000 = 6.5u0 which is close to uc1. At
this instant (d) shows a precursor of negative Mx components in front of the DW, which becomes a new proliferated
DW-pair at later times. Approximately after this instant, we find the system starts to proliferate four new DWs
(schematically shown in (b)), with two DW bound pairs and a fifth DW moving faster than those two pairs. In (a)
the orange curve shows the position of the fifth DW which moves in a velocity of ≈ 1.05vg. This Lorentz invariance
breaking regime has already been found in [1] and it can be explained by linear momentum transfer among the new
born DW-pairs. The two bound DW pairs have nearly the same velocity as about 0.43vg after 1000 ps, which is much
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Supplementary Fig. 7: Micromagnetic simulation of Domain Wall (DW) motion driven by a current u = 8.125u0 > uc1 ≈

6.825u0 for β = 10α (see Supplementary Fig. 2 (a)) with the current ramp-up time being 1000 ps. (a) DW center as a function
of time. (b) Schematics of the magnetization configuration at two temporal instants showing the process of DW proliferations.
(c)-(g) Snapshots of the x-component of magnetizations, Mx, in the upper layer taken at several temporal instants.

smaller than the time-averaged velocity by our analytical calculation which is as high as 99.86vg. This mismatch
must come from our assumption of the ideal system without DW proliferations and spin wave emissions. Therefore,
to verify our theory it is tempting to search for more suitable model parameters which can suppress these phenomena,
or to generalize our simple results by taking them into account in future studies.

IX. DERIVATION OF THE MAGNON VELOCITY

In this section, we derive the maximal magnon group velocity, vg = a0
√
JFJAF/~, as used in the main text.

We define the unit-length magnetizations Mj,k as located at positions (x, y) = (ja0, ka0), with j, k being integers.
Due to the AF exchange along ŷ, we define the two magnetic sublattices A and B through Mj,2n = MA,j and
Mj,2n+1 = MB,j with n being integers. The unit-length averaged and staggered magnetizations are, respectively,
mj,2n ≡ (Mj,2n +Mj,2n+1)/2 and lj,2n ≡ (Mj,2n −Mj,2n+1)/2, defined per two lattice constants along ŷ. The AF
exchange energy can be written as (set a0 = 1 in subindices for brevity)

EAF = JAF

∑

ix=j

iy=n

Mi ·Mi+ŷ = JAF

∑

ix=j

iy=2n

[

Mi ·Mi+ŷ +Mi+ŷ ·Mi+2ŷ

]

(46)

= JAF

∑

ix=j

iy=2n

[

(mi + li) · (mi − li) + (mi − li) · (mi+2ŷ + li+2ŷ)
]

= 2JAF

∑

ix=j

iy=2n

[

m2
i − l2i

]

= 4JAF

∑

ix=j

iy=2n

m2
i + const.

where we’ve used mi+2nŷ = mi, li+2nŷ = li for n ∈ N . In the second step we intentionally restricted the iy index
from any integers to the even-integer subset, since mi and li fields are defined per two lattice constants in ŷ direction.
In this way the unit cell is doubly expanded in ŷ direction. The last constant term will be dropped. The ferromagnetic
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exchange energy reads

EF = −JF
∑

ix=j
iy=n

Mi ·Mi+x̂ = −JF
∑

ix=j
iy=2n

[

Mi ·Mi+x̂ +Mi+ŷ ·Mi+ŷ+x̂

]

= −JF
∑

ix=j
iy=2n

[

(mi + li) · (mi+x + li+x) + (mi − li) · (mi+x̂ − li+x̂)
]

≈ −JF
∑

ix=j
iy=2n

[

2(m2
i + l2i ) + a20li · (∂2

xli)
]

→ JFa
2
0

∑

ix=j
iy=2n

(∂xli)
2 (47)

where we have Taylor expanded the fields up to second-order of lattice constant a0, and ignored the term a20mi ·(∂2
xmi)

in the exchange limit in which we assume |mi| ≪ |li|, and in the last step we have done a partial integration and
dropped the constant proportional to m2

i + l2i = 1. Now the total exchange energy is

EF + EAF =
∑

ix=j

iy=2n

wex,i =
∑

ix=j

iz=2n

[

4JAFm
2
i + JFa

2
0(∂xli)

2
]

. (48)

The LLG equations for mi, li in the exchange limit have the form

ṁi =
(1

2
γBeff

l,i − αl̇i

)

× li, l̇i =
1

2
γBeff

m,i × li. (49)

The derivation of these LLG equations is shown in the bottom of SI. Now we plug the energy summand wex,i in
Eq. (48) together with the anisotropy and SO-field terms into above equations to get, from Beff

l,m = −1
2γ~∂[wex,i +

(K terms)+ (BSO term)]/∂(l,m) (denominator 2γ~ comes from µ0µs = 2γ~ with µs = 4µB for Mn2Au), ignoring site
index i,

l̇ =
1

2
γBeff

m × l =
−2JAF

~
m× l ⇒ m =

~

2JAF
l̇× l, (50)

ṁ =
(1

2
γBeff

l − αl̇
)

× l =
~

2JAF
l̈× l =

{JFa
2
0

2~
(∂2

xl) + (K terms) + (BSO term)− αl̇
}

× l,

⇒ l×
{

(∂2
xl) +

−~
2

JFJAFa20
(∂2

t l) + (K terms) + (BSO term)− α~

a20JF
l̇

}

= 0. (51)

Apart from the BSO and Gilbert damping terms, this equation of motion for l is Lorentz invariant. Note that when
the DW is moving at steady velocity, both the damping term and the Zeeman term (from BSO) compensate each
other resulting in a prototypical sine-Gordon type of equation. The propagating waves of l can be excited, and the
first two terms defines the “speed of light” in this system as

vg =
a0
√
JFJAF

~
≈ 10.78 km/s, (52)

which is the magnon velocity that matches very well with the simulated result observed by fitting the DW width
with its saddle-point-solution form as shown in SI. Sec. IV.

Derivation of the LLG equation for m & l

The only energy term that needs a careful treatment is EAF, which couples magnetizations at different y points,

EAF = JAF

∑

ix=j

iy=2n

[

Mi ·Mi+ŷ +Mi+ŷ ·Mi+2ŷ

]

= JAF

∑

ix=j

iy=2n

[

(mi + li) · (mi − li) + (mi − li) · (mi+2ŷ + li+2ŷ)
]

.

From the derivative of the first expression we get

Beff
j,2n =

−∂EAF

∂Mj,2n
= −JAF

(

Mj,2n+1 +Mj,2n−1

)

, Beff
j,2n+1 =

−∂EAF

∂Mj,2n+1
= −JAF

(

Mj,2n +Mj,2n+2

)

, (53)
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while from the derivative of the second expression we get

Beff
m,i =

−∂EAF

∂mi
= −JAF

(

2mi +mi−2ŷ +mi+2ŷ − li−2ŷ + li+2ŷ

)

(54)

Beff
l,i =

−∂EAF

∂li
= −JAF

(

mi−2ŷ −mi+2ŷ − 2li + li−2ŷ − li+2ŷ

)

(55)

From these equations, we can find

1

2

(

Beff
m,i +Beff

l,i

)

= Beff
j,2n,

1

2

(

Beff
m,i −Beff

l,i

)

= Beff
j,2n+1 (56)

where i ≡ (j, 2n) has been used. This clearly comes from the chain rules when transforming from derivatives of energy
with respect to Mj,k to that with respect to mi, li. The LLG equations for m, l then are derived in the exchange
limit as, with i ≡ (j, 2n),

ṁi =
1

2

(

Ṁj,2n + Ṁj,2n+1

)

=
−γ

2
(mi + li)×

1

2
(Beff

m,i +Beff
l,i ) +

−γ

2
(mi − li)×

1

2
(Beff

m,i −Beff
l,i )

+
α

2
(mi + li)×

(

ṁi + l̇i

)

+
α

2
(mi − li)×

(

ṁi − l̇i

)

≈
(1

2
γBeff

l,i − αl̇i

)

× li, (57)

l̇i =
1

2

(

Ṁj,2n − Ṁj,2n+1

)

≈ 1

2
γBeff

m,i × li, (58)

which are used in the discussions above.

X. THIELE APPROACH FOR DW VELOCITY

Using the Thiele approach [6], we can get exactly the same analytical DW velocity as Eq. (12) as follows. After
applying M× on both sides of the LLGS equation, it reduces to

0 =
−1

M2γ
M × dM

dt
︸ ︷︷ ︸

Gyroscopic Bg

+
−α

Mγ

dM

dt
︸ ︷︷ ︸

Dissipative Bα

+ Beff
︸︷︷︸

Reversible Br

+
−(M ·Heff)

M2
M

︸ ︷︷ ︸

Bm

+
−u

M2γ
M × ∂xM

︸ ︷︷ ︸

Bu

+
−βu

Mγ
∂xM

︸ ︷︷ ︸

Bβ

, (59)

where the labellings for all terms follow from Thiele [6] and we omitted the layer subindex i =U/L. The procedure
is to calculate the force densities for all Bµ terms, defined by fµ

i ≡ −Bµ · (∂iM), then integrate all of them over
space. There is only x and t dependences of M , thus we only need to deal with the nonzero x components of the
force densities, 0 =

∑

µ

∫
dxfµ

x , where µ includes all the six terms above. Using the DW profiles and Hamiltonian

defined in SI Sec. II, and the properties θ = θ(x − q̇t) and φ = φ(t), explicit calculations show that

fg
x =

−M

γ
(sin θ)(∂xθ)φ̇, fu

x = 0, fm
x = 0, fα

x + fβ
x =

−M(αq̇ − βu)

γ
(∂xθ)

2,

∫ ∞

−∞
dxf r

x = 2MBSO, (60)

after using (∂tθ) = −q̇(∂xθ). The total sum leads to

0 =

∫

dx
(

fg
x + fα

x + f r
x + fm

x + fu
x + fβ

x

)

⇒ q̇ = u
β

α
+

BSOγ∆

α
+

∆

α
φ̇. (61)

We note that, this equation can actually be derived by combining Eq. (8) and Eq. (9). Therefore, it gives the same
result as that from the LLGS equation. This is very natural, since the Thiele approach is a procedure of manipulating
the original three LLGS equations for each layer. Specifically, for the static state solution, φ̇U/L = 0, this equation
gives exactly the same DW velocity as in Eq. (12). However, the Thiele approach cannot tell us the information
about values of φU,L as opposed to previous method [Eq. (11)], since in calculating fµ

x we have rearranged the LLGS
equation into a more restricted equation, which will lose some information contained in its original form. Specifically,
LLGS equation contains three equations for x, y, z components of ∂tM for each upper and lower layers, but the Thiele
equation reduces the number of equations to one for each layers, since we take the dot product fµ

i ≡ −Bµ · (∂iM),
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and only i = x contributes due to the considered system geometry.
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