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Background: Within the Energy Density Functional (EDF) approach, the use of mean-field
wave-functions deliberately breaking (some) symmetries of the underlying Hamiltonian is an efficient
and largely utilized way to incorporate static correlations. However, the restoration of broken
symmetries is eventually mandatory to recover the corresponding quantum numbers and to achieve
a more precise description of nuclear properties.

Purpose: While symmetry-restored calculations are routinely performed to study ground-state
properties and low-lying excitations, similar applications to the nuclear response are essentially
limited to either formal studies or to schematic models. In the present paper, the effect of angular
momentum restoration on the monopole and quadrupole responses of doubly open-shell nuclei is
investigated.

Methods: Based on deformed Skyrme-Random Phase Approximation (RPA) calculations, the
exact Angular Momentum Projection (AMP) is implemented in the calculation of the multipole
strength functions, thus defining a projection after variation (PAV-RPA) scheme. The method is
employed for the first time in a realistic study to investigate the effect of AMP on the coupling of
monopole and quadrupole modes in 24Mg resulting from its intrinsic deformation.

Results: The monopole PAV-RPA response function shows, in addition to the Giant Resonance
peaks, a tremendous amount of strength in the low-energy part whose properties and nature are
investigated and discussed. In the quadrupole channel, the AMP leads to a suppression of all the
strength but the one corresponding to the Isoscalar Giant Quadrupole Resonance.

Conclusions: The nature of the anomalous low-lying monopole strength is interpreted as a
contamination of the excited states via the coupling to the (non-infinitesimal) rotational motion
in deformed RPA phonons. Such a spurious strength was also observed in Projected Generator
Coordinate Method (PGCM) calculations based on a similar PAV approach but shown to disappear
in its full Variation After Projection (VAP) counterpart. While the spurious strength could be
properly subtracted in the present work, this work motivates the implementation of the full VAP-
RPA in the future.

I. INTRODUCTION

In the realms of the nuclear Energy Density Functional
method [1–3] and of ab initio methods [4–10], allowing
simple wave-functions (e.g. Slater determinants, Bogoli-
ubov vacua or a superposition of those) to break sym-
metries of the Hamiltonian is an efficient way to grasp
so-called static correlations in open-shell systems. The
latter typically substantiate as broken SU(2) (i.e. rota-
tional) and U(1) (i.e. global-gauge) symmetries associ-
ated with the conservation of total angular momentum
and particle number, respectively. Still, it is mandatory
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to eventually restore such symmetries when questing a
good approximation to the exact solution. This is typi-
cally achieved by performing angular momentum (AMP)
and particle number (PNP) projections of the symmetry-
breaking state. The balance between symmetry breaking
and restoration is pivotal to capture the rich diversity of
nuclear phenomena, offering profound insights into the
complex nature of atomic nuclei. This question is at the
heart of various recent developments in ab initio many-
body theory [11–16].

Albeit symmetry-restoration techniques have been em-
ployed for a long time in EDF studies of ground-state
properties and low-lying spectroscopy (see for example
Ref. [17] for a recent review), the same is not true
for the linear-response theory. Linear-response the-
ory within the single-reference EDF scheme boils down
to solving Hartree-Fock-(Bogoliubov) (HF(B)) equa-
tions for the ground state, plus (Quasiparticle) Random
Phase Approximation ((Q)RPA) equations for the ex-
cited states [18], i.e. excited states correspond to small
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oscillations of the ground state, or, in other words, to
nuclear vibrations or “phonons”.

In singly (doubly) open-shell nuclei, the HFB solu-
tion typically breaks U(1) (plus SU(2)) symmetry(ies) in
order to capture collective static correlations associated
with superfluidity (plus deformation). When U(1) sym-
metry is broken by the HFB starting point, QRPA pair
transfer probabilities were shown to overestimate the ex-
act results in the exactly solvable Richardson model [19],
the discrepancies being the largest when being close
to the normal-to-superfluid phase-transition [20]. The
shortcoming of QRPA was traced back to the inher-
ent violation of good particle-number associated with
the breaking of U(1) symmetry. It is thus of interest
to explicitly investigate the symmetry contamination at
the (Q)RPA performed on top of a symmetry-breaking
HF(B) state.

In this context, it is often stated [21, 22] that (Q)RPA
per se restores the symmetry broken by the mean-field
starting point. However, this phrasing is not free from
ambiguities [23] given that the (Q)RPA wave functions
only appear implicitly in the formulation. The only clear
statement that can be made is that the excitation in-
duced by the generator of the symmetry group, e.g. the
infinitesimal rotation induced by the components of the
angular momentum operator, is a zero-energy solution
of a fully self-consistent (Q)RPA calculation [18, 21].
As such, the infinitesimal rotational mode1 is decoupled
and orthogonal to the physical vibrational excitations
of interest in (Q)RPA. This interesting property does
not however imply that the (implicit) wave functions of
(Q)RPA excited states carry good symmetry quantum
numbers, e.g. angular momentum, and are orthogonal to
non-infinitesimal rotations. In order to ensure this a full
and explicit symmetry restoration is necessary.

As a matter of fact, the direct diagonalization of the
Hamiltonian in the space of particle-number-projected
two-quasiparticle states was shown to improve consider-
ably the description in the Richardson model [20], thus
demonstrating the importance of explicitly restoring the
broken symmetry. This method, which amounts to a
variation after projection (VAP) Quasiparticle Tamm-
Dancoff Approximation (QTDA), has however not given
birth to any realistic application since. As for the
(Q)RPA, even though a full VAP-(Q)RPA formalism was
designed a long time ago [24], no realistic implementation
has been performed so far. In fact, even in the context
of the easier projection after variation (PAV), practition-
ers have relied so far on the so-called “needle” approx-
imation [25, 26], whose validity has never been verified
against actual PAV-(Q)RPA calculations2. Focusing for

1 This Goldstone mode is often denoted as ”spurious” because it
is not a mode that can be observed in the nuclear response.

2 For completeness, the needle approximation to the AMP PAV-
RPA scheme is derived in App. A following the pioneering work
of Ref. [27].

example on the monopole response of doubly open-shell
nuclei, which is the main interest of the present work,
the needle approximation to the AMP PAV-RPA actu-
ally provides a trivial result such that an exact projection
is mandatory.

The only attempt to implement an exact AMP in PAV-
RPA was performed in Ref. [28] based on realistic chiral
interactions. However, the surprising results obtained
were not analyzed in detail. It is the objective of the
present paper to perform such a study within the EDF
framework and deliver a comprehensive analysis of the
effect of AMP in PAV-RPA. An additional motivation
relates to the longstanding puzzle regarding the link be-
tween the Isoscalar Giant Monopole Resonance (ISGMR)
and the nuclear matter incompressibility K∞ [29, 30].
The analysis of the ISGMR of some nuclei leads to con-
sistent values of K∞, while some other nuclei appear to
point towards lower values. While this apparent incom-
patibility has been solved for semi-magic (i.e. spherical)
nuclei [31], doubly open-shell (i.e. deformed) nuclei still
pose a challenge in this respect. In deformed nuclei, in-
deed, the coupling of the monopole and quadrupole re-
sponse is expected to further complicate the extraction
of K∞. This issue was recently studied within the de-
formed Skyrme-(Q)RPA approach [3, 32, 33]. This leads
to the question of whether explicitly restoring good an-
gular momentum in (Q)RPA calculations is necessary to
deliver a meaningful comparison with experiment in view
of extracting K∞.

The paper is organized as follows. In Sec. II, the in-
clusion of AMP to formulate PAV-TDA and PAV-RPA
formalisms is presented3. In Sec. III specific aspects of
the numerical implementation are discussed and the sta-
bility of the RPA results against parameters defining the
truncated one-body basis is examined. In Sec. IV, the
AMP PAV-RPA results are presented and discussed in
detail. Eventually, conclusions are drawn in Sec. V.

II. FORMALISM

A. Angular Momentum Projection

Due to the rotational invariance of the nuclear Hamil-
tonian, physical states |JM⟩ carry good total angular
momentum J and angular momentum projection M as
quantum numbers. The remaining quantum numbers
necessary to fully characterize a given quantum state are
presently omitted for notation’s simplicity. Given an ar-
bitrary state |Ψ⟩ possibly breaking rotational symmetry,
a state |JM⟩ can be obtained by acting on it with the
projection operator [18]

P J
MK ≡ 2J + 1

8π2

∫
dΩ DJ∗

MK(Ω)R(Ω) , (1)

3 The restoration of U(1) symmetry in QRPA is left to a future
study.
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where DJ
MK(Ω) denotes a Wigner matrix [34] and

R(Ω) ≡ e−iαJze−iβJye−iγJz is the rotation operator in
three-dimensional space parameterized by the three Eu-
ler angles Ω ≡ (α, β, γ)4.

In the present study, all states to be projected are
taken to remain eigenstates of Jz with eigenvalue K. This
is a consequence of retaining the axial symmetry along
the z-axis. This simplification allows one to use the re-
duced form of the projection operator

P J
MK =

2J + 1

2

∫ +1

−1

d (cosβ) dJMK(β)e−iβJy (2)

throughout, where β is the angle around the y-axis and
where dJMK(β) denotes a reduced Wigner matrix.

B. Projected multipole strength functions

The present work implements a PAV-RPA scheme, i.e.
based on the solutions of a deformed Skyrme RPA cal-
culation, the angular momentum operator is introduced
a posteriori in the computation of the multipole strength
functions5. In such a scheme, the position of the peaks
(i.e. the excitation energies) in the strength function are
not impacted by the symmetry restoration whereas their
height (i.e. the transition probabilities) can be modified.

For a given multipole operator Tλµ, the PAV-RPA
strength function thus requires the computation of tran-
sition amplitudes, i.e. matrix elements, of the form

⟨J1M1|Tλµ|J2M2⟩ = N1N2 ⟨Ψ1|P J1†
M1K1

TλµP
J2

M2K2
|Ψ2⟩ ,

(3)
with the normalization constants given by

Ni ≡
[
⟨Ψi|P Ji

KiKi
|Ψi⟩

]−1/2

. (4)

Employing angular momentum algebra and Wigner-
Eckart’s theorem, the reduced matrix element can even-
tually be written as [18]

⟨J1||Tλ||J2⟩ =(2J1 + 1)N1N2

+λ∑
µ=−λ

(−)J1−K1

(
J1 λ J2

-K1 µ K1 − µ

)
⟨Ψ1|TλµP

J2

K1−µ,K2
|Ψ2⟩ (5)

=
(2J1 + 1)(2J2 + 1)

2
N1N2

+λ∑
µ=−λ

(−)J1−K1

(
J1 λ J2

-K1 µ K1 − µ

)∫ 1

−1

d(cosβ) dJ2

K1-µ,K2
(β)⟨Ψ1|Tλµe

iβJy |Ψ2⟩ ,

with

Ni =

[
2Ji + 1

2

∫ 1

−1

d(cosβ)dJi

Ki,Ki
(β)⟨Ψi|eiβJy |Ψi⟩

]−1/2

.

(6)
In the present application, one of the two involved states,
e.g. |Ψ1⟩, is the symmetry-breaking ground state of the
system carrying Kπ = Kπ0

0 , where π denotes the parity.
Whenever focusing on even-even nuclei, as is done in the
following application, one has Kπ0

0 = 0+. The final state
|Ψ2⟩ is an excited state carrying a given Kπ.

4 The angular momentum J is presently assumed to be integer,
such that the integration domain {α ∈ [0, 2π], β ∈ [0, π], γ ∈
[0, 2π]} and the normalising factor 1/8π2 are employed. Half-
integer values of J would demand to modify the γ integration
domain to γ ∈ [0, 4π] and, consequently, the normalising constant
to 1/16π2.

5 As opposed to the full-fledged VAP-RPA formalism [24], the pro-
jection operator does not enter the computation of the RPA ma-
trix. Consequently, the present computation is free from spu-
riosities that forbid to use projection operators in conjunction
with standard EDF parameterizations [35–39].

1. Tamm-Dancoff Approximation

Within the TDA the ground state coincides with the
HF state, the HF one-body basis being represented by
the set of operators {a†α, aα}. This basis separates into
hole (occupied) and particle (unoccupied) states. A TDA
excited state |n⟩ results from the application of a phonon
operator acting on the HF ground state via a linear com-
bination of one-particle/one-hole (ph) excitations

|n⟩ ≡ Q†
n|HF⟩

≡
∑
ph

Xph
n a†pah|HF⟩ . (7)

In this case, the matrix element entering Eq. (5) reads
explicitly as

⟨HF|TλµP
J
K0-µ,K |n⟩ = ⟨HF|TλµP

J
K0-µ,KQ†

n|HF⟩ (8)

=
∑
ph

Xph
n ⟨HF|TλµP

J
K0-µ,Ka†pah|HF⟩ .
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2. Random Phase Approximation

Within the RPA, |Ψ1⟩ is the correlated RPA ground
state, hereafter indicated as |RPA⟩. A RPA excited state
|n⟩ reads now as

|n⟩ ≡ Q†
n|RPA⟩

≡
∑
ph

(
Xph

n a†pah|RPA⟩ − Y ph
n a†hap|RPA⟩

)
, (9)

where the phonon operator now also includes a de-
excitation component associated with the Y -amplitudes.
The correlated RPA ground state satisfies the vacuum
condition Qn|RPA⟩ = 0, for all n.

The näıve application of AMP that could work for the
TDA leads here to the vanishing of the contribution from
the Y -amplitudes. The PAV-RPA transition amplitudes
must rather be derived on the basis of the quasi-boson
approximation (QBA) that is invoked to obtain standard
RPA equations. Such an approximation boils down to re-
placing operator products with appropriate commutators

and the RPA ground-state with the HF ground state in
a second step6. In the simple RPA case, the procedure
reads as7

⟨n|Tλµ|RPA⟩ = ⟨RPA|TλµQ
†
n|RPA⟩

= ⟨RPA|
[
Tλµ, Q

†
n

]
|RPA⟩

≈ ⟨HF|
[
Tλµ, Q

†
n

]
|HF⟩

=
∑
ph

{
Xph

n ⟨h|Tλµ|p⟩ + Y ph
n ⟨p|Tλµ|h⟩

}
,

(10)

where the vacuum character of the RPA ground state
was used in the second equality to add a null term. No-
tice that the replacement of the RPA ground state with
the HF one in Eq. (10) does not amount to a neglect
of ground-state correlation, but is instead coherent with
the quasiboson approximation [40]. With the goals of
avoiding the suppression of the backward amplitudes Y
in presence of the symmetry projector and recovering
Eq. (10) in absence of it, one can write in close similarity
to the RPA case

⟨RPA|TλµP
J
K0−µ,K |n⟩ = ⟨RPA|TλµP

J
K0−µ,KQ†

n|RPA⟩
= ⟨RPA|

[
TλµP

J
K0−µ,K , Q†

n

]
|RPA⟩

≈ ⟨HF|TλµP
J
K0−µ,KQ†

n −Q†
nTλµP

J
K0−µ,K |HF⟩

=
∑
ph

Xph
n ⟨HF|TλµP

J
K0−µ,Ka†pah|HF⟩ + Y ph

n ⟨HF|a†hapTλµP
J
K0−µ,K |HF⟩ . (11)

However, the contribution from the backward amplitudes cancels out for all K ̸= K0 or µ ̸= 0, which corresponds to
artificially restrictive selection rules. It is rather preferable to write

⟨RPA|TλµP
J
K0−µ,K |n⟩ = ⟨RPA|TλµP

J
K0−µ,KQ†

n|RPA⟩
= ⟨RPA|TλµP

J
K0−µ,KQ†

n −Q†
nP

J
K0−µ,KTλµ|RPA⟩

≈ ⟨HF|TλµP
J
K0−µ,KQ†

n −Q†
nP

J
K0−µ,KTλµ|HF⟩

=
∑
ph

Xph
n ⟨HF|TλµP

J
K0−µ,Ka†pah|HF⟩ + Y ph

n ⟨HF|a†hapP J
K0−µ,KTλµ|HF⟩. (12)

The term added after the second equality, with Q†
n acting on the RPA bra state, is null as was the term8 added by the

commutator in the second equality of Eq. (11). Equation (12) now delivers a non-vanishing contribution from the Y
amplitudes for all K. Furthermore, the result correctly reduces to the TDA one when ignoring backward amplitudes
and to the original RPA transition amplitudes when removing the projector. Inserting Eq. (12) into Eq. (5), one
eventually obtains the PAV-RPA reduced transition matrix element under the form

⟨RPA||Tλ||n⟩ = (2J0 + 1)N0Nn(−1)J0−K0

∑
ph

∑
µ

[
Xph

n + (−1)µY ph
n

]( J0 λ J
−K0 µ K0 − µ

)

×
∫ 1

−1

d(cosβ) dJK0−µ,K(β)⟨HF|Tλµe
iβJya†pah|HF⟩ . (13)

6 The two steps do not commute.
7 Here, and in the following, equalities in the QBA sense are indi-

cated by wiggly equal signs.
8 The two terms differ by the arbitrary ordering of Tλµ and

PJ
K0−µ,K .
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The normalization factors from Eq. (6) are derived consistently and read as

N0 =

[∫ 1

−1

d(cosβ) dJ0

K0,K0
(β)⟨HF|eiβJy |HF⟩

]−1/2

, (14)

and

Nn =

 ∑
php′h′

(
Xph

n Xp′h′

n − Y ph
n Y p′h′

n

)∫ 1

−1

d(cosβ) dJK,K(β)⟨HF|a†h′ap′eiβJya†pah|HF⟩

−1/2

. (15)

Notice that the ground-state normalization N0 in
Eq. (14) deliberately omits ground-state correlation.
This modifies the multipole response by an overall multi-
plicative factor and will, thus, not affect the main conclu-
sions of the present study. The inclusion of ground-state
correlations in this ground-state normalisation is in fact
non-trivial, as clearly shown in Ref. [41, 42], and goes
beyond the aim of the present work.

C. Rotated RPA state

As a relevant element for the following discussion,
the RPA ground-state projected on angular momentum
J = 0 is considered. Given that d000(β) = 1, this state
corresponds to the equally weighted superposition of the
deformed RPA state rotated in all possible orientations
in space and is thus denoted below as the rotated RPA
state

|ROT⟩ ≡ P 0
00|RPA⟩

=
1

2

∫ +1

−1

d (cosβ) e−iβJy |RPA⟩ . (16)

The overlap with RPA excited states is eventually intro-
duced as

⟨ROT|n⟩ ≡ ⟨RPA|P 0
00|n⟩

≈ ⟨HF|P 0
00|n⟩ , (17)

where the second equality relates to the QBA.

III. NUMERICAL DETAILS

Results are presented in this work for 24Mg, using the
SkM∗ Skyrme EDF [43]. The QRPA code originally in-
troduced in Ref. [44] is used. This is based on the HFB
solution in axial symmetry delivered by the HFBTHO
code [45] using a spherical harmonic oscillator (sHO)
basis. Without AMP, this numerical scheme was em-
ployed in Ref. [46] to compute monopole and quadrupole
strengths in Molybdenum isotopes. The sHO basis is
characterized by the value of ℏω= 1.2 × 41/A1/3 [MeV]
and by a number of major oscillator shells Nsh.

Nsh EHF [MeV] r [fm] β
7 -195.65 2.991 0.378
9 -196.21 3.009 0.392
11 -196.93 3.011 0.383
13 -197.15 3.016 0.390

TABLE I. 24Mg Hartree-Fock energy EHF, root-mean-square
radius r and axial quadrupole deformation β as a function of
the HO basis-size parameter Nsh.

The axial quadrupole deformation parameter defined
as [45]

β ≡
√

π

5

⟨Q20⟩π + ⟨Q20⟩ν
⟨r2⟩π + ⟨r2⟩ν

, (18)

is employed to characterize the reference state that is
presently found to be a HF (i.e. non superfluid) solution
for all considered basis size values Nsh. Characteristics
of this HF solution and their dependence on Nsh can be
found in Tab. I.

The deformed QRPA problem, which here reduces to
deformed RPA, is solved in matrix form(

A B
−B∗ −A∗

)(
Xn

Y n

)
= En

(
Xn

Y n

)
, (19)

by using diagonalization techniques for sparse matri-
ces. In the present work, RPA equations are solved for
Kπ = 0+ and the strength associated with standard
isoscalar monopole and quadrupole operators, i.e.

∑
i r

2
i

and
∑

i r
2
i Y20 respectively, are computed. In all figures,

discrete strengths are averaged using Lorentzian func-
tions with a width of Γ = 1.0 MeV.

The stability of RPA strength functions is displayed in
Fig. 1a against the sHO basis-size parameter Nsh and in
Fig. 1b against the parameter Ecut corresponding to the
maximum energy of Kπ = 0+ p-h excitations included in
the calculation. Fixing Ecut = 100 MeV, the quadrupole
RPA response displays a converging pattern as a func-
tion of Nsh in the bottom panel of Fig. 1a. The low-
energy components (below ≈ 20 MeV) of the monopole
response (upper panel) are also seen to converge for rel-
atively small Nsh. However, the position of the higher-
energy peak shows a strong dependence on Nsh and its
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FIG. 1. (a) monopole (upper panel) and quadrupole (lower panel) RPA responses in 24Mg for different Nsh values
(Ecut = 100 MeV). (b) same but for different Ecut values (Nsh = 11).

fragmentation is still increasing for the largest model-
space employed. This phenomenon is attributed to high-
lying excitations involving states in the continuum, such
that details of single-particle configurations strongly af-
fect the global response. Fixing now the number of shells
in the sHO basis to Nsh = 11, monopole and quadrupole
RPA responses are shown to be essentially identical for
Ecut =100 MeV and Ecut =120 MeV in Fig. 1b. Unless
otherwise specified, results displayed below are obtained
using Nsh = 11 and Ecut =100 MeV.

In order to obtain the PAV-RPA strengths of inter-
est, Eqs. (13), (14) and (15) have been implemented to
accommodate the RPA solutions discussed above. Such
an implementation, currently limited to K = 0, is based
on a series of basis transformations building on the ma-
trix elements of the operator Jy computed in the sHO
basis. Details can be found in Ref. [47]. The implemen-
tation was validated through several steps, including the
application to a spherical system, i.e. 4He, where the
PAV-RPA and the original RPA strengths coincide up to
numerical precision.

IV. RESULTS AND DISCUSSION

A. Symmetry breaking of the Hartree-Fock state

The angular-momentum decomposition of the HF
ground state is displayed in Fig. 2 and is similar to the

one obtained in Ref. [48]. Consistently with the rather
large quadrupole deformation found for the HF minimum
(β = 0.38), the HF wave function spreads over several
(even) J values, the dominant components being found
for J = 2, 4.

B. RPA versus PAV-RPA strengths

Based on such a starting point, RPA and PAV-RPA
strength functions are compared respectively in Figs. 3a

0 2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

J

⟨H
F|
P

J 0
0
|H

F⟩

FIG. 2. Angular momentum decomposition of the HF ground
state in 24Mg (Nsh = 11)

.
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FIG. 3. (a) monopole (upper panel) and quadrupole (lower panel) RPA responses in 24Mg (Nsh =11 and Ecut = 100 MeV).
(b) same for PAV-RPA responses. The upper-right panel additionally contains the overlap between RPA excited states and
the rotated ground state (Eq. (17)) up to a normalization factor.

and 3b, with the monopole response in the upper panels
and the quadrupole response in the lower panels. At
17.5 MeV, the Isoscalar Giant Quadrupole Resonance
(ISGQR) stands out in the quadrupole RPA strength.
This peak aligns closely with the low-energy component
of the ISGMR that additionally displays a higher-energy
component at 24 MeV. While the latter is the reminis-
cence of the ISGMR in spherical nuclei, the former results
from the coupling to the K = 0 component of the IS-
GQR. Furthermore, a substantial amount of low-energy
strength below 15 MeV is also found in both channels,
that has no obvious interpretation.

Including the AMP, the ISGQR remains unchanged
whereas the low-energy part of the quadrupole strength
is suppressed. The monopole spectrum is much more
substantially altered (notice the the scale on the y-axis)
by the symmetry restoration. Indeed, the low-energy
strength is strongly enhanced and dominates over the
ISGMR peaks whose high-energy component is also sub-
stantially increased. A similar behaviour was observed
in other nuclei, e.g. 20Ne and 28Si [47].

C. Spurious rotational coupling

The impact of the angular momentum projection on
the monopole strength seems largely anomalous. It was
thoroughly checked that this feature is not a numerical

artefact and is stable with respect to Nsh and Ecut. Sim-
ilar results were already obtained in Ref. [28] but no ex-
planation was given. It is thus necessary to shed light on
the nature of the anomalous low-energy strength result-
ing from the symmetry restoration.

In the upper panel of Fig. 3b, the overlap (Eq. (17))
between each excited RPA state and the rotated RPA
ground state is displayed, up to a normalizing factor, as
(blue) bars in connection to the right axis. The overlap
is large for states in the low-energy region, exactly where
the monopole strength was anomalously enhanced by the
angular-momentum projection. Large overlaps indicate
that these deformed RPA excited states are not strictly
vibrational but rather display a significant coupling to
a rotational motion of the nucleus. As reminded in the
introduction, the infinitesimal rotational motion present
in the Kπ = 1+ channel9 is properly decoupled from ac-
tual vibrational excitations in RPA. However, the present
analysis demonstrates that it is not the case for non-
infinitesimal rotation that can furthermore pollute differ-
ent Kπ channels (see discussion on p. 145 of Ref. [49]).

In order to have a complementary view of the rota-
tional character of deformed RPA phonons, as well as

9 The quantum numbers of the infinitesimal rotation generated by
the rotation operator eiβJy at lowest order in β, i.e. by the linear
term in Jy , is indeed Kπ = 1+.
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FIG. 4. 24Mg (a) one-body intrinsic matter density of the HF ground state, (b) intrinsic RPA transition matter density to the
ISGMR phonon at 23.9 MeV, (c) intrinsic RPA transition matter density to the ISGQR phonon at 17.5 MeV and (d) intrinsic
RPA transition matter density to the phonon at 10.8 MeV.

a confirmation of the expected character of the ISGMR
and ISGQR, transition densities δρ associated with sev-
eral excited states of interest are displayed in Fig. 4. A
representation in cylindrical coordinates is employed, so
that the vertical axis is the z-axis and the horizontal axis
is one of the possible equivalent axes in the perpendic-
ular plane. For reference, the HF ground-state density
ρ0 is shown in Fig. 4a, displaying the typical shape of a
quadrupole deformed system. In Fig. 4b, the transition
density to the main peak of the ISGMR at 23.9 MeV is
shown, indeed corresponding to a typical monopole oscil-
lation of the ground-state shape. The transition density
to the ISGQR peak at 17.5 MeV shown in Fig. 4c displays
a nodal line at constant polar angle ±θ that is typical of
an excitation induced by Y20 ∝

(
3 cos2 θ − 1

)
. Finally,

Fig. 4d displays the transition density to the low-energy
peak at about 10 MeV carrying the largest strength in
the monopole PAV-RPA response.

Based on this picture, the nature of the state remains
elusive. Therefore, a polar coordinate representation was
further adopted to make easier the rotational character
of the state. In Fig. 5a, the same transition density is
displayed as a function of r and θ. It is found that the

overlap between the wave function of the low-energy peak
at 10.8 MeV and the rotated RPA ground state is maxi-
mal when the rotation angle is β ≈ ±24◦. Thus, Fig. 5b
displays the arithmetic average of the two densities ob-
tained by rotating the HF ground state by β ≈ ±24◦.
The comparison clearly shows that, in the surface region
(i.e., r ≈ 3 fm), the two densities have the same maxima,
minima, and nodal points, thus confirming the strong
rotational character of the RPA phonon.

D. Subtracted PAV-RPA strengths

While hindered in the unprojected RPA strength func-
tion, the significant rotational component of low-energy
RPA phonons is strongly enhanced in the monopole re-
sponse when restoring good angular momentum. Even
though the high component of the ISGMR is also en-
hanced, albeit much less than the low-energy peaks, the
ISGQR and the associated peak of the ISGMR are essen-
tially unaffected due to their negligible rotational con-
tent. Eventually, the anomalous rotational component
of low-energy phonons hinders the physical information
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FIG. 5. (a) polar coordinate representation of the intrinsic RPA transition density to the rotational phonon at 10.8 MeV in
24Mg. (b) same for the combination of two densities obtained by rotating the HF state by β ≈ ±24◦.

of interest in the PAV-RPA strength functions. Conse-
quently, a procedure to subtract it is now formulated and
implemented.

Given an excited RPA state |n⟩, a new state is defined
by subtracting its rotational component according to

|ñ⟩ ≡ Nñ (|n⟩ − an|ROT⟩) (20)

with Nñ a normalization factor. The constant an is cho-
sen to make |ñ⟩ orthogonal to |ROT⟩, i.e. to ensure

⟨ROT|ñ⟩ = 0 , (21)

which leads to

an =
⟨ROT|n⟩

⟨ROT|ROT⟩ . (22)

It is straightforward to check that

(Nñ)−2 = 1 − |an|2 ⟨ROT|ROT⟩ . (23)

A similar procedure was already applied to deal with the
spurious translational motion [50] and to the one associ-
ated with number-symmetry breaking and restoration in
HFB plus QRPA [51].

Subsequently, a set of projected subtracted states are
introduced according to

|ñJM ⟩ ≡ NJ
ñP

J
MK |ñ⟩ . (24)

Because of the definition of |ROT⟩ in Eq. (16), |ñJ⟩ differs
from the original PAV-RPA state only for J = 0, in which
case the normalizing factor reads as

(N0
ñ)−2 = ⟨n|P 0

00|n⟩ − |an|2 ⟨ROT|ROT⟩ . (25)

The value of ⟨ROT|ROT⟩ is set to fulfil the condition
(N0

ñ)−2 = 0 for the RPA phonon that most strongly cou-
ples to the rotational state. The corresponding phonon is
eventually removed from the spectrum, as is traditionally

done when dealing with the spurious phonon associated
with the infinitesimal rotation in the Kπ = 1+ channel.

Results obtained employing the subtraction technique
defined above are labelled as subtracted PAV-RPA in the
following. It is worth noting that performing the AMP
and subtracting the rotational state a posteriori leads to
the same results; i.e. the subtraction and the projec-
tion commute. Furthermore, it was checked that sub-
tracted PAV-RPA strength functions are stable against
variations of Nsh and Ecut.

The subtracted monopole PAV-RPA response of 24Mg
is displayed in the upper panel of Fig. 6 and compared
to the original RPA results. The RPA and PAV-RPA
quadrupole strengths already appearing in Figs. 3a and
3b are shown in the lower panel of Fig. 6 for reference.
Once the rotational component has been removed, the
monopole response becomes weakly affected by the AMP,
similarly to the quadrupole response. The only excep-
tion concerns the high-energy component of the ISGMR,
whose strength is enhanced relative to the lower peak
associated with K = 0 component of the ISGQR. Even-
tually, the low-energy response is now meaningful thanks
to the subtraction procedure and significantly suppressed
by the AMP for both multipoles. It is worth stressing
that this procedure orthogonalize the J = 0 components
of the excited states with respect to the J = 0 com-
ponent of the ground state. A fully orthogonal set of
projected-RPA states would be achieved only in a full
VAP approach.

Analogous results were recently obtained based on Pro-
jected Generator Coordinate Method (PGCM) calcula-
tions in light- and medium-mass nuclei within an ab ini-
tio scheme [47, 52]. Starting from unprojected GCM
solutions, similar in essence to symmetry-breaking RPA
calculations10, the AMP is introduced into the strength

10 It is worth remembering the (Q)RPA can be obtained as the
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FIG. 6. 24Mg monopole (upper panel) and quadrupole (lower
panel) RPA and PAV-RPA responses (Nsh =11 and Ecut =
100 MeV). In the monopole case the subtracted PAV-RPA
response is also shown.

function after having solved the Hill-Wheeler GCM vari-
ational equation. This defines the PAV-GCM scheme.
Doing so, a spurious coupling to the rotational motion
arises as in PAV-RPA calculations, which can be simi-
larly removed via subtraction techniques. Furthermore,
differently from the present RPA frame, the full PGCM
calculation enforcing the AMP while solving the varia-
tional equation, i.e. the VAP-GCM scheme, is also cur-
rently accessible. This allows one to properly handle
the rotation-vibration coupling and avoid from the out-
set to contaminate the symmetry-restored strength func-
tions with spurious contributions. Indeed, the PGCM
monopole strengh function shows only modest differences
with the unprojected GCM one and does not display
the anomalous low-energy strength visible in PAV-GCM.
Interestingly, full-fledged VAP-GCM (i.e. PGCM) re-
sults are close but not identical to subtracted PAV-GCM
ones [47, 52]. In particular, the position of the peaks (i.e.
the excitation energies) is impacted by the symmetry
restoration in the VAP-GCM whereas it is left unchanged
by construction in any (subtracted) PAV scheme. On
the RPA side, the results obtained in the present work
and the complementary ones obtained via the PGCM
strongly motivate the realistic implementation of the full-
fledged VAP-(Q)RPA scheme [24] in the near future.

harmonic limit of the GCM [47, 53].

V. CONCLUSIONS

The effects of angular momentum projection on the
strength functions originating from symmetry-breaking
RPA calculations have been studied in the case of the
well-deformed prolate nucleus 24Mg.

The appearance of anomalously large contributions in
the corresponding PAV-RPA monopole strength function
at low energy was observed and attributed to a spu-
rious coupling of deformed RPA phonons to the (non-
infinitesimal) rotational motion. A similar behaviour was
also identified recently in PAV-GCM calculations [47, 52],
i.e. the coupling to the rotational states related to the
symmetry-breaking nature of the reference state is not
peculiar to a specific many-body method used to com-
pute vibrational excitations.

In deformed RPA, the spurious solution in the
Kπ = 1+ channel associated with an infinitesimal ro-
tation appears as a zero-energy solution and can be sub-
tracted from the spectrum. However, RPA is not suited
to separate genuine, i.e. non-infinitesimal, rotations that
contaminate its eigenstates and are anomalously magni-
fied in the monopole strength when restoring good angu-
lar momentum.

A strategy to explicitly isolate and subtract the rota-
tional content of the RPA phonons was thus introduced
and shown to restore meaningful AMP PAV-RPA strengh
functions. Still, correcting the problem a posteriori is not
entirely satisfactory: the proper treatment of coupling ef-
fects between rotational and vibrational motions can only
be achieved if the AMP is considered while solving the
(Q)RPA equations, i.e. by implementing the full-fledged
AMP VAP-(Q)RPA [24] in realistic calculations. As a
matter of fact, the equivalent method within the realm
of the GCM, i.e. the PGCM, is shown to fully take care of
this issue [47, 52]. Work to parallel such PGCM calcula-
tions within the frame RPA methods is thus mandatory.
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Appendix A: Derivation of the needle approximation

Let us start from Eqs. (5) and (6):

⟨J1||Tλ||J2⟩ =
(2J1 + 1)(2J2 + 1)

2
N1N2

∑
µ

(−)J1−K1

(
J1 λ J2

−K1 µ K1 − µ

)

×
∫ 1

−1

d(cosβ) dJ2

K1−µ,K2
(β)⟨Φ1|Tλµe

iβJy |Φ2⟩,

with

Ni =

[
2Ji + 1

2

∫ 1

−1

d(cosβ) dJi

Ki,Ki
(β)⟨Φi|eiβJy |Φi⟩

]−1/2

,

where eiβJy operates a rotation around one of the axis perpendicular to the symmetry axis. If the nucleus is well
deformed, a first approximation assumes that the wave function |Φ⟩ has zero overlap with its rotated counterpart for
not too small angles. Given the property

eiπJy |ΦK⟩ = |Φ−K⟩, (A1)

rotating the state by an angle close to π delivers a state that a strong overlap with the original state for K = 0.
Based on the above, the normalization factor can be written as∫ 1

−1

d(cosβ) dJi

Ki,Ki
(β)⟨Φi|eiβJy |Φi⟩ =

∫ ϵ

0

dβ sin(β)dJi

Ki,Ki
(β)N(β)

+

∫ π

π−ϵ

dβ sin(β)dJi

Ki,Ki
(β)N(β),

=

∫ ϵ

0

dβ sin(β)dJi

Ki,Ki
(β)N(β)

+

∫ ϵ

0

dβ′ sin(β′)dJi

Ki,Ki
(π − β′)N(π − β′),

(A2)

where N(β) ≡ ⟨Φ|eiβJy |Φ⟩, as in Eq. (43) of [27], and β′ = π−β. In the first integral on the r.h.s., the approximation
sin(β) ≈ β holds to order β2. Furthermore, the d-function can be approximated for β ≈ 0 as [34]

dJMM ′(β) ≈ ξMM ′

µ!

√
(s + µ + ν)!(s + µ)!

s!(s + ν)!

(
β

2

)µ
[

1 − 2s(s + µ + ν + 1) + ν(µ + 1)

2(µ + 1)

(
β

2

)2

+ . . .

]
,

dJi

KiKi
(β) ≈ 1 −

[
J(J + 1) −K2

i

](β

2

)2

, (A3)

where µ = |M −M ′| = 0, ν = |M + M ′| = 2|Ki|, s = J − 1
2 (µ + ν) = J − |Ki|, ξMM ′ = 1 if M = M ′ = Ki was used

in the second line while truncating at order β2. The formula is the same as Eq. (38b) of Ref. [27]. Similarly, for the
second integral, one can obtain for β ≈ π

dJMM ′(β) ≈ ξMM ′

ν!
(−)s

√
(s + µ + ν)!(s + ν)!

s!(s + µ)!

(
π − β

2

)ν

×
[

1 − 2s(s + µ + ν + 1) + µ(ν + 1)

2(ν + 1)

(
π − β

2

)2

+ . . .

]
,

dJi

KiKi
(β) ≈ 1

(2|Ki|)!
(−)J−|Ki| (J + |Ki|)!

(J − |Ki|)!

(
π − β

2

)2Ki

= (−)J−|Ki|
(

J + |Ki|
J − |Ki|

)(
π − β

2

)2Ki

, (A4)
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which is the same as Eq. (38d) in Ref. [27]. Finally, for N(β), one can use the gaussian approximation [27]

N(β) ≈ exp

(
−β2

β2
0

)
, (A5)

where β0 ≡ 2/
√
⟨J2

⊥⟩. Since ⟨J2
⊥⟩ is large in well-deformed nuclei displaying strong collective rotational motion, the

function N(β) is strongly peaked as assumed at the start. Equation (A2) eventually becomes, to order β,

∫ 1

−1

d(cosβ) dJi

Ki,Ki
(β)⟨Φi|eiβJy |Φi⟩ =

∫ ϵ

0

dβ β e
− β2

β2
0

+ (−)J−|Ki|
(

J + |Ki|
J − |Ki|

)∫ ϵ

0

dβ′ β′
(
π − β

2

)2Ki

N(β′)

=
[
1 + (−)Jδ(Ki, 0)

] ∫ ϵ

0

dβ β e
− β2

β2
0 . (A6)

In the last step, the necessity that Ki = 0 for the second contribution to be non-zero has been considered, and
Eq. (50a) of Ref. [27] stating that N(π − β) = N(β) for β ≈ 0.

Further assuming that ϵ is small enough for all the above approximations to be valid but large enough with respect
to β2

0 , namely β2
0 ≪ ϵ2 ≪ 1, then

∫ ϵ

0

dβ β e
− β2

β2
0 =

β2
0

2
, (A7)∫ 1

−1

d(cosβ) dJi

Ki,Ki
(β)⟨Φi|eiβJy |Φi⟩ =

β2
0

2

[
1 + (−)Jδ(Ki, 0)

]
, (A8)

Ni =
2

β0

[
1 + (−)Jδ(Ki, 0)

]− 1
2 . (A9)

Let us now consider Eq. (5). The dominant contributions to the integral, as above, come from either the integrand
at β ≈ 0 so that |Φ2⟩ and its quantum number K2 are unchanged, or at β ≈ π

∫ 1

−1

d(cosβ) dJ2

K1−µ,K2
(β)⟨Φ1|Tλµe

iβJy |Φ2⟩ =∫ ϵ

0

dβ sin(β) dJ2

K1−µ,K2
(β)⟨ΦK1 |Tλµ|ΦK2⟩N(β) +∫ ϵ

0

dβ′ sin(β′) dJ2

K1−µ,K2
(π − β′)⟨ΦK1

|Tλµ|Φ−K2
⟩N(π − β′). (A10)

In the first term, K2 + µ = K1 and the d-function can be approximated as in Eq. (A3). In the second term, instead,

one has −K2 +µ = K1. Therefore, the function dJ2

−K2,K2
appears that can be approximated using the first line of Eq.

(A4) using ξMM ′ = 1, µ = 2|K2|, ν = 0 and s = J2 − |K2|. Putting all together,

∫ 1

−1

d(cosβ) dJ2

K1−µ,K2
(β)⟨Φ1|Tλµe

iβJy |Φ2⟩ =∫ ϵ

0

dβ β e
− β2

β2
0 ⟨ΦK1 |Tλµ|ΦK2⟩ +

∫ ϵ

0

dβ′ β′ e
− β2

β2
0 (−)J2−|K2| ⟨ΦK1 |Tλµ|Φ−K2⟩ =

β2
0

2

[
⟨ΦK1

|Tλµ|ΦK2
⟩ + (−)J2−K2 ⟨ΦK1

|Tλµ|Φ−K2
⟩
]
. (A11)
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Finally, one arrives at

⟨J1||Tλ||J2⟩ =
(2J1 + 1)(2J2 + 1)

2
N1N2

∑
µ

(−)J1−K1

(
J1 λ J2

−K1 µ K1 − µ

)

×
∫ 1

−1

d(cosβ) dJ2

K1−µ,K2
(β)⟨Φ1|Tλµe

iβJy |Φ2⟩

=
(2J1 + 1)(2J2 + 1)

2

4

β2
0

[
1 + (−)J1δ(K1, 0)

]− 1
2
[
1 + (−)J2δ(K2, 0)

]− 1
2

×
∑
µ

(−)J1−K1

(
J1 λ J2

−K1 µ K1 − µ

)
β2
0

2

×
[
⟨ΦK1

|Tλµ|ΦK2
⟩ + (−)J2−K2 ⟨ΦK1

|Tλµ|Φ−K2
⟩
]

=
[
1 + (−)J1δ(K1, 0)

]− 1
2
[
1 + (−)J2δ(K2, 0)

]− 1
2 (2J1 + 1)(2J2 + 1)

×
[
(−)J1−K1

(
J1 λ J2

−K1 µ K2

)
⟨ΦK1 |Tλµ|ΦK2⟩+

(−)J1−K1

(
J1 λ J2

−K1 µ −K2

)
(−)J2−K2 ⟨ΦK1

|Tλµ|Φ−K2
⟩
]
, (A12)

which constitutes the so-called needle approximation.
The same formula was reported in the Appendix of Ref.

[25], although with some typographic errors.
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