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Fast and high-fidelity qubit measurement is essential for realizing quantum error correction, which is in turn
a key ingredient to universal quantum computing. For electron spin qubits, fast readout is one of the significant
road blocks toward error correction. Here we examine the dispersive readout of a single spin in a semiconductor
double quantum dot coupled to a microwave resonator. We show that using displaced squeezed vacuum states
for the probing photons can improve the qubit readout fidelity and speed. Under condition of proper phase
matching, we find that a moderate, and only moderate, squeezing can enhance both the signal-to-noise ratio and
the fidelity of the qubit-state readout, and the optimal readout time can be shortened to the sub-microsecond
range with above 99% fidelity. These enhancements are achieved at low probing microwave intensity, ensuring
non-demolition qubit measurement.

Introduction.— Significant progress has been made toward
building a universal quantum computer over the past decade,
based on a variety of qubit platforms [1–12]. Among these
options, spin qubits in silicon-based semiconductor quantum
dots, while lagging somewhat behind other systems such as
superconducting and trapped ion qubits [13, 14], hold signif-
icant long-term potential due to their excellent quantum co-
herence [5], a small qubit footprint, and compatibility with
the well-established integration techniques of the microelec-
tronics industry [15]. Further development of spin qubits still
faces a multitude of challenges. For example, a key element
of scalable quantum computing is the implementation of ac-
tive quantum error correction (QEC) [16], which requires re-
peated measurements of physical qubits [17] and real-time
feedback [18]. The success of active QEC hinges on high-
fidelity readout in times significantly shorter than the qubits’
decoherence times [15]. For a spin qubit in isotopically pu-
rified silicon, spin dephasing time is typically in the order of
tens of microseconds [5], making it crucial to attain readout
fidelity above the 99% threshold of the surface code for QEC
[20, 21] in a sub-microsecond time scale.

Commonly used spin measurement approaches based on
spin-dependent tunneling (the so-called Elzerman technique)
[22] or spin blockade [23], together with a DC charge sensor,
are too slow for active QEC. A Radio Frequency (RF) ver-
sion of the charge sensor, such as the RF single-electron tran-
sistor (RF-SET), could speed up the measurement, achieving
single-shot readout of a single-spin qubit with 97% fidelity
in 1.5 µs [28] and 99.9% fidelity in 6 µs [29]. Recently, a
single-shot singlet-triplet readout based on RF-reflectometry
has achieved a signal-to-noise ratio (SNR) of 6 in 0.8 µs [30],
while another reached 99% fidelity in 1.6 µs [31]. How-
ever, the inclusion of charge sensors does increase the com-
plexity of a device, and the larger footprint of RF-SETs con-
strains their placement in highly connected qubit architectures
[32]. Gate-reflectometry-based dispersive spin readout skip
the charge sensor and send the RF probing pulse directly to
the qubit through one of its gates [33]. Using an off-chip
resonator, readout fidelities ranging from 73.3% to 98% have
been achieved, though achieving single-shot readout has so far
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required integration times on the order of milliseconds [24–
26]. On the other hand, with an on-chip resonator and a mi-
crowave frequency probe pulse, a single-shot readout fidelity
of 98% has been achieved at a respectable 6 µs measurement
time [27]. In short, fast readout with high fidelity and small
footprint remains a formidable road block for scalable quan-
tum information processing based on spin qubits.

One possible approach to improve a reflectometry-based
spin readout protocol is to employ squeezed states for pho-
tons in the measurement process rather than the conventional
coherent states. Squeezed states are nonclassical states known
for modified quantum noise profiles [48–50]. By introduc-
ing quantum correlations among photons, quantum fluctua-
tions are periodically reduced to below the standard quantum
limit in one field quadrature component while simultaneously
increased in the other quadrature [34]. Squeezed states have
been extensively studied in various research fields over the last
decade. For instance, high intensity squeezed light has been
employed in the latest laser-based gravitational wave detec-
tors [38, 39], resulting in a nearly ten-fold increase in sen-
sitivity [40]. In the field of quantum information process-
ing, squeezed state has been applied in continuous-variable
quantum key distribution [35], quantum sensing [36], and
high-precision cavity spectroscopy [37]. Squeezed states have
helped enhance the signal-to-noise ratio (SNR) of supercon-
ducting qubit readout [41], leading to a 24% increase in the
final SNR for superconducting qubit measurement [45]. Fur-
thermore, a 31% enhancement in the SNR for superconduct-
ing qubit readout with 99% fidelity was realized when a two-
mode squeezed vacuum is used [46].

Here we explore the impact of squeezing on the disper-
sive readout of a spin qubit coupled to an on-chip microwave
resonator, and its subsequent back-action effects on the spin
qubit. We find that using a low-intensity (so as to reduce deco-
hering effect of the photons on the qubit) displaced squeezed
vacuum state could yield significant enhancements in the
SNR, enabling rapid and high-fidelity dispersive readout of
the spin qubit through standard techniques. Interestingly,
we also find that only modest degree of squeezing, under
proper phase-matching conditions, improves spin measure-
ment. Larger squeezing actually leads to a deterioration of
measurement SNR and fidelity due to contributions from the
“anti-squeezed” quadrature.
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FIG. 1. Schematic of the setup for dispersive detection of spin qubits.

The model.— We consider dispersive readout of a spin
qubit assisted by a single mode microwave resonator. In the
rotating frame, the dispersive coupling Hamiltonian between
the qubit and the resonator field is [47]

Hs =
1
2

(δs − χs)σz + (δc − χsσz) a†a, (1)

where δc and δs denote the detunings of the probe from the
resonator and the spin qubit, respectively, and χs is the dis-
persive coupling strength between the spin qubit and the res-
onator. The photons can enter and leave the resonator through
a single input/output port with a leakage rate κ, governed by
an interaction of the form [47]:

Vin = i
√
κ(b†ina − bina†), (2)

where bin and b†in are the annihilation and creation operators of
the input radiation field mode. While multiple input radiations
may be possible through multiple ports, we focus on the case
of a single input/output port for simplicity. From the effective
Hamiltonian Heff ≡ Hs + Vin for the coupled qubit-photon
system, one can derive the Langevin equation of motion for
the resonator field as

ȧ = −
[
i (δc − χsσz) +

κ

2

]
a −
√
κbin, (3)

where the first term on the right-hand side describes the dis-
persive shift of the resonator field as well as damping, while
the last term represents the driving of the resonator through
its input port. The damping term in Eq. (3) is a result of
the Markovian approximation, depending solely on the sys-
tem operators at the current time. It forms the basis of the
input-output theory [53, 54]. Under the Markovian approxi-
mation, the output radiation field mode can be determined by
the input-output relation [53]:

bout = bin +
√
κa, (4)

where bout and b†out are the annihilation and creation opera-
tors of the output radiation field mode respectively. To en-
sure the commutation relation [bout, b

†

out] = [bin, b
†

in], [b†in, a] =

[a†, bin] =
√
κ

2 [a, a†] are required [53].
The Langevin equation Eq. (3) and the input-output relation

Eq. (4) form the basis of our study. The former describes how
the resonator field is affected by the qubit and the pumping
from the outside, while the latter relates the reflected field to
the input and the resonator field, allowing us to evaluate the ef-
fect of the qubit state on the output. When the qubit-resonator
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FIG. 2. SNR and readout fidelity with respect to different squeezing
parameters and leakage rates. Here, α =

√
30, χs = 2π × 0.15 MHz,

θξ = π, and T1 = 3 ms. The leakage rates for the panels (a), (b) and
(c), (d) are κ = χs and κ = 2χs respectively. The black lines represent
the coherent state inputs.

interaction is dispersive, the spin measurement becomes non-
destructive when the resonator field is weak, wherein σz(t) is
approximately a constant of motion, i.e., σz(t) ≈ σz(0). Con-
sequently, σz can be represented as a real number σ = ±1 on-
wards, allowing for an analysis of the readout contrast. With-
out loss of generality, we assume δc = 0 from now on.

In RF-reflectometry, the output field bout is sent through a
phase-preserving amplifier [51], which detects both quadra-
tures equally well, and is subsequently measured using a
homodyne detector [52] by mixing with a local oscillator
with phase φ. The resulting photocurrent I ∝ 1

√
2
(boute−iφ +

b†oute
iφ) ≡ Qout cosφ + Pout sinφ. By choosing the local os-

cillator phase to be φ = 0 or π/2, the photocurrent would be
proportional to Qout or Pout, respectively. We thus rewrite the
resonator Langevin equation for the resonator field in terms of
their quadratures as

Ẋ(t) = MX(t) −
√
κXin,M ≡ −

κ

2
I ∓ iχsτy, (5)

where X ≡ (Q, P)⊤, Xin ≡ (Qin, Pin)⊤, and τy is the Pauli
matrix in the y-direction acting on the field quadratures. Here,
Q and P are referred to as the amplitude and phase quadratures
of the resonator field, and Qin and Pin are those of the input
radiation field. For a continuous wave input radiation field,
Eq. (5) is solved as

X(t) = eMtX(0) −
√
κ

∫ t

0
dseMsXin, (6)

where eMt = f (t)I ∓ ig(t)τy, f (t) ≡ e−
κ
2 t cos χst, and g(t) ≡

e−
κ
2 t sin χst. Substituting this result into Eq. (4) would then

yield the solutions for the output field quadratures.
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Signal-to-noise ratio.— Recall that in RF reflectometry, the
homodyne measurement yields a photocurrent proportional to
the expectation value of an output field quadrature. Without
loss of generality, here we choose the output quadrature as
Pout ≡ Pin +

√
κP, which is specified by a local oscillator

phase of π/2. To quantify the distinguishability between the
two qubit states, we introduce the signal-to-noise ratio (SNR)
based on the measurement outcomes. It is defined as the ra-
tio of the contrast between output signals from the two qubit
states to the sum of the associated standard deviations:

SNR(t) ≡
|⟨M +1(t)⟩ − ⟨M −1(t)⟩|
∆M +1(t) + ∆M −1(t)

. (7)

Here, ⟨M ±(t)⟩ and ∆M ±1(t) are the expectation values and
standard derivations, respectively, of the time-integrated out-
put quadratures M ±1(t) ≡

∫ t
0 P±1

out(s)ds, where the superscript
is used to denote the two qubit states. Particularly, the time-
integrated output quadratures takes the explicit form of

M ±(t) = A(t)Pin ∓ B(t)Qin +
√
κF(t)P(0)±

√
κG(t)Q(0), (8)

where the time-dependent coefficients are A(t) ≡ t −
κ
∫ t

0 F(s)ds, B(t) ≡ κ
∫ t

0 G(s)ds, F(t) ≡
∫ t

0 f (s)ds, and G(t) ≡∫ t
0 g(s)ds. According to Eq. (8), when the resonator field is

initially in a vacuum state, the contrast between the output
signals is given by 2|B(t)⟨Qin⟩|, which depends solely on the
input quadrature Qin, and is independent of Pin.

Now we are ready to explore the effect of squeezing in the
input field. Specifically, we choose a displaced squeezed vac-
uum state |α, ξ⟩ ≡ D(α)S (ξ)|0⟩ as an input, where D(α) ≡
exp

∫
dk(αkb†k − α

∗
kbk) is a continuous displacement operator,

and S (ξ) ≡ exp 1
2

∫
dk(ξ∗kb2

k − ξkb†2k ) is a continuous squeez-
ing operator [55, 56]. Here α = αeiθα and ξ = ξeiθξ . In
this state, the expectation values of the annihilation and cre-
ation operators coincide with those of coherent states: ⟨bin⟩ =

α(t) and ⟨b†in⟩ = α
∗(t) (See Supplemental Material). As

an alternative, one can also use the squeezed coherent state
|ξ,γ⟩ ≡ S (ξ)D(γ)|0⟩ as an input field. It can be viewed
as a displaced squeezed vacuum state with the same squeez-
ing parameters, but featuring distinct displacement amplitudes
αk = γk cosh rk − γ

∗
k sinh rkeiθξk .

Consider an example where the homodyne detection for
quadrature Pout with a local oscillator phase φ = π/2. In this
case the signal contrast is proportional to | cos θα|. To maxi-
mumize this contrast, θα must vanish, which in turn allows us
to obtain the standard deviations of the output quadrature for
the two qubit states as

(∆M ±(t))2 = A2(t)(∆Pin)2 + B2(t)(∆Qin)2

+2A(t)B(t)Re(cov(QinPin)) +
κ

2
(F2(t) +G2(t)) . (9)

Given that the readout time is much shorter than 2/κ, one can
make the approximations A(t) ≈ t − 1

2κt
2 and B(t) ≈ 1

6κχst3.
Consequently, during a fast dispersive readout, the noise from
the input quadrature Pin when leaving the resonator largely
exceeds that from Qin. To enhance the SNR, it is thus benefi-
cial to choose Pin as the squeezed quadrature, associated with
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FIG. 3. SNR and readout fidelity with respect to different phase
mismatches and squeezing parameters at a fixed measurement time
t ≈ 0.714 µs. Here, |α| = 10, κ = 2χs, χs = 2π × 0.15 MHz, and
T1 = 3 ms. For Panels (a) and (c), a squeezing parameter of r = 0.74
is chosen, and the black dash lines represent the coherent state in-
puts. For Panels (b) and (d), the phase matching condition is given
by ∆θ ≡ ϕ − θξ/2 = 0.

θξ = ±π, which leads to

(∆M ±(t))2 =
e−2r

2
A2(t) +

e2r

2
B2(t) +

κ

2
(F2(t) +G2(t)). (10)

For a fixed value of squeezing amplitude r, the optimal read-
out time is estimated to be t ≈ e−r(6/κχs)1/2.

In general, in a homodyne detection setup with the lo-
cal oscillator phase φ set to an arbitrary angle, the SNR of
the chosen quadrature is still determined by Eq. (10), but
with B(t) and A(t) replaced by B(t) cos∆θ + A(t) sin∆θ and
−B(t) sin∆θ + A(t) cos∆θ, respectively. Here, ∆θ ≡ φ − θξ/2
is the phase mismatch between the local oscillator and the
squeezing. In this general scenario, the signal contrast is pro-
portional to | sin(θα − φ)|. To maximize the contrast between
the output signals, it is necessary for the phase of the displace-
ment amplitude leads or lags that of the local oscillator by π/2.
Besides, to minimize the signal noise from the input quadra-
tures, it is beneficial to set the phase mismatch between the
local oscillator and the squeezed state as an integer multiple
of π. Hence, the optimal SNR enhancement is characterized
by the phase matching relation

θα − φ =

(
m +

1
2

)
π and φ −

θξ

2
= m′π, (11)

where m and m′ are arbitrary integers. Eq. (11) immediately
leads to the more concise relation 2θα − θξ = (2(m+m′)+1)π,
which gives the phase relationship required for squeezed input
photon to help enhance the SNR for qubit readout.

Fidelity.— For an ideal qubit with an infinite (longitudi-
nal) relaxation time T1, the single-shot readout fidelity de-
pends only on the SNR of the output signal. Specifically,
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when the standard derivations of the time-integrated output
quadratures are equal (∆M +(t) = ∆M −(t)), the single-shot
readout fidelity F (t) is determined exclusively by the SNR as
F (t) = erf(SNR(t)/

√
2), where erf z ≡ 2

√
π

∫ z
0 e−s2

ds is the
familiar error function [57]. For non-ideal qubits with a finite
T1, the modified single-shot readout fidelity at time t ≪ T1 is
given by:

F (t) = exp
(
−

t
2T1

)
erf

(
SNR(t)
√

2

)
. (12)

It incorporates both the relaxation process of the qubit and
the impact of noise on the readout. Notably, the single-shot
readout fidelity depends only on the spin relaxation time T1,
as the dispersive Hamiltonian (1) involves only the population
difference between the two qubit states.

The results.— In Fig. 2 we show that employing squeez-
ing can enhance SNR and reduce measurement time. Specifi-
cally, Fig. 2a reveals that using current technology (κ = χs =

2π×0.15MHz) and a displaced squeezed vacuum state (θα = 0
and θξ = π) as input, there is an apparent SNR enhancement in
the sub-microsecond temporal regime. For example, there is
a nearly 50 percent enhancement in the SNR at around 0.9 µs,
achieved by employing a displaced squeezed vacuum state
with around 30 photons and a moderate squeezing parame-
ter of r = 0.85 (equivalent to 7.38 dB in decibels). Fig. 2b
shows that the chosen displaced squeezed vacuum state yields
a notable readout fidelity of 97% at around 1 µs. Fig. 2c indi-
cates that by increasing the leakage rate slightly to κ = 2χs,
the same SNR can be achieved within a shorter measurement
time. Consequently, as depicted in Fig. 2d, a notable readout
fidelity of 97% is attained at around 0.8 µs.

Moreover, Fig. 3 reveals that a phase mismatch between the
local oscillator and the squeezed state consistently lowers both
the SNR and fidelity in the sub-microsecond time regimes. At
a fixed measurement time t ≈ 0.714 µs, and for a constant
phase mismatch ∆θ ≡ φ − θξ/2 = 0, the SNR peaks when
r ≈ 0.74 (equivalent to 6.43 dB in decibels). It also shows
that for a fixed r ≈ 0.74, the SNR is enlarged from 3 to 3.5
by fixing ∆θ as a multiple of π. It is important to note that
when the phase matching condition θξ − 2θα = ±π is ful-
filled, the same SNR and fidelity can also be achieved using a
squeezed coherent state |ξ, γ⟩ with a displacement amplitude
γ = αe−r. Consequently, as illustrated in Fig. 3c, the readout
fidelity peaks when the phase mismatch ∆θ is a multiple of π.
When the phase matching condition is fulfilled, Fig. 3d shows
that the fidelity peaks when r ≈ 0.74, and declines when the
degree of squeezing is either too high or too low.

The results presented in Fig. 3 challenge the seemingly rea-
sonable assumption that measurement accuracy can continue
to improve as the degree of squeezing increases. In a quantum
measurement with a single-mode photonic state with a small
number of photons, the contributions from the anti-squeezing
quadrature to the signal and noise are unavoidable. These
contributions lead to the eventual decline of SNR and mea-
surement fidelity as squeezing parameter r increases. While
the utilization of two or more photon modes theoretically al-
lows for a higher signal-to-noise ratio by selecting two com-
muting quadratures, it necessitates intricate circuit architec-

ture demands, such as incorporating two modes with opposing
dispersive coupling constants [43, 44].

The required squeezing in the current proposal is well
within reach by the current state-of-the-art experiments,
where squeezing factor ranges from a few decibels to several
dozens of decibels have been achieved, depending on differ-
ent squeezing mechanisms. For instance, a squeezed state of
microwave radiation with a squeezing factor of up to 8 dB has
been reported using mechanical oscillator [58], while a broad-
band squeezed microwave radiation with a squeezing factor of
up to 11.35 dB for a single-mode field has been reported using
a Josephson traveling-wave parametric amplifier [59].

Back-action on the qubit.— In the above discussion, we as-
sume that the qubit properties such as its relaxation time is
not affected by the probing photons. We now analyze how
these photons, especially their squeezing, may affect qubit re-
laxation.

When the noise correlation time is much shorter than the
spin decay time, the Bloch equation enables us to evaluate the
back-action of the microwave on the spin qubit. The Hamilto-
nian (1) can be written as Hs =

1
2 Bzσz, where Bz ≡ −χs(a†a+

aa†) is the effective longitudinal magnetic field in the rotat-
ing frame. In such a case, the spin qubit exhibits an infinite T1
relaxation time, while its T2 (transverse) relaxation time is de-
termined by the noise correlation: T−1

2 ≡
∫ t

0 ⟨δBz(s)δBz(t)⟩ds.
Here, δBz ≡ Bz − ⟨Bz⟩ is the effective magnetic noise experi-
enced by the spin qubit. For a moderate displacement ampli-
tude, the inclusion of squeezing results in a reduction in the
spin T2 relaxation time by a factor of e2r.

As evident from the discussion above, the detuning respon-
sible for generating dispersive coupling also contributes to
suppressing the back-action. For an accurate evaluation of
the spin relaxation time, it is imperative to revisit the origi-
nal spin-photon coupling Hamiltonian, which describes the di-
rect energy exchange between the spin qubit and the resonator
via the absorption/emission of a resonator photon. Up to the
leading order in spin-photon coupling gs, the effective driving
Hamiltonian takes the form [47]: i

√
κgs∆

−1(b+inσ− − binσ+),
where ∆ is the spin-resonator detuning. Consequently, the
modified Hamiltonian for the spin qubit is Hs =

1
2 B · σ,

with (Bx, By) ≡
√

2κgs∆
−1(Pin,Qin) as the effective trans-

verse magnetic field in the rotating frame. The spin relax-
ation rate due to the coupling to the resonator is determined
by the effective transverse magnetic field noise correlation via
T−1

1 ≡
∫ t

0 ⟨δBx(s)δBx(t) + δBy(s)δBy(t)⟩ds. A straightforward
computation yields (See Supplemental Material)

1
T1
= 2γpu cosh 2r, (13)

where γpu ≡ κg2
s∆
−2 is the Purcell relaxation rate, characteriz-

ing the emission of a resonator photon into the environment.
Eq. (13) shows that the qubit relaxation rate is proportional
to the Purcell relaxation rate, as expected, but is modified by
the presence of squeezing. Specifically, the relaxation rate is
a monotonically increasing function of the degree of squeez-
ing, regardless of the displacement amplitude |α| when |α| is
not too large. For r = 1, one obtains T−1

1 ≈ 7.52γpu. Notice
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that for a strong probe, there are corrections to the total relax-
ation rate due to spin transitions induced by probe photons,
but these can be neglected when the photon number is much
smaller than a critical photon number nc = ∆

2/4g2
s [47].

Conclusion.— In this study, we demonstrate the effective-
ness of employing displaced squeezed vacuum states to en-
hance the readout fidelity and reduce the readout time of a
single spin in a semiconductor quantum dot through disper-
sive coupling to a resonator. In general, probing photons in
a displaced squeezed vacuum state does not inherently con-
tribute to the improvement of signal to noise ratio in spin mea-
surement. The critical factor lies in a set of phase matching
conditions among the squeezing phase, the coherent displace-
ment phase, and the local oscillator phase during homodyne
detection. When these phase matching conditions are met, a
moderate degree of squeezing (a few decibels) proves effec-
tive in reducing the spin readout time to the sub-microsecond
range while maintaining high fidelity. For instance, with cur-
rent technology (κ = χs ≈ 2π × 0.15MHz), using a displaced

squeezed vacuum state with 30 photons and a mild squeez-
ing parameter (r = 0.85, approximately 7.38 dB) allows us
to achieve a readout fidelity of 97% within a readout time of
about 1 µs. Under the same condition, with a slightly larger
leakage rate for the resonator (κ = 2χs), the same readout fi-
delity can be attained in approximately 0.8 µs. Interestingly,
we also find that squeezing beyond a certain threshold starts
to hinder rather than help spin measurement, due to the in-
evitable contribution from the anti-squeezing quadrature to
both the signal and noise.
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