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Abstract

The effects of Aharonov-Casher (AC) and He-McKellar-Wilkens (HMW) phases on entangled spin-1/2 quantum systems are in-
vestigated. We use linear charge distributions positioned at the center of resulting closed orbits, capitalizing on Mach Zender-type
interferometers modified with phase retarders to unveil the topological effects. We analyze how AC-HMW phases influence the Bell
angles and maximal violation of Bell-CHSH inequalities (BI) without any classical interaction. We incorporate the spin and path of
particles in the interferometers as observables to test noncontextual hidden variable theories against quantum mechanics, leveraging
the non-local features of AC-HMW effects. Furthermore, we discuss potential implementations of our scheme in physical systems.
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1. Introduction

Testing Bell-CHSH inequalities (BI) which impose con-
straints on the correlations observed among distinct compo-
nents within multipartite systems within the framework of local
realism is crucial for serving as experimental validations of the
foundational principles of quantum mechanics, particularly the
concept of quantum entanglement [1–3]. BI has been tested in
diverse quantum systems such as photons and atoms in quan-
tum optics, high-energy physics, neutrals, charmonium decays,
neutrino oscillations [4–16], and the experiments indicate the
existence of non-local features of quantum mechanics.

On the other hand, the topological properties of physical
systems are crucial for quantum communication and quantum
computation applications with their non-local features. One of
the best-known and earliest examples of this is the Aharonov-
Bohm (AB) physical/quantum mechanical process [17–19].
AB-type effects are explained by the introduction of the vec-
tor potential or vector potential-like physical quantities as com-
plex phase factors into the wave functions of particles moving
along the closed trajectories around singular regions created by
electromagnetic field sources without any classical interactions.
Also, AB-type effects are invariant under spatial translations
through the z direction (traditionally) due to the symmetries
of the problems, and there are duality and identity relation-
ships between phases particularly appearing in two dimensions
[20; 21]. Accordingly, while AB and its fully dual-AB (DAB)
effects are independent of the spin orientations of moving par-
ticles, Aharonov-Casher (AC) and its fully dual He-McKellar-
Wilkens (HMW) effects demonstrate dependence on spin po-
larizations [22–27]. Between AB and AC (similarly between
HMW and DAB) one can speak of an identity rather than a du-
ality that arises in the static reference frames of charges, espe-
cially if the dipoles are polarized. In this regard, AC-HMW ef-

fects serve as practical tools for testing nonlocality and noncon-
textuality in comparison to quantum mechanics within EPR-
Bohm-type experiments [28–31].

In this work, we propose a scheme to observe the effects of
topological phases on entangled quantum states by exploiting
the non-local structure of the AC phase and to test of incom-
patibility of noncontextuality with quantum mechanics, which
is a restrictive demand for a theory, via BI without any classi-
cal interaction or adiabaticity condition. For this purpose, we
use a pair of Mach Zender-type interferometers modified with
phase retarders to be analogous to spin measurement angles in
arbitrary directions (BS-P-BS). We place the electromagnetic
field source (linear charge distributions) in the closed regions
between the legs of the interferometers, which creates the topo-
logical phase contributions to the wave functions of the moving
particles (dipoles). We demonstrate that the correlation func-
tion becomes dependent on the topological phase by obtaining
the detection probabilities (or spin measurement probabilities)
for fixed phases of retarders (or Bell angles) maximally vio-
lated by quantum mechanical expectation values after passing
through mutual BS-P-BS systems.

This letter is organized as follows. In the second section, we
provide the background of the study as a preliminary prepara-
tion. We review the quantum mechanical use of Beam-Splitters
(BS) with phase retarders (P) and consider the possible scenar-
ios for BI testing for all kinds of quantum mechanical particles
(quantons), not only photons, by the existing notation. In the
third section, we first modify the proposed scenarios with the
contribution of the AC phase. Emphasizing the importance of
spin dependences of moving particles, we obtain the correlation
function for testing BI in the BS-P-BS system that becomes
AC-HMW phase dependent. Lastly, we discuss the possible
implementations of our scheme in physical systems and a gen-
eralization that can be used for other studies in the literature.
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Figure 1: (a) Two ports symmetric and lossless (50:50) BS. (b) Schematic representation of the BS-P-BS system

2. Notation and Background

Beam splitters (BS) are the most crucial components of theo-
retical or experimental studies that demonstrate the behaviors of
photons as particles and the existence of physical properties like
non-locality or indistinguishability. The main purpose of using
BS appears to be straightforward from the classical perspec-
tive; however, its significance in quantum physics is far more
profound [32]. Moreover, special properties emerge when BSs
are utilized in combination with phase retarders (P) in Mach-
Zender interferometers (BS-P-BS) revealing strong connections
between spin measurement and detection of the quantum me-
chanical particles (quantons). Accordingly, the probabilities of
being spin up or down in an arbitrary direction are equivalent to
the probabilities of quantons being detected by detectors. The
phase of the retarder corresponds to the angle of the direction
in which the spin of quantons is measured. In this way, they
can be easily used in systems consisting of two spatially cor-
related (or similarly spin-entangled) quantons in EPR-Bohm-
type experiments [33]. Besides, the BS-P-BS structure that
contains closed trajectories for each quanton allows us to study
other quantum mechanical/physical effects that seem to have
common origins. Hence, the effects of topological phases on
spatially correlated systems can be investigated by introduc-
ing electromagnetic field sources at the singular region where
the quantons are not allowed to move. In this way, the detec-
tion probabilities can be achieved for spin-entangled quantons
to find the expectation values and correlation functions. Thus,
it can be used for testing BI without photons [2; 3].

Lets consider a symmetric and lossless BS with two ports
0 and 1 for incoming, and two ports D0 and D1 for outgoing
quantons (See Fig. 1.a). The basis (1 , 0)T ≡ |0⟩ and (0 , 1)T ≡

|1⟩ for ports 0 and 1 can be used to describe the state
∣∣∣ψi

in

〉
of

incoming quantons entering such a BS through the port i (i =
0, 1). Similarly, to represent the output states one can choose
the basis (1 , 0)T and (0 , 1)T for |D0⟩ and |D1⟩. Hence, the BS
performs a linear transformation that converts

∣∣∣ψi
in

〉
to |ψout⟩. By

denoting purely real (ri = Ri) and purely imaginary (ti = iTi)
as reflection and transmission amplitudes of the BS respectively
(Namely, for incoming quantons through port 0 as r0 and t0, and
through port 1 as r1 and t1), |r0| = |r1| = |t0| = |t1|; |ri|

2+ |ti|2 = 1;
r∗0t1 + t∗0r1 = 0 are provided. Therefore the operation of the BS
can be given by a unitary matrix,

BS =
(

r0 t1
t0 r1

)
=

1
√

2

(
1 i
i 1

)
(1)

Thus, in the case of single incoming quanton through port i, the
output state is

∣∣∣ψ0(1)
in

〉
→ |ψout⟩ =

1
√

2

[∣∣∣D0(1)
〉
+ i

∣∣∣D1(0)
〉]

, and the
detection probabilities are 1/2 for each detector.

On the other hand, some significant characteristics appear
when a second BS is added with a phase retarder. The detection
probabilities of quantons become dependent on the phase of the
retarder (See Fig. 1.b). Furthermore, this phase corresponds to
the angle of the arbitrary direction on which spin measurements
are performed to find the probabilities (up or down). According
to the existing configuration, wlog, the retarder operator P can
be expressed as,

P =
(

eiϑ 0
0 1

)
(2)

In the case of single incoming quanton through port i, system
evolves into the state

∣∣∣ψi
in

〉
→ |ψout⟩ = [BS 2][P][BS 1]

∣∣∣ψi
in

〉
=

eiϑ
√

2
[i |D0⟩ + |D1⟩]. Consequently, the final state of the system

can be given in a compact representation,

(
|0⟩
|1⟩

)
→ |ψout⟩ =

iei ϑ2
√

2

(
− sin ϑ

2 cos ϑ
2

cos ϑ
2 sin ϑ

2

) (
|D0⟩

|D1⟩

)
(3)

The term (iei ϑ2 ) is the common phase factor and can be ne-
glected for both two equations. These results are valid for all
kinds of quantons (bosons, fermions) and just related to the spa-
tial part of the particle’s wavefunctions.

Now, we extend the problem in correlated systems in two
scenarios. First, let’s assume that two spatially correlated quan-
tons are produced from the same source, and follow either or-
ange or blue lines as in Fig. 2. In this scenario, the initial state
of the system can be considered as,

|ψin⟩ =
1
√

2

[
|0⟩L ⊗ |1⟩R − |1⟩L ⊗ |0⟩R

]
(4)

and one can use (2) as retarder operator with the selection of the
phase ϑL(R) consistent with the path. The correlated quantons
reach BSs after passing through reflecting mirrors and retarders
on both sides. Thus, the state of the system (4) transformed into

2



Figure 2: A scheme for the use of BS-P for spatially correlated two-quanton systems generated from the same source

the state |ψout⟩ = (BS L ⊗ BS R)(PL ⊗ PR) |ψin⟩. It can be written
in an explicit form by neglecting the overall phase factor,

|ψout⟩ =
1

2
√

2
([ |D0

′⟩ + i|D1
′⟩] ⊗ [i|D0⟩ + |D1⟩]

− eiϑ[ i|D0
′⟩ + |D1

′⟩] ⊗ [ |D0⟩ + i|D1⟩])
(5)

where ϑR − ϑL = ϑ. At this stage, joint-detection amplitudes
for a quanton at e.g. D0 and the other one at D′0 (or D′1),

A(D
′

0,D0) ≡
〈
D
′

0D0
∣∣∣ ψout⟩ =

1

2
√

2
i(1 − eiϑ)

A(D′1,D0) ≡
〈
D′1D0

∣∣∣ ψout⟩ = −
1

2
√

2
(1 + eiϑ)

(6)

and the associated probabilities are revealed as:

P(D
′

0,D0) ≡
∥∥∥A(D

′

0,D0)
∥∥∥2
=

1
2

cos2
(
ϑL − ϑR

2

)
P(D

′

1,D0) ≡
∥∥∥A(D

′

1,D0)
∥∥∥2
=

1
2

sin2
(
ϑL − ϑR

2

)
.

(7)

These results are related to the joint-spin measurement prob-
abilities obtained in EPR-Bohm type experimental setups using
spin-correlated particles, with a phase shift π/2 as Degiorgio’s
relation due to BS [34]. It is also clear that the probabilities
depend on the phase of the retarder.

Second, BS-P-BS system can be proposed to establish an
analogy between spin measurements and detection processes.
Accordingly, spatially correlated quantons produced in the state
(4) are subjected to retarders placed on one of the arms after
passing the first BSs. Then, they move through the second
BSs and reach the detectors (See Fig. 3). In this new config-
uration, the final state of the system is obtained as |ψout⟩ =

(BS L1 ⊗ BS R1 )(PL ⊗ PR)(BS L2 ⊗ BS R2 ) |ψin⟩, or clearly,

|ψout⟩ =
1
√

2
[(− sin

ϑL

2
|D0
′⟩ + cos

ϑL

2
|D1
′⟩)⊗

(cos
ϑR

2
|D0⟩ + sin

ϑR

2
|D1⟩) − (cos

ϑL

2
|D′0⟩ + sin

ϑL

2
|D′1⟩)

⊗ (− sin
ϑR

2
|D0⟩ + cos

ϑR

2
|D1⟩)] (8)

Thus, one can find the joint-detection probabilities for quantons
at D0 and D′0 (or D′1):

P(D
′

0,D0) =
1
2

sin2
(
ϑL − ϑR

2

)
≡ P(ϑL ⇑ñ, ϑR ⇑ñ)

P(D
′

1,D0) =
1
2

cos2
(
ϑL − ϑR

2

)
≡ P(ϑL ⇓ñ, ϑR ⇑ñ) (9)

The above results are well-known expressions in entangled
quantum systems [21]. The retarder phase corresponds to the
spin measurement angle n̂. Equation (9) clearly connects these
processes without any Degiorgio phase shift. Accordingly, the
probabilities of spin up (or down) in n̂ direction are equivalent
to the probabilities detected by a detector placed up (or down)
for the corresponding phase of the retarder to the angle of n
with horizontal. Moreover, this setup can be used for testing
BI, crucial for demonstrating non-local properties of quantum
mechanics. Therefore, in EPR-Bohm-type experimental setups,
one tries to find the relevant correlation function S as a combi-
nation of expectation value expressions based on different spin-
measurement probabilities. In general, to obtain the correlation
function S in entangled two spin-1/2 particles in a singlet state,

|ψin⟩ =
1
√

2
(|⇑n̂⟩L ⊗ |⇓n̂⟩R − |⇓n̂⟩L ⊗ |⇑n̂⟩R) (10)

One can start with decomposing it into the instantaneous eigen-
states of the system in any arbitrarily chosen direction n̂, then
observe the joint-spin measurement probabilities of particles
in the directions that make different ϑL and ϑR angles with
n̂ on both sides. Here, the spin measurement probabilities
are replaced by the detection probabilities. In other words,
P

(
ϑL ⇑n̂,ϑR ⇑n̂

)
and P

(
ϑL ⇑n̂,ϑR ⇓n̂

)
are exactly same with

P(D
′

0,D0) and P(D′1,D0). By introducing the observable O,

Ol(r)(ϑL(R)) = Pl(r)
D′0

(ϑL(R)) − Pl(r)
D′1

(ϑL(R)) (11)

one can calculate the expectation values,

E(ϑL, ϑR) = ⟨ψ (τ)| Ol(ϑL) ⊗ Or(ϑR) |ψ (τ)⟩ = − cos (ϑL − ϑR)
(12)

and the correlation function can be derived to test the BI as,

S (ϑL, ϑR, ϑ
′
L, ϑ

′
R) =

∣∣∣E(ϑL, ϑR) − E(ϑL, ϑ
′
L)

∣∣∣
+

∣∣∣E(ϑ′R, ϑR) + E(ϑ′R, ϑ
′
L)

∣∣∣ (13)
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Figure 3: The use of the BS-P-BS system based on detection probabilities as an analog to spin measurement probabilities for spatially correlated two-quanton
systems and a scheme for a gedanken experimental setup for testing BI.

With the certain chosen angles for the correlation function
S (0, π4 ,

3π
4 ,

π
2 ) = 2

√
2 > 2, BI is maximally violated by the

quantum mechanical expectation values.

3. Testing Bell-CHSH inequalities using topological phases

Topological phases are quantum mechanical phenomena that
occur in multiply-connected regions under the influence of vec-
tor potential or vector potential-like physical quantities, with-
out classical Lorentz forces, independent of the geometry of the
space and the speed of the particles [17–19]. It is also invariant
under spatial translations (traditionally in the z-direction) and
essentially arises in two-dimensional space. The first and most
well-known example of topological phases is the AB phase,
which is based on the control of the interference pattern via
an infinitely long and thin solenoid placed beyond the reach
of moving electrons in a double-slit experiment. Subsequently,
consequential studies have been performed and experimentally
observed, including duality and identity relations with the AB
system [20–27; 35–48]. At the forefront of these is the AC
effect arises from the motion of chargeless neutrons carrying
a magnetic dipole in closed trajectories around an electrically
linear charge distribution [22; 23]. Similarly, the HMW ef-
fect occurs due to the motion of chargeless particles carrying
an electric dipole around a linear charge distribution acting as a
magnetic field source [24–26]. The AC and HMW Hamiltoni-
ans describing the interaction and the transformed wave func-
tions are,

∆HAC = −sµ · Ẽ ∆HHMW = −sd · B̃
ψ′ = e−isµλEψ0 ψ′ = e−isdλBψ0

(14)

Here, µ and d are the magnetic and electric dipoles respec-
tively, Ẽ = E × ẑ and B̃ = B × ẑ denote the confined electric
and magnetic fields in two dimensions, λE and λB correspond
to the electric and magnetic linear charge distributions respec-
tively (λE(B) =

∮
Ẽ(B̃)·dl), the parameter s = ±1 arises from the

two inequivalent representations of Dirac algebra in two dimen-
sions, corresponding to spin up and down particles (for further
details see [21]). The expression (14) clearly demonstrates the
AC and HMW dualities. Henceforth, we use a representation
based on AC, suggesting simultaneous transformations µ −→ d
and Ẽ −→ B̃ for the HMW effect for the sake of simplicity.

The instantaneous eigenstates of the system under interactions
along the ˆ̃n direction (or Ẽ direction) are,

|⇑ñ; t⟩ = 1
√

2
(−e−iθ, 1)T

|⇓ñ; t⟩ = 1
√

2
(e−iθ, 1)T

(15)

and the corresponding eigenvalues are λAC1,2 = sµẼ with the
definitions Ẽx = Ẽ cos θ, Ẽy = Ẽ sin θ and Ẽ2 = Ẽ2

x + Ẽ2
y , where

θ is the angle between positive x axis and arbitrary ˆ̃n direction
(See Fig. 4.a). Each eigenstate gains a topological AC phase
associated with their spin orientation after a complete cycle at
t = τ,

|⇑ñ; t = 0⟩ → |⇑ñ; t = τ⟩ = e−iµλ |⇑ñ; t = 0⟩

|⇓ñ; t = 0⟩ → |⇓ñ; t = τ⟩ = eiµλ |⇓ñ; t = 0⟩
(16)

At this stage, above equations provide a suitable basis for the
study of entangled quantum states, and allows the setups pro-
posed in the previous section to be developed with the AC
phase.

Now, first let us verify that the effect of the AC phase can-
not be observed with a source of the electrical field linear
charge distribution placed in the setup given in Fig. 2. With
the selection of initial state (4) for the spatially-correlated (or
spin-entangled) particle pair, the final state of the system is
|ψout⟩

′ = (BS L ⊗ BS R)(TL ⊗ TR)(PL ⊗ PR) |ψin⟩. Here, TL(R)
is the quantum topological phase operator,

TL(R) =

 eiµ
∫

u ẼL(R)·dl 0
0 e−iµ

∫
d ẼL(R)·dl

 (17)

Thus, the final state of the system is obtained with a complex
phase contribution to the output state in (4) by neglecting the
rest overall phase factors with the definition for particles follow-
ing upper (u) and lower (d) trajectories (

∫
u ẼL(R) · dl −

∫
d ẼL(R) ·

dl =
∫

u ẼL(R) · dl +
∫

d′ ẼL(R) · dl =
∮

ẼL(R) · dl = λL(R)).

|ψout⟩
′ = eiµ∆λ

∣∣∣ψ(4)
out

〉
(18)

The probabilities of detection (or spin measurements) for quan-
tons are the same as (7). Hence, the overall phase factor disap-
pears in the expectation value expressions as predicted.
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Figure 4: (a) Schematic representation of the AC phase in 2+1 dimensions resulting from the motion of magnetic dipole moment carrier chargeless particles (or
HMW phase in the case of Ẽ −→ B̃ and µ −→ d) in a closed trajectory around a linear charge distribution. (b) A proposal for a gedanken experimental setup to
investigate the effects of topological phases on entangled quantum states and to observe the violations of BI using physical quantities in the singular region to test
the non-local properties of quantum mechanics.

Second, to observe such effects, the physical/quantum me-
chanical processes in Fig. 3 can be improved by adding lin-
ear charge distributions (See Fig. 4.b). Similarly, by choos-
ing (4) as the initial state, the output state of the system is
|ψout⟩ = (BS L2 ⊗ BS R2)(TL ⊗ TR)(PL ⊗ PR)(BS L1 ⊗ BS R1) |ψin⟩.
By neglecting the overall phase factor, and taking into consid-
eration (2), (3) and (17), the final state of the system can be
rewritten explicitly as (λ = λL − λR),

|ψout⟩ =
1
√

2
[(− sin

ϑL

2
|D0
′⟩ + cos

ϑL

2
|D1
′⟩) ⊗ (cos

ϑR

2
|D0⟩

+ sin
ϑR

2
|D1⟩) − e−2iµλ(cos

ϑL

2
|D′0⟩ + sin

ϑL

2
|D′1⟩) (19)

⊗ (− sin
ϑR

2
|D0⟩ + cos

ϑR

2
|D1⟩)]

The phase (2µλ) in (19) appears in the expectation value ex-
pressions in contrast to (18), and it allows the correlation func-
tion S to be controlled by a physical quantity placed in the
singular region without any classical interaction. To demon-
strate this, we first find the joint-detection probabilities (or anal-
ogously the joint-spin measurement probabilities for arbitrary ˆ̃n
directions), which reveals the statistical behavior of quantons,

P(D
′

0,D0) ≡ P(α ⇑ñ, β ⇑ñ)

=
1
4

[1 − cosϑL cosϑR − sinϑL sinϑR cos(2µλ)]

P(D
′

0,D1) ≡ P(α ⇑ñ, β ⇓ñ) (20)

=
1
4

[1 + cosϑL cosϑR + sinϑL sinϑR cos (2µλ)]

Then, by introducing observables OL(R) as in (11), the expecta-
tion values are revealed,

E(ϑL, ϑR) = − cosϑL cosϑR − sinϑL sinϑR cos(2µλ) (21)

Last, upon substituting (21) into (13), we derive the correlation
function S.

Figure 5: Maximal values of the S function can be explicitly controlled by the
AC-HMW phases. Accordingly, without loss of generality, one of the retarder
phases can always be eliminated ϑL = 0. By calculating the extremum condi-
tions of the function (23) for the other phases of retarders, one can consider the
maximal S values for µλs with the solutions ϑ′L = π/2, ϑR = ± arctan[cos 2µλ],
and ϑ′R = π − ϑR.

S (ϑL, ϑR, ϑ
′
L, ϑ

′
R, λ) =

∣∣∣− cosϑL cosϑ′L − sinϑL sinϑ′L cos(2µλ)

+ cosϑL cosϑR + sinϑL sinϑR cos(2µλ)|

+
∣∣∣− cosϑ′L cosϑ′R − sinϑ′L sinϑ′R cos(2µλ)

− cosϑR cosϑ′R − sinϑR sinϑ′R cos(2µλ)
∣∣∣

(22)

Thus, the correlation function (analogous to Bell angles) for
which the retarder phases are maximally violated by the quan-
tum mechanical expectation values is obtained as follows:

S (0,
π

4
,

3π
4
,
π

2
, λ) =

√
2 +
√

2| cos(2µλ)| (23)

This result illustrates how the correlation function depends on
the physical quantities in the singular region. Accordingly, for
specific angle selections, S can be controlled by linear charge
distributions (See Fig. 5). In the case of λ = 0, it reduces to

5



S = 2
√

2. Besides, when the polarized dipoles are used, there
exists entanglement between the spin and path of chargeless
particles as its different degrees of freedom. In this case, it is
physical noncontextuality rather than the locality that is tested
experimentally.

The proposed setup is important for quantum communica-
tion and information applications, as the generalizations of BI
serve as criteria for entanglement and separability. The nonlo-
cal structure of AC-HMW phases facilitate operations at req-
uisite distances and connections for BI testing, devoid of adia-
batic conditions or classical interactions. The robust structure
of topological phases offers the possibility of obtaining more
precise results due to their resistance to environmental noise.
Furthermore, in the setup utilizing spatially correlated particles
(with momentum conservation), (23) is valid for all types of
quantons (bosons, fermions) that provides flexibility and suit-
ability under diverse laboratory conditions. The use of moving
particles as electrically and magnetically neutral dipole carriers
is adequate for experimentation [23; 26]. In this context, the
setups with neutron interferometers, where the effects of geo-
metric phases on entangled quantum states are examined, stand
out as the most inspiring studies [29; 49–51]. Lastly, it should
be further emphasized that the results of (23) emerge solely
based on the detection probabilities of particles, analogously to
spin measurements, and that Bell angles for BI testing can be
controlled through phase retarders.

4. Discussion and conclusions

Bell-CHSH inequalities (BI) are crucial for testing the funda-
mental principles of quantum mechanics, particularly in assess-
ing quantum entanglement, one of its most profound aspects
within the framework of local realism. Generalizations of BI
serve as criteria for entanglement and separability, with exper-
imental implementations conducted in large quantum systems
such as photons and atoms. On the other hand, topological AC
and HMW phases emerge as excellent tools in developing quan-
tum technologies with their nonlocal features. In this study, our
primary motivation is to propose gedanken experimental setups
for testing BI utilizing all types of quantons, especially spin
1/2 particles, extending beyond photons. We delve into the ef-
fects of spin-dependent AC-HMW phases on entangled quan-
tum states, leveraging their nonlocal structure to gain an exper-
imental advantage. Therefore, we place electromagnetic field
sources (linear charge distributions) in the center of BS-P-BS
systems, where the motion of particles is not allowed. Through
this setup, we observe the topological phase contributions to
the wave functions of the moving dipole carrier chargeless par-
ticles. Consequently, the correlation function S can be explic-
itly controlled by the topological phase, thereby influencing the
entangled quantum states.

Now, let us have some discussion on our scheme and its pos-
sible implementations in physical systems. First, the AC phase
is recognized as a special case of the Berry phase that emerges
under adiabatic conditions [52; 53]. In this regard, the research
conducted by Bertlmann is significant [29]. In this work, the

authors explore the effects of the Berry phase generated by im-
plementing an adiabatically rotating magnetic field into one of
the paths of magnetic dipole carrier entangled neutrons moving
in opposite directions. They use spin-echo method to elimi-
nate phases that arise due to the system dynamics during the
motion of the particles and perform with neutron interferome-
ters. Since their results (See equations (20-22) in [29]) should
be reduced to our (23) with Bell angles by restricting the az-
imuthal angles, it can be reconsidered for the proposed setup in
Fig. 4. In contrast to [29], our proposed setup offers a signif-
icant advantage by utilizing AC-HMW phases, which possess
non-local features, without requiring an adiabaticity condition.
In this regard, it also clearly reveals the relationship between
Berry phase and its special cases AC-HMW phases. More-
over, at this stage, a discussion on noncontextuality needs to be
addressed. Noncontextuality requires that observables yield a
value that does not depend on the experimental context; results
of measurements must be independent of other simultaneous
measurements. When the AB effect is considered in two dimen-
sions, the solenoid can be regarded as a dipole and is inherently
polarized in the z-direction. Hence, the identity relation be-
tween the AB and AC phases holds when AC dipoles are polar-
ized (for s = ±1). In the proposed setup, entanglement occurs
between the spin and paths of neutral particles. This suggests
experimentally testing physical noncontextuality rather than lo-
cality [48-51]. Thus, we use the BI to test noncontextual hidden
variable theories.

Second, (23) is also consistent with the findings of [19].
In this study, the authors delve into the AB and AC effects
within the framework of fully relativistic quantum mechanics
in 2+1 dimensions, demonstrating the ability to control the cor-
relation the correlation function for BI through the AC phase.
To achieve this, they leverage spin measurement probabilities
and associated expectation value expressions. Here, we uti-
lize the probabilities of particle detection analogously to spin
measurements and use phases of the retarders analogous to Bell
angles in the proposed setup. This illustrates the application
of Mach-Zender interferometers modified with phase retarders,
where the probabilities of detection by the detectors serve as
analogs to spin measurements. As a result, this offers an ex-
ample of conducting entanglement experiments using all kinds
of quantons, not limited to photons. Thus, we pave the way
for experimental exploration of the effects of phases on entan-
gled quantum states, verification of the spin independence of
the AB phase, and examination of the duality and identity rela-
tionships between phases, considering the HMW phase as well.
Such endeavors are important for quantum communication and
information applications.

Third, as a clear example of AC-HMW duality, it reveals the
nature of AB-type quantum mechanical effects. It is conceiv-
able that in such an configuration the best known and earliest
example of topological phases, the AB phase (which is also the
case for the fully dual DAB phase), could be used at the first
instance. However, the interaction Hamiltonian describing the
dynamics of the AB system and the transformed wavefunction
are given by,
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∆HAB = −eα · A
ψ′ = e−ieΦψ0

(24)

where e is the electron charge, A is the vector potential, and
Φ is the magnetic flux. The phase is independent of the spin
orientation of the particles (s), and disappears in the expecta-
tion value expressions. The results are reduced to the equations
(8) and (9) even in the presence of the solenoid in the case of
using AB phase in the proposed setups contrarily done in Sil-
verman’s study [35]. Moreover, although the setup in Fig. 2
works for all types of quantons (bosons, fermions, etc), it is not
suitable to investigate the effects of topological phases on en-
tangled quantum states even if we consider the spin-dependent
AC-HMW phases. Hence, the probabilities in (7) are related
to the joint-spin measurement probabilities in EPR-Bohm-type
setups with phase difference π

2 , and since no real closed orbit
is formed (single-slit analogy). The configuration in Fig. 3 is
well suited to study the effects of nonlocal topological phases
(double-slit analogy) and it leads to construction of Fig. 4 [34].

Last, although the study can be performed using polarizing
BSs, using a different BS each time to perform the spin mea-
surement analogy is not practical for experimental applications.
Nevertheless, for the completeness of the study, it can be real-
ized by choosing coefficients r and t for (1) as,

BS =
1
√

2

(
− sin ϑL

2 −i sin ϑR
2

i cos ϑL
2 cos ϑR

2

)
(25)

The proposed setup, constructed with spatially correlated
particles (via conservation of momentum) analogously to sin-
glet states, does not allow for the examination of mixed states.
Nevertheless, conducting such a study is imperative for achiev-
ing a thorough understanding of the influence of geometric and
topological phases on quantum mechanical states. In this re-
gard, we intend to pursue this line of research in future stud-
ies. On the other hand, we believe that modifying the proposed
setup to incorporate four entangled quantons will enable the
testing of Leggett’s inequality, with the aim of exploring the in-
compatibility between nonlocal realism and quantum mechan-
ics using AC-HMW phases [30]. Similarly, it could serve as an
experimental setup suggestion for the study with four entangled
quantons [28].
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