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Two-dimensional electron gas (2DEG) bilayers provide suitable platforms for electronic phases
and transitions that are fundamental to both theoretical physics and practical applications in de-
vice technology. In bilayer systems, the additional pseudospin—representing the layer degree of
freedom—enables the emergence of interlayer coherence, which is a direct consequence of the in-
terlayer Coulomb interaction. This study presents a comprehensive Hartree-Fock (HF) mean-field
investigation of the interlayer coherence in 2D bilayers, uncovering ground-state behaviors and
temperature-dependent phase transitions that are distinct from single-layer 2DEG. This interlayer
coherence signals a spontaneous breaking of the U(1) symmetry in layer pseudospin. We explore
the zero-temperature phase diagrams as a function of the electron density and interlayer separa-
tion within the HF formalism. We also calculate the critical temperature (Tc) of the interlayer
coherence onset by self-consistently solving the HF gap-like equation. We contrast this interlayer
coherent phase in electron-electron (e-e) bilayers with the closely related excitonic superfluid phase
in electron-hole (e-h) bilayers. Though both e-e and e-h bilayers spontaneously break the pseu-
dospin U(1) symmetry, e-h bilayers produce Bardeen-Cooper-Schrieffe-Bose-Einstein condensates
(BCS-BEC) crossover intrinsic to the excitons acting as effective bosons or Cooper pairs, whereas
the symmetry-broken phase in e-e bilayers is akin to the XY or easy-plane pseudospin ferromag-
netism. Using the same system parameters and a similar theoretical framework, we find that Tc

of the interlayer coherent phase in e-e bilayers is about one-third of that in exciton condensates,
suggesting a weaker interlayer coherence in e-e bilayers. In addition, we examine the effect of a weak
interlayer tunneling on the interlayer coherence order parameter, drawing parallels with the influence
of an effective in-plane magnetic field on the XY pseudospin ferromagnetism. Our findings provide a
comparative theoretical framework that bridges the gap between the interlayer coherence physics in
e-e and e-h bilayers, contributing to a unified understanding of phase transitions in low-dimensional
electron/hole systems and establishing in particular the same universality class for interlayer phase
coherence in both e-e and e-h bilayers.

I. INTRODUCTION

During the last 50 years, the fabrication and ex-
ploration of two-dimensional electron gas (2DEG)
systems has been crucial in expanding our under-
standing of quantum mechanical phenomena in con-
densed matter physics.1,2 These systems, fundamen-
tal to the functionality of contemporary electronic
devices such as Si MOSFETs and GaAs HEMTs,
exhibit rich many-body quantum phases under var-
ious conditions, for example at low electron densi-
ties or in a strong magnetic field where Coulomb
interactions dominate. The most famous such inter-
acting phase is the fractional quantum Hall effect,2

but many other correlation-induced phases, both
in finite and zero magnetic fields, have been pre-
dicted and sometimes observed, such as the Wigner
crystal,3 the Bloch ferromagnet,4 spin/valley/charge
density waves, etc.

The Bardeen-Cooper-Schrieffer (BCS) theory5,6

describes the pairing of two electrons into a Cooper
pair as a result of effective attraction mediated by
phonons. An analogous pairing mechanism, in-
duced directly by the Coulomb interaction, arises
between an electron and a hole, giving rise to the
excitonic state in semimetals or semiconductors.7–11

Even though the original concept of an exciton12–14

describes the bound state of an electron and a hole,
which are generated optically in the conduction and
valence bands of homogeneous semiconductors, this
kind of exciton is an excited state. Excitons formed
in e-h bilayers are, however, the ground state of the
bilayer system. We only consider such e-h bilayer ex-
citons and the corresponding excitonic ground states
in the current work. The nature of these excitonic
states is determined by the pairing strength. In
the weak pairing limit, excitons are loosely bound
with radii larger than the average distance between
electrons and holes. In this regime, the original
semimetallic or semiconducting phase is unstable for
an arbitrarily weak e-h attraction, akin to how the
normal Fermi surface of a metal is susceptible to the
Cooper-pair formation under any weak e-e attrac-
tion in the BCS theory. In the strong pairing limit,
where excitons are tightly bound with smaller radii,
excitons behave like a weakly repulsive dilute Bose
gas, forming the Bose-Einstein condensates (BEC)
at low temperatures. In either limit, as long as the
electrons and holes remain spatially separated, exci-
tons condense into a ground state which is a BCS or
BEC superfluid. Such a superfluid is not a regular
superconductor since excitons are electrically neu-
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tral, thus this ground state is sometimes called the
‘excitonic insulator’; It also differs from a regular in-
sulator, since this excitonic ground state constitutes
a neutral superfluid. We use the terminology ‘exci-
ton condensates’ for the T = 0 strongly-bound BEC
or weakly-bound BCS superfluid of 2D e-h bilayer
excitons.

Advances in quantum well bilayers, such as InAs-
GaSb15 and GaAs–AlGaAs16–18 heterostructures,
have enabled the spatial separation of electrons and
holes, and therefore the creation of more stable and
controllable e-h bilayers. These developments have
facilitated the observations of stable excitonic states
in equilibrium.15,19–26 In these quantum well bilay-
ers, particularly, exciton condensation has been pre-
dicted and observed in a strong magnetic field per-
pendicular to the 2D layers.27–33 The most stable
exciton condensates manifest at a total Landau level
filling factor of ν = 1, where each layer’s lowest Lan-
dau level is half-filled. The emergence of these ex-
citon condensates has been further reinforced by re-
cent breakthroughs in 2D material fabrications,34,35

including double-layer graphene,36,37 double bilayer
graphene and double-layer transition metal dichalco-
genides. Graphene double layers,37 in particu-
lar, have demonstrated the potential for a BCS-
BEC crossover15,38–49—a continuum between BCS-
type weak coupling and BEC-type strong coupling
regimes—in condensed matter systems.

In contrast to quantum Hall bilayers, exciton con-
densates in e-h bilayers without an external mag-
netic field—hereafter simply referred to as e-h bilay-
ers—have remained elusive15 until the recent obser-
vation of enhanced interlayer tunneling anomaly in
double bilayer graphene heterostructures,50 signal-
ing the first indication of such condensates. Con-
siderable obstacles in experimental realization of e-h
bilayer exciton condensates have been the difficul-
ties in eliminating impurities and in approaching the
BEC limit. The latter involves electrostatically dop-
ing carriers to a lower density, minimizing interlayer
tunneling and simultaneously reducing the distance
between layers. Regardless of the specific pairing
mechanism, these bilayer systems, with or without
an external magnetic field, doped with electrons or
holes, share a common core: the spontaneous inter-
layer coherence associated with an excitonic super-
fluid arising from Coulomb interactions.

The relative stability of exciton BEC in quantum
Hall bilayers at ν = 1 can be attributed to the unique
characteristics of Landau levels. Electrons in Lan-
dau levels bypass the cost of kinetic energies, thus
enhancing interaction-dominated symmetry-broken
phases. Furthermore, the quantum Hall bilayer
is distinguished by the exact particle-hole symme-
try inherent in the Landau level around the half-

filling. At ν = 1, despite both layers being electron-
doped and half-filling the lowest Landau level, the
exact particle-hole symmetry transforms electrons
into holes, and vice versa—quantum Hall bilayers
at ν = 1 can be equivalently considered as e-e, h-
h or e-h bilayers, and thus equivalently describable
as an XY pseudospin ferromagnet in the e-e or h-
h picture51–59 or as a BEC superfluid in the e-h
picture.29,33 However, the absence of exact particle-
hole symmetry, due to differing energy dispersions
of electrons and holes, in e-h bilayers prevents a di-
rect mapping between BEC and pseudospin ferro-
magnetism. This naturally raises an essential ques-
tion: How do the nature and characteristics of inter-
layer coherence differ between e-h and e-e bilayers at
zero magnetic field? Are they the same or different
in the absence of particle-hole symmetry? In this
paper, we address this question in depth using the
Hartree-Fock (HF) mean-field theory, which has also
been used extensively to study the quantum Hall bi-
layer exciton condensation phenomena.

Though the comparison between BCS supercon-
ductivity and exciton condensates has a long his-
tory, there has been no in-depth discussion compar-
ing the pairings in e-h and e-e bilayers. Closely re-
lated, e-e and e-h bilayers both host spontaneous in-
terlayer coherence as a result of repulsive Coulomb
interactions between electrons (or attraction be-
tween electrons and holes). In spite of the same
Coulombic nature, the interlayer coherence in these
two systems exhibit distinct properties. In e-h bi-
layers, the formation of exciton condensates fea-
tures a gap opening, while the interlayer coher-
ence in e-e bilayers is more akin to an XY pseu-
dospin ferromagnetism.60 As previously discussed in
depth in Refs [61,62], the layer index introduces a
pseudospin, of which the z-component maps to the
classical layer index. The pseudospin-ordered state
underscores the quantum mechanical subtleties of
pseudospin-orientation-dependent energies: the XY
easy-plane pseudospin ferromagnetic state is ener-
getically favorable due to the absence of Hartree
contribution. A profound distinction arises between
the symmetry properties of spin and pseudospin.
Whereas conventional spin system exhibits SU(2)
symmetry, ensuring energy invariance under any
rotation of spin orientation, the symmetry of the
pseudospin-ordered state in bilayer systems is re-
duced to U(1),63,64 which only guarantees energy
invariance under rotations in the plane perpendic-
ular to the effective magnetic field. This reduction
in symmetry from SU(2) to U(1) reflects the under-
lying order imposed by the difference between the in-
tralayer and interlayer Coulomb interactions, which
is unique to the bilayer systems. This pseudospin
U(1) symmetry captures the essence of interlayer co-
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herence, akin to the phase coherence in BCS super-
conductors.

In this work we focus on the zero-field e-e bilayers,
which have been much less studied than the cor-
responding well-studied e-h bilayers although both
manifest similar U(1) symmetry breaking associ-
ated with spontaneous interlayer coherence, which
physically implies the system developing interaction-
induced interlayer tunneling in spite of the absence
of any single-particle interlayer tunneling. Specifi-
cally, we consider a bilayer structure, composed of
two 2DEG layers confined in the xy-plane and sep-
arated by a distance d in the z-direction. Such a bi-
layer structure introduces new physics:65 in addition
to 2D carrier density in each layer, controlling the ki-
netic energy and the intralayer interaction strength,
the layer separation provides a new length and in-
teraction scale for interlayer correlations. We study
the interlayer coherence in such an e-e bilayer using
the HF theory, and for completeness, we compare its
finite-temperature properties with e-h bilayers us-
ing the same system parameters. We pedagogically
start in Sec. II by introducing four distinct ground-
state ansatz: the spin and pseudospin unpolarized
phase S0, the spin polarized but pseudospin unpo-
larized phase S1, the spin polarized and interlayer
coherent phase with pseudospin in the xy-plane S2

and the spin polarized and interlayer coherent phase
with pseudospin in z-direction S3. We focus exclu-
sively on the spin polarized case in interlayer coher-
ent phases, primarily because spin plays no role in
the XY pseudospin ferromagnetic state if the den-
sity is lower than the critical value of the ferromag-
netic instability (rs > 2) and the spin-orbit coupling
is absent—the system is effectively spinless. There-
fore, our findings regarding the interlayer coherence
remain equally applicable to spinless itinerant elec-
trons, with the only difference being the absence
of spin polarization in each layer. The fact that
a 2DEG has an exchange-driven spin polarization
transition at low densty (for rs ∼ 2)4 is well-known,
and our spin polarization transition results are for
the sake of completeness only.

In Sec. III, we study the interplay of kinetic,
Hartree and exchange energies, by mapping out the
zero-temperature phase diagrams as a function of
electron density and interlayer separation. We par-
tition the discussion into two subsections to consider
scenarios of equal layer densities (Sec. III B) and un-
equal layer densities (Sec. III C), both conditions be-
ing experimentally adjustable through the applica-
tion of dual gate voltages. Interestingly, within the
S1 and S2 regimes in the HF energy landscape, our
findings suggest a ground state that favors a pseu-
dospin partially polarized phase: both pseudospin-
up and pseudospin-down are, unequally, occupied.

This contrasts with a fully polarized phase where
pseudospin alignment would be exclusively in the
x-direction (actually any direction in the xy-plane
because of the U(1) symmetry).

In Sec. IV, we extend our study to finite temper-
atures, focusing on bilayers with equal layer densi-
ties. We provide an in-depth investigation of the
critical temperature Tc for the interlayer coherent
phase (S2) in Sec. IVA, drawing comparisons to
the exciton condensation in e-h bilayers with the
same system parameters in Sec. IVB. The trends
of Tc, as a function of density and interlayer sep-
aration, of e-e bilayers qualitatively deviate from
that of e-h bilayers. The magnitude of Tc, on the
other hand, in e-e bilayers is approximately one-
third of that in e-h bilayers, suggesting a weaker
interlayer coherence in e-e bilayers. Both the XY
ferromagnetism and the exciton condensates un-
dergo, in principle, a finite-temperature Berezin-
skii–Kosterlitz–Thouless (BKT) transition, and be-
long to the same universality class of phase transi-
tions.

Section V investigates the influence of a weak in-
terlayer tunneling on the interlayer coherence order
parameter. The presence of any finite interlayer
single-particle tunneling explicitly breaks the U(1)
symmetry and pins the easy-plane pseudospin fer-
romagnetism along the x-direction. This analysis
provides insights into the phase coherence and sta-
bility under perturbations that mimic the influence
of an external magnetic field to physical spins.

Finally, we conclude with a discussion in Sec. VI.
We comment on possible experimental signatures of
the interlayer coherence in e-e bilayers and limita-
tions of the HF mean-field theory.

In addition, we provide in Appendix A some useful
summations and integrals that are used in our the-
ory, in Appendix B the HF energy plots of the four
competing ground states S0, S1, S2, S3, and in Ap-
pendix C the Tc of the spin polarized phases in single
2DEG and three-dimensional electron gas (3DEG)
systems for completeness.

II. GROUND STATE ANSATZ

We start from the characterization of four distinct
ground states that emerge in the study of interlayer
coherence in e-e (or h-h) bilayers. We designate
these states with concise labels for ease of reference
throughout our discussion:

• S0 phase: The spin and pseudospin unpolarized
state.

• S1 phase: The spin polarized but pseudospin un-
polarized state.
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FIG. 1. Schematically show the four competing ground
states we consider: the spin and pseudospin unpolarized
phase S0, the spin polarized but pseudospin unpolarized
phase S1, the spin polarized interlayer coherent (pseu-
dospin polarized) phase with the pseudospin in the xy-
plane S2 (the XY order) and with the pseudospin in the
z-direction S3 (the Ising order). In the S3 phase, all elec-
trons spontaneously move to one layer creating a charge
order. The interlayer coherence is indicated by the wig-
gle. (The Sξ phase mentioned in the main text consists
of both S2 and S3 phases.)

• Sξ phase: The spin polarized interlayer coherent
(pseudospin polarized) states. The pseudospin po-
larization in these states can be oriented differ-
ently.

– S2 phase: The pseudospin is oriented within the
xy-plane (the XY order).

– S3 phase: The pseudospin is oriented in the z-
direction (the Ising order).

S2 and S3 phases both break the U(1) layer sym-
metry and correspond to SP-SY and SP-MO phases
in Ref. [61,62], respectively. Figure 1 schematically
illustrates these four competing ground states.

III. ZERO TEMPERATURE PHASE
DIAGRAMS

In this section, we provide zero-temperature phase
diagrams of e-e bilayers. We first show the HF
Hamiltonian and the formula of HF total energy, fol-
lowed by explicit HF energy expressions of S0, S1, S2

and S3 phases in Sec. III A. We then present phase
diagrams with respect to electron density (or di-
mensionless inter-electron distance rs) and interlayer
separation d for equal layer densities61,62 in Sec. III B
and for unequal layer densities in Sec. III C.
The Hamiltonian of a 2D bilayer consists of the

kinetic part Ĥ0 and the Coulomb interacting part

V̂,

Ĥ = Ĥ0 + V̂. (1)

Represented in the second quantization form,

Ĥ0 =
∑
k,l,σ

ε0,l(k)c
†
lσkclσk, (2)

where l = t, b label top and bottom layers and
σ =↑, ↓ label spins. For free electron gases, ε0,l(k) =
ℏ2k2/2m∗

l , and m∗
l is the effective mass. For simplic-

ity, we assume m∗
t = m∗

b = m∗ throughout the rest
of the paper. It is straightforward to generalize the
case to unequal effective massesm∗

t ̸= m∗
b , which will

only quantitatively change the results we present in
this paper. The interacting part is

V̂ =
1

2A

∑
k,k′,q
l,l′,σ,σ′

V ll′

q c†lσ,k+qc
†
l′σ′,k′−qcl′σ′,k′clσ,k,

(3)

where A = At = Ab is the system area. The 2D
Coulomb potentials are different for the electrons in
the same layer and in different layers,

V ll′

q = V S
q δll′ + V D

q (1− δll′), (4)

where

V S
q =

2πe2

ϵq
, V D

q =
2πe2

ϵq
e−qd, (5)

d is the layer separation and ϵ is the averaged di-
electric constant of the surrounding medium. We
note that the interaction is spin-independent (i.e.,
SU(2) symmetric), but layer-dependent (i.e., U(1)
symmetric in pseudospin layer index).

The HF mean-field form of the interacting part V̂
is

V̂HF =
∑
k,l,σ

[ (
VH,l + V σσ

x,l (k)
)
c†lσkclσk

+ V σσ̄
x,l (k)c

†
lσkclσ̄k

]
−
∑

k,σ,σ′

∆σσ′

k c†tσkcbσ′k − h.c..

(6)

We have explicitly separated V̂HF into Hartree po-
tentials VH,l, intralayer exchange potentials between
the same spin V σσ

x,l (k), intralayer exchange poten-

tials between opposite spins V σσ̄
x,l (k) and interlayer

exchange potentials ∆σσ′

k .
In the matrix form with spinor basis (ct↑k ct↓k

cb↑k cb↓k)
T , the HF Hamiltonian ĤHF(k) = Ĥ0(k)+

V̂HF(k) is given by



5

ĤHF(k) =


ε0(k) + VH,t + V ↑↑

x,t(k) V ↑↓
x,t(k) −∆↑↑

k −∆↑↓
k

V ↓↑
x,t(k) ε0(k) + VH,t + V ↓↓

x,t(k) −∆↓↑
k −∆↓↓

k

−∆∗↑↑
k −∆∗↓↑

k ε0(k) + VH,b + V ↑↑
x,b(k) V ↑↓

x,b(k)

−∆∗↑↓
k −∆∗↓↓

k V ↓↑
x,b(k) ε0(k) + VH,b + V ↓↓

x,b(k)

 .

(7)

The electrostatic Hartree potentials are

VH,l =
2πe2d

ϵ
nl, (8)

where nl is the carrier density in layer l,

nl =
1

A

∑
k,σ

ρσσll (k), (9)

and ρ(k) is the density matrix with matrix elements

ρσσ
′

ll′ (k) = ⟨c†l′σ′kclσk⟩. (10)

The expectation is taken in the ground state. The
intralayer exchange potentials are

V σσ′

x,l (k) = − 1

A

∑
k′

V S
k−k′ρσσ

′

ll (k′), (11)

and the interlayer exchange terms are

∆σσ′

k =
1

A

∑
k′

V D
k−k′ρσσ

′

tb (k′). (12)

The HF total energy is the sum of all contributions,

Etot =
∑
k,l,σ

(
ε0(k) +

1

2
VH,l

)
ρσσll (k)

+
1

2

∑
k,l,σ,σ′

V σσ′

x,l (k)ρσ
′σ

ll (k)

− 1

2

∑
k,σ,σ′

[
∆σσ′

k ρσ
′σ

bt (k) + c.c.
]
.

(13)

The first (noninteracting single-particle) term in-
cludes the kinetic energy and electrostatic Hartree
energy, the second and the last (interacting) terms
are intralayer and interlayer exchange energies, re-
spectively, arising from the Coulomb coupling.
In subsequent analyses, we use the effective Bohr

radius a∗ and the effective Rydberg Ry∗, defined as

a∗ =
ϵℏ2

m∗e2
, Ry∗ =

e2

2a∗ϵ
=

ℏ2

2m∗(a∗)2
, (14)

as fundamental units of length and energy, respec-
tively. In the semiconductor double quantum well
structure GaAs-AlGaAs, ϵ = 12.5, m∗ = 0.07me,

66

a∗ = 98.3Å and Ry∗ ≈ 5.5 meV. In a 2DEG, the

average distance between electrons is quantified by
the dimensionless length scale rs, which is related to
the density n by

rsa
∗ =

1√
πn

. (15)

Our calculations are presented in terms of both
dimensionless quantities (rs, d̃), where d̃ = d/a∗,
and experimentally measurable parameters (n, d) us-
ing GaAs quantum well conduction band parame-
ters. Some minor modifications are necessary for
graphene, where the kinetic energy term is lin-
early dispersing, but our results remain qualitatively
valid.

A. The HF energy

Based on Eqs. (8-13), we explicitly show HF en-
ergies of the four competing ground states S0, S1,
S2 and S3 in this subsection. An interlayer coher-
ent state emerges from a superposition of electron
states residing in the top and bottom layers. The
eigenstates of this pseudospin polarization can be
represented as a linear combination:

|ξ⟩ = α|t⟩+ β|b⟩,
|ξ̄⟩ = β|t⟩ − α|b⟩,

(16)

where α and β can be taken as real numbers without
loss of generality, and α2 + β2 = 1 satisfying the
normalization condition. The symmetric state |ξ⟩
and anti-symmetric state |ξ̄⟩ correspond to the lower
and higher eigenenergies, respectively.

1. HF energy of the spin and pseudospin unpolarized
state S0

The wavefunction of the spin and pseudospin un-
polarized state S0 can be written as

|S0⟩ =
∏

k≤kF

c†ξ↑kc
†
ξ↓kc

†
ξ̄↑kc

†
ξ̄↓k|0⟩

=
∏

k≤kF

c†t↑kc
†
t↓kc

†
b↑kc

†
b↓k|0⟩,

(17)

where |0⟩ is the vacuum state. There are four equal
Fermi surfaces with Fermi momentum kF =

√
πn.
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The densities and HF potentials of S0 state are

nt = nb =
n

2
,

ρσσ
′

ll′ (k) = δll′δσσ′fk,

VH,t = VH,b =
πe2dn

ϵ
,

V σσ′

x,l (k) = −δσσ′

A

∑
k′≤kF

2πe2

ϵ|k− k′|
,

∆σσ′

k = 0,

(18)

where fk is the Fermi-Dirac distribution.
The kinetic energy Ekin, Hartree energy EH, ex-

change energy of the intralayer interaction Eintra
x and

the interlayer interaction Einter
x are, respectively,

Ekin = 4
∑
k≤kF

ℏ2k2

2m∗ =
πℏ2A
4m∗ n2,

EH = 0,

Eintra
x = − 2

A

∑
k,k′≤kF

2πe2

ϵ|k− k′|
= − 4e2A

3
√
πϵ

n3/2,

Einter
x = 0.

(19)

We have used the analytical integrations over mo-
menta k and k′ summarized in Appendix A. The
HF energy ES0

tot is the sum of these contributions

in Eq. (19). The HF energy per electron εS0
tot =

ES0
tot/nA, expressed in terms of n and rs, is

εS0
tot(n) =

πℏ2

4m∗n− 4e2

3
√
πϵ

n1/2,

εS0
tot(rs) =

[
1

r2s
− 8

√
2

3πrs

]
Ry∗.

(20)

rsa
∗ = rs,ta

∗ = rs,ba
∗ =

√
2/πn, here rs,t and rs,b

are inter-electron distance in the top and bottom
layers, respectively.

2. HF energy of the spin polarized but pseudospin
unpolarized state S1

The wavefunction of the spin polarized but pseu-
dospin unpolarized state S1 is

|S1⟩ =
∏

k≤kF

c†ξ↑kc
†
ξ̄↑k|0⟩

=
∏

k≤kF

c†b↑kc
†
t↑k|0⟩.

(21)

There are two equal Fermi surfaces with Fermi mo-
mentum kF =

√
2πn. The densities and HF poten-

tials of S1 state are

nt = nb =
n

2
,

ρσσ
′

ll′ (k) = δll′δσσ′δ↑σfk,

VH,t = VH,b =
πe2dn

ϵ
,

V σσ′

x,l (k) = −δσσ′δ↑σ
A

∑
k′≤kF

2πe2

ϵ|k− k′|
,

∆σσ′

k = 0.

(22)

We have assumed the majority spin to be σ =↑. The
energies are

Ekin = 2
∑
k≤kF

ℏ2k2

2m∗ =
πℏ2A
2m∗ n2,

EH = 0,

Eintra
x = − 1

A

∑
k,k′≤kF

2πe2

ϵ|k− k′|
= −4

√
2e2A

3
√
πϵ

n3/2,

Einter
x = 0.

(23)

The HF energy per electron

εS1
tot(n) =

πℏ2

2m∗n− 4
√
2e2

3
√
πϵ

n1/2,

εS1
tot(rs) =

[
2

r2s
− 16

3πrs

]
Ry∗,

(24)

and rsa
∗ = rs,ta

∗ = rs,ba
∗ =

√
2/πn.

3. HF energy of the spin polarized interlayer coherent
state Sξ

The wavefunction of the spin polarized interlayer
coherent (pseudospin polarized) state Sξ is

|Sξ⟩ =
∏

k≤kF

c†ξ↑k|0⟩

=
∏

k≤kF

(αc†t↑k + βc†b↑k)|0⟩,
(25)

The pseudospin is in a direction with polar angle
θ = 2arctan(α/β) with a freedom of any azimuthal
angle ϕ even though we specifically choose α, β to
be real. There is only one Fermi surface with Fermi
momentum kF =

√
4πn for the pseudospin fully po-

larized state. The densities and HF potentials of Sξ
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state are

nt = nα2, nb = nβ2,

ρσσ
′

ll′ (k) = δσσ′δ↑σ[δll′δltα
2 + δll′δlbβ

2 + (1− δll′)αβ]fk,

VH,l =
2πe2dn

ϵ
[δll′δltα

2 + δll′δlbβ
2],

V σσ′

x,l (k) = −[δll′δltα
2 + δll′δlbβ

2]
δσσ′δ↑σ

A

∑
k′≤kF

2πe2

ϵ|k′ − k|
,

∆σσ′

k = αβ
δσσ′δ↑σ

A

∑
k′≤kF

2πe2

ϵ|k′ − k|
e−|k′−k|d.

(26)

The energies are

Ekin =
∑
k≤kF

ℏ2k2

2m∗ =
πℏ2A
m∗ n2,

EH =
1

2

∑
k≤kF

2πe2dn

ϵ

(α2 − β2)2

2

=
πe2d

2ϵ
n2A(α2 − β2)2,

Eintra
x = − 1

2A

∑
k,k′≤kF

2πe2

ϵ|k′ − k|

(
α4 + β4

)
= − 8e2A

3
√
πϵ

n3/2(α4 + β4),

Einter
x = − 1

2A

∑
k,k′≤kF

2πe2

ϵ|k− k′|
2α2β2e−|k−k′|d

= −2e2Aα2β2

√
πϵ

n3/2J(kF d),

(27)

where J(kF d) is the triple integral

J(kF d) =

∫ 1

0

dxx

∫ 1

0

dyy

∫ 2π

0

dθ

e−kF d
√

x2+y2−2xy cos θ√
x2 + y2 − 2xy cos θ

,

(28)

which should be evaluated numerically. The HF en-
ergy per electron is

ε
Sξ

tot(n) =
πℏ2

m∗ n+
πe2d

2ϵ
n(α2 − β2)2

− 8e2

3
√
πϵ

n1/2

(
α4 + β4 +

3

4
J(kF d)α

2β2

)
.

(29)

Represented in dimensionless length using rs,la
∗ =

1/
√
πnl and

π(nt + nb) = πn

=
( 1

r2s,t
+

1

r2s,b

) 1

(a∗)2

≡ 1

(r̃sa∗)2
,

(30)

the HF energy per electron is

ε
Sξ

tot(r̃s) =
[ 2
r̃2s

+
d

a∗r̃2s
(α2 − β2)2

− 16

3πr̃s

(
α4 + β4 +

3

4
J(kF d)α

2β2
)]

Ry∗.

(31)

Note that r̃s ≡ r̃s(rs,t, rs,b).
In particular, the S3 phase, the spin polarized in-

terlayer coherent state with pseudospin polarized in
the z-direction (polar angle θ = 0), is the case that
all electrons are in one layer but not the other, i.e.,
α = 1, β = 0, r̃s = rs,t and rs,b → ∞. The HF
energy of S3 phase is

εS3
tot(n) =

πℏ2

m∗ n+
πe2

2ϵ
nd− 8e2

3
√
πϵ

n1/2,

εS3
tot(r̃s) =

[ 2
r̃2s

+
d

a∗r̃2s
− 16

3πr̃s

]
Ry∗.

(32)

The S2 phase, the spin polarized interlayer coher-
ent state with pseudospin polarized in the xy-plane
(polar angle θ = π/2), is the case of equal layer den-

sities, i.e., α2 = β2 = 1/2, rs = rs,t = rs,b =
√
2r̃s.

The HF energy per electron of S2 phase is

εS2
tot(n) =

πℏ2

m∗ n− 4e2

3
√
πϵ

n1/2

(
1 +

3

8
J(kF d)

)
,

εS2
tot(rs) =

[ 4
r2s

− 8
√
2

3πrs

(
1 +

3

8
J(kF d)

)]
Ry∗,

εS2
tot(r̃s) =

[ 2
r̃2s

− 8

3πr̃s

(
1 +

3

8
J(kF d)

)]
Ry∗.

(33)

The triple integral J(kF d) defined in Eq. (28) has
the properties that

0 ≤ J(kF d) ≤ 8
3 ,

J(0) = 8
3 ,

lim
kF d≫1

J(kF d) → 0.
(34)

As expected, for d = 0,

lim
d→0

εS2
tot(n) →

πℏ2

m∗ n− 8e2

3
√
πϵ

n1/2,

lim
d→0

εS2
tot(rs) →

[ 4
r2s

− 16
√
2

3πrs

]
Ry∗,

(35)
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which recovers the energy of single 2DEG with one
Fermi surface.

For 0 < kF d ≪ 1, J(kF d) can be expanded in
Taylor series

J(kF d) = J(0)− π

2
kF d+

1

2
(kF d)

2

∫ 1

0

dxx

∫ 1

0

dyy

∫ 2π

0

dθ
√
x2 + y2 − 2xy cos θ + · · · (36)

B. The phase diagram for equal layer densities

The S2 phase with XY easy plane pseudospin or-
dering always has a lower energy than the Ising-
ordered S3 phase (with all electrons in one layer with
pseudospin polarized along z direction) because the
density imbalance between the layers in S3 pays an
extra Hartree energy. This preference is also inferred
from Eq. (32) and Eq. (33) by taking their energy
difference:

εS2
tot(n)− εS3

tot(n)

= − 4e2

3
√
πϵ

n1/2
(3
8
J(kF d)− 1

)
− πe2

2ϵ
nd

= −e2kF
4πϵ

[
J(kF d)−

8

3
+

π

2
kF d

]
.

(37)

The function J(z) monotonically decreases with z
and intersects with the line −πz/2 + 8/3 at z = 0,
the slope of which equals the derivative of J(z) at
z = 0,

dJ(z)

dz

∣∣∣
z=0

= −π

2
. (38)

It follows that

εS2
tot − εS3

tot < 0 ∀ kF d > 0. (39)

This energetic hierarchy is shown by the computed
HF energies as a function of layer separation d in
Appendix B.
The zero-temperature phase diagram, determined

by εGtot = min{εS0
tot, ε

S1
tot, ε

S2
tot}, with respect to rs and

d̃ is shown in Fig. 2. The interlayer coherent phase
S2 manifests stability at larger rs (lower electron

density) and smaller interlayer distance d̃. Note that
there is always a critical rs for the transition to the
interlayer coherent phase, which is stable only above
a specific d-dependent rs value, with the critical rs
increasing with increasing d.

C. The phase diagram for unequal layer
densities

When the two layers have unequal densities, the
spin polarization of each layer individually depends

 (c
m

)
n

−2

d̃

FIG. 2. The zero-temperature phase diagram with
respect to rs and d̃, where d̃ = d/a∗. Dimensionless rs
and d̃ are also converted to density n in the unit of cm−2

and distance d in the unit of Å using GaAs quantum well
parameters. S0, S1 and S2 phases all have equal layer
densities, i.e., rsa

∗ = rsta
∗ = rsba

∗ =
√

2/πn.

on the layer density: if the layer density is larger
(smaller) than the critical value corresponding to
rs ∼ 2, the spin-unpolarized (spin-polarized) phase
is favored. The phase that the lower-density layer is
spin-polarized and the higher-density layer is spin-
unpolarized has been identified in a previous theo-
retical study67 as the three-component phase. In the
rest of the paper, we assume the density in each layer
is lower than this critical value of the ferromagnetic
instability (rs ∼ 2) and therefore will only consider
the spin polarized case because spin plays no role in
the interlayer coherence physics. For unequal layer
densities, we compare HF energies of the interlayer
coherent phase Sξ in Eq. (29) with the interlayer in-
coherent phase S′

1. The S′
1 phase is the generalized

case of S1 phase (defined in Sec. III A 2) but with
two unequal Fermi surfaces. It is straightforward to
write down the HF energy per electron of S′

1 phase,
represented in total density n and layer polarization
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m = (nt − nb)/n:

ε
S′
1

tot(n,m) =
πℏ2

2m∗n(1 +m2) +
πe2d

2ϵ
nm2

−2
√
2e2

3
√
πϵ

n1/2
[
(1 +m)3/2 + (1−m)3/2

]
. (40)

For a direct comparison, we represent the HF energy
of Sξ phase in Eq. (29) using n and m as well:

ε
Sξ

tot(n,m) =
πℏ2

m∗ n+
πe2d

2ϵ
nm2

− 4e2

3
√
πϵ

n1/2
[
1 +m2 +

3

8
J(kF d)(1−m2)

]
.

(41)

For layer unpolarized case m = 0, S′
1 phase is

equivalent to the pseudospin unpolarized phase S1,

ε
S′
1

tot(n,m = 0) = εS1
tot(n). For the totally layer polar-

ized case m = 1, S′
1 phase is equivalent to Sξ, there

is only one Fermi surface and no interlayer coherence
because one layer is completely empty.

In Fig. 3(a-d) we plot the energy difference ε
S′
1

tot −
ε
Sξ

tot as a function of layer polarization m and inter-

layer separation d̃ for several fixed total densities.
The corresponding r̃s (defined by the total density,

r̃sa
∗ =

√
1/πn) and r̄s (defined by the average layer

density, r̄sa
∗ =

√
2/πn) are labeled in each subplot.

Similarly, Fig. 3(e-h) plot ε
S′
1

tot − ε
Sξ

tot as a function
of r̃s and m for several fixed layer separations. As
m increases, the phase boundary shifts to larger d̃
(Fig. 3(a-d)) and smaller r̃s (Fig. 3(e-h)), indicating
that the interlayer coherent phase Sξ is more pre-
ferred than the interlayer incoherent phase S′

1 for

larger m. We conclude from Fig. 3 that the inter-
layer coherent phase Sξ is preferred for allm ∈ [0, 1).

For the two interlayer incoherent phases S1 and
S′
1, their energy difference depends on layer polar-

ization m by

ε
S′
1

tot − εS1
tot =

πℏ2

2m∗nm
2 +

πe2d

2ϵ
nm2

−2
√
2e2

3
√
πϵ

n1/2
[
(1 +m)3/2 + (1−m)3/2 − 2

]
. (42)

Expand in m,

ε
S′
1

tot − εS1
tot

Ry∗
=πa∗m2

√
n
[
(a∗ + d)

√
n−

√
2

π3/2

]
+O(m4), (43)

ε
S′
1

tot − εS1
tot < 0 only for small n and small d.

In Fig. 4, we show phase diagrams as a function
of m and d̃ for fixed total densities, chosen to be
the same as in Fig. 3(a-d). The phase diagrams are

determined by the lowest energy min{εS1
tot, ε

S′
1

tot, ε
Sξ

tot}.
In these phase diagrams, the S′

1 phase is never the

ground state, even for larger d̃ where S′
1 is lower in

energy than Sξ as in Fig. 3(a-d). This is because the

critical d̃ for ε
S′
1

tot − εS1
tot < 0 is smaller than that of

the phase boundary in Fig. 3(a-d).

For m → 1, the phase boundary in Fig. 4 can
be understood analytically by examining the energy
difference between the interlayer coherent phase Sξ

and incoherent phase S1:

ε
Sξ

tot − εS1
tot

Ry∗
= πna∗[a∗ + d(α2 − β2)2] +

n1/2a∗

π1/2

[
4α2β2(

8

3
− J(kF d))−

8(2−
√
2)

3

]
= πna∗[a∗ + dm2] +

n1/2a∗

π1/2

[
(1−m2)(

8

3
− J(kF d))−

8(2−
√
2)

3

]
.

(44)

When m → 1,

lim
m→1

ε
Sξ

tot − εS1
tot

Ry∗
= πna∗(a∗ + d)− n1/2a∗

π1/2

8(2−
√
2)

3
,

(45)
setting it to zero, we find that

d̃c
∣∣
m=1

≡ dc
a∗

∣∣∣
m=1

=
8(2−

√
2)

3

1

π3/2n1/2a∗
− 1,

(46)

which only depends on total density n. The d̃c in
Eq. (46) is shown in black dashed lines in Fig. 4, they
agree well with the phase boundary when m → 1.

In fact, if we take a close look at the second line
of Eq. (44), setting it to zero gives

π3/2n1/2(a∗ + dcm
2)

+
[
(1−m2)(

8

3
− J(kF dc))−

8(2−
√
2)

3

]
= 0.

(47)
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εS′ 1tot − εSξ
tot

4.2
6.0

2e+10 cm

r̃s =
r̄s =

n = −2

6.0 
8.4 

1e+10 cm

r̃s =
r̄s =

n = −2

8.4
12
5e+9 cm

r̃s =
r̄s =
n = −2

13.4 
19 
2e+9 cm

r̃s =
r̄s =
n = −2

0.1d̃ = 2d̃ =1d̃ = 5d̃ =

(a) (b) (c) (d)

Sξ

S′ 1

Sξ

S′ 1
Sξ S′ 1 Sξ

Sξ

S′ 1
S′ 1

S′ 1

Sξ

SξSξ

εS′ 1tot − εSξ
tot

-0.08 -0.04 0.00 0.04 -0.04 0.00 0.040.02-0.02
εS′ 1tot − εSξ

tot
0.00 0.02 0.04

εS′ 1tot − εSξ
tot

0.030.00 0.020.01

(e) (f) (g) (h)

εS′ 1tot − εSξ
tot

0.00 0.04-0.02 0.02
εS′ 1tot − εSξ

tot
0.00-0.05 -0.10 -0.15 

εS′ 1tot − εSξ
tot

0.0-0.2 -0.1 
εS′ 1tot − εSξ

tot
0.0-0.3 -0.2 -0.1 

FIG. 3. Energy difference ε
S′
1

tot − ε
Sξ
tot. (a-d) As a function of layer polarization m and d̃ for fixed total densities

n = 2× 1010 cm−2, 1010 cm−2, 5× 109 cm−2 and 2× 109 cm−2. The corresponding r̃s (defined by the total density,

r̃sa
∗ =

√
1/πn) and r̄s (defined by the averaged layer density, r̄sa

∗ =
√

2/πn) are labeled in each subplot. (e-h) As

a function of r̃s and m for fixed d̃ = 0.1, 1, 2 and 5. The dotted lines trace the phase boundaries. As m increases, the
phase boundary tilts to larger d̃ and smaller r̃s, indicating that the interlayer coherent phase Sξ is more preferred for
larger m.

The first term π3/2n1/2(a∗ + dcm
2) is positive, the

only way that a dc exists is that the second term is
negative, which requires

J(kF dc) >
8

3
− 8(2−

√
2)

3(1−m2)
. (48)

Given that J(kF dc) ∈ [0, 8/3] and it decays rapidly
with kF dc, i.e., with n1/2dc, the competition be-
tween the first and the second term in Eq. (47) in
solving for a dc, if it exists, ultimately requires kF dc
to be small for large n, and validates the approxi-
mation

J(kF d) ≈
8

3
− π

2
kF d, (49)

which are the first two terms in the expansion of
Eq. (36). Substitute Eq. (49) to Eq. (47), we have

d̃c
∣∣
n→nmax

=
8(2−

√
2)

3

1

π3/2n1/2a∗
− 1. (50)

The m dependence of dc vanishes for large densities,
and this critical distance dc equals the one form → 1
case in Eq. (46). Taking m → 0, Eq. (47) becomes

J(kF dc) = π3/2n1/2a∗ +
8(
√
2− 1)

3
. (51)

Because J(kF dc) ≤ 8/3, we could find that the max-
imum density for a dc to exist is

nmax ∼ 8.8× 1010cm−2. (52)

From the discussion above, we find that the crit-
ical distance d̃c at these two limits, m → 1 and
n → nmax, turns out to be the same value

d̃c
∣∣
m=1

= d̃c
∣∣
n→nmax

=
8(2−

√
2)

3

1

π3/2n1/2a∗
− 1.

(53)

This explains the agreement between the phase
boundary and the black dashed lines in Fig. 4, when
either the layer density imbalance is large, as in
Fig. 4(a-d) at m → 1, or the total density is close to
nmax, as in Fig. 4(a).

In Fig. 4, the phase transition boundary d̃c de-
creases with layer polarization m, revealing that a
layer density imbalance suppresses the interlayer co-
herent phase Sξ. This suppression becomes weaker
as total density n increases. When n approaches
nmax, d̃c becomes almost independent of m. As long
as n remains below nmax, a d̃c exists and the inter-
layer coherent phase survives even when the layer is
almost completely polarized.

The HF energy of the interlayer coherent phase
Sξ monotonically increases with layer polarization
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(a) (b) (c) (d)

S1Sξ S1Sξ S1Sξ

S1

Sξ

4.2
6.0

2e+10 cm

r̃s =
r̄s =

n = −2

6.0 
8.4 

1e+10 cm

r̃s =
r̄s =

n = −2

8.4
12

5e+9 cm

r̃s =
r̄s =

n = −2

13.4 
19 
2e+9 cm

r̃s =
r̄s =
n = −2

(a) (b)

3 
3.96e+10 cm

rs,b =
nb = −2

(c) (d)

 (c
m

)
n t

−2

5 
1.43e+10 cm

rs,b =
nb = −2

7 
7.28e+9 cm

rs,b =
nb = −2

 (c
m

)
n t

−2

 (c
m

)
n t

−2

 (c
m

)
n t

−2

9 
4.40e+9 cm

rs,b =
nb = −2

S1 S1 S1 S1Sξ Sξ Sξ

Sξ

d̃ d̃ d̃ d̃

FIG. 4. Phase diagrams as a function of layer polarization m and d̃ for fixed total densities n = 2 × 1010 cm−2,
1010 cm−2, 5 × 109 cm−2 and 2 × 109 cm−2. The phase diagrams are determined by finding the lowest energy

min{εS1
tot, ε

S′
1

tot, ε
Sξ
tot}. The corresponding r̃s (defined by the total density, r̃sa

∗ =
√

1/πn) and r̄s (defined by the

averaged layer density, r̄sa
∗ =

√
2/πn) are labeled in each subplot. The black dashed lines plot the critical distance

d̃c in Eq. (53), converging precisely to the phase transition boundary for m → 1 and for n → nmax as estimated in
Eq. (52).

m. As seen by taking the derivative of Eq. (41) with
respect to m:

dε
Sξ

tot

dm
=

e2n1/2m

ϵ
√
π

(
π3/2n1/2d+ J(kF d)−

8

3

)
, (54)

the term in the bracket is always positive for d > 0,
which is clear from the Taylor expansion in Eq. (36).
Therefore,

dε
Sξ

tot

dm
≥ 0, ∀ n, (55)

ε
Sξ

tot monotonically increases with layer polarization
m for any density n. Among interlayer coherent
phases Sξ, the layer fully polarized phase S3 always
has the highest energy and the layer equally occu-
pied phase S2 has the lowest energy. If carriers in the
two layers are allowed to transfer, the system is al-
ways stablized to the pseudospin XY-ordered phase
S2.

The layer polarization m can be interpreted as
the pseudospin response to an effective pseudospin
magnetic field applied in the z-direction, which can
be experimentally tuned by gate voltages. The bi-
layer system is trivially pseudospin-polarized in the
z-direction by virtue of this effective magnetic field,
which is zero for m = 0 and fully polarized in z-
direction for m = 1. Figure 4 illustrates that even
when there is a strong effective pseudospin magnetic
field polarizing the pseudospin completely in the z-
direction, the exchange-driven XY pseudospin ferro-
magnetic transition is little affected.
In Fig. 5, we fix rs,b and evaluate the phase dia-

gram as a function of (rs,t, d̃). Note that for rs,t ≲ 2
in Fig. 5, the top layer is spin-unpolarized and the
bottom layer is spin-polarized (because rs,b > 2 in all
presented figures) in the ground state.67 In m → 1

limit, nt → n, nb → 0, and rs,t ≪ rs,b,

d̃c
∣∣
m=1

=
8(2−

√
2)

3

rs,t
π

− 1 (56)

which is linear in rs,t. In m → −1 limit, nt → 0,
nb → n, and rs,b ≪ rs,t,

d̃c
∣∣
m=−1

=
8(2−

√
2)

3

rs,b
π

− 1 (57)

which is independent of rs,t. In Fig. 5, we plot d̃c in
Eq. (46) in black dashed lines and it agrees well with
the phase boundary when the density imbalance is
large: linear in rs,t for rs,t ≪ rs,b and independent
of rs,t for rs,b ≪ rs,t.
To provide a comprehensive picture of the phase

diagram, we present 3D plots of the critical distance
d̃c with respect to (rs,t, rs,b) in Fig. 6(a-c) and with
respect to (r̄s,m) in Fig. 6(d-f). Particularly, we

mark the linecuts of the phase boundary, i.e. d̃c
versus rs,t at rs,b = 10, 15 and 30 in Fig. 6(a-c),
which can be directly compared with the phase tran-
sition boundary in Fig. 5(e-g). Similarly, we show

the linecuts of the phase boundary d̃c versus m at
r̄s = 8.4, 11.9 and 26.7 in Fig. 6(d-f), as a direct
comparison with the phase transition boundary in
Fig. 4(b-d).

To clearly trace the evolution of d̃c with respect to
tuning parameters m and r̄s, we show in Fig. 7(a) d̃c
versus m for six values of r̄s ∈ [3.8, 30], in Fig. 7(b)

d̃c versus r̄s for six values of m ∈ [0, 1]. Figure 8

complements the trend of d̃c with four additional
plots that echo the configuration of Fig. 7(a), but
with a refined set of r̄s ∈ [4, 30]. In scenarios of high
electron density, corresponding to low r̄s as depicted
in Fig. 8(a), we observe that d̃c exhibits a negligible
dependence on m. This aligns with our previous
analysis in Eq. (53). The inset of Fig. 8(a) illustrates
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FIG. 5. Phase diagrams with respect to (rs,t, d̃) for fixed rs,b ∈ [3, 50], corresponding to nb ∼∈ [4× 1010, 1.4× 108]

cm−2 in GaAs quantum wells. The black dashed lines plot the critical separation d̃c in Eq. (53), which agrees well

with the phase boundary when either the layer density imbalance is large or the total density is large: d̃c is linear in
rs,t for rs,t ≪ rs,b and independent of rs,t for rs,b ≪ rs,t. Note that for rs,t ≲ 2, the top layer is spin-unpolarized
and the bottom layer is spin-polarized (because rs,b > 2 in all presented figures) in the ground state.67
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phase boundary in Fig. 5(e-g). (d-f) With respect to (r̄s,m), where r̄s is defined by the average layer density using
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√
2/πn. The orange linecuts trace the phase boundary d̃c versus m at r̄s = 8.4, 11.9 and 26.7. These linecuts

can be directly compared with the phase boundary in Fig. 4(b-d).

this trend that as n → nmax, d̃c is independent of m
and approaches zero.

D. Partially polarized pseudospin state

Previous subsections have been dedicated to ex-
amining interlayer coherent phases when the pseu-
dospin is fully polarized, in the direction with polar
angle θ = 2arctan(α/β). However, the assumption
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FIG. 7. (a) d̃c versus layer polarization m for six

values of r̄s ∈ [3.8, 30]. (b) d̃c versus r̄s for six values
of m ∈ [0, 1]. r̄s is defined by the average layer density

using r̄sa
∗ =

√
2/πn.

of complete pseudospin polarization may not always
hold, distinct from the sharp paramagnetic to fer-
romagnetic phase transition in the Bloch transition.
This subsection extends our investigation to the HF
energies associated with states of partial pseudospin
polarization.

The HF Hamiltonian of the spin polarized (ma-
jority spin σ =↑) interlayer coherent state is

Ĥ
Sξ

HF(k) =


ε0(k) + VH,t + V ↑↑

x,t(k) −∆↑↑
k 0 0

−(∆↑↑
k )∗ ε0(k) + VH,b + V ↑↑

x,b(k) 0 0
0 0 ε0(k) + VH,t 0
0 0 0 ε0(k) + VH,b

 , (58)

its four eigenvalues are

ε1k = ε0(k) + VH,t,

ε2k = ε0(k) + VH,b,

ε±k =
1

2
(εtk + εbk)±

√
ξ2k + |∆k|2,

(59)

where

εtk = ε0(k) + VH,t + V ↑↑
x,t(k),

εbk = ε0(k) + VH,b + V ↑↑
x,b(k),

ξk =
1

2
(εtk − εbk),

(60)

and the HF potentials are in Eq. (26). The quasipar-
ticle energy spectra are illustrated for two represen-
tative parameter sets: rs = 8, d̃ = 1 in Fig. 9(a) and

rs = 4, d̃ = 2.8 in Fig. 9(b), corresponding to the two
points marked by stars in the overall phase diagram
in Fig. 9(c). In Fig. 9(a-b), the Fermi momentum
is denoted by the vertical dotted line and the corre-
sponding Fermi energy is denoted by the horizontal
one. Notably, in Fig. 9(b), both quasiparticle bands
ε± are populated, which signals a deviation from the
pseudospin fully polarized state, and we denote this
phase as S′

2.

To crudely estimate the stability of this pseu-
dospin partially polarized state, we compare the en-
ergy at zero momentum for the upper band, ε+0 ,
with the energy at the Fermi momentum for the
lower band ε−kF

, and show their difference across
the (rs, d̃) parameter space in Fig. 9(c). The red
area corresponds to ε+0 > ε−kF

, i.e., stable S2 phase

(as in Fig. 9(a)), and the blue area corresponds to
ε+0 < ε−kF

, which we refer to as S′
2 phase (the in-

terlayer coherent phase characterized by two pop-
ulated Fermi surfaces, as in Fig. 9(b)). Compared
to the previously obtained phase diagram in Fig. 2,
the S′

2 phase in Fig. 9(c) suggests that the interlayer
coherent phase may persist over a broader range in
the phase diagram than initially postulated when
only fully polarized states were considered. But the
most accurate phase diagram should be determined
by self-consistent HF calculations which will be dis-
cussed in Sec. IV.

To quantify the stability of this partially polarized
state, we extend our exploration of the HF energy
to the S′

2 phase, in which both quasiparticle states
|−,k⟩ and |+,k⟩ are occupied. The generalization
of the HF energy of the S2 phase in Eq. (27, 29,
31) to the two-Fermi-surface case is systematic and
monotonic, as detailed below.

The kinetic, Hartree and exchange energies of the
S′
2 state, expressed in both Fermi momenta and den-

sities, are
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FIG. 8. Same as Fig. 7(a) but with more fixed values of r̄s ∈ [4, 30]. The inset in (a) shows two smaller r̄s. At large

density, corresponding to small r̄s, d̃c exhibits a negligible dependence on m, as expected from our previous analysis
in Eq. (53). As n → nmax in Eq. (52), d̃c is independent of m and approaches zero. The black dashed lines in the

inset of (a) plot the d̃c using Eq. (53).
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FIG. 9. (a-b) Interlayer coherent quasiparticle energies in Eq. (59) for equal layer densities. ε1,2k are degenerate
and represented by black solid lines. ε−k and ε+k are pseudospin polarized symmetric and anti-symmetric states,

respectively. (a) rs = 8, d̃ = 1, corresponding to n = 1.1 × 1010 cm−2. (b) rs = 4, d̃ = 2.8, corresponding to
n = 4.5 × 1010 cm−2. These two points are marked by stars in the phase diagram in (c). In (a-b), the Fermi
momentum is denoted by the vertical dotted line and the corresponding Fermi energy is denoted by the horizontal
one. We refer to case (a) as stable S2 phase because only |−⟩ band is occupied, and to (b) as the S′

2 phase in which
both quasiparticle bands |±⟩ are populated. (c) The phase diagram determined by the energy difference ε+0 − ε−kF

as

a function of rs and d̃. The S2 phase in (c) encompasses a more extensive portion of the parameter space compared
to the previously obtained phase diagram in Fig. 2. The dashed line in (c) traces the phase transition boundary.

Ekin =
ℏ2

2m∗
A

8π

(
k4F−

+ k4F+

)
=

ℏ2

2m∗
A

8π
16π2

(
n2
− + n2

+

)
,

EH =
e2dA

32ϵπ
(α2 − β2)2(k2F−

− k2F+
)2

=
e2dA

32ϵπ
(α2 − β2)216π2(n− − n+)

2,

Eintra
x = −e2A

ϵπ2

[
1

3
(α4 + β4)(k3F−

+ k3F+
) +

1

4
α2β2

(
k3F+

J(0,
kF−

kF+

) + k3F−
J(0,

kF+

kF−

)

)]
,

Einter
x = −e2Aα2β2

4π2ϵ

[
k3F−

[
J(kF−d, 1)− J(kF−d,

kF+

kF−

)
]
+ k3F+

[
J(kF+d, 1)− J(kF+d,

kF−

kF+

)
]]
,

(61)

where kF− and kF+
are Fermi momenta, n− and n+ are electron densities of quasiparticle bands |−⟩ and
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FIG. 10. (a-b) ε
S′
2

tot as a function of the pseudospin polarization mξ, at (a) rs = 8, d̃ = 1 and (b) rs = 4, d̃ = 2.8.

The horizontal dotted lines mark the HF energies of the S1 phase, converging to the same value of ε
S′
2

tot at mξ = 0.

In both (a) and (b), ε
S′
2

tot is minimized at an intermediate mξ. (c) The phase diagram of m∗
ξ versus (rs, d̃), where m∗

ξ

is the optimal polarization at which ε
S′
2

tot is minimized. m∗
ξ tends to be 1 for large rs and small d̃, while tends to be 0

for small rs and large d̃.

|+⟩ respectively. The HF energy per electron is

ε
S′
2

tot =
1

nA

(
Ekin + EH + Eintra

x + Einter
x

)
. (62)

Particularly, when n− = n+ = n/2, kF− = kF+ , the
pseudospin is unpolarized and the energies recover
the ones of the S1 state in Eq. (23).

In Fig. 10, we show ε
S′
2

tot as a function of pseudospin
polarization mξ, defined as the ratio of density dif-
ference between |−⟩ and |+⟩ eigenstates,

mξ =
n− − n+

n
. (63)

We specifically pick two points in (rs, d̃) parameter

space: one at rs = 8, d̃ = 1 in Fig. 10(a) where the
ground state is anticipated to be S2 (mξ = 1), and

the other at rs = 8, d̃ = 2.8 in Fig. 10(b) where S1

state (mξ = 0) is expected from the phase diagram
Fig. 2. In both Fig. 10(a) and Fig. 10(b), however,

ε
S′
2

tot is minimized at an intermediate value of mξ.
This optimal polarization, m∗

ξ , at which the energy

is minimized, is depicted in Fig. 10(c). m∗
ξ tends to

be 1 for large rs and small d̃, while tends to be 0 for
small rs and large d̃.

In Fig. 11(b) we estimate the critical tempera-
ture Tc by taking the difference between the ground

state energy, εGtot = min{εS0
tot, ε

S1
tot, ε

S2
tot, ε

S′
2

tot(m
∗
ξ)},

and the second lowest energy. Here ε
S′
2

tot(m
∗
ξ) is the

energy of the interlayer coherent state at the op-
timal pseudospin polarization m∗

ξ . For reference,

ε
S′
2

tot(mξ = 1) = εS2
tot and ε

S′
2

tot(mξ = 0) = εS1
tot. As

a comparison, we show in Fig. 11(a) the Tc by tak-
ing the difference between the ground state energy,

εGtot = min{εS0
tot, ε

S1
tot, ε

S2
tot}, and the second lowest en-

ergy. The Tc phase diagram in Fig. 11(b), incorpo-
rating pseudospin partially polarized states, yields a
higher Tc—up to threefold—than that in Fig. 11(a).

IV. FINITE TEMPERATURE PHASE
DIAGRAMS

In this section, we extend our study to the be-
havior of interlayer coherence at finite temperatures,
by solving for the critical temperature Tc using self-
consistent HF approach. We focus on the case for
equal layer densities. In Sec. IVA, Tc is determined
for the interlayer coherent phase S2. In the subse-
quent Sec. IVB, we broaden the scope of our exami-
nation to the exciton condensates in the e-h bilayer.
By employing the same range of parameters as those
in the e-e bilayer case, we facilitate a direct compar-
ative analysis between the two systems’ Tc phase di-
agrams. This comparative framework not only high-
lights the unique characteristics of each system but
also underscores the underlying different interacting
nature governing their phase transitions at elevated
temperatures.

A. Tc of interlayer coherent phase (S2)

We focus on the majority spin subspace and ig-
nore the minory spin for the spin polarized inter-
layer coherent phase S2. To simplify notations, we
will therefore ignore the spin superscripts in the fol-
lowing part. With spinor basis (ctk cbk)

T , the HF
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FIG. 11. Critical temperature Tc of the interlayer coherent phase. (a) Tc is calculated by taking the energy

difference between the ground state εGtot = min{εS0
tot, ε

S1
tot, ε

S2
tot} and the second lowest energy state in Sec. III B. (b)

Tc is calculated by taking the energy difference between the ground state εGtot = min{εS0
tot, ε

S1
tot, ε

S2
tot, ε

S′
2

tot(m
∗
ξ)} and the

second lowest energy state in Sec. IIID. (c) Tc is calculated by the finite-temperature self-consistent HF using the
gap-like equation Eq. (70).

Hamiltonian is

ĤS2

HF(k) =

(
εtk −∆k

−∆∗
k εbk

)
, (64)

with eigenvectors(
+,k
−,k

)
=

(
β −α
α β

)(
ct↑k
cb↑k

)
(65)

and quasiparticle energies

ε±k =
1

2
(εtk + εbk)±

√
ξ2k + |∆k|2, (66)

where

εtk = ε0(k) + VH,t + Vx,t(k),

εbk = ε0(k) + VH,b + Vx,b(k),

ξk =
1

2
(εtk − εbk).

(67)

At finite temperatures,

VH,t =
2πe2d

Aϵ

∑
k

[
β2f(ε+k ) + α2f(ε−k )

]
,

VH,b =
2πe2d

Aϵ

∑
k

[
α2f(ε+k ) + β2f(ε−k )

]
,

Vx,t(k) = − 1

A

∑
k′

V S
k′−k

[
β2f(ε+k′) + α2f(ε−k′)

]
,

Vx,b(k) = − 1

A

∑
k′

V S
k′−k

[
α2f(ε+k′) + β2f(ε−k′)

]
,

∆k =
1

A

∑
k′

V D
k′−kαβ

[
f(ε−k′)− f(ε+k′)

]
,

(68)

where f(εk) = [e(εk−µ)/kBT +1]−1 is the Fermi-Dirac
distribution and µ is the chemical potential deter-
mined by total density. Both ξk and ∆k, which
are momentum-orientation independent, should be
solved self-consistently by

ξk =
πe2

Aϵ

∑
k′

(
d− 1

|k′ − k|

)
[
(α2 − β2)

(
f(ε−k′)− f(ε+k′)

) ]
,

∆k =
2πe2

Aϵ

∑
k′

e−d|k′−k|

|k′ − k|
αβ
[
f(ε−k′)− f(ε+k′)

]
.

(69)

For the S2 phase under our consideration, α = β =
1/
√
2, and therefore ξk = 0. We just need to self-

consistently solve the gap equation

∆k =
πe2

Aϵ

∑
k′

e−d|k−k′|

|k− k′|
[
f(ε−k′)− f(ε+k′)

]
. (70)

At T = 0, f(ε−k ) − f(ε+k ) = 1. We first show the
critical temperature obtained from zero-temperature
self-consistent HF calculations, which gives the
upper-bound Tmax

c by kBT
max
c = max

k≤kc

{∆k}, where
kc is the cutoff momentum and chosen to be kc =
2kF in the following calculations. We plot Tmax

c ver-

sus d̃ in Fig. 12(a) and Tmax
c versus rs in Fig. 12(b).

There is always a critical d̃c (rs,c) above (below)
which the interlayer coherence vanishes. We convert
Tmax
c in Kelvin (obtained for GaAs e-e bilayers) to

dimensionless Tmax
c /TF in Fig. 12(c-d), where TF

characterizes the Fermi energy kBTF = εF .
At finite temperatures, the critical temperature

Tc is determined by detecting the transition of ∆k
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FIG. 12. Critical temperature of the S2 phase in the e-e bilayer, obtained by zero-temperature self-consistent HF
calculations. Tmax

c gives the upper-bound critical temperature, determined by kBT
max
c = max

k≤kc

{∆k}, where kc is the

cutoff momentum and chosen to be kc = 2kF . (a) T
max
c as a function of d̃ for fixed rs values. (b) Tmax

c as a function

of rs for fixed d̃ values. (c) is the same as (a) but converted to the dimensionless Tmax
c /TF , sharing the same legend

as (a). (d) is the same as (b) but converted to the dimensionless Tmax
c /TF , sharing the same legend as (b).

from 0 to a finite value: for T > Tc, ∆k = 0; for
T < Tc, ∆k > 0. The self-consistently calculated Tc

as a function of d̃ and rs are shown in Fig. 13. As a
function of d̃, Tc at a large rs shows a power-law de-
cay, qualitatively agreeing with the pseudospin stiff-
ness behavior with respect to the interlayer separa-
tion in the quantum Hall bilayer at ν = 1.58 Note
that any mean-field calculation is crude for large
layer separations, where the quantum fluctuations
become important. Same as the zero-temperature
self-consistent HF calculations, there is a critical d̃c
(rs,c), above (below) which Tc drops to zero, indicat-
ing the phase transition S2 → S1. As a function of rs
shown in Fig. 13(b), after entering the S2 phase, Tc

initially rises quickly then drops slowly with rs. The
behavior of the critical temperature becomes more
apparent when expressed in terms of the dimension-
less ratio Tc/TF , which is depicted in Fig. 13(c-d).

Here Tc/TF decreases with d̃ following a power-law
but increases almost linearly with rs.

The complete critical temperature phase diagram,
determined by the finite-temperature self-consistent
HF calculations, is shown in Fig. 11(c). As expected,

Tc is maximized at small d̃ and moderate rs val-
ues. Notably, the phase boundary where Tc van-
ishes closely mirrors that obtained using the zero-
temperature HF energies in Fig. 11(a). Tc under
finite-temperature self-consistent HF in Fig. 11(c) is
substaintially higher—by a factor of five—compared
to the zero-temperature HF energy difference ap-
proach in Fig. 11(a). The magnitude of Tc in
Fig. 11(c), however, aligns quantitatively with the
estimation from zero-temperature HF energy dif-
ference approach when incorporating partially po-
larized pseudospins, in Fig. 11(b). Note that in

Fig. 11(c), Tc vanishes for small rs and large d̃ be-
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FIG. 13. Critical temperature of the S2 phase in the e-e bilayer, obtained by finite-temperature self-consistent HF
calculations. (a) Tc as a function of d̃ for fixed rs values. (b) Tc as a function of rs for fixed d̃ values. (c) is the same
as (a) but converted to the dimensionless Tc/TF , sharing the same legend as (a). (d) is the same as (b) but converted
to the dimensionless Tc/TF , sharing the same legend as (b).

cause we restrict the self-consistent HF to the S2

phase.

For comparative purposes, we show Tc for the
spin-polarized ferromagnetic phase S1 calculated via
finite-temperature self-consistent HF in Appendix C
Fig. 20(a). The S1 phase is the bilayer 2DEG with
two equal Fermi surfaces with Fermi momentum
kF =

√
2πn. Therefore the Tc of S1 phase is d-

independent. At d̃ = 0, the S2 phase (shown in the
black lines in Fig. 13(b,d)) is analogous to the S1

phase, albeit with a single Fermi surface of momen-
tum kF =

√
4πn. Therefore, the trends observed for

Tc and Tc/TF at d̃ = 0 in Fig. 13(b,d) share simi-
lar behaviors as those of the S1 phase in Fig. 20(a),
with differences attributable to the number of Fermi
surfaces.

B. Tc of exciton condensates in electron-hole
bilayer

In this subsection we consider e-h bilayers, on an
equal footing with the above-described e-e bilayers,
with electrons in one layer and holes in the other
layer, forming exciton condensates. This architec-
ture provides a direct comparison with the S2 phase
in e-e bilayers, facilitating a deeper and broader un-
derstanding of interlayer coherence phenomena. For
an intuitive picture, we categorize the electrons as
residing in the conduction band (top layer) and the
holes in the valence band (bottom layer). The spin-
less HF Hamiltonian is

ĤHF =
∑
k

(
c†ck c†vk

)( εck −∆k

−∆∗
k εvk

)(
cck
cvk

)
=
∑
k

(
γ̄†
k γ†

k

)(ε+k 0
0 ε−k

)(
γ̄k
γk

)
.

(71)
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FIG. 14. Critical temperature of exciton condensates in the e-h bilayer. Tmax
c is estimated by zero-temperature

self-consistent HF calculations, which gives the upper-bound Tmax
c by kBT

max
c = max

k≤kc

{∆k}, where kc is the cutoff

momentum and chosen to be kc = 4 nm−1. (a) Tmax
c as a function of d̃ for fixed rs values. (b) Tmax

c as a function of

rs for fixed d̃ values. (c) is the same as (a) but converted to the dimensionless Tmax
c /TF , sharing the same legend as

(a). (d) is the same as (b) but converted to the dimensionless Tmax
c /TF , sharing the same legend as (b).

The quasiparticle operators using the Bogoliubov
transformation are(

+,k
−,k

)
≡
(
γ̄k
γk

)
=

(
uk −vk
v∗k u∗

k

)(
cck
cvk

)
, (72)

with quasiparticle energies

ε±k =
1

2
(εck + εvk)±

√
ξ2k + |∆k|2, (73)

where

εck = ε
(0)
ck + VH,c + Vx,c(k),

εvk = ε
(0)
vk + VH,v + Vx,v(k),

ε
(0)
ck =

ℏk2

2m∗ ,

ε
(0)
vk = − ℏk2

2m∗
c

− Eg,

(74)

and

ξk =
1

2
(εck − εvk),

∆k =
1

A

∑
k′

V D
k−k′⟨c†vk′cck′⟩.

(75)

Eg is the overlap between conduction and valence
bands and is determined by the initial setting of the
electron density ne. Note that we assign different ef-
fective masses to conduction and valence bands sim-
ply because the divergent negative Fermi sea should
be taken into account in m∗

v.
68 The valence band

effective mass is renormalized by the exchange in-
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teractions of occupied remote band states:

−ℏ2k2

2m∗
v

= −ℏ2k2

2m∗ − 1

A

∑
k′

V S
k−k′⟨c†vk′cvk′⟩0

= −ℏ2k2

2m∗ − 1

A

∑
k′

V S
k−k′ρ0vv(k

′)

(76)

where ρ0vv(k
′) = ⟨c†vk′cvk′⟩0 = 1 is the expectation

value in the reference state |Φ0⟩ that all valence band
states are occupied and all conduction band states
are empty. We should subtract this reference state
expectation in all ρvv(k) terms, and we denote them
as

ρ̃vv(k) = ρvv(k)− ρ0vv(k). (77)

The Hartree terms in Eq. (75) are

VH,c = −VH,v

=
πe2d

Aϵ

∑
k′

(
ρcc(k

′)− ρ̃vv(k
′)
)
.

(78)

For equal electron and hole densities that we con-

sider here,

VH,c =
2πe2dne

ϵ
, (79)

where

ne =
1

A

∑
k

ρcc(k) (80)

is the electron density. The exchange terms in
Eq. (75) are

Vx,c = − 1

A

∑
k′

V S
k−k′ρcc(k

′),

Vx,v = − 1

A

∑
k′

V S
k−k′ ρ̃vv(k

′), (81)

∆k =
1

A

∑
k′

V D
k−k′ρcv(k

′).

At finite temperatures, the density matrix elements
are

ρcc(k) = ⟨c†ckcck⟩ = |vk|2f(ε−k ) + |uk|2f(ε+k )

ρ̃vv(k) = ⟨c†vkcvk⟩ − 1 = |uk|2f(ε−k ) + |vk|2f(ε+k )− 1

ρcv(k) = ⟨c†vkcck⟩ = u∗
kvk

[
f(ε−k )− f(ε+k )

]
.

(82)

We need to self-consistently solve for

ξk =
1

2

(
ε
(0)
ck − ε

(0)
vk

)
+

2πe2dne

ϵ
− πe2

Aϵ

∑
k′

1

|k− k′|

[
1− ξk′√

ξ2k′ + |∆k′ |2
tanh

(√ξ2k′ + |∆k′ |2
2kBT

)]
,

∆k =
πe2

Aϵ

∑
k′

e−d|k−k′|

|k− k′|
∆k′√

ξ2k′ + |∆k′ |2
tanh

(√ξ2k′ + |∆k′ |2
2kBT

)
.

(83)

We have used

|uk|2 =
1

2

(
1 +

ξk√
ξ2k + |∆k|2

)
, (84)

|vk|2 =
1

2

(
1− ξk√

ξ2k + |∆k|2

)
, (85)

u∗
kvk =

∆k

2
√
ξ2k + |∆k|2

, (86)

f(ε−k )− f(ε+k ) = tanh
(√ξ2k + |∆k|2

2kBT

)
. (87)

At T = 0, f(ε−k ) − f(ε+k ) = 1. We first show the
critical temperature obtained from zero-temperature

self-consistent HF calculations, which gives the
upper-bound Tmax

c by kBT
max
c = max

k≤kc

{∆k}, where
kc is the cutoff momentum and chosen to be kc = 4
nm−1 in the following calculations. In Fig. 14(a), we

plot Tmax
c versus d̃, observing an exponential decay

of Tmax
c with increasing d̃. As a function of rs in

Fig. 14(b), Tmax
c first rises and then almost stabi-

lize at higher rs values. The approximate invariance
in Tmax

c at large rs is attributed to the converged
exciton pair density and exciton binding energy.23

We convert Tmax
c in Kelvin (for GaAs bilayers) to

dimensionless Tmax
c /TF in Fig. 14(c-d).

Extending to finite temperatures, self-consistent
HF calculations reveal Tc trends similar to those
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FIG. 15. Critical temperature Tc of exciton condensates in the e-h bilayer. Tc is determined by the finite-
temperature self-consistent HF calculations. (a) Tc as a function of d̃ for fixed rs values. (b) Tc as a function of rs
for fixed d̃ values. (c) is the same as (a) but converted to the dimensionless Tc/TF , sharing the same legend as (a).
(d) is the same as (b) but converted to the dimensionless Tc/TF , sharing the same legend as (b). The dashed line in

(b) marks the critical temperature of the BKT transition, TBKT
c ≈ 1.3ℏ2n/2m∗, at d̃ = 0.1, where n is the converged

exciton pair density.

at zero temperature. The Tc obtained from finite-
temperature calculations are approximately half of
those predicted by Tmax

c , as depicted in Fig. 15, and
is consistent with variational quantum Monte Carlo
calculations.69 Note that quantitative detailed differ-
ences between our mean-field study and the Monte
Carlo study are attributed to the screening effects
absent in our theory. The dashed line in Fig. 15(b)
marks the critical temperature of the BKT tran-
sition, TBKT

c ≈ 1.3ℏ2n/2m∗, calculated using the

converged exciton pair density n at d̃ = 0.1. In the
BEC limit (large rs), T

BKT
c becomes independent of

rs due to the converged exciton pair density.
In Fig. 16, we compare order parameters as a func-

tion of temperature for e-e and e-h bilayers. Panels
(a) and (d) of Fig. 16 display the maximum value
of ∆k against the temperature T . For the e-e bi-
layer, we observe a relatively sharp drop in the or-

der parameter as the temperature increases and ap-
proaches the critical value, followed by a more grad-
ual decrease to zero with further temperature in-
crease. In contrast, the e-h bilayer exhibits a more
gradual drop in the order parameter with increasing
temperature, transitioning abruptly to zero as it ap-
proaches the critical temperature. This contrasting
behavior between e-e and e-h bilayers is further elu-
cidated in panels (b) and (e) of Fig. 16, where both
the order parameter and temperature are presented
in dimensionless form. Here, the fluctuations in the
e-e bilayer are noticeably larger than those in the e-h
bilayer, reflecting a closer resemblance to magnetic
transition behaviors in the e-e bilayer. Additionally,
panels (c) and (f) of Fig. 16 trace the momentum k
at which the order parameter ∆k reaches its maxi-
mum. In the e-e bilayer, ∆k maximum consistently
occurs at k = 0 for temperatures below Tc, whereas
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6, 2.0rs = d =
8, 3.0rs = d =
10, 5.0rs = d =
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FIG. 16. A side-by-side comparison of the interlayer coherence order parameter max{∆k} as a function of
temperature in e-e (a-c) and e-h (d-f) bilayers. (a,d) The order parameter max{∆k} versus temperature T . (b,e)
Same as (a,d) but both max{∆k} and T are converted to be dimensionless. The fluctuations in the e-e bilayer is
larger than in the e-h bilayer, because the e-e bilayer aligns more like the magnetic transition. (c,f) The momentum
k, at which the order parameter ∆k is the maximum, versus the temperature. For the e-e bilayer, maximum ∆k is
always at k = 0 for T < Tc, while for the e-h bilayer, ∆k is maximized at a finite momentum. This finite momentum
decreases to zero as rs increases.23,24

in the e-h bilayer, ∆k is maximized at a finite mo-
mentum. Notably, this finite momentum diminishes
towards zero as rs increases.23,24

We end our discussion with a side-by-side com-
parison of the Tc behaviors in e-e and e-h bilayers
in Fig. 17. The main difference between XY pseu-
dospin ferromagnetism in e-e bilayers and exciton
condensates in e-h bilayers lies in their dependence
of interlayer coherence on rs. The e-e bilayer ne-
cessitates a minimum or critical rs for the existence
of its coherent phase, with U(1) symmetry breaking
only manifesting above a critical rs,c. By contrast,
the e-h bilayer exhibits exciton condensation for all
rs values at zero temperature. However, this differ-
ence is not practically significant as exciton conden-
sates in e-h bilayers exhibit exponentially low Tc for
small rs values, rendering them unobservable in this
range. Despite similarities in their gap-like equa-
tions (Eq. (70) and Eq. (83)), e-e and e-h bilayers
differ in two key aspects. First, e-h bilayers always
include a Hartree term proportional to the layer sep-
aration d, a term that is absent in e-e bilayers with
equal layer densities. Second, at charge neutrality

in e-h bilayers, where electron and hole densities are
equal, the Fermi level invariably sits at the midpoint
of the two quasiparticle bands. This results in the
tangent term in the gap equation. In contrast, in e-e
bilayers, the term (εtk + εbk) in Eq. (66) varies with
k, meaning that f(ε−k′) − f(ε+k′) in Eq. (70) cannot
be simplified to the tangent function. This compar-
ison highlights the distinct thermal characteristics,
underscoring the differences in the formation of co-
herent phases in these two analogous but distinct
bilayer configurations.

V. EFFECTS OF INTERLAYER
TUNNELING

We focus in this section on the impact of inter-
layer tunneling on the XY pseudospin ferromagnetic
transition in e-e bilayers, which is analogous to the
influence of an in-plane magnetic field in ferromag-
netic spin systems.

The HF Hamiltonian Eq. (64) is slightly modified
with an interlayer tunneling t, acting as an effective



23

d̃

TS2
c

(a)

d̃

3, 7.9e+10 cmrs = n = −2

4, 4.5e+10 cmrs = n = −2

5, 2.9e+10 cmrs = n = −2

6, 2.0e+10 cmrs = n = −2

8, 1.1e+10 cmrs = n = −2

10, 7.1e+9 cmrs = n = −2

15, 3.2e+9 cmrs = n = −2

(d)

 (cm )n −2

rs

(b) (c)

 (K
)

T c

d̃

 (K
)

T c

rs

 TBKT
c

10

15

5

 (K)Tc

 (K)Tc

(e) (f)(d)

d̃

e-e bilayer

e-h bilayer 3, 4.0e+10 cmrs = ne = −2

4, 2.2e+10 cmrs = ne = −2

5, 1.4e+10 cmrs = ne = −2

6, 9.9e+9 cmrs = ne = −2

8, 5.6e+9 cmrs = ne = −2

10, 3.6e+9 cmrs = ne = −2

0.1, 9.5 d̃ = d = Å
0.5, 47.2d̃ = d = Å
1.0, 94.5d̃ = d = Å
2.0, 189d̃ = d = Å
3.0, 283.4d̃ = d = Å
5.0, 472.3d̃ = d = Å

0.1, 9.5 d̃ = d = Å
0.5, 47.2d̃ = d = Å
1.0, 94.5d̃ = d = Å
2.0, 189d̃ = d = Å
3.0, 283.4d̃ = d = Å
5.0, 472.3d̃ = d = Å

FIG. 17. A side-by-side comparison of the Tc behaviors in e-e (a-c) and e-h bilayer (d-f) systems. The main
difference between the e-e bilayer (XY pseudospin ferromagnet) and the e-h bilayer (exciton condensates) is that the
former necessitates a minimum rs value for its existence with the U(1) symmetry being broken only above a critical
rs,c, while the latter occurs for all rs at T = 0. This is, however, not a practical difference because the e-h bilayer
exciton condensates have exponentially low Tc for small rs, and therefore, it is unobservable for small rs any way.

magnetic field in the x-direction:

ĤS2

HF(k) =

(
εtk −∆k + t

−∆∗
k + t εbk

)
. (88)

The quasiparticle energies become

ε±k =
1

2
(εtk + εbk)±

√
ξ2k + |∆k − t|2, (89)

and the gap equation Eq. (68) is modified in terms
of Fermi-Dirac distribution.
We investigate the effects of a small interlayer

tunneling t on the averaged spontaneous gap ∆̄k =∑
k∈[0,kc]

∆k/Nk, where Nk is the number of k points

along k = kk̂x and k ∈ [0, kc], kc = 2kF is the cut-
off momentum. Figure 18(a) plots ∆̄k versus rs at

fixed d̃ = 1 and temperature T = 1 K, and Fig. 18(b)

plots ∆̄k versus d̃ at fixed rs = 4 and T = 1 K. The
jumps in ∆̄k at critical rs and d̃ indicate the tran-
sition exactly as what happens for a ferromagnetic
transition in a magnetic field. As expected, the in-
terlayer tunneling indeed supresses the spontaneous

ferromagnetic ordering. This manifests as a shift in
the critical rs to higher values and the critical d̃ to
lower values, indicating a trend towards requiring
a stronger coupling. In the presence of the inter-
layer tunneling t, the interlayer coherence transition
becomes a crossover as the U(1) symmetry is explic-
itly broken by t, which in the pseudospin language
is simply an applied magnetic field in the easy-plane
defining the magnetization direction.

VI. CONCLUSION

In this paper, we carry out a comprehensive HF
study of XY pseudospin ferromagnetism in zero-field
e-e bilayers, and compare it with exciton condensa-
tion superfluid in zero-field e-h bilayers, for parabolic
bands and long-range Coulomb interactions.

At zero temperature, the phase diagram of e-e bi-
layers is determined by the HF energy. In e-e bilay-
ers with equal layer densities, the interlayer coherent
phase with pseudospin ordered in the xy-plane is the
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FIG. 18. Effects of interlayer tunneling t on the averaged spontaneous order parameter ∆̄k =
∑

k∈[0,kc]

∆k/Nk, where

Nk is the number of k points along k = kk̂x and k ∈ [0, kc], kc = 2kF is the cutoff momentum. Note that even
∆̄k = 0, two layers are still coherent, even though not spontaneously, because of the finite tunneling t. (a) ∆̄k versus

rs at fixed d̃ = 1 and T = 1 K. (b) ∆̄k versus d̃ at fixed rs = 4 and T = 1 K. The jumps in ∆̄k at critical rs and d̃
indicate the transition exactly as what happens for a ferromagnetic transition in a magnetic field. In the presence of
the interlayer tunneling t, the interlayer coherence transition becomes a crossover as the U(1) symmetry is explicitly
broken by t, which in the pseudospin language is simply an applied magnetic field in the easy-plane defining the
magnetization direction.

stable ground state at lower electron densities (larger
rs) and reduced interlayer separation d. There is,
however, always a critical rs value for the interlayer
coherence phase transition, and the system is a pseu-
dospin paramagnet below this d-dependent critical
rs. When layer densities are unequal, we find that
the critical layer separation dc, beyond which inter-
layer coherence vanishes, decreases with increasing
layer density imbalance, but remains present even
under complete layer polarization. This layer po-
larization can be conceptualized as a pseudospin re-
sponse to an effective magnetic field applied along
the z-direction. Our results illustrate that, despite
a strong effective magnetic field polarizing the pseu-
dospin completely in the z-direction, the exchange-
driven XY pseudospin ferromagnetic transition re-
mains little affected.

At finite temperatures, we calculate the critical
temperature Tc using self-consistent HF theory. We
find that Tc for XY pseudospin ferromagnetism in e-e
bilayers is approximately one-third of that for exci-
ton condensates in e-h bilayers, indicating a compar-
atively weaker interlayer coherence in e-e bilayers.
Fluctuations are larger in e-e bilayers because the
phase transition aligns more closely to the magnetic
transition.

Additionally, we evaluate the influence of weak in-
terlayer tunneling on the interlayer coherence order
parameter in e-e bilayers, mimicking the effects of
an in-plane magnetic field on XY pseudospin ferro-
magnetism. In the presence of interlayer tunneling

t, the interlayer coherence transition in e-e bilayers
becomes a crossover, as the U(1) symmetry is ex-
plicitly broken by t.

A notable distinction between XY pseudospin fer-
romagnetism in e-e bilayers and exciton condensates
in e-h bilayers is that the former requires a minimum
rs value for its existence, with U(1) symmetry break-
ing only above a critical rs while the latter forms for
any rs at zero temperature. Practically, however,
this difference is irrelevant because of the exponen-
tially low Tc for exciton condensates at small rs val-
ues, rendering them unobservable at high densities
(i.e., the resultant Tc is exponentially small although
finite). The fact that there is no critical density or
equivalently no critical layer separation for the exci-
ton condensation in bilayers was revealed in a quan-
tum Hall bilayer experiment with the finding that
strong interlayer e-h correlations exist even above
the putative transition point showing the transition
might be a fast BEC-BCS crossover and not a phase
transition.70 Both XY ferromagnetism and exciton
condensates undergo finite-temperature BKT tran-
sitions and fall into the same universality class of
phase transitions. We emphasize that, unlike in
quantum Hall bilayers with the Landau level fill-
ing being 1/2 in each layer, the interlayer coherence
phenomenon is physically very different in the zero-
field e-e and e-h bilayers. In the former case, the
phenomenon is an XY pseudospin ferromagnetism
problem whereas in the latter case, it is an inter-
layer excitonic condensation superfluid problem. It
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just so happens that for quantum Hall bilayers, with
the exact particle-hole symmetry for half-filled Lan-
dau levels, these two descriptions are precisely equiv-
alent, but no such equivalence applies to the zero-
field cases considered in the current work, where the
exact particle-hole symmetry does not apply. For
quantum Hall bilayers, the existence or not of an in-
terlayer separation tuned quantum phase transition
between interlayer coherent (small separation) and
incoherent (large separation) phases has been much
discussed in the lterature for more than 30 years
using many different theoretical approaches.52,71–75

We believe, based on our current work, that there
is no zero temperature quantum phase transition in
quantum Hall bilayers between interlayer coherent
and incoherent phases as a function of layer sepa-
ration (except at the trivial limit of infinite sepa-
ration), and there is only a crossover between the
strongly coupled BEC excitonic condensate at small
separation to a weakly coupled BCS excitonic con-
densate at large separation. Of course, the Tc for
the BCS phase being exponentially small and the
system behaves like as if there is a phase transition
around the crossover regime.

We mention that for very large rs, each individ-
ual 2D layer would undergo a transition to a Wigner
crystal phase (which is beyond the scope of our
HF theory) breaking the translational invariance in
each layer, but maintaining interlayer coherence, and
such an interlayer-coherent intralayer Wigner crys-
tal breaks both interlayer U(1) symmetry and in-
tralayer translational symmetry, and is therefore a
supersolid. Similar physics applies also for the e-h
bilayers, where the large rs intralayer translational
invariance breaking phase is an exciton crystal with
the two layers being interlayer coherent breaking the
interlayer U(1) symmetry, leading to an excitonic
supersolid.36,65,76

Although this work lays the groundwork in un-
derstanding the differences in interlayer coherence
between e-e and e-h bilayers by studying the sim-
ple 2DEG model, more complex 2D materials may
exhibit richer phenomena. The interlayer coherence
physics in these complex systems could be further
altered by the band structure, topology, and screen-
ing effects. The study of exciton condensates has
been extensive in various bilayer systems, includ-
ing recent graphene-based50 and transition-metal-
dichalcogenide-based bilayers,26 as well as in dou-
ble moiré superlattices. There is growing interest
in exploring e-e pairing in these systems and its in-
terplay with superconductivity. We will leave these
investigations for future study. We just mention in
the passing that the well-established phenomena of
canted antiferromagnetism in quantum Hall bilayer
systems is an example of the interplay among inter-

layer coherence, spin physics, and interlayer tunnel-
ing in filled Landau levels.77–87

Finally, we briefly discuss the experimental impli-
cations of interlayer coherence in zero-field e-h and
e-e bilayers. It has been relatively clear that exciton
BEC in quantum Hall bilayers is identifiable through
specific transport measurements, such as quantized
Hall drag resistance in the Coulomb drag geome-
try, vanishing longitudinal and Hall resistances in
the counterflow geometry,31,32,37,88–90 and interlayer
tunneling conductance anomalies.91–95 Identifying
exciton condensates in zero-field e-h bilayers re-
mains challenging, though some experiments have
come close.15,26,50,96,97 Transport signatures for a
diagnostic of exciton condensates in e-h bilayers
include the Coulomb drag and counterflow resis-
tances, and the in-plane Josephson effect. For e-e
bilayers, probing the XY pseudospin ferromagnetic
metal might be feasible through transport measure-
ments like interlayer tunneling in the presence of
an in-plane magnetic field,98–100 and the pseudospin
transfer torque.101 In particular, we predict a giant
interaction-induced enhancement of the interlayer
tunneling conductance peak in the interlayer coher-
ent phase of e-e bilayers even if the non-interacting
system has vanishing interlayer tunneling amplitude.
This giant interlayer tunnel resonance would be tun-
able by changing the layer density and will vanish
above a critical density since the interlayer coherence
in e-e bilayers can only happen above a critical rs
value. In addition, another experimental approach
to observe the spontaneous symmetry broken inter-
layer coherent phase could be studying the collec-
tive modes of the system, which should manifest the
Goldstone mode in the symmetry broken phase,60

and only regular plasmons in the normal bilayers.
Thus, the collective modes of the system should dif-
fer for T < Tc and T > Tc, with the former show-
ing only one Goldstone mode, but the latter showing
both acoustic and optical plasmons of bilayers.102,103

One issue here is that the Goldstone mode is likely
to have a q1/2 long wavelength dispersion (rather
than being linear in momentum) because of the 2D
analog of the Anderson-Higgs mechanism.104

Our specific predictions in this work on the de-
pendence of the interlayer coherent phase on the
layer density imbalance and/or weak interlayer tun-
neling should be a useful guide for experimental ex-
plorations of the predicted bilayer coherence. The
fact that the corresponding transition has been ex-
tensively experimentally studied in quantum Hall bi-
layers, where the XY pseudospin ferromagnet and
the exciton superfluid become the same, gives con-
siderable hope that both XY pseudospin ferromag-
netism and exciton superfluid condensation will soon
be experimentally observed at zero magnetic field in
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high quality bilayer systems.
Lastly, we comment on the limitations of the HF

mean-field theory. Because of its lack of dynamical
screening effects and fluctuations, the HF theory is
not a quantitatively accurate method to predict the
symmetry broken ground state, and it overestimates
Tc of the phase transition at finite temperatures.
However, the HF approximation should always pro-
vide a qualitatively accurate phase diagram since it
is a mean-field theory using realistic (i.e., Coulomb
in our case) interactions. The HF mean-field the-
ory is used extensively in the literature to obtain
the quantum phase diagram of electronic materials
and is always the first theory to provide a guide to
experiments. In addition, our HF theory in predict-
ing the pseudospin phase transitions is proved to be
accurate on the mean-field level, as demonstrated in
a parallel study using a mean-field self-consistent it-
erative approach.105 In the single-layer 2DEG, the
spontaneous spin polarization actually occurs at a
much larger critical rs value than the Bloch tran-
sition rs,B ∼ 2 if correlations, which are absent
in the HF theory, are included. Given that the
pseudospin polarized (or pseudospin ferromagnetic)
phase predicted in our work is a direct result of the
interlayer exchange interaction, the pseudospin po-
larized phase will also be suppressed by correlations.
Therefore, we should expect all the pseudospin phase
transtitions predicted in our phase diagrams occur
at larger rs and smaller d. But we see no reason
for our calculated phase diagram to be qualitatively
incorrect although the symmetry broken phases are
often overestimated in the HF theory.
Finally, we mention that our work is directly ap-

plicable to 2D GaAs bilayers (as emphasized by all
our figures showing results for GaAs system param-
eters) where the 2D Fermi surface is not multiply-
connected, and is in general isotropic and parabolic.
For more complicated 2D Fermi surfaces (e.g. tran-
sition metal dichalcogenide layers, moiré materi-
als, multilayer graphene systems), our work would
remain qualitatively, but not quantitatively valid,
since symmetry breaking transitions are driven by
exchange interactions which always dominate the ki-
netic energy at low enough densities in Coulomb
coupled systems independent of the Fermi surface
details.
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Appendix A: Summary of useful summations

and integrals

We summarize some useful summations and inte-
grals which are frequently used in the equations in
the main text. ∑

k≤kF

=
A

4π
k2F , (A1)

∑
k≤kF

k2 =
A

8π
k4F , (A2)

∑
k,k′≤kF

1

|k− k′|
=

A

(2π)2

∑
k≤kF

∫
k′≤kF

d2k′ 1

|k− k′|

=
A

(2π)2

∑
k≤kF

∫ kF

0

dk′k′
∫ 2π

0

dθ√
(k′)2 + k2 − 2kk′ cos θ

=
A

(2π)2

∑
k≤kF

4kFE
( k

kF

)
=

A2k3F
2π3

∫ 1

0

dxxE(x)

=
A2k3F
3π3

, (A3)
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∑
k′≤kF

1

|k− k′|
=

A

(2π)2

∫ kF

0

dk′k′
∫ 2π

0

dθ√
(k′)2 + k2 − 2kk′ cos θ

=
A

π2
kF f2D

(
k
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)
, (A4)
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where

f2D(x) =

{
E(x), x ≤ 1,

x
[
E
(
1
x

)
−
(
1− 1

x2

)
K
(
1
x

)]
, x ≥ 1,

(A7)
K(x) and E(x) are the complete elliptic integral of
the first and the second kind respectively. E(x) can
be expressed as a power series

E(x) =
π

2

∞∑
n=0

(
(2n)!

22n(n!)2

)2
x2n

1− 2n
, (A8)

and the integration

∫ 1

0
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The triple integral J(kF d)

J(kF d) =

∫ 1

0

dxx

∫ 1

0

dyy

∫ 2π

0

dθ

e−kF d
√

x2+y2−2xy cos θ√
x2 + y2 − 2xy cos θ

(A10)

and the integral

I(x, kF d) =

∫ 1

0

dyy

∫ 2π

0

dθ
e−kF d

√
x2+y2−2xy cos θ√

x2 + y2 − 2xy cos θ
(A11)

should be evaluated numerically.

Appendix B: HF energies of the four competing
states

In Fig. 19, we show HF energies for competing
ground states S0, S1, S2 and S3 as a function of
layer distance d̃ for specific rs values. The S2 phase
always has a lower energy than the S3 phase except
at d̃ = 0.

Appendix C: Tc of the spin polarized but
pseudospin unpolarized phase (S1)

To compare with the Tc of bilayer 2DEG S1 phase
in Sec. III A 2 and in Fig. 13(e,f), we show Tc of
the spin polarized phase in single 2DEG and single
3DEG.
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FIG. 19. HF energies as a function of layer distance d̃ for (a) rs =
√
2, (b) rs = 4, (c) rs = 8 and (d) rs = 53.

Dimensionless rs and d̃ are also converted to density n in unit of cm−2 and d in unit of Å, using GaAs quantum well
parameters.

(a)

3DEGbilayer 2DEG ( )S1

 (cm )n −2  (cm )n −3

2DEG

 (cm )n −2

(c)(b)

FIG. 20. Tc of the spin polarized state, calculated by finite-temperature self-consistent HF. (a) For bilayer 2DEG,
i.e., the S1 phase in Sec. III A 2. Note that Tc of the S1 phase is d-independent. (b) For single 2DEG. (c) For single
3DEG.

1. 2DEG

For the spin polarized phase, the eigenenergy of
the majority spin is

εk = ε0(k) + Vx(k). (C1)

where

ε0(k) =
ℏ2k2

2m

Vx(k) = − 1

A

∑
k′

2πe2

ϵ|k− k′|
f(εk′)

(C2)

The occupied minority spin state has energy ε0(k).
At T = 0, the Fermi-Dirac distribution f(εk) is the
step function, and

Vx(k) = −4a∗

π
kFE(

k

kF
) (C3)

where Fermi momentum kF =
√
2πn. Tc of the

2DEG spin polarized state, calculated by finite-
temperature SCHF, is shown in Fig. 20(b).

2. 3DEG

For the 3DEG, the eigenenergy of the majority
spin is

εk = ε0(k) + Vx(k), (C4)

where

ε0(k) =
ℏ2k2

2m
,

Vx(k) = − 1

L3

∑
k′

4πe2

ϵ|k− k′|2
f(εk′),

(C5)

and the Fermi momentum kF = (6π2n)1/3. The
dimensionless distance

rsa
∗ =

(
3

4πn

)1/3

. (C6)
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At T = 0, the exchange potential

Vx(k) = − 1

L3

∑
k′≤kF

4πe2
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= −
∫
k′≤kF
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k
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where x = k′/kF , y = k/kF and

f3D(x) =
1

2
+

1− x2

4x
ln
∣∣∣1 + x

1− x

∣∣∣. (C8)

At finite T , the exchange potential is evaluated nu-
merically

Vx(k) = −
∫
k′≤kF

d3k′

(2π)3
4πe2

ϵ|k− k′|2
f(εk′)

= − e2

πϵ

∫ 1

−1

dz

∫ kF

0

dk′
(k′)2

(k′)2 + k2 − 2k′kz
f(εk′).

(C9)

Tc of 3DEG spin polarized state, calculated by finite-
temperature SCHF is shown in Fig. 20(c).
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