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Abstract

Diffusion models have demonstrated strong potential for
robotic trajectory planning. However, generating coher-
ent trajectories from high-level instructions remains chal-
lenging, especially for long-range composition tasks requir-
ing multiple sequential skills. We propose SkillDiffuser, an
end-to-end hierarchical planning framework integrating in-
terpretable skill learning with conditional diffusion plan-
ning to address this problem. At the higher level, the skill
abstraction module learns discrete, human-understandable
skill representations from visual observations and language
instructions. These learned skill embeddings are then used
to condition the diffusion model to generate customized la-
tent trajectories aligned with the skills. This allows gener-
ating diverse state trajectories that adhere to the learnable
skills. By integrating skill learning with conditional trajec-
tory generation, SkillDiffuser produces coherent behavior
following abstract instructions across diverse tasks. Ex-
periments on multi-task robotic manipulation benchmarks
like Meta-World and LOReL demonstrate state-of-the-art
performance and human-interpretable skill representations
from SkillDiffuser. More visualization results and informa-
tion could be found on our website.

1. Introduction

Recent research [6, 7, 18, 19] has demonstrated diffusion
models’ superior generative capabilities compared to previ-
ous models that help enhance reinforcement learning across
various dimensions, including the generation of action tra-
jectories [2, 19], policy representation [5, 50], and data syn-
thesis [14, 23]. However, their ability to generate coherent
trajectories for intricate tasks still poses challenges in terms
of performance and generalizability, as these tasks often re-
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Figure 1. Comparison of SkillDiffuser and previous language
conditioned diffusers. SkillDiffuser utilizes high-level abstrac-
tion to translate visual observations and language instructions into
human understandable skills with language grounding. It then en-
ables the low-level diffusion model condition on these skills, not
only improving the execution performance of multi-step composi-
tion tasks but greatly enhancing the generalization and adaptability
of the framework.

quire the fulfillment of abstract instructions that consist of
numerous coordination-intensive sequential steps.

Previous approaches [2, 14], such as Decision Diffuser,
aim to tackle this challenge by decomposing complex tasks
into simpler sub-skills, organized within a predefined skill
library. These methods rely on conditioning the diffusion
model with one-hot skill representations to generate trajec-
tories for each of these sub-skills. Nevertheless, these tech-
niques encounter difficulties in attempting to autonomously
learn end-to-end from a wide range of datasets, which hin-
ders their scalability and ability to achieve end-to-end learn-
ing [1]. In addition, without explicitly learning reusable
skills, models cannot capture intricate inter-step dependen-
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cies and constraints, yielding fragmented and illogical tra-
jectories. Decomposing ambiguous instructions into learn-
able sub-goals and skills can better enable models to fol-
low logical step sequences, respect task structures, and
transfer common procedures (e.g. reusable skill abstrac-
tion and adaptable skill-based diffusion) between different
tasks. This skill-centric paradigm paves the way for dif-
fusion models that can interpret and execute elaborate, ab-
stract instructions necessitating numerous sequential steps.

Inspired by the above observations, we propose SkillD-
iffuser, a hierarchical planning framework unifying high-
level skill learning with low-level conditional diffusion-
based execution. As shown in Fig. 1, compared with previ-
ous language-conditioned diffusion policies, SkillDiffuser
is able to interpret and execute complex instructions end-to-
end with higher transferability. SkillDiffuser induces inter-
pretable sub-latent goals by learning reusable skills tailored
to the task instructions. The framework conditions a diffu-
sion model on these learned skills to generate customized,
coherent trajectories aligned with the overall objectives.
By integrating hierarchical skill decomposition with con-
ditional trajectory generation, SkillDiffuser achieves con-
sistent, skill-oriented behavior without relying on a prede-
fined skill library. Moreover, SkillDiffuser is designed to
operate solely on visual observations, eliminating the need
for robot proprioception (i.e. fully observed states). This
end-to-end methodology, featuring learnable skills, enables
SkillDiffuser to execute abstract instructions across a vari-
ety of tasks efficiently.

SkillDiffuser works as follows. 1) A skill predictor with
vector quantization [45] is used for high-level skill learn-
ing to distill tasks into discrete and interpretable skills.
Rather than forecasting skill durations, we adopt a fixed
prediction horizon – predicting skills at regular intervals.
This horizon-based discretization process seamlessly inte-
grates visual and linguistic inputs into a cohesive skill set
guiding the low-level diffusion model. 2) For skill-based
trajectory generation, we utilize a classifier-free diffusion
model as policy, with skills directly embedded as guidance.
This setting allows for generating multi-modal state trajec-
tories aligned with skill specifications while avoiding over-
fitting to a closed dataset. 3) To enable action inference
from predicted states, we train an inverse dynamics network
to decode motions between two consecutive frames gener-
ated. By separating state prediction from motion decoding,
SkillDiffuser yields a fully adaptive framework for directing
diverse embodiments via transferable state-space plans.

We evaluate the model’s performance in both skill learn-
ing and multi-task planning on the LOReL [29] Sawyer and
Meta-World [51] datasets, with crucial experimental set-
tings by considering robotic agents in real-world scenarios
must operate with limited state information, chiefly visual
observations. Furthermore, we present success rates on un-

seen compositional tasks, the reusability and visualizations
of learned skills to illustrate the model does have the ability
to abstract high-level skills that are not only effective but
also understandable to humans, bringing us closer to intel-
ligent agents that acquire skills in a direct manner.

Our contributions are three-fold: 1) We propose an
end-to-end hierarchical planning framework via skill learn-
ing for sub-goal abstraction; 2) We adopt a classifier-free
diffusion model conditioned on learned skills to generate
skill-oriented transferable state trajectories; 3) We demon-
strate state-of-the-art performance on complex bench-
marks and provide interpretable visualizations of human-
understandable skill representations.

2. Related Works
2.1. Imitation Learning and Multi-task Learning

Imitation learning (IL) has evolved from foundational be-
havioral cloning to sophisticated multi-task learning frame-
works. With traditional approaches relying on supervised
learning from expert demonstrations [33, 37, 38], recent ad-
vancements have shifted towards learning the reward [16]
or Q-function [12] from expert data, enhancing the abil-
ity to mimic complex behaviors. A new challenge lies in
multi-task IL [41], where imitators are trained across varied
tasks, aiming for generalization to new scenarios with task
specifications ranging from vector states [28] to vision and
language descriptions [8, 11, 13, 48].

Multi-task learning approaches often leverage shared
representations to learn a spectrum of tasks simultaneously,
enhancing the flexibility and efficiency of the learning pro-
cess. The Meta-World benchmark [51] assesses multi-task
and meta reinforcement learning, highlighting the need for
algorithms capable of rapid adaptation. Building on this,
the Prompting Decision Transformer [49] showcases few-
shot policy generalization using task-specific prompts. And
diffusion policy has also been explored in multi-task set-
tings [14], which shows proficiency in generating diverse
behaviors across tasks. However, unlike methods that lever-
age state inputs [14, 49] or access robot proprioception [30],
SkillDiffuser uses raw visual inputs only.

2.2. Skill Discovery and Hierarchical Learning

Skill learning, the process by which robots acquire new
abilities or refine existing ones, is gaining increasing atten-
tion due to its pivotal role in enabling autonomous systems
to adapt to new tasks, improve the performance over time,
and interact naturally with humans and complex environ-
ments. Traditionally, this domain was influenced by hand-
crafted features and expert demonstrations [32].

With the development of deep learning, Eysenbach et
al. [9] and A. Sharma et al. [40] investigated skill dis-
covery in learning methods, achieving policies conditioned
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on learned latent variables and maintaining consistent skill
codes throughout trajectories. In the domain of skill learn-
ing through language instructions, LISA [13] stands out by
sampling multiple skills per trajectory, integrating language
conditioning in a unique manner.

Our SkillDiffuser follows this way to extract sub-skills of
each instruction at the higher-level. But differently, SkillD-
iffuser employs an adaptable diffusion policy at the lower-
level to condition on different sub-skills to generate differ-
ent actions, which formulates a creative hierarchical plan-
ning framework also advancing research on hierarchical
techniques of reinforcement learning [22, 27, 52].

2.3. Planning with Diffusion Model

Diffusion models [18] make great breakthroughs in image
synthesis [18] recent years and has shown promising results
in various generative applications. A seminal work that
performs planning with diffusion directly is Diffuser [19],
which laid the groundwork for using diffusion models in
behavior synthesis. Then, a branch of this kind planning
methods achieved state-of-the-art performance in a variety
of decision tasks [3, 5, 7, 23, 31]. Among them, the work
done by Chi et al. in [5] introduces the concept of learning
the gradient of the action-distribution score function and it-
eratively optimizing it, demonstrating its significant poten-
tial in visuomotor policy learning. These works have further
extended this direction and strengthened the versatility and
generalization of diffusion-based planners.

Our approach is inspired by classifier-free diffusion
guidance [17], which offers a significant advantage over
classifier-guided models [6]. By adopting the classifier-free
approach, we can circumvent the challenges associated with
training a reward model and Q-function, which are partic-
ularly cumbersome in many real-world planning scenarios
of which the complexity is very high. Recent studies have
also extended this direction, which use conditional diffu-
sion models to generate customized trajectories. Decision
Diffuser [2] is an example which is designed to generate
trajectories for a predefined skill library. However, unlike
our method, it can’t autonomously learn skill abstractions
in an end-to-end fashion, which makes it difficult to scale to
more tasks. This highlights the necessity for diffusion mod-
els with dynamic, learnable skill abstractions, facilitating
complex instruction execution.

3. Preliminary
3.1. Planning with Diffusion over States

As introduced in previous works [2, 19], diffusion model
is a promising tool to address the problem of planning in
reinforcement learning which is cast as a Markov Deci-
sion Process (MDP) [34]. Within the MDP framework
M = (S,A, T ,R, γ), the planning policy aims to iden-

tify an optimal action sequence a∗
0:T that maximizes the

expected cumulative rewards over a finite time horizon T ,
governed by the state transition dynamics T and reward
functionR. S is the state space and A is the action space.

By treating the state trajectory as sequence data τ , with
sequence modeling, diffusion probabilistic models concep-
tualize planning as an iterative denoising process. The
model progressively refines trajectories by reversing a for-
ward diffusion process that is modeled as a Gaussian pro-
cess, whereby noise is incrementally added to the data, de-
noted as pθ(τ

i−1 | τ i). Training involves minimizing the
ELBO of the data’s negative log-likelihood, similar to vari-
ational Bayesian inference, with the optimization objective:

θ∗ = argmin
θ
−Eτ0

[
log pθ

(
τ 0

)]
, (1)

where p
(
τN

)
is a standard normal distribution and τ 0 de-

notes noiseless sequence data.
For practical implementation, a simplified surrogate loss

function is proposed in [18], focusing on predicting the
Gaussian mean of the reverse diffusion step:

Ldenoise(θ) = Ei,τ0∼q,ϵ∼N [||ϵ− ϵθ(τ
i, i)||2]. (2)

3.2. Classifier-free Diffusion Guidance

On the basis of unconditioned diffusion-based method, in
the realm of offline reinforcement learning, a critical en-
deavor is to generate trajectories with the highest reward-
to-go. With the flourishing development of conditional dif-
fusion models [6], classifier-guided approaches embark on
this by infusing specific trajectory information (encoded in
y(τ )), such as the return J (τ 0) or designated constraints,
into the diffusion process:

q(τ i|τ i−1), pθ(τ
i−1|τ i,y(τ )). (3)

With assumptions specified in [10], we have

τ i−1 ∼ N (µθ + αΣ∇τ log p
(
y(τ i)

)
,Σ), (4)

where α is a hyperparameter that adjusts the guidance
strength, Σ is the specified covariance of the noise and µθ is
the learned mean value of noise in unconditional diffusion.

However, the classifier-guided diffusion model requires
an accurate estimation of guidance gradient based on the
trajectory classifier y(τ ), which may not be feasible and
need to introduce a separate dynamic programming proce-
dure to estimate a Q-function in the training process.

Thus, classifier-free guidance offer an alternative, which
augments the trajectory generation process with a guidance
signal that amplifies the features of high-reward or optimal
characteristics, i.e. y(τ ), that are implicitly present in the
data. Mathematically, the noise to add during the reverse
denoising process is:

ϵ̂ = ϵθ(τ
i,∅, i) + ω(ϵθ(τ

i,y, i)− ϵθ(τ
i,∅, i)), (5)

where ω is the guidance scale, and ∅ represents the ab-
sence of guidance. Setting ω = 0 removes the classifier-free
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guidance towards an unconditional diffusion model, while a
large value of ω strengthens the influence of the conditional
information during trajectory generation.

Also, the loss function to minimize can be rewritten as,

Ldiff (θ) = Ei,τ ,ϵ

[∥∥ϵ− ϵθ
(
τ i, (1− β)y(τ i) + β∅, i

)∥∥2] ,
(6)

where β is a hyperparameter that controls the probability of
dropping specific condition y(τ ), enhancing sample diver-
sity while maintaining context relevance.

After training the noise prediction model ϵθ with the
above L(θ), the trajectory is sampled starting from Gaus-
sian noise and progressively denoised with modified ϵ̂
through Eq. 5, employing re-parameterization technique.

In summary, through classifier-free guidance, we can
modulate the trajectory sampling process to require the gen-
erated trajectories more aligned with the desired features
represented by y(τ ). This process iteratively applies the
conditioned noise model to refine the target trajectories that
contain future states satisfying the constraints.

4. Methodology
4.1. Overview

Building upon the motivations discussed above, we present
SkillDiffuser, an advanced methodological framework for
robust multi-task learning across various robots. This dy-
namic approach leverages the cooperation of skill learn-
ing at the higher level and a conditional diffusion model
at the lower level. An overall framework is illustrated in
Fig. 2. Notably, we leverage language-grounded represen-
tations to abstract skills, thereby rendering the execution
of tasks through our diffusion policy both interpretable and
comprehensible to humans.

4.2. High Level Interpretable Skill Abstractions

In our SkillDiffuser framework, the high level interpretable
skill abstraction module plays a crucial role in understand-
ing and executing complex tasks. However, given the multi-
task environments we consider, each task with only a single
language instruction may be broken down into a sequence
of sub-tasks or skills, which are not explicitly delineated
within the instruction itself. Furthermore, suppose the of-
fline training dataset is denoted as D, it consists of trajecto-
ries derived from a sub-optimal policy for various tasks. A
trajectory τ = (l, {it,at}Tt=1) includes language descrip-
tion l and a sequence of image observations and actions
(it,at) over time steps T , with no reward labels attached.
But the trajectories do not indicate the boundaries between
sub-tasks as well, which thus requires the proposed meth-
ods capable of segmenting and interpreting the tasks into
sub-goals in an unsupervised manner.

To address this challenge, we build a skill abstraction
component upon a horizon-based skill predictor adapted
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Figure 2. Overall framework of SkillDiffuser. It’s a hierarchical
planning model that leverages the cooperation of interpretable skill
abstractions at the higher level and a skill conditioned diffusion
model at the lower level for task execution in a multi-task learning
environment. The high-level skill abstraction is achieved through
a skill predictor and a vector quantization operation, generating
sub-goals (skill set) that the diffusion model employs to determine
the appropriate future states. Future states are converted to actions
using an inverse dynamics model. This unique fusion enables a
consistent underlying planner across different tasks, with the vari-
ation only in the inverse dynamics model.

from GPT-2 [35]. It is designed to parse and decompose
tasks by fusing visual input and natural language instruc-
tions, alongside a Vector Quantization (VQ) sub-module
that discretizes the learned skills into a skill set. The
specifics of this component are illustrated below.

Firstly, as we utilize only images as robot state informa-
tion, we transform the images into latent space features with
a fixed image encoder (e.g. R3M [30]). For convenience,
we denote the image encoder as Φim : I → RI , where
I represents the space of input images and RI , the resul-
tant feature space, serves to condense the visual informa-
tion into a form that is conducive for high-level semantics.
Simultaneously, we use a language encoder to pre-process
the natural language instructions, which is formalized as
Φlang : L → RL, with L being the space of language in-
structions and RL the language feature space. The outputs
of both encoders are then fed into the skill predictor, which
operates to integrate these two modalities.

The skill predicting process is as follows: An image
it ∈ I at time step t is encoded into a visual embedding
st = Φim(it). This embedding st is then input to the
skill predictor, along with the language instruction l ∈ L,
through the language encoder’s output lt = Φlang(l). The
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Figure 3. SkillDiffuser’s low level skill-conditioned diffusion planning model. Notably, while the schematic here employs images to
represent visual features for illustrative purposes, in actual implementation, both the input to and the sampling output of the diffusion model
are state embeddings. The current observation is also the feature embedding of current visual observation.

skill predictor, represented as f : RI ×RL → C, generates
a skill code z̃ by z̃ = f(st, lt) that encapsulates task’s re-
quirements interpreted from the visual and language inputs.

After that, Vector Quantization [45] operation q(·)
is taken to transform these predicted skills into a low-
dimensional discrete set C. The discrete skill set contains K
skill embeddings

{
z1, z2, . . . ,zK

}
which represent differ-

ent potential skills. VQ operation is achieved by mapping
the latent z̃ to its closest entry of the skill set with skill vec-
tors updated to be the moving average of the embeddings z
closest to them, same as [45]. This process is as follows,

z̃ = f (Φim(it),Φlang(l)) , (7)

z = q(z̃) = argmin
zk∈C

∥z̃ − zk∥2. (8)

VQ enforces each learnt skill z to lie in C, which is equal
to learning K prototypes for the language embeddings uti-
lizing k-means [24] algorithm. This acts as a bottleneck,
restricting the flow of language information and aiding in
the learning of discrete skill codes. The back-propagation
through the non-differentiable quantization is achieved by
a straight-through gradient estimator, which simply copies
the gradients and enables model to be trained end-to-end.

In our approach, we apply a consistent skill code z
across a defined number of time steps, termed the horizon.
This consistent application across multiple horizons adeptly
addresses the challenge of varying sub-task durations with-
out altering the horizon itself. Consequently, this strategy
not only preserves the flexibility required for diverse task
execution but also maintains the model’s architectural sta-
bility by avoiding horizon-induced structural changes.

Importantly, the discrete nature of the learned skill codes
enhances the interpretability and controllability of the sys-
tem’s behavior, as each skill code is associated with some
human-understandable language phrases. An example is
depicted in Fig 6. Through this method, SkillDiffuser can
not only learn to perform tasks based on language instruc-
tions but also achieve them in a human-interpretable way,
allowing for a deeper understanding and control of the
decision-making process of specific embodied agents.

4.3. Low Level Skill-conditioned Diffusion Planning

As highlighted in Section 1, while existing approaches like
Decision Diffuser [2] have introduced conditional diffu-
sion models constrained by skills, their capability is limited
to generating trajectories that meet only predefined skills.
Consequently, these models fall short of realizing a diffu-
sion model capable of conditioning on an arbitrary learned
skill. To overcome these constraints and enable diffusion
models to plan over a learned continuous spectrum of skills,
we propose an approach that leverages the classifier-free
guided diffusion model with the skills embedded.

SkillDiffuser begins by employing a diffusion model to
operate over the continuous skill space Z learned during
high-level skill abstraction. We employ a U-Net to serve as
the noise prediction model ϵθ(·) and guide it by in-context
conditioning. More specifically, we firstly utilize a skill
MLP (similar to point-wise feed-forward network [46]), de-
noted as Λ, to align skill features with denoising model.
After that, we fuse the skill embeddings Λ(z) into the state
features throughout the residual blocks of U-Net. Details
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are depicted in Fig. 3. In this way, we make the diffusion
model contextually modulate the influence of skill embed-
dings at each step. And following Eq. 5, we can synthesize
future states attending to these given skills. This is a signif-
icant shift from previous static conditioning framework to a
more dynamic and adaptive trajectory generation process.

Moreover, following previous works [2, 7, 23], we adopt
a state-only diffusion model, which eschews the direct gen-
eration of actions in diffusion model. And instead, we uti-
lize another MLP, denoted as Ψ(·), to perform inverse dy-
namics after state generation to infer feasible actions that
can achieve transitions between two continuous states. Ad-
ditionally, we integrate observations from the current frame
to provide more detailed information for motion prediction
and achieve closed-loop control. Mathematically, it is:

at = Ψ([s̃t, s̃t+1], it) for t = 0, . . . , T − 1, (9)

where s̃t and s̃t+1 are consecutive observation embeddings
within τ̃ generated by diffusion model, it is the current ob-
servation and at is the inferred action.

As the resulting action sequence {a0,a1, . . . ,aT−1} de-
rived from the generated states, it encapsulates the skills to
execute the tasks, which allows for remarkable adaptabil-
ity across multiple tasks. And when faced with a new task,
we are only required to change the inverse dynamics model
Ψ(·) specific to the new task’s kinematics, with the archi-
tecture and parameters of diffusion model unchanged. Such
modularity ensures the generative capabilities of SkillDif-
fuser are not task-specific but can be leveraged across a di-
verse range of tasks with varying dynamics. A schematic
diagram of the low level module is shown in Fig. 3.

4.4. Training the SkillDiffuser

We engineered a threefold loss function for SkillDiffuser.
Firstly, for the inverse dynamics model which is task-
specific, we employ a behavior cloning loss [44] to train our
inverse MLP emulating expert actions from observed state
transitions. This loss, denoted as Linv , is formulated as:

Linv = Eτ∼D

[∥∥a−Ψ(s̃, s̃′, i)
∥∥2
2

]
, (10)

where the notations are similar to Eq. 9.
Correspondingly, the other parts including both skill ab-

straction and low level execution are task-agnostic. For the
high-level skill abstraction module, we apply a vector quan-
tization (VQ) loss to refine the skill predictor. This VQ loss,
LVQ, ensures the embeddings produced by the skill predic-
tor closely match the skill set vectors, thereby improving the
interpretability and consistency of the skill representations.
Inspired by VQ-VAE [45], we formulate it as:

LVQ = Eτ

[
∥q(z̃)− z̃∥22

]
, (11)

where z̃ follows Eq. 7.
Lastly, for the low-level state-only skill-conditioned dif-

fusion execution, we incorporate a diffusion loss Ldiff as

per Eq. 6, ensuring our model’s state predictions are in line
with both the skill guidance and temporal dynamics ob-
served in expert demonstrations. Here, we take y(τ ) =
Λ(z) with z derived from Eq. 7 and Eq. 8.

To be noted, we train our SkillDiffuser with two opti-
mizers, one for inverse dynamics model with Linv and the
other for overall parameters of high-level skill abstraction
and low-level planning withLVQ+λLdiff , where λ is a loss
weight. This carefully constructed loss architecture enables
SkillDiffuser to excel in a multi-task environment, general-
izing across tasks by simply substituting the inverse dynam-
ics model Ψ(·) specific to each new task’s requirements.

Additionally, we utilize a pre-trained distilBERT [39] as
our language encoder, adopting the configuration consistent
with LOReL [29] and LISA [13], while freezing its param-
eters to guarantee stability in language understanding. And
we employ diverse settings to serve as the visual encoder to
ensure fair comparison in different datasets. We elaborate
the details in corresponding parts of Sec. 5. More training
details are shown in Appendix G and we also provide some
pseudo-code of our algorithm in Appendix B.

5. Experiments

We first present a comprehensive evaluation on the LOReL
Sawyer dataset, and then perform the ablation study com-
pared on Meta-World benchmark to illustrate the efficiency
of our method. Finally, we visualize the learned skills of
our method both on LOReL and Meta-World MT10.

5.1. Datasets

LOReL Sawyer Dataset [29] which is abbreviated from
Language-conditioned Offline Reward learning, is com-
posed of pseudo-expert trajectories or play data gathered
from an arbitrary reinforcement learning policy, annotated
with post-hoc crowd-sourced language directives. The
LOReL Sawyer dataset encompasses 50k trajectories, each
with 20 steps, in a simulated Sawyer robot environment. We
assess our approach using the same six tasks as the original
paper [29] with paraphrased instructions under five differ-
ent situations (i.e. seen, unseen verb, unseen none, unseen
verb + noun and human provided). This comes to a total of
77 instructions for all 6 tasks combined. More details about
the dataset can be found in Appendix D.1.

Meta-World Dataset [51]. It is a comprehensive bench-
mark designed for evaluating multi-task and meta reinforce-
ment learning algorithms. It introduces a comprehensive
suite of 50 distinct robotic manipulation tasks, all located
within a unified tabletop environment controlled by a simu-
lated Sawyer arm. The Multi-Task 10 (MT10) within Meta-
World is a subset comprising ten carefully selected tasks,
balanced in terms of diversity and complexity. Details of
the ten tasks can be found in Appendix D.3.
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Task Instruction Random LCBC [42] LCRL [20] Lang DT [13] LISA [13] SkillDiffuser

close drawer 52% 50% 58% 10% 100% 95 ± 3.2%
open drawer 14% 0% 8% 60% 20% 55 ± 13.3%
turn faucet left 24% 12% 13% 0% 0% 55 ± 9.3%
turn faucet right 15% 31% 0% 0% 30% 25 ± 4.4%
move black mug right 12% 73% 0% 20% 60% 18 ± 3.9%
move white mug down 5% 6% 0% 0% 30% 10 ± 1.7%

Average over tasks 20% 29% 13% 15% 40% 43 ± 1.1%

Table 1. Task-wise success rates on LOReL Sawyer Dataset. We show our success rates compared to random policy, language-
conditioned imitation learning (LCBC), language-conditioned Q-learning (LCRL), a flat non-hierarchical Decision Transformer (Lang-
DT), and LISA. The results on each dataset are calculated over 3 seeds. SkillDiffuser outperforms all other methods in terms of average
performance over all tasks. Best methods and those within 6% of the best are highlighted in bold.

Rephrasal Type Lang DT LISA [13] SkillDiffuser

seen 15 40 43.65 ±4.7

unseen noun 13.33 33.33 36.01 ±6.3

unseen verb 28.33 30 36.70 ±9.5

unseen noun+verb 6.7 20 42.02 ±3.8

human provided 26.98 27.35 40.16 ±2.1

Average 18.07 30.14 39.71

Table 2. Rephrasal-wise success rates (in %) on LOReL
Sawyer. Results of Lang DT, LISA and our SkillDiffuser are
shown here. The standard error is calculated over 3 random seeds.

5.2. Evaluation Results on LOReL Sawyer Dataset

Baselines. We employ random policy, language condi-
tioned imitation learning (LCBC) [42], language condi-
tioned Q-learning (LCRL) [20], Lang-DT (also known as
Flat Baseline in [13]) and state-of-the-art skill-learning
method LISA [13] as our baselines. We follow the same
settings as LOReL [29] for the first three algorithms, and
follow LISA [13] for the last two. The random policy serves
as a baseline. And LCBC mimics offline dataset behav-
iors based on instructions, aligning with previous works
focusing on imitation learning to achieve language condi-
tioned behavior. In contrast, LCRL employs reinforcement
learning, labeling each episode’s final state with language-
instructed rewards. Lang-DT plays as a non-hierarchical
benchmark with a Causal Transformer [25], while LISA in-
corporates a dual-transformer structure, with one for skill
prediction and the other for action planning. We do not
compare with LOReL planner [29] as it uses MPC on
a learned reward function relying on human annotations,
while LISA and ours learn with trajectory data only.

Results. To ensure fair comparison, our method, SkillD-
iffuser, is designed to maintain a parameter count similar
to baseline models. It employs the same visual and lan-
guage encoder architecture as used in LISA [13] with metic-
ulously matching of embedding dimensions and the number
of heads across the layers of SkillDiffuser.

The results are present in Tables 1 and 2, showing task-
wise and rephrasal-wise success rates for LOReL, averaged

Method Lang DT LOReL [29] LISA [13] SkillDiffuser

Success Rate 13.33 ±1.3 18.18 ±1.8 20.89 ±0.6 25.21 ±2.7

Table 3. Performance on LOReL multi-step composition tasks.

over 10 runs with a 20-step time horizon. SkillDiffuser,
our approach, achieves the highest average performance in
six different tasks, indicating its superior cross-task adapt-
ability particularly when compared to similar approaches
which yet are based on Decision Transformer [4], such as
LISA [13]. Moreover, SkillDiffuser consistently excels in
all rephrased types for LOReL test tasks, outperforming
LISA by 9.6% on average. This demonstrates the model’s
robustness in handling varied skill representations, marking
a notable advancement in skill-conditioned diffusion model.

5.3. Performance on LOReL Compositional Tasks

Settings. We conduct experiments following the same set-
tings of unseen composition tasks of LISA [13] with 12
composition instructions in Tab. 3. Detailed instructions
are listed in Appendix D.2 with such an example that “open
drawer and move black mug right”. We extend the max
number of episode steps from customary 20 to 40, as LISA.
Results. We observe SkillDiffuser achieves 2x the perfor-
mance of non-hierarchical baseline (i.e. w/o skill abstrac-
tion) and also improves about 25% over LISA, highlighting
its effectiveness. MPC-based LOReL planners are unable
to perform as well in open scenarios like composition tasks.

5.4. Ablation Study on Meta-World Dataset

Settings. We conduct experiments on Meta-World MT10
benchmark with finely annotated instructions. We also use
visual observations only. Details are in Appendix D.3.
Baselines. We evaluate our method against three baselines,
all modified from existing models. The first, Flat R3M, is
adapted from R3M [30] paper’s planner. As the original one
utilizes the first four terms of robot proprioception, we elim-
inate them and make the planner focus exclusively on visual
observations. The second baseline is a variant of our SkillD-
iffuser, lacking the high-level skill abstraction module but
retaining the low-level conditional diffusion-based planner,
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Method Lang Skill Set Diffuser Performance

Flat R3M [30] ✗ ✗ ✗ 13.3%
LISA [13] ✓ ✓ ✗ 13.8%
Lang Diffuser ✓ ✗ ✓ 16.7%
SkillDiffuser ✓ ✓ ✓ 23.3%

Table 4. Ablation study of language skill conditioning on Meta-
World. Results of Flat R3M, Language-condition diffuser, LISA
and our SkillDiffuser are shown here. All are averaged over 3 runs.

to assess the impact of skill abstraction. This version in-
tegrates a two-layer MLP to predict options from visual
and language inputs, functioning as a language-conditioned
diffusion planner. The last baseline is our re-implemented
LISA [13] for Meta-World Dataset to validate the efficiency
of diffusion model. To ensure fairness, we use R3M as the
visual encoder for all of these methods on Meta-World.
Ablation on Language Skill Conditioning. Table 4 indi-
cates our Meta-World MT10 task is quite different from and
much more challenging than previous tasks that use states
as observations [49] or take into robot proprioception [30].
We only utilize single-frame visual input and instructions.
The Flat R3M method, lacking language conditioning and
skill sets can only succeed on tasks like drawer-close and
reach through behavior cloning. Lang-conditioned Diffuser
and modified LISA both outperform Flat R3M, suggesting
the value of each corresponding module. Our SkillDiffuser,
discretizing skills into a skill set, achieves a 6% higher per-
formance than language-conditioned diffuser and a 9.5%
higher than LISA, demonstrating the effectiveness of this
combinational architecture.

5.5. Ablation Study on Reusability of Learned Skills

To evaluate the reusability of our learned skills, we calcu-
late the average number of different skills used for a sin-
gle instruction and the total number of instructions using
each skill of LOReL Sawyer Dataset in Table 5. (With max
episode step being 20, we experiment with skill horizon
10.) We observe each single instruction uses 1.55 sub-skills
on average and each skill is called multiple times than the
number of instructions (75 with 5 eval episodes), verifying
the transferability of learnt skills. As suggested in Tab.10
of [13], except a very small horizon will hurt the perfor-
mance, learning sub-skills to get refined semantics helps
perform different actions at different stages. Besides, we
also visualize resulting images from applying discrete skills
in Appendix E.1 to further validate skills’ interpretability.

5.6. Visualization Results of Learned Skill Set

We show the visualization of skill set on LOReL compo-
sitional tasks here in Fig. 4 and results on original LOReL
dataset in Fig. 5 and Meta-World dataset in Fig. 6 in Ap-
pendix C. The visual analysis of our SkillDiffuser’s learned
skills on LOReL compositional tasks reveals that out of the
20-size skill set, our method learned 11 skills (e.g. pull han-

# of learnt skills # of inst # of success Use 1 skill Use 2 skills Average

17 375 144 64 80 1.55

Freq of 17 skills 30, 8, 14, 10, 5, 19, 4, 7, 20, 2, 9, 20, 25, 6, 10, 3, 18

Table 5. Average number of different skills used for a single in-
struction and total number of instructions used for each skill.

Figure 4. Visualization of skill heat map on LOReL Sawyer
compositional tasks. We display the word frequency associated
with a skill set of size 20 in LOReL, normalized by column. The
data’s sparsity and distinct highlights indicate certain language to-
kens are uniquely linked to specific skills. There are eleven skills
learned by our method. (zoom in for best view)

dle [skill 0], open counter [skill 14], etc.) notably distin-
guished by their unique word highlights. These bright spots
across eleven columns (changing from only one column at
initial which corresponds to default BC) in the heatmap un-
derscore the model’s ability to identify and isolate distinct
skills from visual inputs, without an explicitly defined skill
library. This indicates not only a significant interpretative
advancement over previous diffusion-based planning but a
successful abstraction of high-level skill representations.

6. Conclusion
This paper presents SkillDiffuser, an integrated framework
that enables robots to perform tasks from natural language
instructions by enabling interpretable skill learning and
conditional diffusion planning. It employs vector quanti-
zation to learn discrete and comprehensible skill represen-
tations directly from visual and linguistic demonstrations.
Subsequently, these skills condition a diffusion model to
generate state trajectories adhering to the learned skills.
Through integrating hierarchical skill decomposition with
conditional trajectory generation, SkillDiffuser can compre-
hend and execute abstract instructions for various manipu-
lation tasks. Extensive experiments on manipulation bench-
marks demonstrate state-of-the-art performance, highlight-
ing its effectiveness for multi-step composition tasks and
ability to automatically learn interpretable skills.
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Supplementary Material

A. Theoretical Foundation of Classifier-free
Diffusion Model for Planning

A.1. Review of Classifier-guided Diffusion Model

Firstly, for a given trajectory τ , the standard reverse process
of an unconditional diffusion probabilistic model is defined
by pθ(τ

i|τ i+1). This framework is then extended to incor-
porate conditioning on a specific label y (e.g., the reward),
which is considered in the context of current-step denoised
trajectory τ i, which is represented as pϕ(y|τ i). Conse-
quently, the reverse diffusion process can be reformulated
as pθ,ϕ(τ

i|τ i+1,y). This approach introduces additional
parameters ϕ alongside the original diffusion model param-
eters θ. The parameters ϕ can be viewed as a classifier, that
encapsulates the probability of whether a noisy trajectory τ i

satisfies the specific label y, with a notation of pϕ(y|τ i).
Under the constraints illustrated in [6, 23], we can derive

the following theorem with lemma

pθ,ϕ
(
y | τ i, τ i+1

)
= pϕ

(
y | τ i

)
. (12)

Theorem A.1. The conditional sampling probability of re-
verse diffusion process pθ,ϕ(τ

i | τ i+1,y) is proportional
to unconditional transition probability pθ(τ i | τ i+1) multi-
plied by the classified probability pϕ(y | τ i).

pθ,ϕ(τ
i | τ i+1,y) = Zpθ(τ

i | τ i+1)pϕ(y | τ i) (13)

Proof.

pθ,ϕ(τ
i | τ i+1, y) =

pθ,ϕ
(
τ i, τ i+1,y

)
pθ,ϕ (τ i+1,y)

=
pθ,ϕ

(
y | τ i, τ i+1

)
pθ

(
τ i, τ i+1

)
pϕ (y | τ i+1) pθ (τ i+1)

=
pθ,ϕ

(
y | τ i, τ i+1

)
pθ

(
τ i | τ i+1

)
pθ

(
τ i+1

)
pϕ (y | τ i+1) pθ (τ i+1)

=
pθ,ϕ

(
y | τ i, τ i+1

)
pθ

(
τ i | τ i+1

)
pϕ (y | τ i+1)

=
pϕ

(
y | τ i

)
pθ

(
τ i | τ i+1

)
pϕ (y | τ i+1)

.

(14)

The term pϕ
(
y | τ i+1

)
is not directly correlated to τ i at

the diffusion timestep i, thus can be viewed as a constant
with notation Z.

On this basis, using Taylor series expansion [15], we can
sample trajectories by the modified Gaussian resampling.

Theorem A.2. With a sufficiently large number of reverse
diffusion steps, the sampling from reverse diffusion pro-
cess pθ,ϕ(τ i | τ i+1,y) can be approximated by a modified
Gaussian resampling. That is

pθ,ϕ(τ
i|τ i+1,y) ≈ N (τ i;µθ +Σ∇τ log pϕ

(
y | τ i

)
,Σ),
(15)

where µθ = µθ(τ
i) and Σ are the mean and variance of

unconditional reverse diffusion process pθ(τ i | τ i+1).

Proof. With the above definition, we can rewrite the trans-
fer probability of the unconditional denoising process as

pθ(τ
i | τ i+1) = N (τ i;µθ,Σ) (16)

log pθ(τ
i | τ i+1) = −1

2
(τ i − µθ)

TΣ−1(τ i − µθ) + C

(17)

With a sufficiently large number of reverse diffusion
steps, we apply Taylor expansion around τ i = µθ as

log pϕ
(
y | τ i

)
= log pϕ

(
y | τ i

)
|τ i=µθ

+
(
τ i − µθ

)
∇τ i log pϕ

(
y | τ i

)∣∣
τ i=µθ

.

Therefore, using Eq. 14, we derive

log pθ,ϕ(τ
i|τ i+1,y) = log pθ(τ

i|τ i+1)+log pϕ(y|τ i)+C1

RHS = −1

2

(
τ i − µθ

)T
Σ−1

(
τ i − µθ

)
+

(
τ i − µθ

)
∇ log pϕ

(
y | τ i

)
+ C2

(18)

RHS = −1

2

(
τ i − µθ − Σ∇ log pϕ

(
y | τ i

))T × Σ−1

×
(
τ i − µθ − Σ∇ log pϕ

(
y | τ i

))
+ C3,

which means,

pθ,ϕ(τ
i|τ i+1,y) ≈ N (τ i;µθ +Σ∇τ log pϕ

(
y | τ i

)
,Σ)

A.2. Classifier-free Diffusion Model

While classifier guidance successfully achieves conditional
guidance during trajectory generation, it is nonetheless re-
liant on gradients from a separate trained classifier which is
hard to obtain in many cases. Classifier-free guidance [18]
seeks to eliminate the classifier, which achieves the same
effect as classifier guidance, but without such gradients.
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First of all, we define the score function of the uncondi-
tional diffusion model as

ϵθ(τ
i) = −Σ∇τ log pϕ

(
τ i
)
. (19)

Then, through Eq. 13 and 15, the score function of the
classifier-guided diffusion model can be expressed as

ϵθ(τ
i,y) = ϵθ(τ

i)− αΣ∇τ log pϕ
(
y | τ i

)
, (20)

where α is a scale hyper-parameter.

Theorem A.3. Classifier-free guided diffusion model per-
forms sampling with the linear combination of the condi-
tional and unconditional score estimates as,

ϵ̂θ = ϵ̂θ(τ
i,y) = (1− ω)ϵθ(τ

i) + ωϵθ(τ
i,y), (21)

implicitly embedding guidance into the score function, with
ω the scale hyper-parameter.

Proof. Considering there is an implicit classifier denoted as
p̃ϕ(y | τ i), with Bayes Rule [43], we can expand it as

p̃ϕ(y | τ i) ∝ p̃θ,ϕ(τ
i,y)/pθ(τ

i).

Then gradient of this implicit classifier would be

∇τ log p̃ϕ(y | τ i) = ∇τ log p̃θ,ϕ(τ
i,y)−∇τ log pθ(τ

i).
(22)

Substitute Eq. 19 in RHS, we get

αΣ∇τ log p̃ϕ(y | τ i) = αΣ∇τ log p̃θ,ϕ(τ
i,y)

− αΣ∇τ log pθ(τ
i)

= −αϵ̂θ(τ i,y) + αϵθ(τ
i)

And then substitute Eq. 20 in LHS,

ϵθ(τ
i)− ϵθ(τ

i,y) = −αϵ̂θ(τ i,y) + αϵθ(τ
i)

αϵ̂θ(τ
i,y) = ϵθ(τ

i,y) + (α− 1)ϵθ(τ
i)

ϵ̂θ(τ
i,y) = (1/α)ϵθ(τ

i,y) + (1− 1/α)ϵθ(τ
i)

(23)

Let ω = 1/α, we obtain,

ϵ̂θ(τ
i,y) = (1− ω)ϵθ(τ

i) + ωϵθ(τ
i,y),

which is equal to Eq. 21.

Therefore, in classifier-free diffusion guidance, we only
need to train a single neural network to parameterize both
conditional score estimator ϵθ(τ

i,y) and unconditional
score estimator ϵθ(τ i), where for the unconditional model
we can set an empty set ∅ for the condition identifier y
when predicting the score, i.e. ϵθ(τ i) = ϵθ(τ

i,y = ∅).
Following the settings of [18], we jointly train the uncon-
ditional and conditional models simply by randomly setting
y to the unconditional class identifier ∅ with probability
β, which balances off the diversity and the relevance of the
conditional label of generated samples.

B. Pseudo-code of Training SkillDiffuser
As illustrated in Sec. 4.4, we provide the pseudocode for
our SkillDiffuser’s training process in Algorithm 1, detail-
ing its sequential stages and core mechanics. Additionally,
Algorithm 2 describes the inference process, illustrating its
steps of skill abstraction and trajectory generation.

Algorithm 1 Training process of SkillDiffuser

Input: Dataset D of partially observed trajectories with
paired language

{
τ ξ = (l, {it,at}T−1

t=0 )
}N

ξ=1
, size of

the skill set K and horizon H , pre-trained language and
visual encoder Φlang, Φim

1: Initialize skill predictor f , conditional diffusion model
M, skill embedding model Λ and inverse dynamics
model Ψ

2: Vector Quantization op q(·)
3: while not converged do
4: Sample τ = (l, {it,at}T−1

t=0 )
5: Initialize partially observed states S = {Φ(i0)}
6: for k = 0...⌊ TH ⌋ do ▷ Sample a skill every H steps
7: z ← q(f(Φlang(l), S))
8: Ldiff ←Mdiff (S,Λ(z)) ▷ Diffusing process
9: for step t = 1...H do

10: S ← S ∪ {Φ(ikH+t+1)}
11: ãkH+t ← Ψ([skH+t, skH+t+1], ikH+t) ▷

Predict action using inverse dynamics model
12: Linv = E

[
∥akH+t − ãkH+t∥22

]
13: Train Ψ with objective Linv

14: end for
15: Train f,Λ andM with objective LVQ + λLdiff

16: end for
17: end while

Algorithm 2 Inference process of SkillDiffuser

Input: Initial partial observation i0 and the language in-
struction l, pre-trained language and visual encoder
Φlang, Φim

Input: Trained skill predictor f , conditional diffusion
model M, skill embedding model Λ and inverse dy-
namics model Ψ

1: Initialize partially observed states S = {Φ(i0)}
2: for k = 0...⌊ TH ⌋ do ▷ Sample a skill every H steps
3: z ← q(f(Φlang(l), S))
4: S′ ←Mdenoise(S,Λ(z)) ▷ Denoising process
5: for step t = 1...H do
6: akH+t ← Ψ([skH+t, s

′
kH+t+1], ikH+t)

7: s̃kH+t+1 ← Env.step(akH+t) ▷ Take action
8: S ← S ∪ {s̃kH+t+1}
9: end for

10: end for
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Figure 5. Visualization of skill heat map on LOReL. We display the word frequency associated with a skill set of size 20 in LOReL,
normalized by column. The data’s sparsity and distinct highlights indicate certain language tokens are uniquely linked to specific skills.
There are eleven skills learned by our method.

Figure 6. Visualization of skill heat map on Meta-World Multi-
Task 10 (MT10). There are eight skills learned by our method.
(zoom in for best view)

C. More Visualizations

C.1. Visualization Results of Learned Skill Set

As mentioned before, we show the visualization results of
skill set on LOReL Sawyer Dataset in Fig. 5 and Meta-
World Multi-Task 10 (MT10) in Fig. 6. The visualization
results show that out of a 20-size skill-set, our SkillDif-
fuser learned 11 skills for LOReL (e.g. pull drawer han-
dle [skill 0], shut close container drawer [skill 15], etc.)
and 8 skills for Meta-World MT10 (e.g. open push window
[skill 0], open door with revolving joint [skill 16], etc.). The
results demonstrate strong skill abstraction abilities. For
example, the skill “shut close container drawer” abstracts
different expressions like “shut drawer”, “shut container”
into one skill semantic. In the heatmap, the presence of
distinct bright spots across eleven columns strongly reaf-

firms the model’s capability to discern and pinpoint specific
skills from visual inputs, in the absence of a pre-defined
skill library. This observation is not just a testament to
the model’s enhanced interpretative prowess over conven-
tional diffusion-based planning approaches but also marks
a remarkable stride in abstracting high-level skills into rep-
resentations that are intuitively understandable by humans.
Such evidence further validates the model’s proficiency in
sophisticated skill identification and representation.

C.2. Word Cloud of Learned Skills

We further show the word cloud of 8 learned skills of
LOReL Sawyer Dataset in Figure 7. From the results, we
can find that the model has successfully mastered eight key
skills, each closely linked to specific tasks. These skills
demonstrate strong robustness to ambiguous language in-
structions. For instance, skill 4 effectively abstracts the skill
of “open a drawer” from ambiguous expressions such as
“open a container”, “pull a dresser”, “pull a drawer” and
random combinations of these words. Similarly, skill 6 ex-
tracts the skill of “turn a faucet to the left”. This analy-
sis indicates our method’s resilience to varied and poorly
defined language inputs, confirming our SkillDiffuser can
competently interpret and act upon a wide range of linguis-
tic instructions, even those that are ambiguous or incom-
plete. These findings provide new perspectives and method-
ological guidance for future research in similar fields, espe-
cially in handling complex tasks with ambiguous language
instructions. We also provide the word cloud of learned
skills from Meta-World MT10 dataset in Fig. 8.
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Skill 1 Skill 2 Skill 3 Skill 4

Skill 5 Skill 6 Skill 7 Skill 8

Figure 7. Word cloud of learned skills in LOReL Sawyer Dataset. We show eight of them here with the size corresponding to the word
frequency in one skill.

Skill 1 Skill 2 Skill 3 Skill 4

Skill 5 Skill 6 Skill 7 Skill 8

Figure 8. Word cloud of learned skills in Meta-World MT10 Dataset. We show eight of them here with the size corresponding to the
word frequency in one skill.

D. Dataset Descriptions
D.1. LOReL Sawyer Dataset

Close Drawer

Figure 9. A sample instance of LOReL Sawyer Dataset. The
start and goal images correspond to the instruction “close drawer”.

Language-conditioned Offline Reward Learning dataset,
abbreviated as LOReL [29], contains trajectories originat-
ing from a reinforcement learning buffer which is gener-
ated by a random policy. The trajectories are sub-optimal
and have language annotations through crowd-sourcing.
Overall, the dataset encompasses approximately 50,000
language-annotated trajectories, each within a simulated en-
vironment featuring a Sawyer robot arm, with every demon-
stration extending over 20 discrete steps. A typical LOReL
Sawyer environment is shown in Fig. 9. We assess our ap-
proach using the same set of instructions as those outlined
in the original paper [29] which are described with their ob-
jectives in Tab. 6. These evaluation tasks are along with var-
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Task Description

Closing the Drawer Involves the robot’s precise manipulation of a drawer to close it, testing spatial
dynamics understanding and fine motor control.

Opening the Drawer Requires the robot to open a drawer, emphasizing its capability in tasks that
necessitate pulling and spatial navigation.

Turning the Faucet Left Assesses the robot’s precision in rotational movements for turning a faucet to
the left, a nuanced everyday action.

Turning the Faucet Right Tests the robot’s adaptability in mirrored instructions, involving turning the
faucet right, similar to the left turning task but in the opposite direction.

Pushing the Black Mug Right Requires the robot to push a specific object (black mug) to the right, testing its
skills in object recognition and directional movement.

Pushing the White Mug Down Involves pushing a different object (white mug) downward, further evaluating
the robot’s ability to differentiate objects and execute varied motion commands.

Table 6. Overview of tasks in LOReL Sawyer Dataset.

Instructions

open drawer and move black mug right
pull the handle and move black mug down

move white mug right
move black mug down

close drawer and turn faucet right
close drawer and turn faucet left

turn faucet left and move white mug down
turn faucet right and close drawer

move white mug down and turn faucet left
close the drawer, turn the faucet left and move black mug right

open drawer and turn faucet counterclockwise
slide the drawer closed and then shift white mug down

Table 7. LOReL composition tasks

ious rephrases of instructions which modify either the noun
(“unseen noun”), the verb (“unseen verb”), both (“unseen
noun+verb”), or entail a complete rewrite of the task (“hu-
man provided”), leading to a total of 77 distinct instructions
for all six tasks. This structure of tasks and rephrases en-
ables a comprehensive assessment of the robot’s ability to
interpret and execute a wide range of language-based com-
mands within the simulated environment.

D.2. LOReL Composition Tasks

We follow the same settings as LISA [13] to create 12 new
composition tasks through combining original evaluation
instructions as shown in Tab. 7.

Additionally, we also incorporate tasks such as “move
white mug right” and “move black mug down” to explore
the composition of skills related to colors (e.g., black and
white) and directions (e.g., right and down). This aims to
explore whether such skills can be combined to fulfill com-
plex instructions.

D.3. Meta-World Dataset

The Meta-World dataset establishes a new benchmark in the
field of multi-task and meta-reinforcement learning, offer-

Task Identifier Language Instruction

window-close push and close a window
window-open push and open a window

door-open open a door with a revolving joint
peg-insert-side insert a peg sideways to the goal point
drawer-open open a drawer
pick-place pick a puck, and place the puck to the goal

reach reach the goal point
button-press-topdown press the button from the top

push push the puck to the goal point
drawer-close push and close a drawer

Table 8. Annotated instructions for Meta-World MT10 tasks.

ing 50 unique robotic manipulation tasks. These tasks range
from simple to complex operations, providing researchers
with a diverse testing ground. Each task is meticulously de-
signed to ensure both challenge and common structural fea-
tures that can be leveraged in multi-task and meta-learning
algorithms. This design makes Meta-World an ideal choice
for assessing the effectiveness and adaptability of algo-
rithms in complex and variable task environments.

Particularly, the Multi-Task 10 (MT10) subset comprises
10 carefully selected tasks, where algorithms are trained
and subsequently tested on the same set of tasks. As shown
in Fig. 13, MT10 challenges algorithms’ learning and gen-
eralization capabilities in a multi-task environment, with the
aim to evaluate the consistency and efficiency of algorithms
in mastering multiple tasks, as well as their adaptability and
robustness in the face of diverse tasks. As there is currently
no widely-recognized instruction labeling of MT10, we pro-
vide our annotations here in Tab. 8.

We sample 100 trajectories for each task of MT10 and
form the expert dataset of 1000 trajectories. We have re-
leased our dataset with image observations on https:
//skilldiffuser.github.io.
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Figure 10. Resulting images from applying skill 11 of Fig. 5.
The black dashed line is a horizontal reference and please pay at-
tention to the red oval region. (zoom in for best view)

E. More Ablations
E.1. Ablation Study on Skill Interpretability

Resulting Images from Applying Discrete Skills We visual-
ize resulting images from applying skill 11 of Fig. 5 which
has grounding of “open, drawer, pull, dresser, container”
(ranked from high frequency to low ones), consistent with
its actual actions in Fig. 10. We can clearly observe a be-
havior of pulling the drawer. And we would like to clarify
not all skills have clear semantic or action correspondences,
while some do.

E.2. Ablation Study on Condition Guidance Weight

Classifier-free guidance is widely used in generative model
domain for its ability to act as temperature control when
setting guidance weight above 1 during inference. In all of
our experiments, we set guidance weight to 1.2 by default.
But we also conduct ablation study on the condition guid-
ance weight here in Tab. 9. From the results, we find the
guidance weight slightly greater than 1 helps the planner’s
performance, while excessive weight hurts.

Guidance Weight 1.0 1.2 1.8 3.0 5.0

Success Rate on Seen Tasks 39.33% 46.67% 38.86% 39.03% 33.50%

Table 9. Ablation on guidance weight. (5 episodes over 3 seeds.)

F. More Results
F.1. Task-wise Performance on LOReL Dataset

We further demonstrate the performance of our method and
other baselines on LOReL Sawyer dataset in Fig 11 and 12.
As can be seen from the figures, especially from Fig. 12,
our method’s average performance on 5 rephrases is nearly
10 percentage points higher than the previous SOTA, which
demonstrates its strong robustness against ambiguous lan-
guage instructions.

F.2. Task-wise Performance on Meta-World

We also provide the task-wise success rates on Meta-World
MT10 dataset in Fig. 14, achieved by Flat R3M [30],
Language-conditioned Diffuser and SkillDiffuser. The av-
erage performance is shown separately in the right figure.

From our experimental outcomes, it is clear to observe that
our SkillDiffuser demonstrates commendable performance,
particularly excelling in tasks involving mirrored instruc-
tions. SkillDiffuser exhibits an average performance en-
hancement of over 5% than previous language-conditioned
Diffuser, which highlights the model’s advanced capability
in understanding complex and ambiguous instructions com-
pared to traditional methods. It showcases SkillDiffuser’s
superior use of hierarchical architecture that employs inter-
pretable skill learning for diffusion-based planners to better
generate future trajectories.

G. Implementation Details

G.1. Hyper-parameters

Generally, we follow the settings illustrated in [13] with de-
tails specified in the following Tab. 10.

Hyper-parameter LOReL Meta-World

Skill Predictor Transformer Layers 1 1
Skill Predictor Embedding Dim 128 128
Skill Predictor Transformer Heads 4 4
Skill Set Code Dim 16 16
Skill Set Size 20 20
Dropout 0.1 0.1
Batch Size 256 64
Skill Predictor Learning Rate 1e-6 1e-5
Conditional Diffuser Learning Rate 1e-3 5e-3
Condition Guidance Weight 1.2 1.2
Inverse Dynamics Model Learning Rate 1e-3 5e-4
Diffuser Loss Weight 0.005 0.01
Horizon 8 8
VQ EMA Update 0.99 0.99
Skill Predictor and Diffuser Optimizer Adam Adam
Inverse Dynamics Model Optimizer Adam Adam

Table 10. Hyper-parameters of SkillDiffuser.

G.2. Architecture Details

1. We use 1 layer Transformer network for the skill predic-
tor and follow the implementation of VQ-VAE [45] to
achieve VQ operation.

2. The size of skill set is set to 20 and the planning horizon
is set to 8 for all implementations.

3. A temporal U-Net [36] with 6 repeated residual blocks is
employed to model the noise ϵθ of the diffusion process.
Each block is comprised of two temporal convolutions,
each followed by group norm [47], and a final Mish
non-linearity [26]. Timestep and skill embeddings are
generated by two separate single fully-connected layer
and added to the activation output after the first temporal
convolution of each block.

6



Figure 11. Task-wise success rates (in %) on LOReL Sawyer Dataset.

Figure 12. Rephrasal-wise success rates (in %) on LOReL Sawyer Dataset.

G.3. Training Details

1. We train our model with one NVIDIA A100 Core Ten-
sor GPU for about 45 hours in LOReL Sawyer dataset
and about 24 hours in Meta-World MT10 dataset (1000
trajectories in total).

2. In both LOReL and Meta-World dataset, the skill pre-
dictor and diffusion model are trained with Adam op-
timizer [21] using a learning rate of 1 × 10−3 for the
diffusion model, 1× 10−6 for the LOReL skill predictor
while 1× 10−5 for Meta-World skill predictor. We only
update parameters of Meta-World skill predictor every
ten iterations. The inverse dynamics model is updated
with Adam optimizer as well.

3. The batch size is set to 256 for LOReL Sawyer dataset
and 64 for Meta-World MT10 dataset.

4. The training steps of the diffusion model are 5K for
LOReL Sawyer dataset and 8K for Meta-World MT10
dataset. And the training epochs of the skill predictor are
500 for both datasets.

5. The planning horizon T of diffusion model is set to 100
and the denoising steps are set to 200 for all tasks.
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window-close window-open peg-insert-sidedoor-open drawer-open

pick-place button-press-topdown push drawer-closereach

Figure 13. Partially visual observations of all the 10 tasks in Meta-World MT10 Dataset.

Figure 14. Task-wise success rates (in %) on Meta-World MT10 Dataset.
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