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The qualitative reliability of the dynamical mean field theory (DMFT) is investigated for systems
in which either the actual carrier density or the effective carrier density is low, by comparing the
exact perturbative and dynamical mean field expressions of electron scattering rates and optical con-
ductivities. We study two interacting systems: tight binding models in which the chemical potential
is near a band edge and Dirac systems in which the chemical potential is near the Dirac point. In
both systems it is found that DMFT underestimates the low frequency, near-Fermi surface single
particle scattering rate by a factor proportional to the particle density. The quasiparticle effective
mass is qualitatively incorrect for the low density tight binding model but not necessarily for Dirac
systems. The dissipative part of the optical conductivity is more subtle: in the exact calculation
vertex corrections, typically neglected in DMFT calculations, suppress the low frequency optical
absorption, compensating for some of the DMFT underestimate of the scattering rate. The role
of vertex corrections in calculating the conductivity for Dirac systems is clarified and a systematic
discussion is given of the approach to the Galilean/Lorentz invariant low density limit. Relevance
to recent calculations related to Weyl metals is discussed.

I. INTRODUCTION

The dynamical mean field approximation is an extraor-
dinarily useful tool for computing and understanding the
properties of correlated electron systems in both model
system [1] and real materials [2, 3] contexts. The ap-
proximation becomes exact in an infinite dimensional or
infinite coordination number limit in which the electron
self energy is momentum independent and it is believed
to be reasonably accurate when the momentum depen-
dence of the self energy is weak relative to the frequency
dependence, as occurs for example in lattice models with
typical band fillings. However, for low electron density
one may expect the physics to be described by a theory
with an effective Galilean or Lorentz invariance, implying
significant momentum dependence of the electronic self
energy and therefore a breakdown in the reliability of the
DMFT approximation. While it has been generally un-
derstood since the earliest days of the dynamical mean
field approximation that the approximation was likely to
break down near band edges [1] a systematic study has
been lacking.

‘Dirac’ and ‘Weyl’ materials, semimetals in which a
protected band crossing creates Dirac points at which
the density of states vanishes, are of intense recent in-
terest [4]. These materials typically have a high density
of electrons (roughly one per unit cell in the conduction
bands) but are in a sense low density systems because
if the fermi level is near the Dirac point and there are
no extended Fermi surface regions, the density of mobile
electrons may be small. Dynamical mean field theory
has nevertheless been applied [5–7] and it is therefore of
interest to understand the limits of applicability of the

dynamical mean field approximation in this case.
In a previous paper [8] we compared DMFT and per-

turbatively exact expressions for the optical conductiv-
ity of the two dimensional Hubbard model over a wide
density range. Here we extend the analysis to three di-
mensional Hubbard and Dirac systems, consider the self
energy in more detail and provide a systematic exami-
nation of the low density limit. We find that the dy-
namical mean field approximation qualitatively under-
estimates the low frequency part of the imaginary part
of the self energy by a factor proportional to the particle
density, calling into question some of the results obtained
in references [6, 7]. For the two and three dimensional
tight binding models (throughout the paper tight binding
model refers to one band Hubbard model) with chemical
potential near the band edge, we find that DMFT also
fails to capture the quaisparticle mass enhancement cor-
rectly. However, for three dimensional Dirac systems,
dynamical mean field theory may provide a reasonable
approximation to the real part of the electron self energy
and therefore to the quasiparticle mass enhancement and
the critical interaction strength required to drive a Mott
transition.
The important features of our result can be understood

from a scaling argument. In a system with a continu-
ous translation invariance relevant energy scales are the
chemical potential, the frequency and the temperature.
At temperature T = 0 we expect

ImΣ(ω, k) = µCI

(
ω

µ
,
k

kF

)
, (1)

with C a constant determined by the interactions and
density of states, I a scaling function and Fermi momen-
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tum kF ∝ µλ (λ = 1
2 for Galilean and = 1 for Lorentz-

invariant systems). A continuous translation invariance
can emerge as a low density limit of a lattice model, in
which case one would expect Eq. (1) to hold in a low den-
sity/low frequency limit/small k limit (µ → 0, ω/µ and
k/kF of order unity). In a translation invariant Fermi liq-
uid one expects that at ω → 0 for kinematic reasons the
leading ω2 term in ImΣ vanishes for k > 3kF , so at low
frequency ImΣ has a strong momentum dependence on
the scale of kF . The dynamical mean field approximation
in effect approximates the full frequency and momentum
dependent self energy by its average over the Brillouin
zone; the vanishing of ImΣ for k > 3kF means that the
function that is being averaged vanishes over most of inte-
gration range so that the DMFT approximation gives an
estimate for the low frequency self energy that isO(kFa)

d

smaller than the actual value at the Fermi surface.
A further issue arises for transport: in Galilean and

Lorentz-invariant systems the scattering processes that
contribute to ImΣ approximately conserve current so the
transport scattering rate may be expected to be much
smaller than the quasiparticle rate. In diagrammatic cal-
culations the difference between the transport and quasi-
particle scattering rates is encoded in vertex corrections
which are neglected in practical DMFT calculations. We
find that for the low density tight binding model the
DMFT underestimation of the quasiparticle rate is to
a large degree compensated by the neglect of the vertex
corrections. In Dirac systems additional issues arise that
will be discussed below.

The rest of this paper presents the calculations that
substantiate the scaling arguments and clarify the issues
of vertex corrections and the approach to the low den-
sity limit. In Section II we present results for the self
energy and low frequency conductivity for tight binding
models at low carrier density. In Section III we present
results for the self energy and low frequency conductivity
for the three dimensional Dirac system. Section IV is a
conclusion. Appendices A and B give details of some of
the calculations.

II. LOW DENSITY SYSTEMS

A. Formalism

We analyse the one-band Hubbard model [9–18],

H =
∑
k⃗σ

(Ek⃗ − µ)c†
k⃗σ
ck⃗σ + U

∑
i

ni↑ni↓, (2)

with interaction U , dispersion Ek, lattice constant a
and chemical potential µ. We work in units where
ℏ = c = e2 = kB = 1 throughout the paper and define
β as the inverse temperature. We are interested in low
densities, corresponding to Fermi wave vector kF small
compared to the lattice constant (kFa ≪ 1) or alterna-
tively chemical potential µ close to the lower band edge

(µ−min(Ek⃗) ≪ W = max(Ek⃗)−min(Ek⃗)) and work to
second order in U .

B. Electron self-energy

The perturbative self energy of interacting electron sys-
tems Hubbard models has been extensively studied (see
[19–23] for some of the original work and references). We
recapitulate the calculations here to obtain expressions
in forms convenient for our subsequent analysis.
The imaginary part of the second order perturbation

theory expression for the electron self energy may be ex-
pressed in terms of the noninteracting electron spectral

function A(k⃗, x) = πδ(x+µ−Ek⃗) and the Fermi (f) and
Bose (n) distribution functions as

ImΣ(k, ω) = −U2a2d
∫

ddp⃗1
(2π)d

ddp⃗2
(2π)d

∫
dxdy

π2
A(p⃗1, x)A(p⃗2, y)

A(p⃗1 + p⃗2 − k⃗, x+ y − ω) (f(x)− f(x+ y − ω))

× (f(y) + n(y − ω)) , (3)

where f(x) =
1

eβx + 1
and n(x) =

1

eβx − 1
. The momen-

tum integrals are over the Brillouin zone. At zero tem-
perature, we have f(x) = Θ(−x) and n(x) = Θ(x) − 1,
where Θ(x) is the Heaviside function.
At temperature T and frequency ω low with respect

to the bandwidth W (T, ω ≪ W ) and small momenta
(ka ≪ 1), the dispersion can be taken to be quadratic,

Ek⃗ =
k2

2m
with µ =

k2F
2m

and as shown in Appendix A

Eq. (3) can be explicitly written in a scaling form. We
present the result here at T = 0,

ImΣ(k, ω) = −π(
U

EL
)2(akF )

2d−4 µ

(2π)2d
I(

ω

µ
,
k

kω
),(4)

where EL =
1

2ma2
is a lattice scale energy, the factor

(akF )
2d−4 expresses the scaling of the density of states

as the band edge is approached and

I(
ω

µ
,
k

kω
) =

∫ 1+ω
µ

1

dxx
d−2
2

∫ 2+ω
µ−x

max[1,1+ω
µ−x]

dyy
d−2
2

∫
dΩxdΩy

1 + ω
µ

×δ

(
1 +

k2

k2ω
+ 2

√
x
√
ycosθxy

1 + ω
µ

− 2

√
xcosθxk +

√
ycosθyk√

1 + ω
µ

k

kω

)
,

kω =
√
k2F + 2mω = kF

√
1 +

ω

µ
. (5)

The rotational invariance of the low energy theory

implies I(
ω

µ
,
k

kω
) only depends on the magnitude of k.

Eq. (4) follows directly from scaling the dimensional fac-
tors out of the fundamental Eq. (3) and expresses the
imaginary part of the self energy in the intuitively ap-
pealing form of the energy scale of the low energy theory
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(µ) times π times the square of an interaction (made di-
mensionaless via a lattice scale energy) times the square
of a density of states. However for comparison with sub-
sequent work it is convenient to note that in the low
density limit of a short ranged interaction model inter-
action effects are themselves proportional to the particle

density (including spin degeneracy) n = 2(akF )
d Ωd

d(2π)d
,

where Ωd is the solid angle of the unit sphere in d dimen-
sions, and to rewrite Eq. (4) as

ImΣ(k, ω) = −πEL(
U

EL
)2n

d

2(2π)dΩd

(
µ

EL

) d−2
2

I(
ω

µ
,
k

kω
).

(6)

From Eq. (5) one may easily see that for ω/µ ≪ 1,
x and y are almost unity, so the delta function can’t be
satisfied for k/kF > 3, implying that in the low density
limit for small ω the imaginary part of the self energy is
zero for most of the Brillouin zone. For large ω (W ≫
ω ≫ µ), x and y can be of order ω/µ, so the delta function

could still be satisfied for k ∼ kω →
√
2mω. Thus as

frequency is increased the range of k over which ImΣ ̸= 0
increases and for large enough ω the imaginary part of
the self energy is nonzero throughout the whole Brillouin
zone, although of course the formulas derived above no
longer hold.

In the low frequency limit (ω ≪ µ) we have explicitly
kω → kF and

I(
ω

µ
→ 0,

k

kF
) =

1

8
(
ω

µ
)2F (

k

kF
), (7)

with F a scaling function given explicitly in Appendix A
and plotted for d = 2 and 3 in Fig. 1.
In the high frequency limit (W ≫ ω ≫ µ), kω →√
2mω and we find (see Appendix A)

I(
ω

µ
≫ 1,

k

kω
) =

Ωd

d
(
ω

µ
)

d−2
2 G(

k√
2mω

), (8)

with G a scaling function given explicitly in Appendix A
and plotted for d = 2 and 3 in Fig. 2. This scaling means
that the self energy becomes independent of µ and varies

with frequency as ω
d−2
2 (of course ImΣ still depends on

density via the interaction term (U/EL)
2n). From the

plot we can see that G( k√
2mω

) goes to a constant for

k < kω =
√
2mω, so that when ω is very large we expect

ImΣ(k, ω) to be nonzero over the whole Brillouin zone,
although of course the exact expression will differ from
Eq. (8).

The second order perturbation theory expression for
the dynamical mean field approximation to the self en-
ergy is

ImΣDMFT(ω) = −U2a2d
∫

ddp⃗1
(2π)d

ddp⃗2
(2π)d

ddp⃗3
(2π)d

∫
dxdy

π2

A(p⃗1, x)A(p⃗2, y)A(p⃗3, x+ y − ω)

× (f(x)− f(x+ y − ω)) (f(y) + n(y − ω)) ,

(9)
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FIG. 1. Scaling function F (Eq. (7)) shown as a function of
k
kF

in two (top panel) and three (bottom panel) dimensions.

In the two dimensional case the peak at k = kF is a loga-
rithmic divergence related to the subleading singularity that
gives rise to the |T | correction to the specific heat coeffient
extensively discussed in the literature [22, 23]. Because the
singularity is integrable it does not affect the conductivity.
We can clearly see that F vanishes when k > 3kF .

and is seen to be the average, over the Brillouin zone, of
the exact perturbative expression implying for µ, ω ≪ W
that

ImΣDMFT(ω) = −πEL(
U

EL
)2n

d

2(2π)dΩd

(
µ

EL

) d−2
2

(akω)
d

× Ωd

(2π)d

∫
xd−1dxI(

ω

µ
, x). (10)

Since the imaginary part of the perturbative self energy
is negligibly small in most of the Brillouin zone (i.e. for
k ≫ kω) we may extend the x integral to infinity. The
additional factor of (akω)

d shows that at low frequen-
cies (kω → kF ) the dynamical mean field approximation
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FIG. 2. Scaling function G (Eq. (8)) shown as a function
of k√

2mω
in two (top panel) and three (bottom panel) dimen-

sions. We can clearly see that G vanishes when k√
2mω

>
√
2.

underestimates the near Fermi surface electron-electron
scattering rate by one factor of density; as the frequency
is increased the underestimate becomes less severe and
for ω ∼ W , kωa ∼ 1 and the DMFT approximation may
become reasonable. In the low frequency limit, we obtain

ImΣDMFT(ω) = −(
U

EL
)2(akF )

3d−4 π

(2π)3d
1

16
µ(

ω

µ
)2(Ωd)

3.

(11)

We finally consider the quasiparticle weight (mass
renormalization),

∂Reσ(ω, kF )

∂ω

∣∣∣∣
ω→0

∼ P
∫

dx

π

ImΣ(x, kF )

(ω − x)2

∣∣∣∣
ω→0

. (12)

For x ≪ µ, ImΣ ∼ x2 while for x ≫ µ, ImΣ ∼ x
d−2
2 , so

that for two and three dimensions, the integral is dom-

inated by x ∼ µ; a frequency range where ImΣ is not
accurately captured by DMFT. To sum up, in the low
density limit of lattice fermion models, DMFT paramet-
rically underestimates the low frequency single particle
scattering rate and mass enhancement.

C. Optical conductivity

We now turn to the optical conductivity (response to
a long wavelength frequency dependent transverse elec-
tric field). The optical conductivity is determined by the
ability of collisions to degrade momentum; in a Galilean-
invariant system electron-electron interactions conserve
momentum and therefore do not affect the conductivity.
In the dilute limit of a lattice model the physics is nearly
Galilean-invariant and the effect of interactions on the
conductivity is expected to be small. We explore this
issue by computing the frequency dependenent conduc-
tivity perturbatively to second order in the interaction
strength at zero temperature. To understand the cal-
culation it is useful to consider the “extended Drude”
expression for the conductivity,

σ(ω) =
K

−i(1 + Λ(ω))ω + Γ(ω)
. (13)

Here 1+Λ may be thought of as the “optical mass renor-
malization” and Γ as a frequency dependent optical scat-
tering rate, which in a simple picture of momentum inde-
pendent scattering is twice the single-particle scattering
rate. K =

neff

m is a basic measure of the density of mo-
bile carriers. In a fermi liquid at low ω and T = 0 one
expects Γ ∼ γ0ω

2 while as ω → 0 Λ(ω) goes to a con-
stant Λ0 so that limω→0Re[σ(ω)] is a constant equal to

Kγ0

(1+Λ0)2
. In the small interaction limit γ0,Λ0 ∝ U2 so

Reσ(ω → 0) → Kγ0 and in the dilute limit K = n/m
where n is the particle density and m is the bare mass
(coefficient of the term quadratic in k in the bare dis-
persion). Comparison of the γ0 obtained from the direct
calculation of the conductivity to the coefficient of ω2 in
the ω → 0 limit of the self energy characterizes the low
frequency vertex correction.
We compute the conductivity perturbatively at zero

temperature via the force-force correlation function
method [24]. The formalism was described in detail
in [8]. The essential idea is to write the conductivity
in terms of the current-current correlation function χjj

as σ(ω) = (−K + χjj(ω)) /iω and integrate the expres-
sion for χjj by parts twice, noting that time derivatives
correspond to commutators with the Hamiltonian. The
current-current correlation function is a tensor in spatial
indices ν and ν′ and on the Matsubara axis

χν,ν′

jj (iωn) = − 1

(iωn)2

∫ β

0

dτeiωnτ ⟨TτFν(τ)Fν′(0)⟩ ,

(14)

where Fν = [H, jν ] is the force operator along direction
ν.
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For the Hubbard model, [H, jν ] ∼ U so to leading per-
turbative order the expectation value in the force-force
correlation function may be evaluated at U = 0. We find
for the hypercubic lattice Hubbard model at T = 0 where
σ is the unit matrix [8]

Reσν,ν(ω) = U2 π

ω3

∑
k⃗k⃗′q⃗

f(εk⃗)f(εk⃗′)(1− f(εk⃗′−q⃗))

(1− f(εk⃗+q⃗))(v
ν
k⃗+q⃗

+ vν
k⃗′−q⃗

− vν
k⃗
− vν

k⃗′)
2

×δ(ω + εk⃗ + εk⃗′ − εk⃗′−q⃗ − εk⃗+q⃗), (15)

where εk⃗ = Ek⃗ − µ and vν
k⃗
= ∂εk⃗/∂k

ν .

We see immediately from Eq. (15) that if the energy
is quadratic (as is the case in Galilean-invariant or low

density systems) the velocity is linear in k⃗ and the factor
(vν

k⃗+q⃗
+ vν

k⃗′−q⃗
− vν

k⃗
− vν

k⃗′)
2 vanishes. The leading low-

density contribution is obtained by expanding the veloc-
ity beyond quadratic order; because the velocity operator
is odd in momentum this means the leading contribution
to (vν

k⃗+q⃗
+vν

k⃗′−q⃗
−vν

k⃗
−vν

k⃗′)
2 is ∼ (kFa)

6. We write results

specifically for a cubic lattice tight binding model with
dispersion εk⃗ = −2t(cos(kxa)+cos(kya)+cos(kza)). Ex-
panding the dispersion near k = 0 identifies the mass as
m = 1

2ta2 . The z direction velocity is vz
k⃗
= 2ta sin(kza) ≈

2ta(kza − (kza)
3

6 ). Evaluation of Eq. (15) for low fre-

quency ω ≪ µ yields Reσ(ω) ≈ U2m2a6(kFa)
7 1
(2π)9 0.24π

(see Appendix A) per unit cell. It is instructive to
express the result as a combination of n/m, the sin-
gle particle scattering rate divided by frequency squared
2/3ImΣ(kF , ω)/ω

2 (the 2 from the standard relation be-
tween the single particle and optical scattering rates and
the 1/3 because in the absence of vertex corrections the
conductivity is an average of Σ ∼ ω2 over a range of
frequencies from 0 to ω) and the vertex correction

Reσperturb(ω ≪ µ) ≈ n

m

2ImΣ(kF , ω)

3ω2

9× 0.24

64π3
(kFa)

4

∼ n

m
(kFa)

4. (16)

We see that the vertex correction suppresses the con-
ductivity by a factor ∼ (kFa)

4 ∼ n
4
3 with a numerical

factor which is also very small.
We now examine the DMFT approximation to the con-

ductivity. Since the self energy is local, only the self en-
ergy diagrams remain and vertex corrections vanish (see
Appendix A). The closed-form expression is obtained in
our previous paper [8]

Reσν,ν(ω) = U2 π

ω3

∑
k⃗k⃗′p⃗1p⃗2

f(εk⃗)f(εk⃗′)(1− f(εp⃗1
))

(1− f(εp⃗2
))
[
vν
k⃗

2 + vν
k⃗′

2 + vνp⃗1

2 + vνp⃗2

2
]

×δ(εk⃗ + εk⃗′ + ω − εp⃗1
− εp⃗2

). (17)

Since the integrand in Eq. (17) is always positive,
we can just use the quadratic dispersion, and as a

result the velocities are of linear order in ka. We
obtain the low frequency conductivity per unit cell

Reσ(ω) = U2m2a6(kFa)
6 (4π)4

(2π)12
2
9π. This may be writ-

ten using the low frequency limit of the DMFT scatter-
ing rate ImΣDMFT(ω) = gDMFTω

2 with gDMFT extracted
from Eq. (11) as

ReσDMFT(ω ≪ µ) =
n

m

2ImΣDMFT (ω)

3ω2
∼ n

m
(kFa)

3.

(18)
We see that the DMFT underestimate of ImΣ by three
factors of kFa partially compensates for the neglect of
vertex corrections (kFa)

4.

III. DIRAC SYSTEMS

A. Hamiltonian and formalism

We now turn to Dirac/Weyl systems and focus on the
three dimensional case to provide a straightforward com-
parison to previous DMFT-based work [6]. The new
features relative to the previous section arise from the
Lorentz, rather than Galilean, invariance of the low en-
ergy theory, implying among other things the presence
of a low-lying interband transition that breaks current
conservation. Also the linear dispersion and low chem-
ical potential means that many features of the electron
propagator and self energy are dictated by simple scaling
considerations. Finally, at low T and nonzero chemical
potential one may consider projecting onto the partially
filled band. As noted in Ref. [25] this projection is non-
trivial.
We follow Ref. [6] and consider a lattice model with two

orbitals and two spin states per site and a microscopic
(lattice) length scale a. At low energies and for momenta
near the Dirac point (which we take to be k = 0), the
kinetic (non-interacting) part of the Hamiltonian is

Hkin = v
∑
k⃗

Ψ†
k⃗
σz ⊗ (k⃗ · τ⃗)Ψk⃗, (19)

where Ψk⃗ is a four-component spinor. σz and τ⃗ are Pauli
matrices representing spin and orbital degrees of free-
dom and the velocity v in combination with the length a
sets the bare energy scales of the model. Hkin describes
physics at momenta ka ≪ 1 and energies ω and tem-
peratures T ≪ v/a and we will be interested in lightly
doped systems with chemical potentials 0 < |µ| ≪ v

a .
The energy dispersion and occupied states are sketched
in Fig. 5a.
In a model with multiple orbitals per unit cell the in-

teraction may take various forms. For ease of notation
we take the interaction to be

Hint = U
∑
i

Ψ†
i,↑Ψi,↑Ψ

†
i,↓Ψi,↓, (20)

where Ψi,↑ is a spin-up two-component spinor describing
the orbitals on site i and Ψ†Ψ denotes contraction to a
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scalar in orbital space so that the interaction is invariant
under orbital rotation. Notice that Ref. [6] uses an inter-
action with no interorbital terms, breaking the rotation
invariance of Hkin in orbital space down to a rotation
about the z axis. This difference changes some details of
the calculation (in particular the conductivity tensor will
not be isotropic, with σzz ̸= σxx,yy) but doesn’t affect
our qualitative conclusions.

We define the Green function, a matrix in the spin-
orbital basis, in terms of the bare Hamiltonian and the
self energy Σ, also a matrix in the spin-orbital basis, as

G(k⃗, iωn) =
(
(iωn + µ)1−Hkin − Σ(k⃗, iωn)

)−1

. (21)

Since the interaction is rotationally invariant, the sym-
metries of the problem dictate that the self energy takes
the form

Σ(k⃗, ω) = Σ0(k, ω)σz ⊗ 1+Σ1(k, ω)σz ⊗ k̂ · τ⃗ , (22)

where k̂ = k⃗/|k| is a unit vector parallel to k⃗.
The bare Green function G0, given by Eq. (21) with

Σ = 0, can be written as a function of general complex
frequency argument z. We have

G0(k⃗, z) =

∫
dx

π

A(k⃗, x)

z − x
, (23)

where the non-interacting spectral function A = A++A−
is a matrix in the basis of orbitals with ± referring to the
upper and lower bands respectively and

A±(k⃗, ω) =
π

2

(
1± σz ⊗ k̂ · τ⃗

)
δ(ω + µ∓ vk). (24)

B. Self energy

To order U2 in the orbital basis the self energy is

ImΣ↑,ab(k⃗, ω) = −U2a6
∫

d3p⃗1
(2π)3

d3p⃗2
(2π)3

∫
dxdy

π2
A↑,ab(p⃗1, x)

A↓,cd(p⃗2, y)A
↓,dc(p⃗1 + p⃗2 − k⃗, x+ y − ω)

× (f(x)− f(x+ y − ω)) (f(y) + n(y − ω)) .

(25)

We first evaluate Eq. (25) at T = 0 with chemical
potential µ > 0 and restrict to frequency ω > 0. See
Appendix B for details. The self energy has a scaling
form similar to that found for the low density case

ImΣ↑,ab(k⃗, ω) = −πEL
U2

E2
L

(kωa)
5

(2π)6
1

8
Iab
(
ω

µ
,
k

kω

)
,(26)

with EL = v/a,

kω =
ω

v
+ kF . (27)

and kF = µ/v.

For ω ≪ µ, kω → kF and we have

I

(
ω

µ
,
k

kF

)
= (

ω

µ
)2
(
F0(

k

kF
)1+ F1(

k

kF
)k̂ · τ⃗

)
, (28)

with F0 and F1 are shown in Fig. 3.
For ω ≫ µ, kω → ω/v and we have

I

(
ω

µ
,
k

kω

)
= G0

(
k
ω
v

)
1+G1

(
k
ω
v

)
k̂ · τ⃗ , (29)

with G0 and G1 shown in Fig. 4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k/kF

0

20

40

60

80

100

120

F0

3D Dirac model

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k/kF

0

10

20

30

40

50

F1

3D Dirac model

(b)

FIG. 3. The dependence of F0 (panel (a)) and F1 (panel (b))
on k

kF
in three dimension Dirac system. We can clearly see

that F0 and F1 vanish when k > 3kF .

Very similar considerations apply to the case of T ̸= 0
and µ = 0. In terms of dimensionless variables we find

ImΣ(k⃗, ω) = −πEL
U2

E2
L

(k(T,ω)a)
5

(2π)6
1

8
IT

(
ω

T
,

k

k(T,ω)

)
,

(30)
where for ω ≪ T , k(T,ω) → kT = T

v and for ω ≫ T ,
k(T,ω) → kω (an analytic expression for k(T,ω) valid for all
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vk/

0.000

0.025

0.050

0.075

0.100

0.125

0.150

G0

3D Dirac model

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
vk/

0.00
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0.02

0.03

0.04

0.05

0.06

G1

3D Dirac model

(b)

FIG. 4. The dependence of G0 (panel (a)) and G1 (panel (b))
on vk

ω
in three dimension Dirac system. We can clearly see

that G0 and G1 vanish when vk > ω.

T/ω is not available). We do not present the expression
for IT here. As in the previous cases, Σ becomes very
small for k ≫ k(T,ω), here decaying exponentially.

The content of Eqs. (26), (30) is that in a low density,
low frequency, low temperature limit the self energy may
be written as the product of ω5, µ5 or T 5 (whichever
is largest), and a scaling function of ω/(max(vk, µ, T ))
and k/(max(kF , kT , kω)). The usual Fermi liquid argu-
ments imply that this general structure of the low fre-
quency imaginary part of the self energy applies even
beyond the perturbative limit studied here, at least for
frequencies less than µ and T although the magnitude
of the prefactor and the form of the k/(max(kF , kT , kω))
dependence will depend on the interaction strength. In
particular, the vanishing of ImΣ for k ≫ max(kF , kT , kω)
is expected to be general.

We now consider the dynamical mean field approxima-
tion. Analogous to the derivation of Eq. (9), we obtain

Eq. (31) but with an extra momentum integral:

ImΣ↑,ab
DMFT(ω) = −U2a9

∫
d3p⃗1
(2π)3

d3p⃗2
(2π)3

d3p⃗3
(2π)3

∫
dxdy

π2

A↑,ab(p1, x)A
↓,cd(p2, y)A

↓,dc(p3, x+ y − ω)

× (f(x)− f(x+ y − ω)) (f(y) + n(y − ω)) . (31)

The extra momentum integrals lead to the vanishing
of the orbital-dependent terms in A0. For T = 0 and
µ > 0, when ω is small,

ImΣ↑
DMFT(ω, T = 0) = −EL

U2

E2
L

(
ω

µ
)2
(kFa)

8

128π5
, (32)

while for T ̸= 0 and µ = 0 we obtain

ImΣ↑
DMFT(ω = 0, T ) = −1779.1

8π5
EL

U2

E2
L

(kTa)
8. (33)

The T 8 dependence in Eq. (33) is the same power law
as obtained by DMFT calculations in Ref. [6].
We may understand the difference between the DMFT

results Eqs. (32), (33) and the perturbative results,
Eq. (26) and Eq. (30), via the argument that justified
Eq. (10) in the previous section. Since at low frequency
the imaginary part of the perturbative self energy van-
ishes for k/kF ≳ 1, by doing the average you get an
extra factor (kFa)

3. Similar arguments hold for the
µ = 0, T ̸= 0 case, where by doing the average you get
an extra (kTa)

3. We can clearly see that DMFT gives
wrong exponents compared to the perturbative results.
For high frequency, same arguments as in the previous
section hold, where DMFT self energy is reasonable.
Turning now to the real part of the self energy, given

by

ReΣ(ω, kF )

∣∣∣∣
ω→0

∼ P
∫

dx

π

ImΣ(x, kF )

ω − x

∣∣∣∣
ω→0

∼ P
∫

dx

π

x5G( vkF

x )

ω − x
. (34)

Examination of this expression reveals that for the three
dimensional Dirac system, the integral diverges for large
x because G( vkF

x ) approaches a constant for vkF

x → 0.
The divergence is cut off when x reaches a lattice scale
energy v/a. This means that the real part of the self en-
ergy and therefore the mass enhancement are dominated
by ImΣ at lattice scales, where we expect the self energy
to have only relatively weak momentum dependence and
therefore to be reasonably approximated by DMFT.
To sum up, in the 3D Dirac system the DMFT ap-

proximation for the imaginary part of the low frequency
self energy is incorrect because it strongly underestimates
low frequency near Fermi surface single particle scatter-
ing rate, but may be a reasonable approximation to the
real part of the self energy and therefore may get issues
like the location of the Mott transition right.
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C. Optical conductivity

We evaluate the conductivity at zero temperature and
nonzero µ, to second order in the interaction strength,
using the force-force correlation function formalism. The
optical conductivity of Dirac systems has additional fea-
tures relative to the tight binding systems because the
Lorentz, rather than Galilean, invariance of the low en-
ergy theory among other things means that a low energy
(threshold 2µ) interband transition leads to current non-
conservation although momentum is conserved. We focus
on the low frequency limit ω ≪ µ so that real interband
transitions are not relevant.

We consider the z direction current, which is given by

jz =
∂Hkin

∂kz
= v

∑
k⃗

Ψ†
k⃗
σz ⊗ τzΨk⃗. Our rotationally in-

variantHint commutes with jz: current non-conservation
arises wholly from the interband transitions in the non-
interacting part so the force operator is

Fz = [Hkin, jz] = 2iv2
∑
k⃗,γ

Ψ†
k⃗,γ

(τ⃗ × k⃗) · ẑΨk⃗,γ , (35)

where γ is the spin index. In the energy basis that diag-
onalizes Hkin, Fz has only off-diagoanl matrix elements,
reflecting the role of interband transitions in breaking
current conservation. Unlike in the low density tight
binding model case, where the force operator was pro-
portional to the interaction and the force-force correla-
tion function could be evaluated in the non-interacting
limit, here the force-force correlation function must be
evaulated to seconrd order in the interaction strength.

Constructing the force-force correlation function as be-
fore to second order in U we find the eight diagrams
shown in Fig. 6 and representing an energy dissipation
process that involves photon absorption via a virtual
interband transition followed by an interaction-induced
downscattering to fill the hole in the lower band. In each
diagram there are six fermion lines; the band off-diagonal
nature of F means that at least two of the fermion lines
lie in the lower (filled) bands. At |ω| < µ obtaining a non-
zero conductivity requires that all four remaining lines lie
in the upper bands and the diagrams are distinguished
in part by the assignment of band indices to the Green
function lines. In drawing the diagrams it is also con-
venient to distinguish different spins (solid and dashed
lines) because at the interaction vertex the incoming and
outgoing line of the same spin also have the same orbital
index. The diagrams may be organized into self energy
diagrams (“type one”, panel a), and three kinds of vertex
correction diagrams (types 2-4, panels b-d) distinguished
by the nature of the inter/intra-orbital scattering and
by whether the vertex correction involves a particle-hole
(types two and three) or particle-particle (type 4) pair.

The diagrams are evaluated in Appendix B. Each di-
agram gives a contribution to the optical conductiv-
ity that is a constant plus terms of higher power in
frequency. The constant contribution of a diagram of

type j is cj
1

(2π)9
1
26

4096
135 π4 U2

( v
a )2 (kFa)

5a2 per unit cell. We

find c1 = 1, c2 = − 3
7 and c3 = c4 = − 2

7 so that
c1 + c2 + c3 + c4 = 0 and the diagrams exactly cancel
implying that the low frequency optical conductivity ap-
proaches zero as ω → 0, with the first correction ∼ ω2,
as shown in Fig. 5b, implying a transport scattering rate
∼ ω4.

An alternate approach to computing the conductiv-
ity at |ω| ≪ µ is to project the Hamiltonian onto the
partially occupied band. The current operator becomes
the velocity in the relevant direction and the interaction
acquires a non-trivial momentum dependence. The topo-
logical/geometric phase considerations noted in [25] are
higher order in the interaction amd frequency. Applying
the force-force method to this effective one band model
also leads to a conductivity ∼ ω2.

k

E

µ

(a)

ω

σ(ω)

2µ

(b)

FIG. 5. (a) Sketch of dispersion showing filled states below
chemical potential (dashed line). The arrows represent intra-
band and interband transitions. (b) Sketch of optical conduc-
tivity of 3D Dirac system. Dashed line represents intraband
transition and solid line represents interband transition.



9

The dynamical mean field approximation to the con-
ductivity is subtle. In the one band tight binding model
the vectorial nature of the current operator means that
in the DMFT approximation the current vertex van-
ishes, so the conductivity may be evaluated just from
the self energy diagrams. However, in the Dirac system,
the current operator jz ∼ τz has interband terms that
are not odd in momentum, which would be subject to
vertex corrections even in a momentum-independent self
energy approximation. As noted above, the projection
onto the conduction band leads to an interaction with
an explicit momentum dependence that is important in
the calculation of the current-current correlation func-
tion. Thus even within a momentum-independent self
energy approximation, properly defining a DMFT ap-
proximation requires care. However in general in this
approximation one would expect that Re[σ(ω → 0)] ̸=
0. For example, evaluating the current-current correla-
tion function within the DMFT spirit by retaining on
the self energy diagram (type 1) and evaluating the
self energy in the DMFT approximation via Eq. (32)

yields Reσ(ω) =
1

(2π)3
1

128π5

16π

9

U2

( va )
2
(kFa)

8a2 per unit

cell, which is non-vanishing, in contrast to the exact an-
swer. Notice that this expression can again be written

as Reσ(ω ≪ µ) = K 2ImΣDMFT (ω)
3ω2 , where K = 2 µ2

6π2v .
µ2

6π2v is the weight of a single node in the 3D Dirac case,
2 corresponds to the spin degeneracy and ImΣDMFT(ω)
follows Eq. (32).

IV. SUMMARY

It is well understood that the low density and low en-
ergy limit of a lattice model will in general be described
by a translation invariant theory with subleading correc-
tions. However the implications of this fact for the dy-
namical mean field theory description of correlated elec-
tron physics seem not to have been fully discussed. In this
paper we have addressed this issue by combining a per-
turbative approach and scaling analysis to compute both
the exact (perturbative) and DMFT approximations to
the self energy and T = 0 low frequency conductivity
of two paradigmatic systems: the Hubbard model and
a Dirac/Weyl metal system. In both cases there is a
fundamental Hamiltonian which is described by a mi-
croscopic length (lattice constant) a and at temperature
T = 0 the electron density may be expressed in terms
of a Fermi wave vector kF and we are interested in the
limit kFa → 0 which corresponds to a nearly empty band
and emergent Galilean invariant in the Hubbard model
case and a chemical potential near the Dirac point and
emergent Lorentz invariance in the Dirac case.

We find that in both the Hubbard and Dirac cases the
DMFT approximation provides a qualitatively inaccu-
rate representation of the low frequency scattering rate,
too small by a factor proportional to the particle density

−
+

+

+
−

+

−
+

+

+

−

+

(a) type one

− +

−+

++

+ −

+−

++

(b) type two

−

+

+

+

+

−

+

+

−

+

−

+

(c) type three

−

+

+

+

+

−

+

+

−

+

−

+

(d) type four

FIG. 6. All second order diagrams contributing to the low
frequency optical absorption. Here type one is the self en-
ergy diagrams and type two, three and four are the vertex
diagrams. + correpsonds to top band while − corresponds to
lower band. In panel (a), (b), (c) and (d), the dashed and
thick lines indicate the paths over which orbital indices are
traced. Each diagram has a spin degeneracy of two.

(kFa)
d. The essential reason, which indicates that our

arguments hold generally beyond the perturbative limit
studied in detail here, is that in the low density/low fre-
quency limit the only relevant scale is the fermi wavevec-
tor kF , so the imaginary part of the self energy is a func-
tion of k/kF that vanishes when k/kF becomes larger
than a number of the order of unity. This implies a
strong momentum dependence of the self energy that is
incompatible with the DMFT approximation, which in a
d-dimensional system underestimates the near fermi sur-
face scattering rate by a factor ∝ (kFa)

d, in other words
proportional to the density. As the frequency ω becomes
larger than the chemical potential, the imaginary part of
the self energy becomes a scaling function of k/kω where
the momentum scale kω increases with ω and eventually
becomes comparable to the lattice scale a−1, by which
point the DMFT approximation may be expected to be
qualitatively reasonable. We find that for the Dirac, but
not the low density Hubbard systems, the real part of
the self energy is dominated by high frequency processes
such that kωa ∼ 1, so the real part of the self energy
of the Dirac system may be correctly described within
DMFT.

We also used the force-force correlation function
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method to study the optical conductivity at T = 0 for fre-
quencies less than the chemical potential. This method
provides a compact and convenient representation of the
vertex corrections which represent the difference between
scattering process which degrade the current and those
that do not. In a fermion system at T = 0 and frequency
ω ≪ µ the single particle scattering rate can be repre-
sented as gspω

2/µ while the conductivity can be repre-
sented in terms of an optical scattering rate goptω

2/µ.
In the dynamical mean field approximation gopt = 2gsp
while in a strictly Galilean-invariant system the identity
of the current and momentum operators means gopt = 0.
In the low density d-dimensional Hubbard system we find

gsp ∼
(
(kFa)

d−2
)2

with the factors (kFa)
d−2 represent-

ing the density of states which vanishes at the band edge
for d > 2. In 3d gopt ∼ gsp(kFa)

4, with the four extra fac-
tors reflecting the subleading corrections that break the
Galilean invariance of the low energy theory. In d = 2 the
interplay of scattering kinematics and momentum conser-
vation means that gopt = 0 for kFa less than a critical
value corresponding to the threshold for Umklapp scat-
tering [8]. In the Dirac case the model interaction used
here commutes with the current but real interband tran-
sitions occurring at ω > 2µ break current conservation.
Some care is thus required in the computation of the
conductivity but we find that gopt = 0 with corrections
of order ω2. The dynamical mean field approximation,
which does not include vertex corrections, gives an incor-
rect representation of the conductivity.

Our results raise questions regarding recent DMFT-
based calculations of transport in Weyl systems [6, 7].
These papers report a T 6 resistivity for a 3D Dirac sys-
tem at the particle-hole symmetric point from the com-
bination of the DMFT-predicted T 8 scattering rate and
a T 2 Drude weight (or effective carrier density). Our
results indicate that the DMFT results for the imagi-
nary part of the self energy and for the transport scat-

tering rates [6, 7] are not correct for the low frequen-
cies and temperatures where Dirac points dominate the
physics, and suggest (although we did not consider the
ω = 0, T ̸= 0 conductivity explicitly), that vertex correc-
tions also need to be considered. The issue of interaction
corrections to the conductivity of Weyl systems should
be revisited, building on previous quantum Boltzmann
equation work [26–28] . In this context it is also inter-
esting to consider an orbitally anisotropic Hamiltonian,
since many physically relevant Weyl metals have multiple
Dirac points related by symmetry so that the Hamilto-
nian for one such point may not have the full symmetry
of the crystal.
Further, a number of interesting d1 transition metal

oxides such as SrV O3 or SrMoO3 may be viewed as be-
ing in a low density limit since the density of electrons per
active spin-orbital state is 1/6. While the Fermi surfaces
are complicated, comparison of perturbative and DMFT
calculations should be performed to confirm the accuracy
of DMFT in these systems.
On the theoretical side, in the version used here, the

force-force correlation is a high frequency expansion. At
T = 0 in a clean Fermi liquid at weak coupling the results
can be applied down to ω = 0 but alternative treatments
of vertex corrections that would remove the restrictions
of weak coupling and T = 0 would be of great interest.
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Appendix A: low density 3D Hubbard model

1. Self Energy

This subsection gives some details of the perturbative self energy calculation for the low density limit of the Hubbard
model. Introducing a lattice-scale energy

EL =
1

2ma2
, (A1)

and a single-spin density of states

N(ε) = ad
∫

pd−1dp δ

(
p2

2m
− ε

)
=

1

2EL

(
ε

EL

) d−2
2

, (A2)
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and taking into account the limits of integration imposed by the distribution functions and scaling x and y by µ and
then shifting them by 1 we may express Eq. (3) at T = 0 as

ImΣ(ω, k) = −πEL
U2

E2
L

nd

8(2π)dΩd

(
µ

EL

) d−2
2
∫ 1+ω

µ

1

dxx
d−2
2

∫ 2+ω
µ−x

max[1,1+ω
µ−x]

dyy
d−2
2 I

(
ω

µ
,
k

kω
, x, y

)
. (A3)

with

I =

∫
dΩxdΩy

1 + ω
µ

δ

1 +
k2

k2ω
+ 2

√
x
√
ycosθxy

1 + ω
µ

− 2

√
xcosθxk +

√
ycosθyk√

1 + ω
µ

k

kω

 , (A4)

where n = 2(kFa)
d Ωd

d(2π)d
is the particle density (including spin degeneracy), Ωx,y are the solid angles describing the

orientation of p⃗1 (magnitude kF
√
x) and p⃗2 (magnitude kF

√
y) on the unit sphere in d dimensions, θxy is the angle

between p1 and p2 etc. and

kω =
√
k2F + 2mω = kF

√
1 +

ω

µ
. (A5)

Here the limits on the x and y integrals express the requirements that for ω > 0 εp1
, εp2

> 0 while −µ < εp1+p2−k < 0.
Eq. (A3) makes it manifest that in the low frequency and density limits ImΣ has a magnitude determined by the

square of the interaction (made dimensionless by a lattice scale energy) times the particle density (because for short
ranged interactions all interaction effects must scale with the density) and its frequency and momentum dependence
is given as a scaling function of the frequency normalized to the chemical potential and momentum normalized to kω
and (for dimensions above the marginal dimension d = 2) a factor of a low frequency scale normalized to the lattice
scale. While the precise form of the scaling function and definition of the lattice scale will change if the calculation is
pushed to higher orders in the interaction, we expect that this qualitative behavior is generic.

In the low frequency limit, we may set x = 1 + u and y = 1 + v and neglect ω, u, v in the expression for I and

perform the u and v integrals to leading order in ω/µ. Defining F = I
(
0, k

kF
, 1, 1

)
we obtain

ImΣ(ω, k) = −πEL
U2

E2
L

nd

8(2π)dΩd

(
µ

EL

) d−2
2 ω2

2µ2
F

(
k

kF

)
. (A6)

In the two dimensional case, due to rotational invariance we can choose the x direction of the internal coordinates

to be parallel to k⃗ obtaining

F (x) =

∫
dθ1dθ2δ(−1− 2 cos(θ1) cos(θ2)− 2 sin(θ1) sin(θ2) + 2x(cos(θ1) + cos(θ2))− x2), (A7)

where θ1,2 are the angles between x axis and p⃗1,2.

For three dimensions, we can choose the z axis of the internal coordinates to be parallel to k⃗ obtaining

F (x) = 2π

∫
dθ1dθ2dϕ sin(θ1) sin(θ2) (A8)

× δ
(
(−1− 2 cos(θ1) cos(θ2)− 2 sin(θ1) sin(θ2) cos(ϕ) + 2x(cos(θ1) + cos(θ2))− x2

)
,

where ϕ is the azimuthal angle difference between p⃗1 and p⃗2, and θ1,2 are the polar angle between z axis and p⃗1,2.
We now look at the high frequency limit ω ≫ µ but ω ≪ W . While it is possible to proceed from the scaling form

Eq. (A4) it is more convenient to begin from the fundamental equation, which may be written as

ImΣ(k, ω) = −U2a2d
∫

ddp⃗1
(2π)d

ddp⃗2
(2π)d

πδ(Ep⃗1+p⃗2−k⃗ + ω − Ep⃗1
− Ep⃗2

+ µ)

× (f(Ep⃗1+p⃗2−k⃗ − µ)(1− f(Ep⃗1
− µ)(1− f(Ep⃗2

− µ))

+ (1− f(Ep⃗1+p⃗2−k⃗ − µ))f(Ep⃗1
− µ)f(Ep⃗2

− µ)), (A9)

with Ep = p2

2m .
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For ω > 0, at T = 0, only the first term in the sum survives and we may change variables to q = p1 + p2 − k and
p1. In the high ω limit we may set Eq = 0 and µ = 0 inside the δ and omit the q in the definition of p2, perform the
integral over q trivially, obtaining

ImΣ(k, ω) = −πU2 adn

2(2π)d

∫
ddp⃗1δ

ω − p21
2m

−

(
k⃗ − p⃗1

)2
2m

 . (A10)

Now scaling the ω out of the δ, recalling the high frequency limit kω →
√
2mω we obtain

ImΣ(k, ω) = −πEL
U2

E2
L

n

2(2π)d

(
ω

EL

) d−2
2

G

(
k

kω

)
, (A11)

with (writing G explicitly in two and three dimensions)

G2(x) =

∫
dvv

∫
dθδ

(
1− 2v2 − x2 + 2xvcos(θ)

)
, (A12)

G3(x) = 2π

∫
dvv2

∫
sinθdθδ

(
1− 2v2 − x2 + 2xvcos(θ)

)
. (A13)

2. Conductivity

Here we present explicit formulas for the conductivity for the three dimensional case (the two dimensional case,
which presents some special features, was discussed in Ref [8]), and for ω ≪ µ. We use the perturbative force-force
correlation approach and without loss of generality focus on the z-z conductivity.

It is convenient to rewrite the diagonal components of the conductivity (Eq. (15)) as

Reσaa(Ω) =
2U2

πΩ3

∑
q⃗

∫ 0

−Ω

dω

[
B(2)

a (q⃗, ω +Ω)B(0)
a (−q⃗,−ω)

+ B(1)(q⃗, ω +Ω)B(1)
a (−q⃗,−ω)

]
, (A14)

where

Bα
a (q⃗, ω) = −π

∑
k⃗

(f(εk⃗)− f(εk⃗ + ω))δ(ω + εk⃗ − εk⃗+q⃗)(v
a
k⃗+q⃗

− va
k⃗
)α,

α = 0, 1, 2. (A15)

We assume cubic symmetry so σ ∼ 1 and without loss of generality we may choose a = z. Inspection of Eq. (15) shows

that we need to retain only the terms in (va
k⃗+q⃗

− va
k⃗
) cubic in wave vector, so vz

k⃗+q⃗
− vz

k⃗
= − ta4

3

(
3k2zqz + 3kzq

2
z + q3z

)
where we used t = 1/2ma2 = EL.
We see that at low frequency and T = 0 the combination of Fermi function and delta function constrains k and

k + q to lie very near to the Fermi surface, implying a relation between the magnitude of q and the angle between k
and q that is most conveniently treated using coordinates for k that are tied to the direction of q. We adopt these
coordinates and therefore write kz = kcosθkẑ and view cosθkẑ as a function of the angular coordinate specifying the

orientation of k with respect to q and the orientation of q with respect to ẑ. At small ω we may set |⃗k| = kF and
scale q by kF obtaining

Bα(q⃗, ω) = − π

(2π)3
(−1

3
)αm2ωtα(kFa)

3α−1aα+4 kF
q
Iα(

q

kF
, cosθq), (A16)

with

Iα(q̄, cosθq) =

∫
dϕkq

(
3q̄cos2θkẑcosθq + 3q̄2cosθkẑcos

2θq + q̄3cos3θq
)α

, (A17)
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where implicit in the definition of I and B is that cosθkq = − q̄
2kF

and that 0 < q̄ < 2. θq is the angle between q⃗ and

ẑ, and θkq is the angle between q⃗ and k⃗.
To obtain the expressions for cos θkẑ, we introduce the rotation matrix

R(θ, ϕ) =

cos(θ) + sin2(ϕ)(1− cos(θ)) − sin(ϕ) cos(ϕ)(1− cos(θ)) sin(θ) cos(ϕ)
− sin(ϕ) cos(ϕ)(1− cos(θ)) cos(θ) + cos2(ϕ)(1− cos(θ)) sin(θ) sin(ϕ)

− sin(θ) cos(ϕ) − sin(θ) sin(ϕ) cos(θ)

 . (A18)

When R acts on a vector (0, 0, q), it will give the vector q(sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)).
In the frame of q the coordinates of k is k(sin(θkq) cos(ϕkq), sin(θkq) sin(ϕkq), cos(θkq)). To calculate kz, we use

R(θq, ϕq) to act act on this vector, and then project on the z axis. We then have

cos θkẑ = − sin(θq) cos(ϕq) sin(θkq) cos(ϕkq)− sin(θq) sin(ϕq) sin(θkq) sin(ϕkq) + cos(θq) cos(θkq).

(A19)

Combining the expressions and performing the convolutions gives

σ =
U2πm2

3
(kFa)

7 a6

(2π)9

∫ 2

0

dq̄dcosθqdϕq

(
I2I0 + I21

)
. (A20)

Evaluating I2,1,0 and performing the integrals gives

Reσ(ω) ≈ U2m2a6(kFa)
7 1

(2π)9
0.24π. (A21)

If we do similar calculations for two dimension where the rotation matrix is given by

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (A22)

then evaluating the convolution will give us exactly zero, which we have shown in our previous work [8].
For the DMFT approach, we only keep the self energy diagrams as in Fig. 7 (each diagram has a spin degeneracy of

two). In the low frequency limit since the self energy is proportional to ω2, by doing the integral over internal frequency,
which gives ω3, this cancels ω3 in the prefactor of Eq. (17). The conductivity will approach a constant. Using the

local self energy computed in Eq. (11), we obtain the conductivity per unit cell Reσ(ω) = U2m2a6(kFa)
6 (4π)4

(2π)12
2
9π.

FIG. 7. Self energy contribution to the optical conductivity of the Hubbard model

Appendix B: Dirac system

1. General remarks

We decompose the non-interacting Green’s function (a matrix in spin and orbital space) as

G0(k⃗, iωn) = G+(k⃗, iωn) +G−(k⃗, iωn)

=
1

2

1 + σz ⊗ k̂ · τ⃗
iωn + µ− vk

+
1

2

1− σz ⊗ k̂ · τ⃗
iωn + µ+ vk

. (B1)

Each diagram is a combination of Green function lines and interaction vertices; the form of the interaction we have
chosen means that the sequence of lines corresponding to a definite spin corresponds to a product of the orbital-space
G matrices.
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2. Self energy

This subsection gives some details of the perturbative self energy calculation for a Dirac system with a chemical
potential near the Dirac point. Starting from the fundamental Eq. (25), specializing to ω, µ > 0 and T = 0, noting
that the Green function lines labelled by p1 and p2 must lie in the upper band we have

ImΣ↑,ab(k⃗, ω) = −U2a6

(2π)6
π

8

(
S+−−(k, ω) + S+−+(k, ω)

)
, (B2)

with

S+−−(k, ω) =

∫
dΩ1dΩ2M+(p̂1)Tr

[
M−(p̂2)M−( ̂p1 + p2 − k)

]
× (B3)∫ ω

v +kF

kF

p22dp2

∫ ω
v +2kF−p2

kF

p21dp1δ
(
vp1 + vp2 − v

∣∣∣p⃗1 + p⃗2 − k⃗
∣∣∣− (ω + µ)

)
,

S+−+(k, ω) =

∫
dΩ1dΩ2M+(p̂1)Tr

[
M−(p̂2)M+( ̂p1 + p2 − k)

]
× (B4)∫ ω

v +kF

kF

p22dp2

∫ ω
v +2kF−p2

kF

p21dp1δ
(
vp1 + vp2 + v

∣∣∣p⃗1 + p⃗2 − k⃗
∣∣∣− (ω + µ)

)
,

and

M±(k) = 1± k̂ · τ⃗ . (B5)

We observe that S+−+ = 0 for ω < µ but for ω ≫ µ, S+−+ ≫ S+−−.
Noting that ω + µ = vkω and kω/kF = 1 + ω/µ, and scaling p1 and p2 by kω and defining EL = v/a we see that

the imaginary part of the self energy can be explicitly written in the scaling form given in Eq. (26).
For ω ≪ µ, S+−+ = 0 and we may set the magnitudes of p1 and p2 = kF ;

F0(
k

kF
) =

∫
dΩ1dΩ2(2 + p̂1 · p̂2 −

k⃗

kF
· p̂2)δ

(
1−

∣∣∣∣∣p̂1 + p̂2 −
k⃗

kF

∣∣∣∣∣
)
, (B6)

F1(
k

kF
) =

∫
dΩ1dΩ2(p̂1 · k̂)(2 + p̂1 · p̂2 −

k⃗

kF
· p̂2)δ

(
1−

∣∣∣∣∣p̂1 + p̂2 −
k⃗

kF

∣∣∣∣∣
)
. (B7)

For ω ≫ µ we may focus on S+−+, set µ = 0 and obtain Eq. (29) with

G0(
vk

ω
) = 2

∫
p′21 dp

′
1dΩ1p

′2
2 dp

′
2dΩ2(1− ̂(p′1 + p′2 − k) · p̂2)

× δ

(
p′1 + p′2 −

1
vk
ω

+
∣∣∣p⃗′1 + p⃗′2 − k̂

∣∣∣) , (B8)

G1(
vk

ω
) = 2

∫
p′21 dp

′
1dΩ1p

′2
2 dp

′
2dΩ2(p̂′1 · k̂)(1− ̂(p′1 + p′2 − k) · p̂2)

× δ

(
p′1 + p′2 −

1
vk
ω

+
∣∣∣p⃗′1 + p⃗′2 − k̂

∣∣∣) . (B9)

where we define p′1 =
p1
k
, p′2 =

p2
k
.

3. Optical Conductivity

We sketch the evaluation of the diagrams shown in Fig. 6. The evaluation of the self energy diagrams (type 1, panel
(a) of Fig. 6) proceeds slightly differently from the evaluation of the others. It is useful to denote the spin explicitly.
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a. Self energy diagrams Fig. 6(a)

In these diagrams we are explicitly computing the lifetime of a hole in the filled (-) band. Explicitly writng the
analytical formula for the left-hand diagram gives

s1(iΩn) =
a3

(iΩn)3

∫
d3k⃗

(2π)3
T
∑
iωn

(−4v4)Tr[((τ⃗ × k⃗) · ẑ)G↑
−(k⃗, iωn + iΩn)Σ

↑(k⃗, iωn + iΩn)

G↑
−(k⃗, iωn + iΩn)((τ⃗ × k⃗) · ẑ)G↑

+(k⃗, iωn)]. (B10)

We insert the spectral representation Σ↑(k⃗, iωn + iΩn) =

∫
dx

π

−ImΣ↑(k⃗, x)

iωn + iΩn − x
, and perform the Matsubara sums

and perform the analytical continuation and also take the trace over orbital indices.

Since we are focusing on low frequency,we may put all momenta on the Fermi surface, so that we only need

ImΣ↑(kF k̂, ω), which is given by explicitly evaluating Eq. (B3) as

ImΣ↑(kF k̂, ω) = −(
4

3
+

4

5
k̂ · τ⃗)ω

2

µ

U2

( va )
2

(kFa)
4

(2π)6
π3. (B11)

We obtain

s1(Ω) ∼
1

Ω3

∫
dx

∫
d3k⃗δ(vk − µ)(f(x− Ω)− f(x))x2 1

(vk)2
Tr[· · · ]. (B12)

By performing the angular integral over k⃗ and collecting all the prefactors we obtain

s1(Ω) =
1

(2π)9
1

26
4096

135
π4 U2

( va )
2
(kFa)

5a2.

b. Type 2 vertex correction diagrams Fig. 6(b)

In this diagram the dashed lines form a particle hole bubble which we denote by B↓(q⃗, iν) while the solid lines are
a trace of products of G and the force operator, so that

s2(iΩn) =
a6

(iΩn)3

∫
d3k⃗d3q⃗

(2π)6
T
∑

iωn,iν

(4v4)Tr[((τ⃗ × k⃗) · ẑ)G↑
−(k⃗, iωn + iΩn)G

↑
+(k⃗ + q⃗, iωn + iΩn + iν)

((τ⃗ × (k⃗ + q⃗)) · ẑ)G↑
−(k⃗ + q⃗, iωn + iν)G↑

+(k⃗, iωn)]B
↓(q, iν). (B13)

As with the self energy diagram we represent B via a spectral representation, perform the analytical continuation
and take the trace over the Green function indices obtaining

s2(Ω) ∼ 1

Ω3

∫
dx

∫
d3k⃗

∫
d3q⃗(n(x) + f(vk − µ+ x+Ω))(f(vk − µ)− f(vk − µ+Ω))

× δ(v|⃗k + q⃗| − µ)ImB↓(q, x)
1

vk

1

v|⃗k + q⃗|
Tr[· · · ]. (B14)

In the low frequency limit both k⃗ and k⃗ + q⃗ must be on the Fermi surface and

ImB↓(q⃗, ν) = − a3

(2π)3
(2π)2

4

k2F
v2

ν

q
(2− q2

2k2F
), (B15)

where the range of q is between 0 and 2kF .

By doing the integral and the trace we obtain s2 = −3

7
s1.
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c. Type 3 and 4 vertex correction diagrams Fig. 6(c,d)

In these diagrams the orbital structure is different; for example the analytical expression for the left-hand type 3
diagram is

s3(iΩn) =
a3

(iΩn)3

∫
d3q⃗

(2π)3
T
∑
iν

(4v)4T1(q⃗, iν, iΩn)T2(q⃗, iν, iΩn), (B16)

with

T1(q⃗, iν, iΩn) = T
∑
iωn

a3
∫

d3k⃗

(2π)3
Tr
[
G↑

+(k⃗, iωn)
(
(τ⃗ × k⃗) · ẑ

)
G↑

−(k⃗, iωn + iΩn)G
↑
+(k⃗ + q⃗, iωn + iν)

]
,

(B17)

T2(q⃗, iν, iΩn) = T
∑
iωn

a3
∫

d3k⃗

(2π)3
Tr
[
G↓

+(k⃗, iωn + iΩn)
(
(τ⃗ × k⃗) · ẑ

)
G↓

−(k⃗, iωn)G
↓
+(k⃗ + q⃗, iωn + iν)

]
.

(B18)

Again we may take the trace, perform the frequency sums, analytically continue and evaluate the result in the low
frequency limit where all the momenta must be near the Fermi surface.
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