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Relaxation rates in nearly integrable systems usually increase quadratically with the strength of
the perturbation that breaks integrability. We show that the relaxation rates can be significantly
smaller in systems that are integrable along two intersecting lines in the parameter space. In the
vicinity of the intersection point, the relaxation rates of certain observables increase with the fourth
power of the distance from this point, whereas for other observables one observes standard quadratic
dependence on the perturbation. As a result, one obtains exceedingly long-living prethermalization
but with a reduced number of the nearly conserved operators. We show also that such a scenario
can be realized in spin ladders.

Introduction. The time evolution of generic quantum
systems tends towards the thermal equilibrium [1–5] in-
dependently of the initial state. In recent years, systems
in which thermalization occurs very slowly [6] or can be
completely eliminated [7] have attracted a lot of inter-
est. Particular attention was paid to integrable systems
which avoid thermalization and evolve towards a general-
ized Gibbs state [8–12]. The crucial role in the behavior
of such systems is played by local (or quasilocal) integrals
of motion (LIOMs) whose presence prevents thermaliza-
tion of local observables [13, 14] and has important conse-
quences for the transport properties of integrable systems
[15–18]. However, more realistic models as well as ex-
perimental setups contain small, but non-negligible, per-
turbations which break the integrability [19–25]. While
one expects that asymptotic dynamics of such nearly in-
tegrable (NI) systems is diffusive [26–28], the dynamics
at intermediate time-scales resembles that of integrable
models. The latter transient dynamics of NI systems is
known as prethermalization [29–32].

A particularly important example of the integrability
breaking occurs in systems of weakly coupled integrable
chains [6, 33]. While the interchain coupling can be well
controlled in the cold-atom experiments [34] it is not
always possible to completely eliminate this interaction
[35]. Quite obviously, a nonvanishing interchain coupling
is unavoidable in solid-state systems [36, 37]. Moreover,
recent quasiclassical studies based on the Boltzmann col-
lision integral approach [38, 39] indicate that extremely
long relaxation times may occur in such NI systems.

It is rather obvious that one is most interested in NI
systems in which the relaxation times are as long as pos-
sible. While an NI system may host very distinct re-
laxation times [32, 40–42], the corresponding relaxation
rates typically scale quadratically with the strength of the
integrability-breaking perturbation [21, 22, 40, 42, 43].
Under such a scenario, the only way to increase the re-
laxation times is to reduce the perturbation. In this Let-
ter, we establish other possibility of decreasing the relax-
ation rates in NI systems. Namely, we consider a system

that is integrable along two intersecting lines in the pa-
rameter space, see, e.g., Refs. [44–46] for an example of
such systems. If certain LIOMs on both lines have large
overlaps, then the corresponding relaxation rates increase
with the fourth power of the distance (in the parameter
space) from the intersection point. Relaxation rates for
LIOMs that do not have such overlaps, exhibit standard
quadratic dependence on the perturbation. As a conse-
quence, extremely small relaxation rates and arbitrary
larger ratios of relaxation times appear in the studied NI
system. Finally, we show that such a scenario can be im-
plemented in nearly integrable spin ladders introduced
below.

Spin ladder. We investigate a spin ladder consisting of
two XXZ chains coupled via anisotropic spin-spin inter-
action of strength U

H =

2∑

ℓ=1

Hℓ + U

L∑

j=1

Szj,1S
z
j,2 , (1)

Hℓ =
J

2

L∑

j=1

(
S+
j,ℓS

−
j+1,ℓ + H.c.

)
+ ∆

L∑

j=1

Szj,ℓS
z
j+1,ℓ . (2)

The subscripts ℓ = 1, 2 and j = 1, ..., L denote, respec-
tively, the leg and the site within a leg on which the
spin-1/2 operators act. From now on we set J = 1, fix
the total magnetization to Sztot = 0 and assume periodic
boundary conditions along the legs of the ladder.

The ladder is shown schematically in Fig. 1(a). It is
integrable for U = 0 and inherits a complete set of LI-
OMs {Qn,1} and {Qn,2} from both XXZ-chains. In this
work we use analytic forms of LIOMs and the notation
from Ref [47]. In particular, Q1,ℓ and Q2,ℓ denote re-
spectively the total magnetization and the Hamiltonians
of the chain ℓ. Here, we focus on the dynamics of the
first two nontrivial XXZ LIOMs, namely Q3,ℓ and Q4,ℓ,
supported on 3 and 4 sites, respectively. This choice is
motivated by that Q3,ℓ is the energy current and thus it is
an experimentally relevant quantity. In order to demon-
strate that the discussed properties are not unique to just
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Figure 1. (a) Sketch of the ladder in Eq. (1) with marked
Sz-Sz interactions (∆, U) and nearly conserved operators
(Q±

n ).(b,c) Correlation functions C±
n (t) defined in Eq. (3) ob-

tained for a ladder with L = 14 rungs. (b) Dashed and con-
tinuous curves show C+

3 (t) and C−
3 (t), respectively. (c) The

same as in (b) but for C±
4 (t). Horizontal dotted lines in (b,c)

define times, t±n,γ , when C±
n (t±n,γ) = γ = 0.3. Legends in (b,c)

are common for both panels. Panels (d,e) show 1/t±3,γ and

1/t±4,γ for NI system with U = ∆ and γ = 0.3 (see text for
details).

a single quantity, we study also Q4,ℓ.

It is convenient to introduce symmetrized combina-
tions of the latter LIOMs, Q±

n ≡ Qn,1 ± Qn,2. In
the case of uncoupled chains, Q+

n as well as Q−
n are

strictly conserved thus the correlation functions are time-
independent, i.e. ⟨Q±

n (t)Q±
n ⟩ = const, and we use a sim-

plified notation Q±
n ≡ Q±

n (t = 0). However, the interac-
tion term, U ̸= 0, breaks the integrability of the studied
model so that ⟨Q±

n (t)Q±
n ⟩ decay in time. In the following

we show that the sums of the XXZ LIOMs, Q+
n , decay

much slower than their differences, Q−
n . We present an

explanation of this unexpected behavior, by inspecting
a dual point of view, in which the intrachain term ∝ ∆
is also treated as an integrability-breaking perturbation.
Namely for ∆ = 0, the Hamiltonian of the ladder reduces
to the Hubbard chain, in which the leg index ℓ labels the
spin projection of fermions. This view introduces another
set of LIOMs {In}, originating from the integrability of
the Hubbard chain. Here, we argue that the decay of Q+

n

or In in the NI model (U ̸= 0,∆ ̸= 0) is significantly
slowed down due large overlaps of both sets of LIOMs.

Dynamics of nearly conserved observables. To probe
the dynamics of the nearly integrable spin ladder, we

calculate the real-time correlation functions

C±
n (t) = ⟨eiHtQ±

n e
−iHtQ±

n ⟩ . (3)

Here, ⟨AB⟩ = 1
Z Tr(AB) is the Hilbert-Schmidt inner

product for Hermitian operators A, B and Z = Tr(1) is
the dimension of the Hilbert space. We recall that the
Hilbert-Schmidt product is mathematically equivalent to
the ensemble average at infinite temperature.

We note that Q4,ℓ and I4 in Ref [47] are not orthogonal
to the respective integrable Hamiltonians, Hℓ andH(∆ =
0). Therefore, we first subtract their projections on the
Hamiltonians and obtain orthogonal sets of LIOMs. All
considered LIOMs are also Hilbert-Schmidt normalized,
i.e. ∥Q±

n ∥2 = ⟨Q±
nQ

±
n ⟩ = 1, and thus the correlation

functions in Eq. (3) are equal to one at t = 0. We refer
to Supplemental Material [48] for explicit forms of LIOMs
and their overlaps.

Utilizing the Lanczos time evolution method [49, 50]
combined with the dynamical typicality [51–55] we
calculate correlation functions introduced in Eq. (3),
see Ref. [48] for the details of numerical calculations.
Figs. 1(b) and 1(c) show, respectively, C±

3 (t) and C±
4 (t)

calculated for small anisotropy ∆ = 0.15, and different
strengths of the interchain interaction, U = 0.1, 0.3, 1.
In the regime of small U one observes that the corre-
lation functions obtained for Q+

n (dashed lines) decay
much slower than the correlation functions determined
for Q−

n (continuous lines). In the Supplemental Mate-
rial [48] we show that the differences between C+

n (t) and
C−
n (t) become significant for much shorter times than the

time-scale at which C+
n (t) develop the finite-size effects.

Therefore, the exceedingly different relaxation times for
Q+
n and Q−

n do not emerge as finite-size artifacts.
In order to capture the differences between relaxation

of Q+
n and Q−

n in a quantitative manner, we determine
times when the correlation functions decay to a fraction
of γ of their initial value, such that C±

n (t±n,γ) = γ, see
dotted lines in Fig. 1(b,c). While the accessible system
sizes do not allow us to reliably establish the true relax-
ation rates, we assume that their dependence on U and
∆ can be estimated from t±n,γ . In Fig. 1(d,e) we show the

corresponding relaxation rates 1/t±3,γ and 1/t±4,γ for an NI
system along the line U = ∆ where we set γ = 0.3. In the
regime of weak interactions, one observes that the relax-
ation rates for Q+

n increase only as U2∆2, i.e., they are
much smaller than the squared strengths of integrability-
breaking interactions U2 or ∆2. However, the relaxation
rates for the other set of nearly conserved operators, Q−

n ,
show much weaker dependence on perturbations and may
be larger than 1/t+n,γ by a few orders of magnitude.

Next we check how the differences between t+n,γ
and t−n,γ depend on the parameters of the stud-
ied model. To this end we calculate the ratio
Rn(γ) = (t+n,γ − t−n,γ)/(t+n,γ + t−n,γ). Numerical results for
this ratio are shown in Fig. 2 on an evenly-spaced rect-
angular grid in the parameter space (∆, U). Blank parts



3

0.05

0.2

0.4

0.6

0.8

1.0
In

te
rc

h
ai

n
co

u
p

li
n

g
U (a) R3 (γ = 0.5) (b) R3 (γ = 0.9)

0.0

0.2

0.4

0.6

0.8

1.0

0.05 0.2 0.4 0.6 0.8 1.0
Anisotropy ∆

0.05

0.2

0.4

0.6

0.8

1.0

In
te

rc
h

ai
n

co
u

p
li

n
g
U (c) R4 (γ = 0.5)

0.05 0.2 0.4 0.6 0.8 1.0
Anisotropy ∆

(d) R4 (γ = 0.9)

Figure 2. Ratio Rn(γ) calculated for L = 12. Blank regions
corresponds to parameters for which C+

n (t) > γ for the nu-
merically accessible times t ∼ 104, e.g., see C+

n (t) for U = 0.1
in Fig. 1(b).

on the plots correspond to the situation when t+n is larger
than the longest time accessible in our numerical calcu-
lations, t ∼ 104. For small ∆ and U we observe that
Rn(γ) is close to one for both n = 3 and n = 4. It means
that the decay times for Q−

n are negligibly small when
compared to the time-scale that corresponds to the slow
relaxation of Q+

n . For large ∆ and U we observe that Q+
n

and Q−
n relax rather quickly and with roughly the same

relaxation times, t+n,γ ≃ t−n,γ .
Significance of overlapping LIOMs. In order to explain

the origin of the exceedingly different and long relaxation
times, we turn to a dual picture. Namely, we consider the
anisotropy term (∼ ∆) as a perturbation to the integrable
Hubbard chain described by the Hamiltonian H(∆ = 0).
The latter Hamiltonian possesses another complete set of
LIOMs {In}. In what follows, we demonstrate that the
slower decay of the operators Q+

n in the nearly integrable
ladder (∆ ̸= 0 and U ̸= 0) can be linked to their sub-
stantial overlaps with In. Such overlaps do not exist for
the quickly decaying operators, Q−

n . We note that Q−
n

are odd under the spin-flip transformation, ℓ → 3 − ℓ,
whereas the Hubbard LIOMs, In, are even under such
spin-flip so that one obtains ⟨Q−

n In⟩ = 0.
In Fig. 3 we present the overlaps ⟨Q+

n In⟩. In order to
completely eliminate the finite-size effects, the overlaps
were calculated analytically in the full Hilbert space that
includes all Sztot-sector. In particular, one finds

⟨Q+
3 I3⟩ =

J2

√
(J2 + 2U2) (J2 + 2∆2)

, (4)

and the explicit form of the other overlap ⟨Q+
4 I4⟩ is shown
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Figure 3. Overlaps ⟨Q+
n In⟩ calculated analytically for L → ∞,

see Eq. (4) and Ref. [48] for more details. Black solid curves
are isolines. Note that Q+

n and In are strictly conserved for
U = 0 and ∆ = 0, respectively.

in Ref. [48]. We have also checked that the numerically
obtained overlaps in the sector with Sztot = 0 (not shown)
are qualitatively the same as the results in Fig. 3. Com-
paring Fig. 2 with Fig. 3 we find that the differences in
relaxations of Q+

n and Q−
n are most pronounced for the

same parameters where the overlaps ⟨Q+
n In⟩ are large.

Finally, we establish a simple link between the over-
laps of LIOMs of integrable models (U = 0 or ∆ = 0)
and the slow dynamics of Q+

n in the nearly integrable
ladder with (U ̸= 0 and ∆ ̸= 0). To this end we conjec-
ture that in the regime of small U and ∆, the relaxation
rates for Q+

n and Q−
n can be expanded in powers of ∆2

and U2. Since Q−
n are strictly conserved only for U = 0

and arbitrary ∆, the lowest-order contributions to their
relaxation rates are 1/t−n,γ ∝ U2, as it is expected for
a generic integrability-breaking perturbation. However,
due to large overlaps ⟨Q+

n In⟩, the relaxation rates for Q+
n

vanish both for U = 0 as well as for ∆ = 0. Therefore
these relaxation rates cannot contain terms which depend
solely on either U or ∆ thus the lowest order contribu-
tions are 1/t+n,γ ∝ ∆2U2. Consequently, for small ∆ one
obtains t+n,γ ≫ t−n,γ .

This scenario is clearly confirmed by results in
Figs. 4(a,b). In these plots we show heat maps for 1/t+n,γ
using logarithmic scales for U and ∆. One observes that
the isolines roughly follow straight lines consistent with
the dependence 1/t+n,γ ∝ (∆U)α = const. Numerical re-
sults obtained in a direction that is perpendicular to the
isolines (U = ∆) are shown in Fig. 1(d,e) demonstrat-
ing that the exponent α = 2. Using parametrization
U = d cos(ϕ), ∆ = d sin(ϕ), we find that the relaxation
rate for Q+

n grows as d4. Here, d is distance from the
intersection of two lines, ∆ = 0, and U = 0, along which
the studied model is integrable.

In the case of 1/t−n , one observes very different iso-
lines with positive slopes, see Figs. 4(c,d). The latter
are consistent with the conjecture that 1/t−n,γ are deter-
mined mostly by the interchain interaction U . For the
sake of completeness we have calculated 1/t−n,γ in the di-
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Figure 4. (a)-(d) Relaxation rates 1/t±n,γ estimated from the
correlation functions in Eq. (3) via relation C±

n (t±n,γ) = γ for
γ = 0.3 and L = 12. Continuous curves represent isolines.
Dashed lines in (a) and (b) mark parameters for which relax-
ation rates are shown in Fig. 1(d,e). Panels (e) and (f) show
relaxation rates 1/t−n,γ along the dashed lines marked in (c).

rections that are roughly perpendicular or parallel to the
corresponding isolines, i.e., for ∆ = const or U = const.
Numerical results shown in Fig. 4(e,f) confirm the stan-
dard quadratic dependence of 1/t−n,γ on the perturbation
U .

Since the proximity of two integrable lines is respon-
sible for the long-living prethermalization in the studied
ladder, one may expect to find a broader class of opera-
tors which exhibit slow relaxation. In the Supplemental
Material [48] we show that linear combinations of Q+

n and
In show very similar dynamics. As expected, breaking
of integrability along one of the lines (e.g. via other form
of the coupling between the legs) destroys the exceptional
properties of the studied system [48].

Conclusions We have considered a ladder consisting of
two XXZ chains (each with spin anisotropy ∆) coupled
via interaction of strength U . The studied model is in-
tegrable along two lines in the parameter space. Namely
for ∆ = 0 the ladder represents the Hubbard chain with
one set of LIOMs {In}, whereas for U = 0 one obtains
two uncoupled XXZ chains. In the latter case we have
introduced LIOMs which are symmetric, {Q+

n }, or anti-
symmetric, {Q−

n }, with respect to exchanging the chains.
Studying the dynamics of a nearly integrable ladder with

(U ̸= 0 and ∆ ̸= 0) we have found that correlation func-
tions for Q+

n decay much slower than for Q−
n and that

the difference of relaxation times is most pronounced for
small U and ∆.

We have linked this result with large overlaps between
Q+
n and In and vanishing overlaps between Q−

n and In.
As a consequences of the former overlaps, the relaxation
rates for Q+

n must vanish for both U = 0 and ∆ = 0
so that the lowest-order contribution to the relaxation
rates is at most of the order of ∆2U2. In contrast to this,
the relaxation rates for Q−

n are of the order of U2. Such
behaviour explains exceedingly different relaxation times
observed for Q+

n and Q−
n in the regime of small U and ∆.

Consequently, in this regime of parameters one deals with
a rather specific prethermalization. Namely, the number
of nearly conserved quantities, Q+

n , is twice smaller than
the number of LIOMs in the uncoupled chains, where
both Q+

n and Q−
n are conserved.

These findings can be further examined from the point
of view of quasiclassical analysis based on the Boltzmann
collision integral [38, 56] (see also [32, 41] for the hydro-
dynamic perspective on the integrability breaking). The
central assumption here is that each leg of the spin chain
is in a state described by the Generalized Gibbs Ensem-
ble (GGE) of the XXZ spin chain [57]. The whole sys-
tem is then in the product state of the two GGE states.
The coupling between the legs leads then, by the Fermi’s
golden rule, to an evolution of states of each leg. As we
show in the Supplemental Material [48], both families of
charges Q±

n are conserved during this evolution up to
order ∆2U2 in a case when the anisotropy parameters
and the states of the two legs are identical. Otherwise,
Q−
n may acquire dynamics at lower orders while Q+

n does
not. Our results reinforce this quasiclassical picture.

Our reasoning is general and is expected to hold true
also for other systems which are integrable along two in-
tersecting lines in the parameter space. However, this
should be verified by direct calculations. The essential
conditions is that the LIOMs on both integrable lines
have large mutual overlaps in the vicinity of the crossing
point. Then, in the vicinity of this point one may ex-
pect long-living prethermalization with relaxation rates
that increase with the fourth power of the distance in
the parameter space from the intersection point. This is
in contrast to the case of generic nearly integrable sys-
tems where relaxation rates increase with second power
of the perturbation. The long-living prethermalization
in the studied ladder leads to a very slow relaxation of
the energy current [48] that should also be visible as a
high thermal conductivity.
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In the Supplemental Material we discuss overlaps of the local integrals of motion (LIOMs). We also provide technical
details of numerical calculations, discuss the finite-size effects and dynamics of rotated integrals of motion. Finally,
we analyze our numerical results from the perspective of the Boltzmann equation.

Overlaps of the local integrals of motion

In the main text, we have shown analytical expression
for the overlap between Heisenberg and Hubbard LIOMs
(Eq. 4). Here, we provide additional details on how these
formulas are obtained and derive analogous expression for
⟨Q+

4 I4⟩. For completeness, let us first recall the form of
LIOMs, as derived in Ref. [47],
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where [1 ↔ 2] denotes all previous terms, but with
swapped leg index. We use the tilde and prime sym-
bols to mark LIOMs which are not normalized and not
orthogonal, respectively.

Heisenberg LIOMs are generalized to the ladder setting

as in the main text, Q̃′,±
n = Q̃′

n,1 ± Q̃′
n,2. We also intro-

duce Hilbert-Schmidt normalized LIOMs, I ′n = Ĩ ′n/||Ĩ ′n||
and Q′,±

n = Q̃′,±
n /||Q̃′,±

n ||. The evaluation of the over-
lap of current-like LIOMs is straightforward, as they are
already orthogonal to all lower-order LIOMs, I2, I1 or
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yields Eq. (4) in the main text. To calculate the trace in
the above expression, we collect all terms from the prod-
uct of operators and use the fact that the spin operators
are traceless. We also note that the trace over the full
Hilbert space (Z = 4L) factorizes over sites and legs of
the ladder. Finally, values of non-vanishing terms such
as Tr(Szj,ℓS

z
j,ℓ), are obtained using the properties of the

Pauli matrices.

Case of the ⟨Q+
4 I4⟩ overlap is more complicated, as the

charges Q̃′,+
4 and Ĩ ′4 must first be orthogonalized with

respect to the lower-order LIOMs, i.e. the Hamiltonians
H(U = 0) and H(∆ = 0) respectively. We do this in the
usual fashion, by subtracting the projections

Q̃+
4 = Q̃′,+

4 − ⟨Q̃′,+
4 H(U = 0)⟩

⟨H(U = 0)H(U = 0)⟩H(U = 0)

= Q̃′,+
4 − 4

(
J4 + 2J2∆2

)

2J2 + ∆2
H(U = 0), (S6)

Ĩ4 = Ĩ ′4 −
⟨Ĩ ′4H(∆ = 0)⟩

⟨H(∆ = 0)H(∆ = 0)⟩H(∆ = 0)

= Õ′
4 −

3JU2

8J2 + 2U2
H(∆ = 0). (S7)

Carrying out the same calculation (including normaliza-
tion of operators) as for Eq. (S5), but with LIOMs given
by (S6) and (S7) one arrives at the expression

⟨Q+
4 I4⟩ =

2
(
8J8 + 2J6

(
2∆2 + U2

)
+ ∆2J2U2

(
∆2 − U2

)
+ ∆4U4

)
√

(8J8 + 56∆2J6 + 48∆4J4 + 19∆6J2 + 4∆8) (4J2 + U2) (8J6 + 56J4U2 + 25J2U4 + 4U6)
. (S8)

Numerical methods

We evaluate the correlation functions, defined in
Eq. (3) in the main text, using Quantum Typicality
[51, 52]. Such approach has been successfully applied
to various quantum many-body systems, in particular to
the spin chains [53–55]. The essence of this approach is
to approximate the trace over the full Hilbert space with
an expectation value in a random pure state drawn from
a suitable ensemble

C±
n (t) ≃ ⟨ψ|eiHtQ±

n e
−iHtQ±

n |ψ⟩ . (S9)

Imposing unitary invariance on the distribution of the
random states |ψ⟩ =

∑Z
j=1 cj |j⟩ and assuming indepen-

dence of all Re cj as well as Im cj , yields a Gaussian dis-
tribution for the coefficients, Re cj and Im cj , in arbitrary
orthonormal basis {|j⟩} [52]. We then have two crucial
properties [51, 55] for the mean value and the variance
of results obtained for various realizations of {ci}:

E|ψ⟩
[
⟨ψ|Q±

n (t)Q±
n |ψ⟩

]
= C±

n (t) (S10)

σ
[
⟨ψ|Q±

n (t)Q±
n |ψ⟩

]
≤ O

(
1√
Z

)
(S11)

Hence, contribution of a single pure state can already
be an exponentially good approximation of C±

n (t), which
for small systems can be further improved by additional
sampling. We have checked that such improvement does
not lead to noticeable changes of results shown in the
present work and for the studied problems one may use

only a single random state for each calculation. In our
studies we shifted the time evolution to two auxiliary
pure states |ψ⟩, |ϕ±n ⟩ = Q±

n |ψ⟩ and calculated it using
the Lanczos time evolution [49] with a time step δt ≤ 1
and M = 20 Lanczos steps.

Finite-size effects

Since the ladder geometry strongly restricts accessible
numbers of rungs, it is important to show that our ma-
jor results do not arise as finite-size artifacts. To this
end in Fig. S1 we show the correlation functions de-
fined in Eq. (3) in the main text. Results for C+

n (t) are
shown for various L whereas C−

n (t) is shown only for the
largest L. We observe that significant differences between
C+
n (t) and C−

n (t) are visible on timescales which are much
shorter than the appearance of any serious finite-size ef-
fects for C+

n (t).

Rotation of the nearly conserved operators

We have argued in the main text that the proximity
of two integrable lines U = 0 and ∆ = 0 is responsible
for long-living prethermalization that was obtained from
slow relaxation of Q+

n . However, such choice of slowly
relaxing operators (from one out of two integrable lines)
is arbitrary. Within our scenario, one expects similar
dynamics also for In or, more generally, for arbitrary
combination of Q+

n and In. As a consistency check we
confirm this expectation studying linear combinations of
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Supplemental Figure S1. Correlation functions defined in
Eq. (3) in the main text. Panel (a) depicts C+

3 (t) for
L = 12, 13, 14 compared to C−

3 (t) for L = 14, while panel
(b) the same as (a) but for C±

4 (t). Arrows mark the values of
U = 0.08, 0.32, 1.28 in ascending order.
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Supplemental Figure S2. Correlation function
obtained for rotated operators defined in Eq. (S12),

C̃α
n (t) = ⟨eiHtOn(α)e−iHtOn(α)⟩. Results are obtained for

L = 12. Note that C̃0
n = C+

n (t) and C+
n (t) is discussed in

the main text.

both types of LIOMs

On(α) =
cos

(
απ2

)
Q+
n + sin

(
απ2

)
In

|| cos
(
απ2

)
Q+
n + sin

(
απ2

)
In||

. (S12)

The parameter α ∈ [0, 1] controls the rotation between
LIOMs of the Hubbard chain and those of the uncoupled
XXZ chains. Fig. S2 shows correlation functions C̃αn (t)
defined as in Eq. (3) in the main text but for On(α)
instead of Q±

n . Fig. S2(a,b) show results obtained for
equal parameters U = ∆ when the dynamics of On(α)
turns out to be insensitive to the rotation angle. Other-
wise we observe that the larger parameter out of {U,∆}
sets the optimal observable, whereas the smaller one sets
the integrablity breaking perturbation. In particular, for
∆ < U in Fig. S2(c) and ∆ > U in Fig. S2(d) we observe
the slowest decay of I3 and Q+

3 , respectively. However,
the general conclusion for small U and ∆ is that the cor-
relation function is roughly independent of the rotation
introduced in Eq. (S12).

The energy current
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Supplemental Figure S3. Correlation function obtained for
the energy current defined in Eq. (S17) along with results
for C±

3 (t), see Eq. (3) in the main text. Colors mark the
value of the interchain interaction, U , and various types of
lines correspond to different correlation functions. Results
are obtained for L = 14 and ∆ = 0.15.

The main conclusion following from our investigations
concerns the long-living prethermalization. It originates
from the integrability of the studied system along two
intersecting lines and from large overlaps of LIOMs on
these lines, ⟨Q+

n In⟩ ∼ 1. Since Q+
3 represents the energy

current of the unperturbed system (U = 0) one may ex-
pect a nearly ballistic energy transport, or equivalently,
high thermal conductivity for U ̸= 0. In order to directly
confirm the former expectation we first calculate the en-
ergy current for the model defined in Eq. (1) in the main
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text. To this end we define the energy density

hj =

2∑

ℓ=1

[
J

2

(
S+
j,ℓS

−
j+1,ℓ + H.c.

)
+ ∆Szj,ℓS

z
j+1,ℓ

]

+
U

2

(
Szj,1S

z
j,2 + Szj+1,1S

z
j+1,2

)
, (S13)

and introduce the corresponding polarization operator
P =

∑
j jhj . The energy current can be obtained from

the time-dependence of P, namely Iκ = i[H,P ]. Direct
calculations yield three contributions to the energy cur-
rent Iκ = IJJ + IJ∆ + IJU , where

IJJ =
iJ2

2

L∑

j=1

(
S−
j,1S

z
j+1,1S

+
j+2,1 + [1 ↔ 2]

)
+ H.c. ,

(S14)

IJ∆ =
iJ∆

2

L∑

j=1

(
Szj,1S

+
j+1,1S

−
j+2,1

+S+
j,1S

−
j+1,1S

z
j+2,1 + [1 ↔ 2]

)
+ H.c. , (S15)

IJU =
iJU

4

L∑

j=1

(
S+
j,1S

−
j+1,1S

z
j+1,2

+S+
j,1S

−
j+1,1S

z
j,2 + [1 ↔ 2]

)
+ H.c. , (S16)

and [1 ↔ 2] denotes the swap of the leg-indexes (i.e., the
second indexes) in the preceding terms. Figure S3 shows
numerical results for the normalized correlation function

Cκ(t) =
⟨eiHtIκe−iHtIκ⟩

⟨IκIκ⟩
, (S17)

along with the previously discussed results for C±
3 (t), see

Eq. (3) in the main text for the definition of the latter
quantities. One observes that the energy current inherits
slow dynamics from Q+

3 . In particular for larger U the
dynamics of Iκ is even slower than that of Q+

3 . The latter
result most probably originates from the (large?) overlap
of the energy current with I3.

Other form of the integrability-breaking
perturbation

The discussed mechanism of the long-living prether-
malization is not expected to be robust against other
forms of the interchain couplings. A generic coupling
may either break the integrability for ∆ = 0 or it may
reduce the overlaps of LIOMs on two integrable lines. In
order to explicitly demonstrate such case, we have cal-
culated the correlation functions C±

n (t) for a modified
Hamiltonian, cf. Eq. (1) in the main text,

H ′ =

2∑

ℓ=1

Hℓ + J⊥

L∑

j=1

1

2

(
S+
j,1S

−
j,2 + H.c.

)
. (S18)

Figure S4 shows the same results as figures 1(b) and 1(c)
in the main text but for the interchain coupling intro-
duced in Eq. (S18). In contrast to the previously dis-
cussed model, we do not observe any substantial differ-
ences between the dynamics of Q+

n and Q−
n as shown in

panels (a) and (b) for n = 3 and n = 4, respectively.
Both quantities reveal similar relaxation times. These
relaxation times are much smaller then the relaxation
times of Q+

n obtained for the Hamiltonian (1) from the
main text.
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Supplemental Figure S4. The same results as in figures
1(b) and 1(c) in the main text but for the Hamiltonian (S18).
Results are obtained for L = 14 and ∆ = 0.15.

Boltzmann equation

We present here analysis of the dynamics of the two-
leg XXZ spin chain based on the Boltzmann equation.
We show that this quasiclassical analysis is consistent
with the full quantum dynamics presented in the main
text. Namely, the Boltzmann equation predicts that the
dynamics occurs at order ∆2U2 or higher. Distinctively
from the quantum case, both charges Q±

n are conserved
with the same precision ∆2U2. It is then due to quantum
effects that Q−

n attains contributions of order U2, while
Q+
n remains conserved with the precision predicted by

the Boltzmann equation.

The Boltzmann approach to weakly perturbed inte-
grable systems was developed recently in [32, 38, 41, 56].
In this approach it is assumed that the state of the sys-
tem, throughout the whole time, is a product state of
states of the two legs. The state of each leg is then de-
scribed by the Generalized Gibbs Ensemble (GGE). The
basic ingredient of the GGE for the XXZ spin chain is
a set of density functions {ρp,a(θ)}. They describe the
density of quasiparticles of type a present in the state as
a function of the quasimomentum θ commonly referred
to as rapidity. Rapidity parametrises momentum ka(θ)
and energy ωa(θ) of a quasiparticle. Along the densities
of particles it is common to introduce the densities of
holes {ρh,a(θ)}. All those functions are determined from
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the densities of particles through the generalized thermo-
dynamic Bethe ansatz equations [41].

The excitations in the XXZ spin chain are organized
into strings and we refer to [58] for more detailed dis-
cussion on them. The Boltzmann approach leads then
to evolution equations for {ρp,a(θ)} in each leg induced
due to scattering events caused the integrability breaking
perturbation. When states in both legs are different, this
leads to a pair of coupled equations. However, if they are
the same in the initial state, they remain identical for
all times. In this case the problem reduces to a single
equation,

∂ρ(a)p (θ) = I(a)[ρp](θ) =
∑

b

Q(a,b)[ρp](θ), (S19)

which is a straightforward generalization of the Boltz-
mann equation for two coupled Lieb-Liniger models [38,
56] to a system hosting multiple types of excitations.

The collision integral I(a,b)(θ) describes two effects.
First, following from the Fermi’s golden rule, it takes into
account all the processes that due to the perturbation
modify the density of excitations of type a at rapidity θ
while creating excitation of type b in the other leg. This

defines a bare collision integral Q
(a,b)
0 (θ). Furthermore,

due to the interactions present in the XXZ spin chains,
a modification to density at θ modifies the densities also

elsewhere. This effect is captured by a back-flow func-
tion and we refer to [57] for its precise definition in the
GGE context. Importantly, the back-flow vanishes for
∆ = 0. This implies that its effect is subleading and
can be neglected as our aim here is to estimate the order
of the leading contribution. The leading order is then

determined fully by the bare collision integral I(a,b)
0 [ρp].

As stated above, the bare collision integral follows
from the Fermi’s golden rule. It involves the (norm
squared of) matrix elements of the perturbing opera-

tor U
∑L
j=1 S

z
j,1S

z
j,2. The state of the system is the

product state of states in both legs and the compu-
tation of the matrix element reduces then to compu-
tation of form-factors of Szj . The Szj operator con-
serves the total magnetization of the state and therefore
its form-factors are non-zero only between states with
the same magnetization. The possible excitations are
then organized into magnetization-conserving particle-
hole excitations (in the Bethe Ansatz description of the
spin chain). The perturbation theory in ∆ shows that
the leading processes are single particle-hole excitations.
We denote the corresponding form-factors Fa(p, h) =
⟨ρp|Sz0 |ρp, (h → p)a⟩ with (p, h) being the rapidities of
particle and hole respectively. The energy and momen-
tum of the excited state is ωa(p, h) = ωa(p) − ωa(h) and
ka(p, h) = ka(p) − ka(h) respectively. This allows us to
write down the leading contribution to the collision inte-
gral as

I(a,b)
0 [ρp] =

∫
dpdhA2(k)|Fa(p, h)|2

(
Szzb (−k,−ω) − Szzb (k, ω)

ρh,a(h)ρp,a(p)

ρh,a(p)ρp,a(h)

)(
1 + O(U2∆2)

)
, (S20)

where A is the Fourier transform of the potential cou-
pling the two spin chains and Szzb (k, ω) is the contribu-
tion to the dynamic structure factor from excitations of
type b such that the whole dynamic structure factor is
Szz(k, ω) =

∑
b S

zz
b (k, ω). Such factorization of the dy-

namic structure factor is a straightforward consequence
of the spectral representation of any two point function.
Finally, the integration measure includes the densities of
particles and holes, dpdh = dpρh,a(p)dhρp,a(h).

To estimate the leading order of the bare collision in-
tegral we consider the spectral representation of the dy-
namic structure factor. It again involves form-factors
of Szj operator and, by the same argument as above, in
the leading order in ∆ we need to consider only single
particle-hole processes. A contribution from excitations
of type b is then

Szzb (k, ω)=

∫
dpdh |Fb(p, h)|2δ(k−kb(p, h))δ(ω−ωb(p, h)).

(S21)

Under the particle-hole symmetry of the form factor, each
contribution Szzb (k, ω) obeys a relation similar to the de-
tailed balance,

Szzb (−k,−ω) =
ρh,b(p̄)ρp,b(h̄)

ρh,b(h̄)ρp,b(p̄)
Szzb (k, ω), (S22)

where (p̄, h̄) is determined from the kinematic constraint
k = kb(p̄, h̄), ω = ωb(p̄, h̄).

With this result at our disposal, the collision integral
is
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I(a,b)
0 [ρp] =

∫
dpdhA2(k)|Fa(p, h)|2Szzb (−k,−ω)

(
1 − ρh,a(h)ρp,a(p)

ρh,a(p)ρp,a(h)

ρh,b(h̄)ρp,b(p̄)

ρh,b(p̄)ρp,b(h̄)

)(
1 + O(U2∆2)

)
, (S23)

with (p̄, h̄) determined from the energy-momentum con-
straint ka(p, h)+kb(p̄, h̄) = 0 and ωa(p, h)+ωb(p̄, h̄) = 0.
This is the final expression for the single-particle hole
contribution to the bare collision integral. As argued
above this contribution is the leading one. We will show
that this contribution is of order U2∆2. The coupling
term A(k)2 is of order U2 and therefore it remains to
show that the this expression is also of order ∆2.

We analyze first the case a = b. The only solution to
the energy-momentum constraint is then p̄ = h, h̄ = p,
in consequence, the collision integral vanishes identically.
For the remaining cases of a ̸= b we can use a pertur-
bative argument. For ∆ = 0 the spectrum of the theory
is that of the free fermions. This implies that the only
excitations, in the XXZ language, are 1-strings. Higher
strings excitations are bound states of 1-strings and ap-
pear due to the effective attractive interaction induced

by ∆ ̸= 0. Therefore, changing the type of an excitation
is a process for which the form-factor is at least of the
order ∆. This implies that the whole expression is at
least of the order ∆2.

This analysis shows that semi-classically the evolution
of the whole system occurs at the order ∆2U2. This im-
plies that both combinations Q±

n are conserved. We note
that the situation changes when the initial states of both
spin chains are different, a setup studied recently for cou-
pled Lieb-Liniger models [39]. In such situation, already
at the level of the Boltzmann equation, the odd combina-
tions Q−

n acquire dynamics, while Q+
n remain conserved

with the precision U2/c2, where U is again the strength
of the coupling between two legs and 1/c is a small pa-
rameter controlling the deviation from the free fermionic
point (thus playing the role of ∆).
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