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SEPARABLE ALGEBRAS IN MULTITENSOR C∗-CATEGORIES ARE

UNITARIZABLE

LUCA GIORGETTI1, WEI YUAN2,3, XURUI ZHAO4

Abstract. Recently, S. Carpi et al. (Comm. Math. Phys., 402:169–212,
2023) proved that every connected (i.e. haploid) Frobenius algebra in a ten-
sor C∗-category is unitarizable (i.e. isomorphic to a special C∗-Frobenius
algebra). Building on this result, we extend it to the non-connected case
by showing that an algebra in a multitensor C∗-category is unitarizable if
and only if it is separable.

1. Introduction

Separable algebras in tensor categories are a natural generalization of
finite-dimensional (associative unital) semisimple algebras over C. Let C
be a tensor category, see e.g. [Müg10], [EGNO15]. If C happens to be in
addition unitary i.e. C∗, see e.g. [NT13], [BKLR15], the main result of this
note, Theorem 4.13, states that every separable algebra is “unitarizable” i.e.
it is isomorphic to a “unitarily” separable algebra, and the converse holds
trivially. For the precise notions see Definition 3.3, Definition 4.1, and Defi-
nition 4.2. By Theorem 4.13, every statement involving separable algebras
living in a tensor or multitensor C*-category has a “unitary” counterpart.

On the one hand, unitarily separable algebras also appear in the literature
under the name of special C∗-Frobenius algebras [BKLR15] or Q-systems
[Lon90], [Lon94], [LR97]. Their study was initially motivated by the applica-
tions to operator algebras, in particular to the construction and classification
of finite-index subfactors [Jon83], [Ocn88], [Pop90], [Pop95], [Jon21]. See
[EK98] for an introduction to the subject, [Gio22] for an overview, and
[AMP23], and references therein, for recent classification results. Since
[LR95], Q-systems also play a pivotal role in the construction and classifica-
tion of finite-index extensions of algebraic quantum field theories [Haa96]
in arbitrary spacetime dimensions, and of one-dimensional conformal field
theories in the (completely) unitary vertex operator algebra framework
[Kac97], [CKLW18] as well, since [Gui22]. Recently, Q-systems have been
employed in the study of “quantum symmetries” (tensor category actions,
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algebra, C∗-Frobenius algebra, Q-system.
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generalizing ordinary group symmetries) of C∗-algebras [CHPJP22], [CP22],
[CHPJ24], [EP23].

On the other hand, separable algebras have a priori no inbuilt unitar-
ity. Together with an additional commutativity assumption with respect
to a given braiding, since [DMNO13] they are also often called étale al-
gebras. These objects, typically assuming connectedness, are studied in
relation to Ocneanu’s quantum subgroups [Ocn02]. See [Gan23] for re-
cent results and a detailed account on their classification program. As for
(commutative irreducible) Q-systems in the algebraic quantum field theory
framework, connected étale algebras can be used to describe (local irre-
ducible) extensions of vertex operator algebras [HKL15], see also [KO02],
[CKM17]. Notably, they describe all rational 2D conformal field theories
maximally extending a given tensor product of (isomorphic) chiral subthe-
ories. See [FRS02], [FRS04a], [FRS04b], [FRS05], [RFFS07] in the Euclidean
setting, [HK07], [Kon07] in the full vertex operator algebra setting, [BKL15],
[BKLR16] for the algebraic quantum field theory setting, and [AGT23] for
the Wightman quantum field theory setting. See also [KYZ21] for a proof
of functoriality of the [FRS02] construction when varying the given chiral
subtheory.

The proof of our main result, Theorem 4.13, strongly relies on Theorem 3.2
in [CGGH23]. In the connected (i.e. haploid) case, the notions of separable
algebra, Frobenius algebra, and isomorphic to unitarily separable algebra
(i.e. isomorphic to special C∗-Frobenius algebra =Q-system) all coincide by
Lemma 4.10 below and by Theorem 3.2, see also Remark 3.3, in [CGGH23].
In the non-connected case, we first decompose a separable algebra A in C

into indecomposable ones, Lemma 4.8, then unitarize the category of right
A-modules in C, Lemma 4.11, lastly we show that the unitarized category is
equivalent to the modules over a unitarily separable algebra in C to which
A is isomorphic, Proposition 4.12. This leads to Theorem 4.13

We point out that the semisimplicity of C (or better of the tensor sub-
category generated by A) is a consequence of the assumptions made in
Theorem 3.2 in [CGGH23] (where the tensor unit of C is simple). Here,
we need semisimplicity of C to exploit the separability of A via Proposi-
tion 4.3. Thus, a possible generalization of Theorem 4.13 to the case of
non-semisimple monoidal C∗-categories C should require a different idea,
possibly “internal” to the C∗-algebra C(A,A), on how to show directly that
a separable algebra is isomorphic in C to a unitarily separable one.

2. Preliminaries

A C∗-category is a generalization of a C∗-algebra of operators acting be-
tween different Hilbert spaces instead of one. The objects X,Y,Z, . . . of C
can be thought of as the Hilbert spaces, the morphisms f, g, h, . . . of C as
the bounded linear operators. Formally, it is a C-linear category C ([ML98],
[EGNO15]) equipped with an involutive contravariant anti-linear endofunc-
tor ∗ : C→ C (sometimes called dagger or adjoint) and a family of norms ‖ · ‖
on morphisms such that

• the endofunctor ∗ is the identity on objects (we use f ∗ ∈ C(Y,X) to
denote the image of the morphism f ∈ C(X,Y)),
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• the hom space C(X,Y) is a Banach space for every X,Y ∈ C,
• ‖g f ‖ ≤ ‖g‖‖ f ‖, ‖ f ∗ f ‖ = ‖ f ‖2, f ∗ f ≥ 0, for every f ∈ C(X,Y), g ∈
C(Y,Z).

In particular, a C∗-category with one object is a unital C∗-algebra (see
[GLR85]).

In the following, we use 1X to denote the identity morphism in C(X,X).
For a morphism f ∈ C(X,Y) we will occasionally write f : X → Y if the
environment category C is clear from the context.

A morphism f in a C∗-category is called unitary (resp. self-adjoint) if
f ∗ = f−1 (resp. f ∗ = f ). Let C and D be two C∗-categories. A ∗-functor from
C to D is a linear functor such that F( f ∗) = F( f )∗ for every morphism f .

A multitensor C∗-category is an abelian rigid ([DR89], [LR97]) monoidal
category (C,⊗ : C × C → C, 1) equipped a C∗-category structure satisfying
the following conditions

• the tensor unit 1 of C is semisimple, i.e. C(1, 1) is finite-dimensional,
• ⊗ is a bilinear functor and ( f ⊗ g)∗ = f ∗ ⊗ g∗ for every morphisms

f, g,
• the associator and the left/right unitor constraints are unitary.

If C(1, 1) ≃ C, i.e. if 1 is simple, then C is called a tensor C∗-category. By
Proposition 8.16 in [GL19], every multitensor C∗-category C is semisimple
and locally finite. Moreover, by Mac Lane’s coherence theorem, C is equiv-
alent to a strict multitensor C∗-category, i.e. where the associator and the
left/right unitors are identities (see [EGNO15] and [BKLR15]). From now
on, unless otherwise specified, we use C to denote a (strict) multitensor
C∗-category.

Remark 2.1. The tensor unit 1 of C is a direct sum of simple objects ⊕n
i=1

1i.
Note that C ≃ ⊕i jCi j, where Ci j := 1i⊗C⊗1 j (see Remark 4.3.4 in [EGNO15]).
Let τ be the linear functional on C(1, 1) defined by

τ















∑

i

ai11i















:=
∑

i

ai.

Let X ∈ C. We have X ≃ ⊕i jXi j and X ≃ ⊕i jX ji, where Xi j := 1i ⊗ X ⊗ 1 j

and X, Xi j denote the dual (or conjugate) objects of X, Xi j respectively.
Namely, for every i, j ∈ {1, . . . , n}, there exists (see below) a solution (γi j ∈
C(1 j,Xi j ⊗ Xi j), γi j ∈ C(1i,Xi j ⊗ Xi j)) of the conjugate equations

(γ ∗i j ⊗ 1Xi j
)(1Xi j

⊗ γi j) = 1Xi j
, (γ∗i j ⊗ 1Xi j

)(1Xi j
⊗ γi j) = 1Xi j

,

which is unique up to unitaries, and such that

τ

(

γ∗i j(1Xi j
⊗ f )γi j

)

= τ

(

γ ∗i j( f ⊗ 1Xi j
)γi j

)

(1)

for every f ∈ C(Xi j,Xi j). The scalar dimension of Xi j ([LR97], [GL19]) is then

dXi j
= τ(γ∗

i j
γi j) = τ(γ

∗
i jγi j).

For the convenience of the reader, we sketch proof of this well-known
fact when i , j (the case where i = j can be proved similarly). Let {Zs}s be

a set of representatives of simple objects in Ci j. Since dimC(1 j,Zs ⊗ Zs) =
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dimC(1i,Zs ⊗ Zs) = 1, we can choose a solution of the conjugate equations
(γs, γs) such that τ(γ∗sγs) = τ(γ

∗
sγs), i.e. ‖γs‖ = ‖γs‖ (as in Definition 3.4

in [LR97]). For non-simple Xi j ∈ Ci j, let {us,k}k (resp. {us,k}k) be a basis of

C(Zs,Xi j) (resp. C(Zs,Xi j)) such that u∗
s,l

us,k = δk,l1Zs (resp. u ∗s,lus,k = δk,l1Zs
).

Let

γi j :=
∑

s

∑

k

(us,k ⊗ us,k)γs, γi j :=
∑

s

∑

k

(us,k ⊗ us,k)γs,

as before Lemma 3.7 in [LR97], or before Lemma 8.23 in [GL19], then (γi j, γi j)

is a solution of the conjugate equations that satisfies the equation (1). In-
deed,

τ

(

γ∗i j(1Xi j
⊗ us,ku∗s,l)γi j

)

= δk,lτ(γ
∗
sγs) = δk,lτ(γ

∗
sγs) = τ

(

γ ∗i j(us,ku∗s,l ⊗ 1Xi j
)γi j

)

.

Let (ω ∈ C(1,Xi j ⊗ Xi j), ω ∈ C(1,Xi j ⊗ Xi j)) be a solution of the conjugate
equations that satisfies the equation (1). Then there exists an invertible
morphism h ∈ C(Xi j,Xi j) such that ω = (1Xi j

⊗ h)γi j and ω = ((h∗)−1 ⊗
1Xi j

)γi j. By choosing a different basis of C(Zs,Xi j), we may assume that

h =
∑

s

∑

k as,kus,ku∗
s,k

, where as,k > 0. Then the condition that (ω,ω) fulfills

the equation (1) implies that h = 1Xi j
. In other words, the solution of the

conjugate equations that satisfies the equation (1) is unique up to unitaries
(see Lemma 3.3 and Lemma 3.7 in [LR97], and cf. Lemma 8.35 in [GL19],
for more details).

Let γX := ⊕i jγi j and γX := ⊕i jγi j. Note that these are not the standard

solutions of the conjugate equations defined in [GL19], where the Perron–
Frobenius data of the matrix dimension enter as numerical prefactors for each
i, j (see Definition 8.25 and Definition 8.29 therein), unless the tensor unit
is simple (as in Section 3 of [LR97]) and they coincide with the standard
solutions of [LR97]. In particular, the “loop” or “bubble” morphisms γ∗

X
γX

and γ ∗XγX will neither be scalar in C(1, 1), nor equal, nor will (γX, γX) be
spherical (resp. minimal) in the sense of Theorem 8.39 (resp. Theorem 8.44)
in [GL19].

With the (γX, γX) defined above, we have
(

γ∗Y ⊗ 1X

) (

1
Y
⊗ g ⊗ 1X

) (

1
Y
⊗ γX

)

=
(

1X ⊗ γ
∗
Y

) (

1X ⊗ g ⊗ 1
Y

) (

γX ⊗ 1
Y

)

and

τ
(

γ∗X(1X ⊗ hg)γX

)

= τ
(

γ ∗X(hg ⊗ 1X)γX

)

= τ
(

γ∗Y(1
Y
⊗ gh)γY

)

for every g ∈ C(X,Y), h ∈ C(Y,X), and X,Y ∈ C. Moreover, if a solution of

the conjugate equations (ω ∈ C(1,X ⊗ X), ω ∈ C(1,X ⊗ X)) fulfills

τ
(

ω∗(1X ⊗ g
)

ω) = τ
(

ω ∗(g ⊗ 1X)ω
)

, ∀g ∈ C(X,X),

then there exists a unitary u ∈ C(X,X) (or u ∈ C(X,X)) such that ω =
(1X ⊗ u)γX and ω = (u ⊗ 1X)γX (or ω = (u ⊗ 1X)γX and ω = (1X ⊗ u)γX).

Based on these observations, it is not hard to check that C endowed with
the pivotal duality {(X, γX, γX)}X∈C is a pivotal category (see, e.g. Section 1.7
in [TV17] for the definition of pivotal category).
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3. Algebras and modules in multitensor C∗-categories

We recall below the natural generalization of the notion of finite-dimensional
unital associative algebra (in the tensor category of finite-dimensional com-
plex vector spaces Vecf.d.,C). Let C be a strict multitensor C∗-category.

Definition 3.1. An algebra in C is a triple (A,m, ι), where A is an object in C,
m ∈ C(A ⊗ A,A) is the “multiplication” morphism, ι ∈ C(1,A) is the “unit”
morphism, fulfilling the associativity and unit laws

m(m ⊗ 1A) = m(1A ⊗m), m(ι ⊗ 1A) = 1A = m(1A ⊗ ι).

Definition 3.2. Two algebras (A,m, ι) and (A′,m′, ι′) in C are said to be
isomorphic if there is an invertible (not necessarily unitary) morphism
t ∈ C(A,A′) such that tm = m′(t ⊗ t) and tι = ι′.

Definition 3.3. An algebra (A,m, ι) in C is called a C∗-Frobenius algebra if
m∗ is a left (or equivalently right) A-module morphism such that

(m ⊗ 1A)(1A ⊗m∗) = m∗m = (1A ⊗m)(m∗ ⊗ 1A).(2)

An algebra (A,m, ι) inC is called special if the multiplication is a coisometry:1

mm∗ = 1A.

Definition 3.4. Forgetting the C∗ structure, an algebra (A,m, ι) inC endowed
with a coalgebra structure (A,∆ ∈ C(A,A ⊗ A), ε ∈ C(A, 1)) (not necessarily
∆ = m∗, ε = ι∗) fulfilling the coassociativity and counit laws, is called a
Frobenius algebra if the analogue of (2) holds with m∗ replaced by ∆ (see
[Abr99], [FRS02], [Yam04]).

The following crucial results proven in [LR97], [FRS02], [BKLR15] as-
suming C(1, 1) ≃ C, see in particular Chapter 3 in [BKLR15], also hold for
multitensor C∗-categories, cf. Section 2.2 in [GY23]:

Proposition 3.5. Let (A,m, ι) be an algebra in C.

• If (A,m, ι) is special, then it is a C∗-Frobenius algebra.
• If (A,m, ι) is a C∗-Frobenius algebra, then it is isomorphic to a special one.

Example 3.6. Recall, e.g. from Section 2 in [Abr99] and Section 2.1 in
[NY18], that a C∗-Frobenius algebra in Hilbf.d.,C, the tensor C∗-category of
finite-dimensional Hilbert spaces, is just an ordinary finite-dimensional C∗-
algebra with a Frobenius structure. Forgetting the C∗ structure, a Frobenius
algebra in the tensor category Vecf.d.,C of finite-dimensional vector spaces
is a finite-dimensional Frobenius algebra.

We shall use module categories (and their unitary version, C∗-module cat-
egories recalled below) over multitensor C∗-categories. See [Ost03] or Chap-
ter 7 in [EGNO15] for the definitions of module category over a monoidal
category C and module functor.

1or, in a different convention, a scalar multiple of a coisometry, cf. [Müg03], [GS12],
[BKLR15], [NY18], [ADC19]. Also, note that we do neither ask ι∗ι to be 1, nor a multiple of
1, and that the latter condition is automatic if the tensor unit is simple.
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Definition 3.7. A left C∗-module category over a multitensor C∗-category C

is a left C-module category (M,⊙ : C ×M→M) which is also a C∗-category,
such that

• ⊙ is bilinear and ( f ⊙ g)∗ = f ∗ ⊙ g∗ for every morphisms f ∈ C, g ∈M,
• the associator and the unitor constraints are unitary.

Right C∗-module categories and C∗-bimodule categories are defined simi-
larly.

Typical examples of left (resp. right)C-module categories (not necessarily
C∗) come from considering right (resp. left) modules over an algebra (A,m, ι)
in C. We use RModC(A) (resp. LModC(A)) to denote the category of right
(resp. left) A-modules in C.

Definition 3.8. Let (A,m, ι) be a special C∗-Frobenius algebra in C. As for
algebras, a right A-module (X, r ∈ C(X ⊗ A,X)) in C is called special if

rr∗ = 1X.

We denote by sRModC(A) the category of special right A-modules in C. The
definition for left A-modules is analogous.

By the arguments of Chapter 3 in [BKLR15], cf. Section 2.2 in [GY23], we
have:

Proposition 3.9. Let (A,m, ι) be a special C∗-Frobenius algebra in C. Then
sRModC(A) is a left C∗-module category over C, where the involution and norms
are inherited from C.

More generally, given a right A-module (X, r ∈ C(X ⊗ A,X)), then (X, r′ :=

h−1r(h ⊗ 1A)) is a special right A-module, where h :=
√

rr∗, and h−1 is a right
A-module isomorphism from (X, r) to (X, r′). Moreover, RModC(A) is a left C∗-
module category over C with the following C∗-structure

• f ∈ RModC(A)(X,Y) 7→ h2
X

f ∗h−2
Y
∈ RModC(A)(Y,X),

•
∣

∣

∣

∣

∣

∣

∣

∣

∣ f
∣

∣

∣

∣

∣

∣

∣

∣

∣ :=
∥

∥

∥h−1
Y

f hX

∥

∥

∥, f ∈ RModC(A)(X,Y),

where hX :=
√

rXr∗
X

and hY :=
√

rYr∗
Y

are defined respectively from the right
A-module actions of X and Y. The embedding sRModC(A) −֒→ RModC(A) is an
equivalence of left C∗-module categories.

4. Separable algebras are unitarizable

In this section, we prove our main theorem.

Definition 4.1. An algebra (A,m, ι) in C is called separable if the multipli-
cation m ∈ C(A ⊗ A,A) splits as a morphism of A-A-bimodules in C, i.e. if
there is an A-A-bimodule morphism f ∈ C(A,A ⊗ A) such that m f = 1A.

Clearly, every (not necessarily special) C∗-Frobenius algebra in C is sep-
arable. Indeed, by Proposition 3.5, it is isomorphic to a special algebra in
C (Definition 3.3), namely mm∗ = 1A holds up to isomorphism of algebras,
hence it is separable.

Moreover, a special C∗-Frobenius algebra, which is also called a Q-system
after [Lon94] (see also [LR97], [Müg03], [BKLR15], [CHPJP22], [CGGH23]
and references therein), can be viewed as a “unitarily” separable algebra.
The following definition is motivated by this fact.
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Definition 4.2. A (Frobenius) algebra in C is unitarizable if it is (not neces-
sarily unitarily) isomorphic to a special C∗-Frobenius algebra in C.

Our main result (Theorem 4.13) states that every separable algebra in C

is unitarizable.

By the proof of Proposition 7.8.30 in [EGNO15], cf. Section 3 in [Ost03],
Section 2.3 in [DMNO13], Section 2.4 in [HPT16], Section 4 in [KZ17], the
following characterization of separability for algebras in (not necessarily
C∗) multitensor categories holds:

Proposition 4.3. Let (A,mA, ιA), (B,mB, ιB) be separable algebras in C. Then the
categories RModC(A), LModC(A), and BiModC(A|B) (A-B-bimodules in C) are
semisimple.

In particular, an algebra (C,mC, ιC) in C is separable if and only if BiModC(C|C)
is semisimple.

Let (A,m, ι) be an algebra in C, (X, r) ∈ RModC(A), and (Y, l) ∈ LModC(A).
We recall, e.g. from Section 7.8 in [EGNO15] tensor product of X and Y over
A is the object X ⊗A Y ∈ C defined as the co-equalizer of the diagram

X ⊗ A ⊗ Y
r⊗1Y

//

1X⊗l
// X ⊗ Y // X ⊗A Y.

The following result follows from Proposition 7.11.1 in [EGNO15].

Proposition 4.4. Let (A,mA, ιA), (B,mB, ιB) be algebras inC such that RModC(A),
RModC(B) are semisimple. Then the category FunC|(RModC(A),RModC(B)) of
left C-module functors is equivalent to BiModC(A|B).

The equivalence is given by

X 7→ − ⊗A X : BiModC(A|B)→ FunC| (RModC(A),RModC(B)).

Definition 4.5. A separable algebra (A,mA, ιA) in C is called indecompos-
able if RModC(A) is an indecomposable left C-module category, i.e. if it is
not equivalent to a direct sum of non-zero left C-module categories.

Definition 4.6. An algebra (A,mA, ιA) is called connected (or haploid) if
dim(C(1,A)) = 1, i.e. if A is a simple object in RModC(A).

Lemma 4.7. Let C ≃ ⊕i jCi j be the decomposition as in Remark 2.1. Then
(A,mA, ιA) is a connected algebra in C if and only if there exists exactly one
j ∈ {1, . . . , n} such that A = A j j is a connected algebra contained in the tensor
C∗-category C j j with tensor unit 1 j.

Proof. Recall 1 = ⊕n
i=1

1i. By connectedness, there is only one j such that
C(1 j,A) , 0, and dim(C(1 j,A)) = 1. Moreover, every Akl must be zero unless
k = l = j. �

The following result is well-known, we sketch the proof for the reader’s
convenience:

Lemma 4.8. Let (A,m, ι) be a separable algebra in C. Then A is a direct sum of
indecomposable separable algebras.
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Proof. Note that RModC(A) is indecomposable if and only if the identity
functor id = −⊗A A associated with the trivial bimodule A is a simple object
in FunC|(RModC(A),RModC(A)). By Proposition 4.4,

BiModC(A|A)(A,A) ≃ FunC|(RModC(A),RModC(A))(id, id).

Assume that dim(BiModC(A|A)(A,A)) > 1. Recall from Proposition 4.3
that BiModC(A|A) is semisimple. Let p be a non-trivial idempotent in
BiModC(A|A)(A,A), i.e. 1A − p , 0, p2 = p, and let B be the image of p. Then
B is a separable algebra with multiplication and unit given by vm(w ⊗ w)
and vι, where v : A → B and w : B → A are A-A-bimodule morphisms
such that vw = 1B and wv = p. Note that f : B → B is a B-B-bimodule
morphism with the previous algebra structure on B if and only if w f v :
A → A is an A-A-bimodule morphism. Thus dim(BiModC(B|B)(B,B)) <
dim(BiModC(A|A)(A,A)). This implies that A is a direct sum of indecom-
posable separable algebras. �

Remark 4.9. If, in addition, the category C is braided and the separable
algebra (A,m, ι) is commutative in the sense of Definition 1.1 in [KO02],
cf. Definition 4.20 in [BKLR15], then BiModC(A|A) and RModC(A) can be
identified. Hence, by the previous proof, A is a direct sum of connected
separable algebras, cf. Remark 3.2 in [DMNO13].

Lemma 4.10. Let (A,m, ι) be a connected separable algebra in C. Then A can be
promoted to a Frobenius algebra.

Proof. By Lemma 4.7, we may assume that C is a tensor C∗-category. Recall

the conventions in Remark 2.1. A is a right A-module with right A-action
given by

A ⊗ A
1

A⊗A
⊗γA−−−−−−→ A ⊗ A ⊗ A ⊗ A

1
A
⊗m⊗1

A−−−−−−−→ A ⊗ A ⊗ A
γ∗

A
⊗1

A−−−−−→ A.

Let f : A→ A be the non-zero right A-module morphism defined by

f := A
1A⊗γA−−−−−→ A ⊗ A ⊗ A

(ι∗m)⊗1
A−−−−−−→ A.

Since RModC(A) is semisimple by Proposition 4.3, A is a simple right A-
module by connectedness, and dA = d

A
(where dA is the scalar dimension

[GL19] of A in C, or equivalently the dimension [LR97] in C j j, cf. Lemma
4.7), f is invertible in C. Hence, by Lemma 3.7 in [FRS02], A can be promoted
to a Frobenius algebra. �

Let (M,⊙) be a left C-module category. Then M is said to be enriched in
C if the functor C 7→ M(C ⊙ X,Y) : C → Vecf.d.,C is representable for every
X,Y ∈M, i.e. there exists an object [X,Y] ∈ C such that

M(− ⊙ X,Y) ≃ C(−, [X,Y]).

The object [X,Y] is called the internal hom from X to Y. In particular, [X,−] :
M→ C is the right adjoint of the functor − ⊙ X : C→M.

IfM = RModC(A), where A is a separable algebra in C, thenM is enriched

in C. More explicitly, the internal hom [X,Y] is given by X ⊗A Y. We refer
the reader to Section 7 in [EGNO15] or Section 2 in [KZ18] for basic facts
about internal homs.
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Lemma 4.11. Let (A,mA, ιA) be an indecomposable separable algebra in C. Then
there exists a connected special C∗-Frobenius algebra (B,mB, ιB) in C such that
RModC(A) and RModC(B) are equivalent as left C-module categories.

In particular, RModC(A) is equivalent to a left C∗-module category over C.

Proof. Let X be a non-zero simple object in RModC(A). By Proposition 4.3
and by the proof of Theorem 3.1 in [Ost03] (cf. Theorem 2.1.7 in [KZ18]),
the internal hom [X,X] in RModC(A) is a connected (by the simplicity of X)
algebra in C such that RModC(A) and RModC([X,X]) are equivalent. Note
that RModC(A) and RModC([X,X]) are both semisimple. Since

FunC|(RModC([X,X]),RModC([X,X])) ≃ FunC|(RModC(A),RModC(A)),

from Proposition 4.3 and Proposition 4.4 it follows that A separable im-
plies that [X,X] is separable. By Lemma 4.10, [X,X] can be promoted to
a connected Frobenius algebra. Then [X,X] is isomorphic to a special C∗-
Frobenius algebra B in C by Lemma 4.7 and by Theorem 3.2, cf. Remark
3.3, in [CGGH23]. We conclude that RModC(A) is equivalent to RModC(B).
The latter is a left C∗-module category over C by Proposition 3.9. �

The following result is of independent interest and it should be compared
with Lemma 2.18 in [GS12] for M = RModC(A), and Theorem A.1 in [NY18].

Proposition 4.12. Let (M,⊙) be an indecomposable left C∗-module over C which
is enriched in C. For every non-zero object X in M, the internal hom [X,X] is
isomorphic (up to rescaling) to a special C∗-Frobenius algebra in C.

Proof. By Proposition 2.3 in [Reu23], we may choose the right adjoint [X,−] :
M→ C of the ∗-functor −⊙X : C→M to be a ∗-functor. For every C ∈ C and
Y ∈ M, we treat C(C, [X,Y]) as the Hilbert space with inner product given
by

〈 f1| f2〉 := τ
(

γ∗C(1
C
⊗ f ∗1 f2)γC

)

,

where γC and τ are defined in Remark 2.1. Fix a faithful tracial state Tr
on M(X,X). We treat M(C ⊙ X,Y) as the Hilbert space with inner product
defined by

〈g1|g2〉 := Tr
((

(γ∗C ⊗ 1X)(1
C
⊙ g∗1)

) (

(1
C
⊙ g2)(γC ⊗ 1X)

))

.

By the enrichment assumption, C(−, [X,−]) and M(− ⊙ X,−) are equivalent
bilinear ∗-functors Cop ×M → Hilbf.d.,C, i.e. C( f, [1X, g])∗ = C( f ∗, [1X, g

∗])
and M( f ⊙ 1X, g)∗ =M( f ∗ ⊙ 1X, g

∗) for every f ∈ C(C2,C1) and g ∈M(Y1,Y2).
By considering the polar decomposition of natural isomorphisms, we may
assume that the natural isomorphism C(−, [X,−]) ≃ M(− ⊙ X,−) is compo-
nentwise unitary, i.e. C(C, [X,Y]) ≃ M(C ⊙ X,Y) is unitary for every C ∈ C

and Y ∈M.
Note that [X,−] is a left C-module functor with the C-module structure

αC,Y : C⊗ [X,Y]
∼−→ [X,C⊙Y] defined by the following natural isomorphism

(3)

C(B,C ⊗ [X,Y])
∼−→ C(C ⊗ B, [X,Y])

∼−→M((C ⊗ B) ⊙ X,Y)
∼−→M(C ⊙ (B ⊙ X),Y)

∼−→M(B ⊙ X,C ⊙ Y)
∼−→ C(B, [X,C ⊙ Y]),
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where the first and fourth morphisms are induced by the solution of con-
jugate equation (γC, γC) and the third morphism is induced by the module
structure of M (see Section 7.12 in [EGNO15]). By the fact that the natu-
ral isomorphism C(−, [X,−]) ≃ M(− ⊙ X,−) is componentwise unitary, it is
not hard to check the the natural isomorphism (3) is unitary. Thus αC,Y is
unitary.

The evaluation evY : [X,Y]⊙X→ Y is obtained as the image of 1[X,Y] under
the natural isomorphism C([X,Y], [X,Y]) ≃M([X,Y]⊙X,Y). Let evY = hYuY

be the polar decomposition of evY, where hY :=
√

evY ev∗
Y

. Since αC,Y is the
unique morphism such that the following diagram commutes

(C ⊗ [X,Y]) ⊙ X
αC,Y
��

∼
// C ⊙ ([X,Y] ⊙ X)

1C⊙evY
��

[X,C ⊙ Y] ⊙ X
evC⊙Y

// C ⊙ Y,

by the uniqueness of the polar decomposition, we have 1C ⊙ hY = hC⊙Y. In
particular, hY : Y→ Y is a left C-module natural isomorphism of the identity
functor IdM to itself. Since M is indecomposable, there exist λ > 0 such that
hY = λ1Y for every Y. Since the multiplication of m : [X,X]⊗ [X,X]→ [X,X]
is defined by

[X,X] ⊗ [X,X]
α[X,X],X−−−−−→ [X, [X,X] ⊙ X]

[1X ,evX]−−−−−−→ [X,X],

(see Section 3.2 in [Ost03]) we have mm∗ = λ21[X,X]. Hence [X,X] can be
rescaled to a special C∗-Frobenius algebra. �

Summing up, we can state and prove our main result:

Theorem 4.13. An algebra in a multitensor C∗-category C is isomorphic to a
special C∗-Frobenius algebra if and only if it is separable.

Proof. By Lemma 4.8, we only need to show that every indecomposable
separable algebra (A,mA, ιA) in C is isomorphic to a special C∗-Frobenius
algebra. Recall that RModC(A) is equivalent to a left C∗-module category
over C, denoted by M, by Lemma 4.11. Let F : RModC(A) → M be the
equivalence of left C-module categories. The algebra A seen as an object
of RModC(A) equals [A,A], see e.g. Remark 3.5 in [Ost03], hence it is
isomorphic to [F(A), F(A)]. The latter is isomorphic to a special C∗-Frobenius
algebra by Proposition 4.12, hence A is, and the proof is complete. �

For fusion C∗-categories C, the following is stated as Corollary 3.8 in
[CGGH23], as a consequence of Theorem 3.2 therein.

Corollary 4.14. Let M be a finite semisimple left module category over a multi-
fusion C∗-category C. Then M is equivalent to RModC(A) for a special C∗-
Frobenius algebra A.

Therefore, every finite semisimple left module category M over a multi-fusion C∗-
category C admits a unique unitary structure (up to unitary module equivalence).

Proof. By Corollary 7.10.5 in [EGNO15], M is equivalent to RModC(B),
where B is an algebra in C. Since M is semisimple, by Theorem 2.18
in [ENO05], we have that BiModC(B|B) ≃ FunC|(RModC(B),RModC(B)) is
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semisimple. Then B is separable by Proposition 4.3, and RModC(B) is equiv-
alent to RModC(A) for a special C∗-Frobenius algebra A by Theorem 4.13.
The uniqueness statement follows from Corollary 9 in [Reu23], see also
Theorem 1 and Remark 4 therein. �

We conclude with an application of Theorem 4.13 which justifies Remark
4.2 in [GY23]. The idempotent completion of a locally idempotent complete
bicategory B, introduced in Definition A.5.1 in [DR18], is the bicategory
whose objects are separable algebras in B, whose 1-morphisms are bimod-
ules, and whose 2-morphisms are bimodule maps. By Proposition A.5.4
in [DR18], there exists a canonical fully faithful bifunctor from B into its
idempotent completion. B is called idempotent complete if this bifunctor is
a biequivalence. By combining the straightforward generalization of The-
orem 4.13 to algebras in (rigid) semisimple C∗-bicategories and Lemma 4.1
in [GY23], we have the following result.

Corollary 4.15. The rigid C∗-bicategory of finite direct sums of II1 factors, finite
Connes’ bimodules and intertwiners is idempotent complete.

This result is also stated with a different but equivalent terminology in
[CHPJP22]. By Theorem 4.13, at least for (rigid) semisimple C∗-bicategories,
the terminology of Q-system completion used in Definition 3.34 in [CHPJP22]
coincides with the previously mentioned idempotent completion of [DR18].

Acknowledgements. We thank Zheng Hao for insightful comments and
Dave Penneys for informing us about a proof of Theorem 4.13 in the multi-
fusion case that is to appear in [CFHPS]. We also thank the referees for their
suggestions and comments.
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