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Abstract
The selection of the assumed effect size (AES) critically de-
termines the duration of an experiment, and hence its accu-
racy and efficiency. Traditionally, experimenters determine
AES based on domain knowledge. However, this method be-
comes impractical for online experimentation services man-
aging numerous experiments, and a more automated ap-
proach is hence of great demand. We initiate the study of data-
driven AES selection for online experimentation services by
introducing two solutions. The first employs a three-layer
Gaussian Mixture Model considering the heteroskedasticity
across experiments, and it seeks to estimate the true expected
effect size among positive experiments. The second method,
grounded in utility theory, aims to determine the optimal ef-
fect size by striking a balance between the experiment’s cost
and the precision of decision-making. Through comparisons
with baseline methods using both simulated and real data,
we showcase the superior performance of the proposed ap-
proaches.

Introduction
Sample size determination (SSD) plays a pivotal role in on-
line experiments, answering the critical question of ”how
long should an experiment run?” (Richardson et al. 2022). In
the spheres of online A/B testing and related classic appli-
cation such as clinical trials, it is paramount to ascertain the
minimal sample size during the experiment planning phase.
If the sample size is too small, it may not accurately repre-
sent the whole population being studied, thereby introduc-
ing both bias in the results that limit drawing conclusions
or generalizing the inferences. It can also compromise the
statistical power of the experiment, leading to inaccuracies
in detecting meaningful effects (Ramsey and Schafer 2012;
Lenth 2001). Conversely, if the sample size is selected as too
large, it could unnecessarily extend the duration of the ex-
periment and inflate the associated costs, such as the human
and hardware resources and opportunity costs (Wan et al.
2023). Therefore, selecting an appropriate sample size is im-
perative to maintain a balance between decision accuracy
and resource utilization.

Among the numerous methodologies for SSD in the lit-
erature (Kelley and Rausch 2006; Adcock 1997; Lindley
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1997; Weiss 1997), one crucial step is to specify the as-
sumed effect size (the absolute or percent lift from the treat-
ment over the control). For example, it is a critical compo-
nent in statistical power analysis used for SSD, in either the
frequentist or the Bayesian setting (Du and Wang 2016).
First of all, we need to distinguish the true effect size of an
experiment and the assumed effect size (AES). The first is
an objective unknown quantity, while the latter is a subjec-
tive manually specified number. In traditional power analy-
sis problems (e.g., in clinical trials), AES mainly reflects (i)
the experimenter’s expectation (e.g., what level of improve-
ment would be regarded as acceptable) and (ii) the trade-off
between the opportunity cost of running a longer experiment
and the accuracy. AES does not necessarily relate to the true
effect size (or its estimate). Moreover, using observed power
based on the true effect size of an experiment to determine
its sample size is inappropriate, due to its 1-1 mapping to p-
value (Hoenig and Heisey 2001). For example, in case where
an experiment lacks a noticeable effect size, the resulting ob-
served power tends to be small. Using this value in SSD can
lead to overestimating the required experiment duration.

Traditionally, the AES is established by domain experts or
experimenters, rather than by the experimentation services
itself. For instance, Lenth (2001) offers general guidance for
selecting appropriate AES. However, within the sphere of
online experiments - a setting where tens of thousands of ex-
periments are conducted annually - a significant number of
experimenters may lack the requisite domain knowledge or
statistical acumen to define an appropriate AES. Addition-
ally, statistical consultants are often resource-constrained,
limiting their ability to offer personalized guidance to each
team. In such scenarios, harnessing the vast amount of data
gleaned from similar past experiments can be invaluable in
determining the AES. Employing data-centric methodolo-
gies, such as meta-analysis, can automatically direct exper-
imenters towards an appropriate AES for power analysis.
This empowers them to make decisions grounded in robust,
empirical evidence.

Contribution. To the best of our knowledge, this paper is
the first work on data-driven effect size recommendation for
large-scale online experiments in the literature. Our contri-
butions are three-fold:

• We design a three-layer Gaussian mixture model for the
distribution of observed effect sizes across experiments,
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which considers experiment heteroskedasticity and iden-
tifies positive ones. We develop an EM-type algorithm
for parameter estimation;

• We also propose a utility-maximization approach to de-
termine the optimal AES. This optimization of utility
function aims to achieve a balance between experiment
cost and accuracy;

• We run the first large-scale empirical analysis for effect
size recommendation in the literature, using real data
from Amazon. The analysis clearly demonstrates the ef-
fectiveness of the proposed methods.

Related Work
Our work is closely related to the SSD problem, for which
numerous methodologies have been studied in the literature.
For example, one approach involves selecting a sample size
to achieve a narrow confidence interval for the standardized
mean difference (Kelley and Rausch 2006). Alternatively,
sample sizes can be determined based on utility theory (Ad-
cock 1997; Lindley 1997) or to ensure the Bayes factor ex-
ceeds a predetermined value (Weiss 1997). However, in all
these works, the effect size is assumed as a hyper-parameter
that has been pre-specified by experimenters, which is not
practical for online experimentation services.

To our knowledge, the only work related to AES estima-
tion is Du and Wang (2016). The authors use a random-effect
meta-analysis model to quantify the uncertainty of power
analysis due to the uncertainty over the effect size. How-
ever, the main focus is still on SSD, and no systematic study
on AES recommendation is done.

Preliminaries and Notations
Online A/B experiments are widely used to compare cus-
tomer responses between the existing feature A and the new
feature B, guiding online companies’ feature launch deci-
sions. To reduce the noise and established the causal rela-
tionship in online experiments, it is standard to track cus-
tomers’ outcomes (e.g. ad clicks) after a customer is trig-
gered based on some event (e.g., displaying ads).

Let the duration of the experiment be defined in terms of a
certain number of weeks, which helps mitigate the influence
of daily and weekend fluctuations. To maintain the simplic-
ity, we assume the experiments have the same duration t and
omit the time subscript t in notations. Denote ng as the to-
tal number of customers who are triggered up to week t in
group g ∈ {T,C} (T for the treatment and C for control).
Denote sets of those customers who are triggered up to week
t as Ig . Denote Yi as the observed outcome for customer i
up to week t, and Ȳg =

∑
i∈Ig

1
ng

Yi is the sample mean of
responses for customers in group g. Assuming that Yi are
independent and identically distributed (i.i.d.) with mean ug

and finite variance σ2
g , as n. → ∞, we can apply the central

limit theorem (CLT) (Casella and Berger 2021):

Ȳg|µg ∼ N (µg,
σ2
g

ng
), g ∈ {T,C}.

Define the average treatment effect (ATE) µ = µT −µC , of-
ten estimated by the sample mean difference. Taking into

account the independence among different customers, the
sample mean difference follows as

ȲT − ȲC |µT , µC ∼ N (µ, σ2) (1)

where µ = µT −µC and σ2 = V ar(ȲT − ȲC) =
σ2
T

nT
+

σ2
C

nC
.

Assume all σ2
g are known, the Null hypothesis under Fre-

quentist setting and its alternative for one-sided test are

H0 : µ ≤ 0 H1 : µ > 0.

When n. → ∞, frequentist power is computed as:

power(δ, σ., n., α) ≈ Φ(zα +
δ

σ
), (2)

where α is Type I error. δ is AES. z. represents the standard
normal quantile. Φ(.) stands for the cumulative distribution
function of the standard normal distribution. To achieve
a desired power of b for the alternative hypothesis, con-
sidering for a given effect size δ > 0 and an allocation
rate of nT /nC = p, the minimum sample size nT , nC are
selected to satisfying power(δ, σ., n., α) ≥ b. The required
minimum duration can be determined through sample size
prediction (Richardson et al. 2022).

Standardized effect sizes, such as Cohen’s d (Cohen
2013), are often used in meta-analysis across different exper-
iments, serving to standardize variations in ATE magnitudes.
If the estimators of standardized effect size follow an asymp-
totic normal distribution, all models presented in this paper
can seamlessly accommodate the use of standardized effect
sizes. Consequently, a dedicated discussion on this topic is
omitted in this paper.

Pooled Effect Size
Problem Setup. Consider m past similar experiments,
where δi is the true effect size for experiment i, and the
observed effect size di serves as the estimator for the true
effect size. di is commonly derived from the observed cus-
tomer outcomes, e.g. Equation (1). We assume that observed
effect sizes {di}mi=1 are independent.

The following model is used to estimate the AES (Du and
Wang 2016):

δi ∼ N (µ0, τ
2)

di = δi + ei

ei ∼ N
(
0, σ2

i

)
, (3)

where we further assume {δi}mi=1 and {ei}mi=1 are mutually
independent. σ2

i varies across different experiments due to
heteroscedasticity, evident in Equation (1), where the vari-
ance of mean difference depends on σ2

g and ng from each ex-

periment. σ2
i can be estimated by σ̂2

i =
σ̂2
T,i

nT,i
+

σ̂2
C,i

nC,i
. The es-

timated AES is the Maximum Likelihood Estimation (MLE)
estimator of µ0, which is a weighted linear combination of
di, thus it was also referred to as the pooled effect size.

In an online company setting, not every experiment yields
a measurable effect size. This stems from the nature of on-
line experiments with their short cycles, which was designed



to encourage the exploration of innovative ideas. However,
the drawback is that a significant number of ideas may not
achieve statistical significance. We categorize experiments
into three groups: 1) true positive, 2) true negative, and 3)
flat experiments which have no significant effect. Using di
from all experiments to train the model (3) will lead to an un-
derestimation of AES, consequently elongating the required
duration. The guideline is to train the model (3) using experi-
ments where we know there is an underlying true positive ef-
fect. While it might seem intuitive to use hypothesis testing
to categorize experiments into significant positive, negative
or flat ones, the existence of Type I and Type II errors poses a
challenge in precisely determining which experiments truly
have such effects.

Three-Layer Heteroscedastic GMM
In the previous section, we highlighted that the main chal-
lenge of the state-of-the-art method lies in the accurately
identifying experiments with true positive effect. It is nat-
ural to consider the categorization of experiments as latent
variables and use the Gaussian Mixture Model (GMM).

Motivation. We first illustrate our motivation of using
GMM in Figure 1. Figure 1a presents the distribution of the
observed effect sizes for certain outcome of interest over
3,300 experiment run within Amazon. Although at the first
glance, this graph seems to support a normal distribution,
we argue that it indeed illustrates the challenge of this prob-
lem. In Figure 1b, we simulate the true effect sizes follow-
ing a two-Layer GMM, and in Figure 1c we increases ran-
dom errors to each of them to generate the observed effect
size, which looks like a single mode Gaussian distribution.
Therefore, under the assumption that there exists latent clus-
ters of positive, flat and negative experiments, it is actually
infeasible to identify those positive ones with simple rules;
instead, a more principled statistical model as GMM should
be used. The two-layer GMM didn’t account for the required
heterogeneity in our setting. Thus, we propose a three-layer
heteroscedastic GMM.

Model. Assume K = 3 is the number of clusters corre-
sponds to clusters containing the negative, flat and positive
experiments, and m is the total number of past experiments.
Without loss of generality, we assume the means of these
clusters are decreasing from K to 1. Therefore, k = 2 rep-
resents the cluster of flat experiments.

Latent variable z = {z1, z2, . . . , zm}, zi ∈ {1, . . . ,K}
represent the index class sampled from the categori-
cal distribution parameterized by π = (π1, . . . , πK).
µk, τ

2
k and πk correspond to the mean, variance, and

weight of the k-th Gaussian component. Denote θ =
{µ1, . . . , µK , τ1, . . . , τK}. We have

zi ∼ Categorical(k,π)

δi|zi = j ∼ N (µj , τ
2
j )

di|δi ∼ N (δi, σ
2
i ), (4)

where, the third layer arises from the heteroskedasticity
among different experiments. Note that the model above is

equivalent to:

zi ∼ Categorical(k,π)

di|zi = j ∼ N (µj , τ
2
j + σ2

i ), (5)

where σ2
i are known and can be estimated using observed

outcomes of the experiment i, e.g. Equation (1). We can
further pre-specify the means of k = 2 cluster as zero, i.e.
µ2 = 0.

EM algorithm. We propose the following EM algorithm
to estimate the unknown parameters in the model (5).We first
derive a few formulas that are essential for developing the
EM algorithm. The marginal distribution is

f(di|θ,π) =

K∑
k=1

πkfk(di|θ),

where fk(di|θ) is the density of Gaussian distribution
N (µk, τ

2
k + σ2

i ). The conditional probability function for
zi given the data di is:

ki(zi|di,θ,π) =

∏K
k=1

(
πkfk(di|θ)

)I[zi=k]

∑K
k=1 πkfk(di|θ)

.

I[.] represents the indicator function. Due to the indepen-
dence among experiments, the joint distribution is

p(d, z|θ,π) =

m∏
i=1

f(di|θ,π)ki(zi|di,θ,π)

=

m∏
i=1

K∏
k=1

(
πkfk(di|θ)

)I[zi=k]

,

where d = (d1, . . . , dm).
E-step. calculates the conditionally expected log-

likelihood, where the expectation is conditioned on the pa-
rameters from the previous iteration step p (θ(p),π(p)) and
the expectation is taken over the latent assignments.

Q(θ,π|θ(p),π(p))

=

m∑
i=1

Ez|d

[
log

(
pi(di, zi|θ,π)

)
|θ(p),π(p)

]

=

m∑
i=1

K∑
k=1

Ez|d

[
I[zi = k]|θ(p),π(p)

]
·
[
log(πk) + log(fk(di|θ))

]
Denote the posterior probability of each Gaussian mixture

component k given each observation di as:

ω
(p)
i,k = Ez|d

[
I[zi = k]|θ(p),π(p)

]
=

π
(p)
k fk(di|θ(p))∑K

j=1 π
(p)
j fj(di|θ(p))

(6)



(a) Histogram of observed effect sizes for
certain outcome of interest among 3,300
real experiments.

(b) The simulated true effect sizes, with
three clusters corresponding to positive,
flat, and negative.

(c) The simulated observed effect sizes,
with three clusters corresponding to pos-
itive, flat, and negative.

Figure 1: Illustration of the motivation of using GMM. The x-axis is the effect size and y-axis is the frequency. Data in (a)
are from real experiments. The x-axis in this plot is not annotated owing to business confidentiality. (b) was simulated through
a two-layer Gaussian Mixture Model (GMM) with mean values of (−1, 0, 1), variances of (0.22, 0.22, 0.22), and component
weights of (0.2, 0.6, 0.2). (c) was simulated from the same model as (b) with variances of (0.72, 0.32, 0.72).

M-step. involves finding the optimal values for θ,π by
maximizing the log-likelihood derived in the E-step. The pa-
rameters in the (p+ 1)-th iteration are updated as follows:

πj =
1

m

m∑
i=1

ω
(p)
i,j , (7)

where µ̂j and τ̂2j are solved simultaneously by:

µj =
[ m∑

i=1

ω
(p)
i,j di

(σ2
i + τ2j )

]
/
[ m∑

i=1

ω
(p)
i,j

(σ2
i + τ2j )

]
(8)

m∑
i=1

ω
(p)
i,j

σ2
i + τ2j

=

m∑
i=1

ω
(p)
i,j

(di − µj)
2

(σ2
i + τ2j )

2
(9)

The EM algorithm is summarized in Algorithm 1. By set-
ting K = 3 and µ2 = 0, the mean for positive components
µ1 serves as the estimate of AES. To avoid getting trapped
in stationary point(Wu 1983), we repeat the EM algorithm
multiple times with randomly initialized starting points.

Singularity issues in Gaussian mixture model. When
the covariance matrix is singular, the variances becomes
zero, it leads to a spiky Gaussian component that ”collapses”
into a single point. There are several papers discussing how
to address this issue. The first approach involves setting a
lower bound on variance (Hathaway 1985). The second ap-
proach introduces a penalty term in the log-likelihood func-
tion to prevent the variance of a specific component from
becoming too small (Chen, Tan, and Zhang 2008; Ridolfi
and Idier 2001). In addition, Chen, Tan, and Zhang (2008);
Chen (2017) introduce the conditions and provide proofs
for the consistency of the MLE under finite Gaussian mix-
ture model. Using the second approach, the marginal log-
likelihood takes the following form:

log(f(d|θ,π)) + log(pm(τ2)) =

m∑
i=1

K∑
k=1

[log(πk)

+log(fk(di|θ))]−
1

m

K∑
k=1

(
1

τ2k
+ log(τ2k )), (10)

Algorithm 1: EM algorithm solving Three-Layer Het-
eroscedastic GMM
Input: d = (d1, . . . , dm), σ2 = (σ2

1 , . . . , σ
2
m), K

Output: θ = (µ1, . . . , µK , τ1, . . . , µK),

π = (π1, . . . , πK)

1: Let converge = False.
2: Initialize model parameters in previous iteration as

θ(p),π(p).
3: while Not converge do
4: Compute values of ω(p)

i,k using Equation (6), ∀i,∀k.
5: Update θ,π based on Equations (7), (8) and (9)
6: Compute the marginal log-likelihood of the data

log(f(d, |θ,π)) given the new parameters.
7: if Change in log-likelihood/m is less than the speci-

fied tolerance then
8: converge = True
9: else

10: θ(p) = θ,π(p) = π
11: end if
12: end while
13: return solution.
14: Repeat Step 1-12 multiple times using different initial

points to obtain the global optimum.

where the penalty function pm(τ2) represents the product of
K inverted Gamma distributions. Equation (9) can be revised
to incorporate this penalty.

Extensions. This framework can be extended to any K
with K > 3, using information criteria to determine the op-
timal K. Subsequently, the estimation of AES for K > 3 is
a weighted average of the means of these positive compo-
nents, where weights are also estimated in GMM.

Utility Theory: Bayesian Optimal Effect Size
In the previous section, we proposed a modeling approach
that focuses on estimating the mean effect size. Such an ap-



proach is easy to explain to experimentation service users.
However, in many real-world scenarios, users prioritize
identifying the most suitable parameters for achieving max-
imum gains rather than just maximizing the accuracy of es-
timation. Motivated by the real needs, we propose a utility-
maximization framework as our second approach.

The SSD problem is essentially a trade-off between in-
formation gain and decision accuracy. We define an utility
(reward) function that considers all the related components,
with the goal of maximizing the overall gain from experi-
mentation. The utility include the following components:

1. Weekly experimentation cost c: we assume there is a
fixed and pre-specified weekly cost for running the exper-
iment, which may include the personnel and hardware to
support this specific experiment to collecting more sam-
ples, the opportunity cost for the experimentation ser-
vice, and the opportunity cost for the experimenters.

2. The customers impact on the treatment group during the
experiment. For example, if the treatment has clear neg-
ative impacts on customers, running it longer will result
in greater losses for company .

3. The customers impact from making the launch recom-
mendation on weeks t. This term concerns the decision
accuracy, i.e., we would like to launch those new features
that indeed have positive customer impacts.

We demonstrate this approach with the problem of finding
an one-size-fits-all default effect size. We assume there are
m historical experiments. Our goal is to learn a default effect
size that works best for all experiments on average, and we
estimate the expectation using the empirical average over
past experiments. The objective of finding the appropriate
AES becomes maximizing the following utility function:

arg max
µ>0

m∑
i=1

Eδi∼N (d′
i,σ

2
i )

[
−ci · (Ti(µ)− 1)︸ ︷︷ ︸

Opportunity Cost

+
(
δi ·Ni,1:Ti(µ),T

)︸ ︷︷ ︸
Impact during the experiment

(relative to control)

+u2(δi, H, Ti(µ))I(π(YTi(µ),i) = 1)︸ ︷︷ ︸
Launch impact (relative to control)

]

= arg max
µ>0

m∑
i=1

[
−ci · (Ti(µ)− 1)︸ ︷︷ ︸

Opportunity Cost

+
(
d′i ·Ni,1:Ti(µ),T

)︸ ︷︷ ︸
Impact during the experiment

(relative to control)

+u2(d
′
i, H, Ti(µ))I(π(YTi(µ),i) = 1)︸ ︷︷ ︸
Launch impact (relative to control)

]

(11)

where the notations are as follows:

• δi is the per-customer per-week treatment effect for ex-
periment i.

• d′i is the posterior mean of the effect size at the end of the
experiment and σ2

i is the posterior variance
• The subscript i = 1, ...,m indexes the past similar exper-

iments.

• Ti(µ) is the recommended duration week for experi-
ment i, given AES µ. In Frequentist hypothesis testing,
T (µ) is the minimum number of weeks required for its
power(µ, σ., n., α) in Equation (2) to exceed a predeter-
mined threshold, such as 80%.

• Ni,1:t,g denotes the total number of customers in group
g ∈ {T,C} observed up to week t for experiment i.

• ci is the weekly opportunity cost for experiment i. ci
is proportional to the total sample sizes of each experi-
ments.

• u2(δ,H, t) represents the impact of launching the treat-
ment feature on the whole population at week t, given
a pre-specified time horizon H . Typically, we study one
year impact, i.e. H = 52 weeks. One example of estimat-
ing one year launch impact is: u2(δ,H, t) = δ ∗(H− t)∗
(
∑

g∈{T,C} Ni,1:t,g)

• π is the decision rule. π(.) = 1 indicates the experiment
is launched, 0 otherwise.

• Yt,i contains all observed outcomes from customers trig-
gered up to week t for experiment i.

The equality in Equation (11) is due to the linearity of ex-
pectation when u2 is a linear function in the ATE (which is
true in our case).

Optimization. Equation (11) is a one-dimensional opti-
mization problem, for which we can efficiently find a good
solution. We use grid search in our prototype.

Opportunity cost. One challenge to this approach is
that how to select the opportunity cost c. This value is pro-
vided by business team or estimated through analysis of
past launch experiments. Choosing a larger c will result in
a greater AES, thus a shorter duration, as the longer experi-
ments incurs higher costs. The impact of c has been studied
in Figure 4 in Wan et al. (2023).

Experiments
We have proposed two approaches to select AES given past
similar experiments. In this section, we compare the perfor-
mance of both approaches against baseline methods.

Accuracy Comparison with Simulation
In this section, we compare the accuracy of different AES es-
timators. Since the ground truth is unknown in real data, we
use simulation for this study. As the utility-based approach
requires more information of experiments and its primary
objective differs from the other approaches, we postpone its
analysis to the next section.

Dataset. We simulate observed effect size from
three-layer heteroscedastic GMM model in (4), with
K = 3, (µ1, µ2, µ3) = (2, 0,−2), (τ1, τ2, τ3) =
(0.5, 0.5, 0.5), (π1, π2, π3) = (0.2, 0.6, 0.2), σ2

i ∼
Inverse-Gamma(3, 0.7), m = 200. The histogram of sim-
ulated di is shown in Figure 2. Due to the presence of het-
eroscedasticity σ2

i alongside the variance in each Gaussian
component τ2k , it is challenging to distinguish individual
components through visual inspection alone.



Figure 2: Histogram of simulated observed effect size di.

Metrics. To quantify the accuracy of AES estimators, we
repeat the simulations iter = 50 times and use the Mean
Square Error (MSE) and Mean Absolute Error (MAE):

MSE =

iter∑
i=1

(Estimationi −Actuali)
2

iter
,

MAE =

iter∑
i=1

∣∣∣∣Estimationi −Actuali
iter

∣∣∣∣ .
Methods and Results. Table 1 compares the MSE

and MAE for the pooled effect size (Pooled-MLE), stan-
dard two-layer GMM (Two-layer GMM) and the proposed
three-layer heteroscedastic GMM (Three-layer GMM). For
Pooled-MLE, the MLE of parameter µ0 is computed us-
ing the model in Equation (3) on all positive observed ef-
fect sizes di. Two-layer GMM uses Gaussian Mixture in
sklearn package (Pedregosa et al. 2011) with K = 3. Three-
layer GMM, the proposed method, uses the proposed EM-
Algorithm 1 with the penalty term (10), K = 3 and µ2 = 0.
Each simulation uses 10 different starting points to avoid lo-
cal optimum (One of these starting points is initialized using
the k-means clustering). Both Two-layer GMM and Three-
layer GMM uses the estimated mean for the positive com-
ponents as AES and tolerance = 10−3. Table 1 shows that
Three-layer GMM performs slightly better than Two-layer
GMM. The p-value from a two-sample t-test is 0.036, in-
dicating the Three-layer GMM has significantly better ac-
curacy. As expected, Pooled-MLE is underestimated. GMM
outperforms Pooled-MLE notably in cases where we lack
information about whether the experiment’s effect is a true
positive or not. The Boxplot in Figure 3 illustrates a similar
conclusion.

MSE MAE
Pooled-MLE 0.709 0.842

Two-layer GMM 0.017 0.180
Three-layer GMM 0.003 0.137

Table 1: Accuracy Comparison: MSE and MAE comparison
among pooled effect size, standard two-layer GMM and the
proposed three-layer heteroscedastic GMM.

Figure 3: Boxplots comparing the AES estimations among
pooled effect size, standard two-layer GMM and the pro-
posed three-layer heterocasdestic GMM. Ground truth is 2.

Meta-Analysis with Real Experiments
In the previous section, we evaluated the estimation accu-
racy of different methods. However, the accuracy is just one
facet to consider. Recall that the choice of the AES is al-
ways a trade-off between experimentation cost and accuracy.
Therefore, it is hard to define a single optimal solution. In
this section, we compare the two proposed approaches with
baseline methods on real-world experimental data in terms
of their empirical performance over a few metrics.

Dataset and setup. We collect a dataset of 3,300 his-
torical experiments conducted in the past two years within
Amazon, each having a duration of 4 weeks. di represents
the observed standardized effect size derived from a specific
standardization formulation used in the company at week 4.
Given the absence of the ground-truth effect size, we adopt a
heuristic yet easy-to-explain approach that uses the observed
effect size at the end of the 4 weeks as the empirical ground-
truth effect size.

We set the maximum duration as 4 weeks for the analy-
sis. For each estimated AES obtained from different meth-
ods, we plug in them, along with the observed sample size
and sample variance (or their predicted versions as described
in Richardson et al. (2022)), into power Equation (2) to cal-
culate the statistical power at week i = 1, 2, 3, 4. We de-
fine the recommended duration as the minimum number of
weeks (≤ 4) required to attain a power of 80%. In Fre-
quentist setting, we use the one-sided two-group Welch’s t-
test (Welch 1947) as decision policy π(.). This implies that
the decision policy π(.) = 1 for launch if the p-value is less
than the significance level of 0.05 and the ATE is positive.

Methods. We compare the proposed estimated AESs
from Three-Layer GMM and utility theory-based opti-
mal effect size (Utility-maximization) with those from
two-layer GMM and Pooled-MLE. The settings for Two-
layer GMM, Three-layer GMM and Pooled MLE are the
same as the previous section. Utility-maximization uses
grid-search to find the optimal effect size within the set
{0.02%, 0.04%, . . . , 2%}.

Metrics. We consider the following metrics:
1. The percentage of empirical false positives (proportion



Estimated
AES (%)

(Empirical)
False

Positive

(Empirical)
False

Negative

Avg
Weeks

Avg
Opportunity

Cost (D)

Avg
Launch

Impact (D)

Avg
Impact
During

Exper (D)

Avg
Reward

(D)

Pooled-MLE 0.05% 0.0% 0.0% 3.99 1.0 2.61 0.01 1.61
Two-layer GMM 0.22% 0.29% 0.29% 3.63 0.41 2.42 -0.0 2.01
Three-layer GMM 0.15% 0.13% 0.11% 3.83 0.65 2.55 0.01 1.91
Utility-maximization 1.58% 1.17% 0.99% 2.3 0.02 2.22 0.0 2.2

Table 2: Meta-analysis results. Recall that all utility-related metrics share the same unit D, the meaning of which is omitted due
to confidentiality.

Estimated
AES

(Empirical)
False

Positive

(Empirical)
False

Negative

Avg
Weeks

Avg
Opportunity
Cost (104)

Avg
Launch

Impact (104)

Avg
Impact
During

Exper (104)

Avg
Reward

(104)

Pooled-MLE 0.782% 0.13% 0.1% 4.0 2.8 5.88 0.0 3.08
Two-Layer GMM 1.041% 0.13% 0.27% 3.89 2.53 5.83 0.01 3.31
Three-layer GMM 1.005% 0.13% 0.17% 3.92 2.6 5.87 0.01 3.28
Utility-maximization 1.100% 0.13% 0.37% 3.82 2.41 5.8 0.01 3.41

Table 3: Simulated data analysis results (Ground truth is 1).

of incorrectly detecting significantly positive effect when
the true effect is flat/negative) and the percentage of em-
pirical false negatives (proportion of incorrectly detect-
ing flat/negative effect when the true effect is indeed pos-
itive). These two metrics reflect the (empirical) Type-I
and Type-II errors.

2. The average utility in Equation (11) and its three compo-
nents, including the opportunity cost, the impact during
the experiment, and the launch impact.

Results. We present results from 3300 experiments in Ta-
ble 2. The pooled MLE has the smallest decision errors.
However, it comes at the expense of requiring longer experi-
ment duration, leading to higher costs. The proposed Utility-
maximization method outperforms other methods and gen-
erates the highest average cumulative reward, with a desired
balance between the cost of experimentation and making
correct launch decisions.

More simulations. Due to confidentiality constraints, the
above dataset cannot be shared. To ensure reproducibility,
we conducted a simulation study with 3000 simulated exper-
iment trajectories at weeks 1, . . . 4: (1) Simulate weekly sam-
ple size following beta-geometric distribution (Richardson
et al. 2022). The beta distribution parameters, α and β, are
drawn from uniform distributions: α ∼ Uniform(0.1, 1),
β ∼ Uniform(4, 60). Each arm assumes a total of 10K
customers. (2) Sample the observed effect size di,t for ex-
periment i at week t from the three-layer GMM model (4)
with three Gaussian components (µ1, µ2, µ3) = (−1, 0, 1),
(τ1, τ2, τ3) = (0.3, 0.5, 0.3), (π1, π2, π3) = (0.2, 0.6, 0.2).
Given σ2

g = 500, σ2
i are computed using sample size and

Equation (1). (3) Total weekly opportunity cost is c = 4·106,
decomposed to each experiment according to their final
weeks’ sample sizes. The observed effect size on last week
{di,4}mi=1 are used to fit MLE and GMM methods. Utility-

maximization uses grid-search to find the optimal effect size
within the set {0.1, 0.2, . . . , 5}. Results in Table 3 demon-
strate that the Three-layer GMM yields the most precise es-
timation (ground truth is 1), whereas the utility-based ap-
proach achieves the highest utility.

Conclusion
AES places an central role in duration recommendation, yet
little attention has been drawn to its specification, particu-
larly for large online experimentation services. In this paper,
we propose two approaches to estimate AES from a large
number of historical online experiments. The first approach
introduces a novel three-layer GMM to account for experi-
ment heteroscedasticity. The second approach finds the opti-
mal AES that maximizes the expected utility. Through sim-
ulations and a large-scale meta-analysis using real experi-
ments from Amazon, we conclude that the first proposed
ensures a high estimation accuracy and the second proposed
approach leads to a significant gain in the expected utility.
With the provided flexibility, one can choose either of these
approaches to achieve their specific goal.

For the GMM-based method, exploring other hierarchical
models and leveraging experiment-specific features to rec-
ommend personalized effect size are important next steps.
Bayesian non-parametric models (Orbanz and Teh 2010) or
structures that have been explored in bandits (Wan, Ge, and
Song 2021) are good starting points. For the utility-based
method, we can also easily extend it to provide personalized
effect size (and hence personalized duration) recommenda-
tion, by replacing the end-of-horizon posteriors of the m ex-
periments with the posterior for the target experiment at the
duration recommendation time point. Besides, exploring the
performance with other ATE estimators such as covariate ad-
justed estimators (Masoero, Hains, and McQueen 2023) is
also an interesting next step.
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