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We probed a gate-tunable InAs nanowire Josephson weak link by coupling it to a microwave
resonator. Tracking the resonator frequency shift when the weak link is close to pinch-off, we observe
that the ground state of the latter alternates between a singlet and a doublet when varying either
the gate voltage or the superconducting phase difference across it. The corresponding microwave
absorption spectra display lines that approach zero energy close to the singlet-doublet boundaries,
suggesting parity flipping transitions, which are in principle forbidden in microwave spectroscopy
and expected to arise only in tunnel spectroscopy. We tentatively interpret them by means of an
ancillary state isolated in the junction acting as a reservoir for individual electrons.

I. INTRODUCTION

Particle number parity effects are widespread in meso-
scopic superconductivity [1, 2]. They first appeared
in circuits containing small metallic superconducting is-
lands [3–7] and in semiconductor-superconductor hy-
brids, like a quantum dot coupled to superconducting
electrodes through tunnel barriers [8]. In these systems,
the electrodynamics depends crucially on charging effects
in the island or the quantum dot [9]. More recently,
parity effects were shown to arise in mesoscopic Joseph-
son weak links, structures containing no island or quan-
tum dots and therefore no significant charging energy.
Here, the physics is understood in terms of a few An-
dreev bound states (ABS), subgap localized quasiparti-
cle states with energies governed by the superconducting
phase difference across the weak link. The odd or even
many-body occupations of these states result in markedly
different weak link electrodynamic properties. They are
probed using microwave circuit-QED (cQED) techniques,
microwave absorption spectroscopy, quasiparticle addi-
tion spectroscopy, and combinations of them [10–13].
In the case of infinitely short weak links, realized with
atomic contacts between two superconducting leads [14],
all the observed features are explained in terms of non-
interacting junction models [15]. There is also a wealth of
experimental results on gate-tunable, finite-length weak
links, based on semiconducting nanowires and which are
also described in terms of ABS [16–21]. There is re-
cent evidence that in these weak links, even with well
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transmitted conduction channels, interactions do play a
role, albeit just as a small perturbation [22, 23]. When
approaching pinch-off in the same devices, one expects
quantum dot physics to become relevant and influence
the parity dynamics.

Here we present circuit-QED measurements on gate-
tunable InAs nanowire weak links [24] close to pinch-off.
We observe, both as a function of gate voltage and phase
difference, features that we associate to transitions be-
tween ground states of different parity, similarly to what
is observed in quantum dots. Remarkably, the corre-
sponding microwave absorption spectra exhibit transition
lines that as a function of gate voltage bear a close re-
semblance with those typically observed in an addition
spectrum [12, 25], and therefore seem to couple states of
different parity, a forbidden process in photon absorption
spectroscopy. We interpret these results as revealing the
presence of an ancillary, weakly coupled quantum level,
which allows mimicking parity transitions on the main
transport channel without a change in the global parity.

II. BASIC CONCEPTS

When a few-channel conductor connects two supercon-
ductors in a phase-biased configuration, various regimes
are encountered depending on the relative size of the cou-
pling to the leads Γ, the Coulomb repulsive energy U , and
the superconducting gap ∆ [2, 26]. In the limit of large
coupling, the system is well described by electrons and
holes bouncing back and forth between the electrodes,
with Andreev reflections at each interface, giving rise
to supercurrent-carrying Andreev bound states [27–29].
The opposite limit is that of a quantum dot weakly cou-
pled to the superconducting leads, usually described us-
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ing a single-level Anderson impurity model [26, 30–39],
as schematically presented in Fig. 1(a). The energy ϵ
of the dot level (referred to the leads’ Fermi level) can
be tuned by means of an electrostatic gate. In the ab-
sence of a magnetic field, the level is spin-degenerate,
and the four possible dot states |0⟩, |↑⟩ , |↓⟩ and |↑↓⟩
shown in Fig. 1(b), characterized by the level occupa-
tion, split into two categories. When the dot occupancy
is even (states |0⟩ or |↑↓⟩), the corresponding energies
are 0 and 2ϵ+ U . When the occupancy is odd, the spin-
degenerate state |σ⟩ has energy ϵ. One finds that the
ground state of the dot is odd if −1 < ϵ/U < 0, and it
is even otherwise (see Fig. 1(c)). Increasing the coupling
to the superconducting leads favors a singlet superposi-
tion of the even states, |g⟩, while gradually diminishing
the extension of the odd (doublet) ground state in the
phase diagram. This effect is most simply captured in
the infinite gap limit, where the effective pairing is given
by Γ(δ) = ΓLe

iδ/2 + ΓRe
−iδ/2, with ΓL,R the tunnel-

ing rates to the left and right leads and δ the supercon-
ducting phase difference between the two leads [26, 40].
This behavior has been investigated in a number of works
[12, 25, 41–45], and revived by recent experiments us-
ing microwave techniques [23, 46, 47]. Finally, panel (d)
shows the ϵ dependence of the transition energy from the
even ground state |g⟩ towards the even excited state |e⟩.

III. EXPERIMENTAL RESULTS

The experimental setup is schematized in Fig. 2(a). An
InAs nanowire weak link is placed in a superconducting
loop threaded by a magnetic flux Φ. The phase differ-
ence δ across the weak link is given by δ = 2πΦ/Φ0,
with Φ0 = h/2e the flux quantum. The wire is sus-
pended over a metallic gate, biased at voltage Vg, which
allows to control the electron density. The loop partici-
pates in the inductance of a quarter-wavelength coplanar
wave-guide resonator made out of NbTiN. The occupa-
tion of the Andreev states in the nanowire is inferred
from the (complex) reflection coefficient of a microwave
tone at frequency fm close to the bare resonance fre-
quency f0 = 7.00 GHz of the resonator measured when
the weak link is fully depleted. The total quality factor
of the resonator is Q = 23000. A second tone (“drive”
tone) with frequency fd, applied through the gate line,
allows probing the absorption excitation spectrum of the
weak link. A detailed discussion of measurement setup
and device fabrication is presented in the supplemental
material (SM) [48].

First, we present the single-tone measurements of the
reflection coefficient S11. The amplitude |S11(δfm)|,
where δfm = fm − f0, is presented as a function of Vg

in Fig. 2(b). Dark lines mark minima of |S11| associated
with the resonance frequency of the resonator modified
by the occupation of Andreev states in the weak link.
Highly dispersing lines can be related to pair transitions
with gate-modulated transition energies [38, 39, 49, 50].

Figure 1. (a) Scheme of the superconducting single level An-
derson model. (b) The four states correspond to the possible
occupancies of the quantum dot level. (c) Phase diagram for
model in the infinite gap limit. (d) Black curve represents
the energy ET of the transition |g⟩ → |e⟩, with |g⟩ and |e⟩
the ground and excited states in the even parity sector, for
a given Γ(δ) represented as a horizontal dotted line in (c).
The dashed part of the curve should not be visible in the zero
temperature limit as it corresponds to the odd ground state
region. States |g⟩ and |e⟩ are linear combinations of the dot
states |0⟩ and |↑↓⟩, hybridized by the effective pairing Γ(δ).
Blue and magenta straight lines correspond to the limiting
cases when Γ(δ) = 0.

When Vg approaches −12 V, the oscillations of the res-
onance frequency fade away, marking the complete de-
pletion of the nanowire. All along the scan, one also ob-
serves a weak resonance at δfm ≈ 0, which corresponds
to a state very weakly coupled to the resonator [49].

Unique jumps in the resonance frequency are observed
close to pinch-off in the single-tone data in Fig. 2(b). One
such region is highlighted by a red rectangle around Vg =
−11.6 V. A higher resolution measurement of single-tone
spectra around this highlighted region at δ = π is shown
in the upper panel of Fig. 2(c). Similar jumps are ob-
served for δ = 0 as shown in the lower panel of Fig. 2(c).
The central plateaus in both plots correspond to reso-
nance frequencies very close to the bare resonance fre-
quency f0, whereas the outer regions appear at fm < f0
for δ = π and at fm > f0 for δ = 0. To better un-
derstand these behaviors, 2D grey scale maps of |S11|
as a function of phase difference δ and frequency δfm
are plotted in Fig. 2(d), at several gate voltages. At
Vg = −11.63 V (top left), we observe a single tran-
sition frequency strongly dispersing with phase, which
is expected for the supercurrent-carrying even (singlet)
ground state in the single-level Anderson model. In con-
trast, at Vg = −11.575 V (bottom right), the resonance
frequency is almost phase-independent and lies very close
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Figure 2. (a) Schematic of the measurement setup with SEM image (scale bar, 200 nm) of the InAs nanowire weak link. fm is
the measurement frequency, Vg the gate voltage and fd the drive frequency applied to the gate electrode through a bias tee in
two-tone spectroscopy measurements. Φ is the magnetic flux related to phase difference δ by δ = 2πΦ/Φ0, with Φ0 = h/2e the
flux quantum. (b) 2D grey scale map of the amplitude of reflection coefficient |S11| plotted as a function of δfm = fm − f0 and
Vg, at phase difference δ = π. (c) Upper panel: A higher resolution 2D grey scale map of the single-tone spectrum |S11|(Vg, δfm)
at δ = π in the highlighted region of (b); Lower panel: corresponding 2D map of |S11|(Vg, δfm) at δ = 0. (d) 2D grey scale map
of |S11| plotted as a function of gate voltage and phase difference (δ/π) at several gate voltages (Vg = −11.63,−11.615,−11.6
and −11.575 V) marked by vertical ticks in (c) sharing the same color as the squares at the bottom right of the corresponding
panels in (d).

to δfm = 0, close to behavior of an odd (doublet) ground
state with suppressed supercurrent. From these observa-
tions, we infer that a strong signal on the central plateau
of the resonances in Fig. 2(c) corresponds to an odd-
like ground state, and that a strong signal on the outer
regions corresponds to an even-like ground state. As
can be seen from the top-right and bottom-left panels of
Fig. 2(d), at intermediate gate voltages, we observe either
one or two resonance frequencies depending on phase,
which indicate a phase diagram of the singlet/doublet
ground states that not only depends on Vg, but also on
the phase difference δ [23, 46].

The single-tone results shown in Fig. 2 are measure-
ments of S11 averaged over a long (33 µs) duration at a
given fm. It reflects the different values, corresponding
to different ABS occupations, taken by S11 during the
averaging time. Information about the ABS occupation
dynamics can be accessed by performing a series of suc-
cessive short measurements of S11. We performed 50000
measurements of S11 at a frequency close to f0, with a
time per point of 500 ns, each measurement producing a
mean value of real (in-phase, I) and imaginary (quadra-
ture, Q) components. Using these 50000 I and Q data,
we plot histograms in the IQ plane as shown in Fig. 3(a)
at three settings of Vg around one of the region where we
observe the jump in resonance frequency in Fig. 2c. We

observe two clouds in the IQ plane, which correspond to
the lower energy even and odd states of the weak link.
By using a Gaussian mixture model (GMM) [51] we ex-
tracted the population of the two states (Po and Pe cor-
respond to populations of the odd- and even-like states,
respectively) as a function of Vg at δ = π (Fig. 3(b)), and
at δ = 0 (Fig. 3(d)). The Vg region for which the odd-like
state is observed is larger at δ = π compared to δ = 0.
In Fig. 3(c), we show the 2D color map of polarization,
Po−Pe, as a function of Vg and δ, showing the full phase
diagram of the singlet–doublet phase transition. In the
region around δ/π ∼ 0.5 the clouds overlap and GMM
prediction does not work. The procedure also fails when
only one state is visible (strong polarization).

Lifetimes of the singlet and doublet states can be eval-
uated by performing a continuous version of the above
measurement, which is presented in detail in the Sup-
plemental Material. When the population of one of the
states is close to 1, we observed its lifetime to be order of
a milli-second with the lifetime of the other state being
few micro seconds, similar to earlier experiment [46].

The observations from Fig. 2 and Fig. 3 can be qual-
itatively understood by the fact that close to the pinch-
off the coupling of the weak link to the superconduct-
ing leads can be significantly reduced, so that it behaves
like a quantum dot. The system can then be modeled
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Figure 3. (a) Histogram of 50000 measurements of S11 at a
fixed measurement frequency close to f0 in the IQ plane, at
gate voltages Vg = −11.556, −11.546, and −11.53 V, respec-
tively. Each measurement produce mean-I and mean-Q over
a 500 ns measurement duration. (b) Population of odd-like
state, Po (green) and even-like state, Pe (red) are plotted as
a function of Vg at δ = π. (c) 2D color map of polarization,
Po − Pe, plotted as a function of Vg and δ/π. (d) Po and Pe

plotted as a function of Vg at δ = 0.

by a single level Anderson model, which in the infinite
gap limit produces the phase diagram of singlet–doublet
ground states shown in Fig. 1(c) [39, 40]. In our ex-
periment, the gate voltage mainly tunes the position of
the energy level, whereas the phase difference between
the superconducting leads tunes the effective coupling
Γ(δ) = ΓLe

iδ/2 +ΓRe
−iδ/2. The fact that Γπ = ΓL − ΓR

is lower in magnitude than Γ0 = ΓL + ΓR explains why
the doublet is observed over a larger range of Vg at δ = π
that at δ = 0.

We now present the two-tone spectroscopy results,
which are measurements of the change in the reflection
coefficient S11 at a fixed frequency fm in presence of a
drive tone with variable frequency fd. For a given fd,
the I and Q components of S11 are measured both when
the drive is on and off, and the differences δI and δQ
are recorded. In Fig. 4(b-c) we show the 2D color map
of δI and δQ as a function of Vg and fd, at phase dif-
ference δ = π. We use the the 2D color map of δI in
Fig. 4(i) to highlight with dashed curves the four transi-
tions that we will be discussing in the following. Transi-
tions T1 and T2 (red and green) have rounded minima

at finite frequency. This behavior is generic in Andreev
nanowire weak links [19, 52]. In contrast, transitions TA
and TB, which reach zero frequency (within experimen-
tal accuracy) with cusps, are anomalous and we observe
them only near pinch-off. They resemble tunneling spec-
troscopy data in superconducting quantum dots, where
they are associated to a quantum phase transition be-
tween even and odd ground state [12]. In addition, TA
and TB correspond to population transfer between the
even and odd clouds shown in Fig. 3(a) (more details in
SM [48]). As will be discussed in Section III, we could
reproduce them by introducing an ancillary level to the
single-level Anderson model. In Fig. 4(a) and Fig. 4(d)
we plot the single-tone spectrum and polarization Po−Pe,
respectively, as a function of Vg at δ = π. Interestingly,
TA and TB intersect at the gate voltages very close to
the singlet to doublet phase transition points i.e. around
the gate voltages where the polarization changes sign.

When changing the phase from π to 0, line TB changes
but still exhibits cusps at zero frequency, while TA shifts
up and does not reach zero frequency any longer, as
shown in Fig. 4(e-h) and Fig. 4(j).

Now, we present the phase dependence of the two-tone
spectra at several gate voltages in Fig. 5(b), together with
the corresponding single-tone measurements in Fig. 5(a)
and polarization in Fig. 5(c). The color code of the 2D
color maps in Fig. 5(b) represents the amplitude (δa) of
the shift of S11 in a δ dependent phase direction in the IQ
plane, such that the contrast of TA is maximized (more
details in SM [48]). In the right half of each panel of
Fig. 5(b), the TA and TB are highlighted with dashed
lines with same colors as Figs. 4(b) and 4(f), i.e. blue
and cyan, respectively. For the five gate voltages shown
in Fig. 5, the single-tone data in Fig. 5(a) as well as
the corresponding population data in Fig. 5(c) show the
gradual shrinking of the region for which the odd-like
ground state is observed. The spacing between the cross-
ing points of TA and TB also follows a similar decreasing
trend. These observations are consistent with the theo-
retical model discussed below.

IV. ANCILLARY LEVEL MODEL

We now focus on the two lowest transition lines (TA
and TB) versus gate voltage in the range where they
exhibit cusps with cusps close to zero drive frequency
(Fig. 4). A possible explanation for these cusps is the oc-
currence of replicas involving the absorption or emission
of a resonator photon with energy hfr, thus appearing at
energies ET±hfr, where ET is the bare transition energy.
In the case where ET < hfr and there is a significant
population in the excited weak link state, there would
also appear transition lines with energy −ET + hfr cor-
responding to the excitation of a resonator photon with
relaxation in the weak link. This set of replica lines gives
rise to cusps when ET crosses hfr. However, in our case,
the replica mechanism should be discarded for the follow-
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Figure 4. (a) 2D grey scale map of single-tone spectrum |S11|(Vg, δfm) at δ = π. (b-c) 2D color map of δI and δQ component
of the two-tone spectroscopy, respectively, plotted as a function of drive frequency fd and Vg, at δ = π. (d) Polarization,
Po−Pe, plotted as a function of Vg. Polarization=-1 (red dashed line) imply fully even-like ground state, polarization=1 (green
dashed line) implies fully odd-like ground state. (e-h) Same as (a-d) at δ = 0. (i) Duplicate of (b) where the four transitions
T1 (red), T2 (green), TA (blue), and, TB (cyan) are highlighted by dashed lines at δ = π. (j) Duplicate of (g) where the TA
(blue) and TB (cyan) are highlighted by dashed lines at δ = 0.

ing reasons. On the one hand, if one of these anomalous
transitions were a replica of the other one (as their con-
stant vertical separation ∼11 GHz in frequency suggests),
one would still need to explain the appearance of cusps in
the other anomalous line. Moreover, the constant shift
∼11 GHz should correspond to one spurious resonator
mode, which is not visible in the spectra. On the other
hand, the anomalous lines cannot be replicas of transition
lines T1 and T2, as illustrated in Fig. S9 of the SM [48].
Ultimately, the highly symmetric disposition of the cusps
and their proximity with the singlet/doublet boundaries
hint at a different mechanism.

Indeed, when just one line is considered, its cusps close
to the singlet/doublet boundaries suggest that it con-
nects the singlet with the doublet states, as their energy
difference crosses zero at the boundaries. Connecting sin-
glet to doublet states when exciting with microwaves is
forbidden because parity should be conserved. However,
the situation changes if an ancillary dot level A, weakly
coupled to the main channel M , is added to the model
(see inset in Fig. 6b). This configuration allows to ex-

plain the other line as well and has already been used to
describe some transport experiments in semiconducting
nanowire Josephson junctions [53]. We model it with a
Hamiltonian H = HM +HA such that

HM =
∑

σ

ϵd†σdσ + Un↑n↓ +
(
Γ(δ)d†↑d

†
↓ + h.c.

)
, (1)

where d†σ creates an electron with spin σ on the dot and
nσ = d†σdσ, corresponds to the infinite gap Anderson
model described above; and

HA =
∑

σ

ϵAd
†
AσdAσ + UAnA↑nA↓ +

(
tAd

†
Aσdσ + h.c.

)

(2)
describes the ancillary dot level ϵA, weakly coupled to
the main channel by a vanishing tunnel amplitude tA
and endowed with a charging energy UA that forbids its
double occupation.

When restricted to the main channel, the lowest energy
levels in each parity sector even (E) and odd (O) are
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Figure 5. (a) 2D color maps of single-tone spectrum
|S11|(δ, δfm) at gate voltages Vg = −11.56, −11.555, −11.55,
−11.545 and −11.54 V, respectively (marked as colored ver-
tical lines in Fig. 3(b) and Fig. 3(c)). (b) 2D color maps of
two-tone spectrum δa(δ, fd). (c) Polarization Po − Pe as a
function of δ, measured between 0 and π. Missing data at
certain values of δ correspond to situations where GMM pre-
diction does not work.

|E⟩M = u |0⟩M − veiθ |↑↓⟩M → EE = ξ −
√

ξ2 + |Γ(δ)|2
|O⟩M = |σ⟩M → EO = ϵ, (3)

with ξ = ϵ + U/2, u(v) = 1√
2

√
1± ξ/

√
ξ2 + |Γ(δ)|2 and

eiθ = Γ(δ)/|Γ(δ)|. The corresponding energies as a func-
tion of ϵ are shown with red (even) and green (odd) solid
lines in Figs. 6a (δ=0) and 6b (δ=π), whose crossings in-
dicate a parity switch of the ground state (vertical black
dotted lines).

When the ancillary state is introduced (|E⟩A = |0⟩A,
|O⟩A = |σ⟩A), for vanishing tA the many-body energy
levels of the whole system |M,A⟩ are

|E , E⟩ → EE |E ,O⟩ → EE + ϵA

|O, E⟩ → EO |O,O⟩ → EO + ϵA, (4)

which coincide with those in the main channel if the ancil-
lary level is empty, and are shifted by ϵA if it is occupied
(we consider that the gate voltage in the analyzed range
only tunes the main chain level ϵ and barely affects ϵA).
These states with the occupied ancillary level switch the

Figure 6. Upper row: Lowest many-body energies of the ancil-
lary level model over the position ϵ of the main channel level,
at phase differences δ=π (a) and 0 (b). Energies are plot-
ted with a global shift of ϵ, and indicate even (odd) global
parity with red (green) colour, and empty (filled) occupa-
tion in the ancillary level with solid (dashed) lines (second
entry of ket |M,A⟩). Inset in (b) represents the mechanism
of local parity flip. Lower row: corresponding global parity
conserving transitions. Vertical dotted lines are placed at the
singlet/doublet boundaries in the main channel (black) and
at the crossings between states with the same global parity
(red/green). Parameters are chosen to qualitatively reproduce
the two-tone measurements in Fig. 4 around the gate range
Vg ∈ [−11.65,−11.50]V (see SM): ΓL = 2.5,ΓR = 8,ϵA =
5,U = 26 (units in GHz).

global parity with respect to the parity in the main chan-
nel, and are indicated with dashed lines in Figs. 6a,b.
It should be noted that the vanishing coupling of the
ancillary level to the superconducting leads renders the
resonator quite insensitive to its occupation, thus, the
single-tone measurements mainly probe the population
in the main channel.

The corresponding global parity conserving transitions
of the whole system are shown in Figs. 6c,d. As in
the two-tone measurements in Fig. 4, they are shifted
(or reflected over E=0) by a constant, which in the
model is 2ϵA. In addition, they intersect close to the
singlet/doublet boundary of the main channel and they
may exhibit sharp cusps at its sides, depending on the
number of crossings between states with the same global
parity (vertical red/green dotted lines). In order to ob-
serve these transitions a finite population in the lowest
energy states of both global-parity sectors is needed, and
this requires a finite poisoning in the main channel or in
the ancillary level depending on the position of the gate.

The phase dependence of the transitions for several val-
ues of the main channel level, denoted with color markers
in Fig. 6, is shown in Figs. 7(f–j). These results demon-
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Figure 7. (a-e) Frequency shift over the phase difference for a
set of values of the main channel level ϵ’s, corresponding to the
coloured markers in Fig. 6, following qualitatively those from
Figs. 4, 5. (f-j) Associated lowest global parity conserving
transitions. Parameters and vertical lines as in Fig. 6, and
the coupling with resonator is set to λ = 0.015.

strate that the model can account for the evolution of
the experimental transition lines in Fig. 5(b). First, in
Fig. 7(f), ϵ is placed at the singlet/doublet boundary at
δ=0 (see black marker in Fig. 6d) and to the right of
the dip in the global even sector at δ=π (black marker
in Fig. 6(c)). Next, the level position is raised up until
the singlet/doublet boundary at δ=π is almost reached
in Fig. 7(h) (green marker in Fig. 6(c)). Finally, the dip
in the global odd sector at δ=0 occurs for ϵ values be-
tween those in panels (i) and (j), the latter being placed
a bit to the left of the odd dip at δ=π.

The corresponding resonator shift δf for the two low-
est levels in each parity sector is shown in Figs. 7(a–e).
As discussed above, in the tA → 0 limit the shift induced
by each state only depends on the main channel, so it dis-
perses with the phase when |M⟩ = |E⟩ and is completely
suppressed when |M⟩ = |O⟩. In order to account for
the slight phase dependence of the shift in the odd-like
states it is necessary to go beyond this ∆ → ∞ model,
as discussed in the SM [48].

In the single-tone spectroscopy, the signal manifests
the shifts induced by the states that are significantly
populated over the measuring time. Though in general
it is expected that most of the population dwells in the
ground state, the actual steady state of the junction
is determined by processes involving the quasiparticles

above the gap and the coupling with the environment
[54, 55], which induce a non-thermal distribution.

V. CONCLUSION

We explored the single-tone and two-tone microwave
spectroscopy in a superconducting InAs weak link close
to pinch-off. Observation of jumps in the resonance fre-
quency from the single-tone spectroscopy is understood
as singlet–doublet phase transitions that occur due to
the reduction of the coupling of the weak link to the su-
perconducting leads. We observed anomalous microwave
driven transitions in two-tone spectroscopy, which mimic
parity flipping behavior. These parity flip mimicking
transitions were tentatively understood as appearing due
to the presence of an ancillary level weakly coupled to
the weak link. This behavior might not be generic: we
observed it in a single device and it might depend on
the particularities of a single device (geometry, defects).
However, this shows how the measurement of the excita-
tion spectrum brings crucial information about the sys-
tem that is not accessible in the ground state properties.
This could be relevant for applications of hybrid struc-
tures that require a precise quantum dot configuration,
such as Andreev spin qubits implemented in quantum-
dot Josephson junctions [56]. Finally, the parity flipping
transitions provide a mechanism to dynamically influence
the parity population through the drive, different to the
one that involves the continuum of quasiparticles above
the gap [13, 54, 55].
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S1. DEVICE AND MEASUREMENT SETUP

FIG. S1. (a) Schematic of the device which consists of a coplanar stripline λ/4 resonator coupled to an InAs nanowire weak link
coupled to a phase-biased superconducting loop through a shared inductance. Measurement tone (frequency fm) through the
probe line and drive tone (frequency fd) through the gate line are used to perform the single-tone and two-tone spectroscopy.
(b) Design of the device around the phase-biased weak link region. (c) Optical image of the device around the phase biased
weak link region. (d) SEM image of the InAs-Al full core-shell nanowire weak link.

Device fabrication starts with the sputtering of a 80-nm-thick NbTiN film on an intrinsic Si wafer at 600◦C. Then
the microwave resonator along with the loop with pads for depositing the nanowire and external parts of the gate
electrode are patterned by optical lithography, followed by plasma etching. The etching removes the NbTiN film and
creates a 100-nm-deep groove in the substrate. The gate electrode is defined in this groove (e-beam lithography, gold
evaporation and lift-off) before transferring the InAs nanowire, so that the nanowire is suspended above the gate.
The nanowire is connected to the NbTiN film with thermally deposited Aluminum patches after Argon etching. In a
last step the Aluminum shell around the nanowire is chemically (using Transene D) etched on a short section above
the gate electrode, thus forming the weak link. A scanning electron microscope (SEM) image of the weak link is
shown in the Fig. S1(d).

The device is measured in a dilution refrigerator at ∼ 15 mK. The measurement (readout) and the drive lines are
highly attenuated by series of attenuators to reduce the noise and to efficiently thermalize the central conductors
of the microwave cables. The reflected signal is amplified by a combination of travelling wave parametric amplifier
(TWPA) with ∼ 25dB gain sitting at the MC plate and a low noise amplifier based on high electron mobility transistor
(HEMT) with ∼ 40dB gain sitting on the 4K plate. A superconducting coil placed around the sample holder allows
us to apply a small magnetic field to phase bias the weak link.
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FIG. S2. Fridge wiring.
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S2. SINGLE TONE SPECTROSCOPY

FIG. S3. (a,b) 2D color maps of the amplitude and phase of the reflection coefficient S11 plotted as a function of gate voltage
(Vg) and measurement frequency (fm). (c) At further negative Vg, pinch-off is seen as the constant response in Vg. In this
regime, the resonance frequency is f0. Note that there is a jump in TWPA gain of ∼ 2dB around Vg = − 12.2 V, which is
the reason for the sharp change in contrast. (d) Amplitude and phase of S11 averaged over 11 scans around the region marked
with vertical arrow in (c), plotted as a function of measurement frequency (fm) to locate the precise bare resonance frequency:
f0 = 6.999 GHz. The orange curve in right panel correspond to the unwrapped phase.

In Fig. S3(a-b), we plot the continuous wave single tone spectra as a function of gate showing modulations of
resonance frequency. To extract the bare resonance frequency f0, which is the resonance frequency when the nanowire
is completely open circuit, the InAs wire is pinched-off by applying a large negative gate voltage. In Fig. S3(c) it can
be seen that the resonance frequency remains completely gate-independent for voltage below −13.3 V, which indicates
that the nanowire is then completely pinched-off. In Fig. S3(d) we plot the amplitude and the phase of S11 as a
function of fm, by taking average over 11 scans around Vg = −13.5 V, which shows the resonance f0 = 6.999 GHz.
There is slight variation of TWPA gain, which is the reason for changing background as a function of fm in Fig. S3(a).
The data of Fig. 2(a) only differ from those of Fig. S3(a), by the subtraction of a background corresponding to the
frequency-dependent TWPA gain.

In Fig. S4 we plot the single tone spectra as a function of phase difference δ, in the gate range from −11.63 V to
−11.53 V, within which the transitions between the singlet and the doublet ground state happen. At Vg = −11.53 V,
the resonance frequency disperses in a manner expected for an even ground state with a transition frequency ap-
proaching the resonator frequency from above, at δ = π. As we keep increasing the gate voltage, first the phase
transition to doublet happens at δ = π, and the width of the doublet region grows and becomes completely doublet
at Vg = −11.59 V. More interesting details about the dispersion of the odd ground state can be seen by tracking how
the phase dependence of corresponding resonance frequency behaves at different gate voltages. In Fig. S5(b) we plot
such resonance frequency shifts, which manifest stronger dispersion of odd ground state resonance frequency away
from center of the doublet region compared to flatter resonance frequency close to f0 in the central region. This,
probably, is a situation of minimum supercurrent at the center of the Coulomb blockade.

It should be noted that the region over which the singlet - doublet phase transitions are observed was hysteretic
in Vg when the gate sweep is over a large range and there are slight differences between the highlighted region of
Fig. 1(b) and the upper panel of Fig. 1(c) in the main manuscript. But, when the gate voltage is swept only in a
range of few hundreds of millivolts, the response becomes non-hysteretic and remains stable for weeks.
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FIG. S4. Single-tone spectra as a function of phase difference (δ) at gate voltages between Vg = -11.63 V and Vg = -11.53 V,
in 5 mV steps.

FIG. S5. (a) The frequency of the strongest resonance (or, the global minima of |S11|(δfm)) is highlighted on top of the 2D
color map of single-tone versus flux. (b) frequency of the strongest resonance plotted as a function of phase difference, for a
series of values of Vg.
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S3. EVALUATION OF POPULATION FROM HISTOGRAMS IN IQ PLANE

The evaluation of the statistical populations of the states of the system results from repetitive measurements of
the quadratures I and Q. Each measurement consists of a 218-ns-long high-amplitude (four times the amplitude of
the measurement pulse) pre-pulse to rapidly load the resonator with photons, followed by a 500-ns-long measurement
pulse. We then plot the histogram of the outcome of 50000 measurements. Such an histogram is plotted in Fig. S6(a),
showing two clouds which correspond to the even and the odd ground states. We use a Gaussian mixture model
(GMM) from sklearn python package (sci-kit learn) [1], which employs an expectation-maximization algorithm to
find out the best fit, and extract the populations. The GMM fitting of the data in Fig. S6(a) is shown in Fig. S6(b),
where the centers of the green and red circles are the positions of the clouds centers and their radius the standard
deviation σ ∼ 0.019 V. We then fixed this σ, and extracted the population at all gate voltages and phase differences,
leaving to the GMM the determination of the clouds positions. In Fig. S6(c), we plot the polarization Po − Pe as a
function of phase difference and gate voltage. GMM fails to identify the clouds in two situations (1) obvious situation
when the clouds merge, which is the case around δ ∼ π/2; (2) sometimes when one of the states is not visible in the
histogram. The points where GMM fails are highlighted in blue (zeroes) in Fig. S6(d). Whenever black points are
surrounded with by white points such that |Po − Pe| > 0.93, we set |Po − Pe| = 1 for those black points, yielding
Fig. 3(c).

We have compared the GMM results with a simpler method consisting in drawing a straight line between the
clouds, and count the events on both sides. As the clouds move slightly with changing gate voltage (for a given phase
difference), we adjusted progressively the position of the line. In Fig. S7, we illustrate the method with data taken at
δ = π, leading to the populations in Fig. S7(b). The result at δ = 0 are shown in Fig. S7(c), and the complete phase
dependence in Fig. S7(d). In the region defined by a brown rectangle in Fig. S7(d), the method could not be applied
because the clouds have a strong overlap. Black dashed lines in Fig. S7(d) marks the phase boundary (Po − Pe = 0)
between the doublet and the singlet ground state.

FIG. S6. (a) Histogram of 50000 times measurement of S11 at Vg = -11.548 V (δ = π) showing the two clouds corresponding
to even and odd ground states. (b) GMM fit of the histogram in (a), assuming spherical covariances. The circles correspond to
the mean positions and standard variation (σ). (c) 2D color map of polarization Po−Pe as a function of gate voltage and phase
difference. (d) 2D color map showing whether GMM worked or not: white (ones) meaning GMM works and black (zeroes)
meaning GMM fails. Whenever the distance between mean positions of cloud is less than 2σ, we say GMM fails.
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FIG. S7. (a) Histogram of S11 measurements in the IQ plane with red line used for states discrimination. (b-c) Population of
even and odd states plotted as a function of gate voltage at δ = π and δ = 0, respectively. (d) Corresponding 2D color map of
polarization Po − Pe as a function of gate voltage and phase difference. The black dashed line correspond to zero polarization
and the brown region corresponds to situations in which the clouds overlap.
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S4. PARITY LIFE TIME FROM CONTINUOUS MEASUREMENT

The evaluation of parity life time of the two states is inferred from continuous monitoring of the state. The mean
value of the quadratures I and Q was recorded on 5 × 105 successive 1 µs-long intervals. The resulting records was
analyzed by a hidden Markov model (HMM) algorithm using the “SMART” Matlab package [2, 3]. In Fig. S8(b) and
Fig. S8(c) we plot the populations and the parity life times, respectively, of the even and odd states as a function of
gate voltage measured with a power ∼ -124 dBm at δ = π. This is the power used for all other histograms presented
in the manuscript and SM. Fig. S8(a) shows the corresponding single-tone spectra. The power dependence of the
polarization is shown in Fig. S8(d), defining the power change δPm relatively to the −124 dBm mentioned before. For
δPm < 0 the polarization is independent of power when the population of one of the states is close to 1. The parity
time of this state is ∼ 1 ms, when the other state has a parity life time of few micro seconds or less (the time slots
of 1 µs hides faster events). Whenever the polarization is close to zero both the parity life times become few tens of
micro seconds and are strongly power-dependent. Similar strong power dependency close to singlet-doublet transition
was reported in Bargebos et al. [4] and was attributed to parity pumping effect [5, 6].

FIG. S8. Parity life times and their power dependence at δ = π. (a) 2D color map of single-tone spectra as a function of
Vg. Note that compared to to Fig. 1.(c) and Fig. 3(a), this is another set of data taken after several excursions in Vg, which
explains a little shift of the position of the jumps in Vg. (b-c) Population and parity, respectively, at δPMeas = 0, extracted
from continuous measurement. (d) 2D color map of polarization as a function of gate voltage and measurement power. (e-f)
2D color maps of logarithm of parity lifetimes of even and odd states.

S5. TWO-TONE SPECTROSCOPY

For two-tone spectroscopy, the drive tone is supplied through the gate line via a bias-Tee placed on the mixing
chamber plate of the dilution refrigerator. All the features with non-zero δI/δQ correspond to some microwave
transitions which modifies S11. In the main manuscript we focus on two anomalous transitions named as TA and TB,
which mimick parity flips. We first show that these are not replicas of some primary transition (T1/T2).
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A. Are the anomalous transitions TA and TB replicas?

When the drive power is strong enough, one can observe replica of the transition lines corresponding to processes
in which the drive tone excites at the same time an Andreev transition and another fixed mode of the circuit or of
the environment, or combine the drive tone and photons from the resonator to excite a transition. From a primary
transition at frequency f , these processes give rise to spectroscopy lines at f ± fenv, with fenv the frequency of an
environmental mode. In Fig. S9(c) and (d) we tried to compare the positions of TA and TB, with those of T1 and
T2, shifted in frequency. One observes that one cannot reach an overlap on the complete interval. Interestingly, the
positions of TB and TA are related by the relation TB= |TA-11 GHz|. However, TA and TB cannot be replica one
of the other, because their contrasts are not correlated. The relation between TA and TB finds an explanation in the
ancillary level model described below if the level energy does not change with gate voltage. The observation that TA
and TB cross very close to the gate voltages where the transitions between singlet to doublet ground tone appear in
single-tone can not be a mere coincidence, provided the ancillary level model explaining such alignment.

FIG. S9. 2D color maps of the two-tone spectra as a function gate voltage shown on a broader frequency range. The same
data are repeated in (a,c,e) (δI) and (b,d,f) (δQ). (b) T1, T2, TA, and TB are highlighted by red, green, blue, and magenta
dashed lines, respectively. (c) We tried to compare TA and TB, with T1 shifted in frequency, by equations TA = |T1−12 GHz|
and TB = |T1 − 23 GHz|, respectively. (d) We tried to compare TA and TB, with T2 shifted in frequency, by equations
TA = |T2 − 17.5 GHz| and TB = |T2 − 28.5 GHz|, respectively. Note that, the T2 is not present in the data in the range
−11.62 V to −11.54 V. TA and TB do not have a constant frequency difference with T1 or T2. (e) We tried to compare TB
from TA, by equation TB = |TA− 11 GHz|, which somewhat matches.
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B. Population transfer by driving TA and TB

By driving at frequencies corresponding to the transition lines TA and TB, we observe population transfer between
the even and odd cloud, as shown in the histograms in Fig. S11(d). The general properties we observe about the parity
flip mimicking transitions are the following. (1) They generally have a well like shape with minima appearing around
the center of odd ground state region and whenever the well crosses zero frequency the part below zero frequency
inverts. (2) The inverted part corresponds to odd to even transition, whereas the part that has well like appearance
corresponds to even to odd transition. (3) Their crossings points appear close to zero polarization. All the above
properties could be explained by an ancillary level model.

FIG. S10. (a) Other set of single-tone data around the singlet-doublet transition in gate voltage measured with a slightly higher
power compared to previously shown measurements. (b-c) Corresponding two-tone data showing the anomalous transitions
TA and TB. (d) Histograms of S11 measurements in IQ plane when the drive is off and on are plotted at the drive frequencies
marked by A-D in (b) and (c). The difference of histogram shows that the well shaped part of TA and TB corresponds to even
to odd transition, and, the inverted well shaped part corresponds to odd to even transition.
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C. Rotation of IQ plane to put most of the signal in one component

The IQ plane is rotated by a flux dependent angle Θ such that when fd lies on TA δIx̂+ δQŷ aligns with the new
a-axis, which help putting most of the signal in one component.

FIG. S11. (a-b) Two tone data δI and δQ at Vg = -11.55 V. (c-d) The rotated two tone data δa and δa⊥, such that most of
the signal lies in δa. (e) The rotation angle plotted as a function of flux. The jump of π around δ = π/2 correspond to the flux
when the resonance frequency corresponding to even-like state crosses the resonance frequency corresponding to odd-like state.
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S6. THEORY

A. Zero bandwidth model

The weak link in the regime analyzed in this work is modeled with a main channel M and a an ancillary level A.
In the main text, M is described with the infinite gap limit of a single level Anderson model, where the effect of the
superconducting leads is integrated into an effective pairing Γ(δ) between the even states of a dot [7]. While this
approach already accounts for the qualitative structure of the experimental measurements, a direct improvement of
the description of the superconducting leads is to use the zero-bandwidth (ZBW) approximation [8, 9], by which each
lead is modeled with one superconducting site:

HWL = HM +HA

HM =
∑

σ

ϵd†σdσ + Un↑n↓ +


 ∑

i=L,R

∆ic
†
i↑c

†
i↓ + h.c.


+

(∑

σ

tLe
−iδ/4c†Lσdσ + tRe

iδ/4d†σcRσ + h.c.

)

HA =
∑

σ

ϵAd
†
AσdAσ + UAnA↑nA↓ +

∑

σ

UMAnσnAσ̄ +

(∑

σ

tAd
†
Aσdσ + tLAe

−iδ/4c†LσdAσ + tRAe
iδ/4d†AσcRσ + h.c.

)
,

where tL,R are the tunnel amplitudes between the main dot and the leads, ∆L,R are the gaps of the leads, tA,
(tLA, tRA) are the vanishing tunnel amplitudes between the ancillary level and the main level (the leads), and UMA

is an interlevel charging energy that penalizes the simultaneous occupation of M and A.
The resonance frequency of the resonator coupled to the weak link depends on the state n of the latter. At moderate

coupling λ, the resulting shift δfn from the bare resonance frequency f0 can be calculated with [10, 11]:

δfn = fn − f0 = λ2 ⟨Φn|
∂2HWL

∂δ2
|Φn⟩ − λ2

∑

m̸=n

| ⟨Φm| ∂HWL

∂δ
|Φn⟩ |2

(
1

Em − En + hf0
+

1

Em − En − hf0

)
, (1)

where HWL describes the weak link, and En, |Φn⟩ are the corresponding energies and states. The second term,
which corresponds to the exchange of virtual excitations between the junction and the resonator (dispersive shift),
provides a small contribution to the shift in our case. This occurs because the current matrix elements involved in the
transitions TA and TB that cross the resonator line (Em−En = hf0) are negligible. Thus, the main contribution to
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FIG. S12. Zero bandwidth model. (a,b) Frequency shift over ϵ at δ = 0, π. (c,d) The corresponding transitions of global even
(red) and odd (green) parity. Solid (dashed) lines switch (maintain) the ancilla state. (e-i) Frequency shift over δ at ϵ’s marked
with colored labels in (c,d). (j-n) The corresponding transitions. Parameters are: tL = 5, tR = 10, ∆L,R = 40, ϵA = 5, U = 55,
UA = 1.5 (units in GHz), and λ = 0.02.
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the dispersive shift is produced by the pair transition, which is a couple of GHz higher than the resonator. As shown
in Figs. S12a,b,e-i, the ZBW model allows to recover a finite phase dispersion in the odd state of M .

The corresponding global parity conserving transitions between Andreev states are shown in Figs. S12c,d,j-n. As in
the main text, the solid lines with cusps flip the parity in the ancillary level and in the main channel, switching between
the lowest energy state in each parity of M (in the infinite gap approximation they are |g⟩M = u |0⟩M − veiθ |↑↓⟩M ,
that was denoted with |E⟩M in the main text, and |σ⟩M , that was denoted with |O⟩M ). Here, we additionally plot
higher transitions – which are also present in the infinite gap model but were not discussed nor shown. The second
solid red line flips the parity in A and switches between the lowest odd and the second lowest even state in M (in the
infinite gap approximation the latter one is |e⟩M = v |0⟩M + ueiθ |↑↓⟩M ). Analogously to the previous set, this line
has a companion in the global odd sector at a 2ϵA upward shift, which is above the range of the graph. The dotted
lines are transitions that do not flip the parity in A and go from |g⟩M to |e⟩M , namely, the pair transitions in the
main channel produced at different occupation of A, which may be associated with T1. Note that a finite UMA is
included, which breaks the mirror symmetry of the ensemble of lines over the point ϵ = −U/2 (ξ = 0).

B. Multilevel dot model

An alternative development of the weak link model is to consider additional levels in the main channel in order to
describe a larger gate range. Proceeding within the infinite gap limit, the main channel Hamiltonian updates to:

HM =
∑

ασ

ϵαd
†
ασdασ +

∑

α

Uαnα↑nα↓ +
∑

αβσ

tαβd
†
ασdβσ+

∑

α

((
ΓLαe

iδ/2 + ΓRαe
−iδ/2

)
d†α↑d

†
α↓ + h.c.

)
+
∑

α̸=β

((
ΓLαβe

iδ/2 + ΓRαβe
−iδ/2

)
d†α↑d

†
β↓ + h.c.

)
,

where ϵα, Uα are the position and the charging energy of the dot levels α’s, tαβ is a tunnel amplitude between two of
them, ΓαL(R) is an effective pairing from each lead L(R) onto each level, and ΓL(R)αβ is an effective interlevel pairing
that describes processes where a Cooper pair from the lead splits into levels α and β, which is chosen as

√
ΓαΓβ . As

in the previous models, tunneling terms between the main levels and the ancillary one are supposed to be small, and
interlevel charging terms of any kind are not included for simplicity.

Transitions calculated with this model are shown in Fig. S13, where three levels are included. The gate dependence
is modeled with the same lever arm in each level except in the ancillary one (ϵα = ϵ0α+ϵ), and interlevel tunneling and
pairing are only present between adjacent levels. The transitions displayed are those starting from the lowest states
in each global parity (red/green for even/odd) and each occupation in A (solid/dashed for |0⟩/|σ⟩). The anomalous
transitions TA and TB are reproduced as in the previous models in the range where they both exhibit cusps. The other
two levels of the dot also display this kind of transitions, centered at the points where ϵα ≈ −Uα/2, which correspond
to the gate points Vg ∼ −11.2V and foreseeably Vg ∼ −11.42V in e.g. Fig. S9. There is only one more pair of cusps
displayed by TB in the first gate point, a feature that can be associated to a disfavored odd state (lower Uα or higher
Γα) in these dot levels. The connection between the TAs and TBs of the levels is mediated by the neighbouring tunnel
couplings tα and the interlevel effective pairings Γαβ . In these intermediate gate regions they display splittings as in
the measurements, though other splittings in the regions where ϵα = −Uα are not reproduced. The other set of solid
lines with minima around ϵα = −Uα can be associated, close to these points, to the transitions that switch between
|σ⟩Mα and |e⟩Mα, as discussed in the previous subsection about the zero bandwidth model. Analogously, dashed lines
with with minima around ϵα = −Uα/2 can be associated, close to these points, to the pair transitions at different
occupations of A, so they may be associated with T1. The other set of dashed lines that disperse opposite to the pair
line, with minima between the points where ϵα = −Uα/2, can be associated with transitions where a Cooper pair is
split into two of the dot levels (in the limit without pairing, it corresponds to a transition involving |σ, σ′⟩ and |0, 0⟩,
which intersect at ϵ = (ϵ0α + ϵ0β)/2, being α and β two consecutive dot levels and |α, β⟩ their states). These might be
related with T2. We do not attempt to cover other lines in the measurements within our simplified models, which
might arise from the intricate combination of geometry, spin-orbit, electron-electron interactions, etc. in this kind of
devices [11–14].

The parameters for the figure are based in those used for the single-level infinite gap model in the main text
(caption of Fig. 6), which are chosen to reproduce certain points in the transition lines: at ξ = 0 and δ = π, the
pair transition T1 of ∼ 11 GHz corresponds to 2Γ(π) = 2|ΓL − ΓR|, and the transitions TA, TB, of ∼ 2.5, 12.5 GHz,
to −Γ(π) + U/2 ∓ ϵA, so U, ϵA are determined. Then TA or TB at δ = 0, of ∼ 2.5, 7.5 GHz, that correspond to
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FIG. S13. Transition lines within the multilevel dot model (sketched in the inset) at δ = π and sweeping ϵ. Red (green) denotes
even (odd) global parity, and solid (dashed) represents lines that switch (maintain) the ancilla state. Parameters are: ϵA=5,
ϵ1=50, ϵ1=50, ϵ2=−15, ϵ3=−60, Γ1L=2, Γ1R=15, Γ2L=6, Γ2R=10, Γ3L=2, Γ3R=6, U1=1, U2=30, U3=5, U1A=U2A=U3A=0.5,
t12=1, t23=10 (units in GHz).

∓(Γ(0) + U/2∓ ϵA), allows to obtain Γ(0) = ΓL + ΓR, which together with Γ(π) determines ΓL,R.
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