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Resonance fluorescence (RF) of a two-level emitter displays persistently anti-bunching irrespective
of the excitation intensity, but inherits the driving laser’s linewidth under weak excitation. These
properties are commonly explained disjoinedly as the emitter’s single photon saturation or passively
scattering light, until a recent theory attributes anti-bunching to the laser-like spectrum’s inter-
ference with the incoherently scattered light. However, the theory implies higher-order scattering
processes, and led to an experiment purporting to validate an atom’s simultaneous scattering of two
photons. If true, it could complicate RF’s prospects in quantum information applications. Here,
we propose a unified model that treats all RF photons as spontaneous emission, one at a time,
and can explain simultaneously both the RF’s spectral and correlation properties. We theoretically
derive the excitation power dependencies, with the strongest effects measurable at the single-photon
incidence level, of the first-order coherence of the whole RF and super-bunching of the spectrally
filtered, followed by experimental confirmation on a semiconductor quantum dot micro-pillar device.
Furthermore, our model explains peculiar coincidence bunching observed in phase-dependent two-
photon interference experiments. Our work provides novel understandings of coherent light-matter
interaction and may stimulate new applications.

Although being a textbook phenomenon1–4, resonance
fluorescence (RF) remains an active research topic even
in its simplest form5–9. A two level emitter (TLE) under
weak monochromatic excitation has been known to scat-
ter out photons that are anti-bunched and yet exhibit the
driving laser’s linewidth10–14. Anti-bunching was usually
interpreted in the single-photon picture15,16, i.e., a TLE
absorbs and re-emits one photon at a time. However, this
picture has not explained the origin of the RF’s linewidth,
which is far narrower than the natural broadening ( 1

2πT1
)

imposed by the emitter’s radiative lifetime (T1). Con-
versely, it is easy to explain the laser-like spectrum if
one treats the TLE only as a passive scattering site17, as
often used for weak excitation, but explaining convinc-
ingly at the same time the RF’s single-photon character-
istic becomes challenging. Even more perplexing is the
fact that the RF spectrum changes dramatically when
the excitation intensity increases over a large range, but
the single-photon characteristic persists18–22, leading to
greater difficulties with the two disjoined scattering pic-
tures.
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Accompanying the spectrally sharp peak, RF spec-
trum of a TLE contains also a broadband component,
which is vanishingly insignificant under weak excitation
(Heitler regime) but grows towards dominance and even-
tually develops into Mollow triplets under strong excita-
tion23. Recently, a remarkable theoretical breakthrough
by López Carreño et al.5 shows that it is the broadband
component, however insignificant it may be, that holds
the key to the presence or disappearance of anti-bunching
through interference with the laser-like spectral compo-
nent. Drastically departing from the single-photon pic-
ture, the broadband component was attributed to higher-
order scattering processes involving “the actual two-
photon absorption and re-emission”5,9, which prompted
experiments on the spectral filtering’s effect on the pho-
ton number statistics6–8 and even led to suggestion of
simultaneous scattering of two photons by an atom8.
However, spectrally resolving the RF invokes interfer-
ence among (many) photons emitted over a macroscopic
duration no less than 1/∆ν (∆ν: spectral resolution),
which would prevent discerning what truly happens at
the minuscule duration of the TLE’s radiative lifetime.
From the perspective of wave-particle duality, the action
of filtering reveals already the wave-aspect properties,
and thus undermines further discussions on simultaneity
which requires treating photons as particles.

In this work, we propose and experimentally verify an
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entanglement model providing a unified picture which si-
multaneously explains the laser-like linewidth and the
single-photon characteristics of the RF of a quantum
emitter. Here, the emitter and its RF photons are entan-
gled through spontaneous emission. The model involves
no higher-order scattering processes, nor does it need to
distinguish between “coherent” scattering and “incoher-
ent” absorption/re-emission processes. From the entan-
glement, we theoretically derive the excitation power de-
pendencies, with the strongest effects measurable at the
single-photon incidence level, of the first-order coherence
(g(1)) of the RF as whole and the second-order corre-
lation function (g(2)) of its broadband component. In
laboratory, we confirm the model by reproducing its pre-
dictions on the RF from a high-quality semiconductor
quantum dot (QD) micro-pillar device. Furthermore, we
perform phase-dependent two-photon interference exper-
iment and observe peculiar coincidence bunching that is
also explained by the model.

Figure 1a depicts the entanglement model. A
monochromatic laser coherently drives a TLE, e.g., a QD
in a micropillar cavity22. Parameters ν, hν and TL are
the laser’s frequency, photon energy and coherence time,
respectively. The TLE’s excited state |e⟩ has a lifetime of
T1, and a dephasing time of T2 (T2 ≤ 2T1). According to
the optical Bloch equations, the TLE population reaches
a steady state after ∼ T1 time under steady continuous
optical excitation1. At any point of time, it is not pos-
sible to know whether spontaneous emission has taken
place or the TLE remains at its excited state |e⟩ prior
to detection of a photon. However, once an RF photon
is detected, we know for sure that spontaneous emission
had taken place and the TLE returned to its ground state
|g⟩ at the corresponding point of time. An immediate de-
tection of a second photon is prevented because the TLE
requires time to be repopulated. This leads naturally to
photon anti-bunching.

To capture the above description, we write the light-
matter system under steady-state condition as

|ψ⟩t =
√
p0|0⟩t|g⟩t +

√
p1e

i2πνt |0⟩t |e⟩t + |1⟩t |g⟩t√
2

, (1)

where p0 and p1 represent the TLE’s ground- and excited-
state quasi-populations (p0 + p1 = 1), respectively.
|0⟩t|e⟩t means the TLE occupying its excited state has
not spontaneously emitted at time t, while |1⟩t|g⟩t in-
dicates emission of a photon has just taken place with
the TLE having returned to the ground state |g⟩t. We
clarify that |0⟩t and |1⟩t here shall not be mistaken as
cavity photons as in a Jaynes-Cummings-like model1,3,4.
States |0⟩t |e⟩t and |1⟩t |g⟩t are connected only via spon-
taneous emission, and |1⟩t represents a spontaneously
emitted photon into temporal mode t contributing to the
RF. By definition, |1⟩t is a broadband photon with band-
width governed by the TLE’s dephasing time T2. Below,
we show how the entanglement can transfer partially its
coherence to the RF using two-path interference.
Figure 1b shows an asymmetric Mach-Zehnder inter-

ferometer (AMZI) with a delay τ (T1 ≪ τ ≪ TL). The
incoming RF signal from port a′ is divided equally into
two paths (a and b) by the first beam splitter and then
recombine at the second one before detection at ports c
and d by two single-photon detectors. When a photon
is detected, it is not possible to distinguish whether it
arose from a photon that was emitted to an early tem-
poral mode (t − τ) taking the long path or one emitted
at a late mode (t) taking the short path. Interference
between the two indistinguishable paths occurs. Since
τ ≫ T1, the two interfering temporal modes can be con-
sidered independent from each other, apart from their
phase locked by the laser. Hence, we derive from equa-
tion (1) that the AMZI output at ports c and d to have
the form

|Ψout⟩ = |0c0d⟩t
(
p0 |gg⟩+

√
p0p1√
2

|ge⟩+
√
p0p1√
2

|eg⟩+ p1
2

|ee⟩
)

+ |1c0d⟩t
√
p0p1√
2

1− eiφ√
2

|gg⟩+ |1c0d⟩t
p1

2
√
2

(
|ge⟩ − eiφ |eg⟩

)
− |2c0d⟩t eiφ

p1

2
√
2
|gg⟩

+ |0c1d⟩t
√
p0p1√
2

1 + eiφ√
2

|gg⟩+ |0c1d⟩t
p1

2
√
2

(
|ge⟩+ eiφ |eg⟩

)
+ |0c2d⟩t eiφ

p1

2
√
2
|gg⟩ .

(2)

where φ denotes the AMZI phase delay and |xy⟩ (x, y =
g, e) represents the TLE’s respective states correspond-
ing to time bins t − τ and t. The first line contains no
photons while the second and third lines represent pho-
ton outputs at ports c and d, respectively. Each out-
put contains one phase-dependent term followed by two
phase-independent ones. The phase-dependent term cor-

responds to the TLE’s transition (|ge⟩ + |eg⟩)/
√
2 →

|gg⟩, which imparts the coherence to a superposition
between two photon temporal modes: (|0⟩t−τ |1⟩t +

|1⟩t−τ |0⟩t)/
√
2. Varying the AMZI phase φ, this super-

position will produce interference fringes with an ampli-
tude of p0p1

2 , as opposed to the total output intensity of
p1

2 . Thus, the overall level of coherence of the RF, quanti-



3

ba

c d e

Laser

Laser

RF

RF

Photon
XQD

QD

Circulator

 BS

 SPD

Fit

Fig. 1 |Resonance fluorescence (RF). a, Schematic for a two-level emitter (TLE) coherently driven by a
continuous-wave laser into steady-state. Brackets |g⟩ and |e⟩ represent the ground and excited states of the TLE,
while |0⟩ and |1⟩ mean 0 or 1 spontaneously emitted photon. Symbols p0 represents the population of the system
ground while p1 is the single-quanta population that is in a form of either the TLE staying at its excited state
(|0⟩ |e⟩)) or a fresh spontaneously emitted photon (|1⟩ |g⟩). b, Schematic of the core experimental setup. c,
Second-order correlation function g(2)(∆t) measurements. d, High resolution spectra. e, Interference fringes
measured with the AMZI shown in b. The interferometer phase φ was left drifting freely. BS, beam splitter, SPD,
single-photon detector.

fied using the first-order correlation function g(1)(τ), has
the form,

g(1)(τ) = p0e
−i2πντ . (3)

Using Fourier transform, we infer that the RF consists
of a spectrally sharp, laser-like (ll) part that inherits the
linewidth of the driving laser and has a spectral weight
of Ill/Itot = |g(1)(τ)| = p0 < 1. For detailed theoret-
ical derivation, see Sections I-III, Supplementary Infor-
mation.

The reduction in coherence, by the amount of 1 − p0
or p1, is linked to the TLE’s transitions from the |ee⟩
state to |ge⟩, |eg⟩ or |gg⟩. As shown in equation (2), the
first two transitions give rise to an incoherent single pho-
ton each while the last one produces a two-photon state.
Transition |ee⟩ → |ge⟩ (|ee⟩ → |eg⟩) emitted a photon
into early (late) temporal mode but none at late (early)
mode, so no two-path interference takes place. On the
other hand, transition |ee⟩ → |gg⟩ produces one photon
into each mode, the interference of which causes coales-
cence and forms a photon-pair through Hong-Ou-Mandel
(HOM) effect24. All these photons are incoherent, so they
naturally display a bandwidth governed by the TLE’s

transition and thus make up the broadband (bb) part,
with a weight of Ibb/Itot = p1 in the RF spectrum.

The relation of p1 with excitation power can be esti-
mated through steady-state condition, i.e., emission bal-
ances out absorption. We define n̄ as the mean incident
photon number over T1 duration. For a TLE embedded
in a cavity, we have p1/2× 1

T1
= (1−p1)×n̄ηin× β

T1
, where

ηin is the absorption probability for each incident photon
by the TLE under weak excitation limit. We include also

the spontaneous emission β-factor (β ≈ Fp

Fp+1 ) because

the TLE emits into both cavity and non-cavity modes
while the excitation involves just the former. Assigning
x = 2ηin/β, we have

p1 = xn̄/(1 + xn̄), (4)

which provides a direct link with the excitation flux down
to the single photon level. Despite its simple derivation,
equation (4) is in excellent correlation with the textbook
equation2 Ibb/Itot = Ω2T1T2/(1 + Ω2T1T2) that links n̄
indirectly via the Rabi frequency Ω (n̄∝Ω2). We com-
ment that both equations become identical for an ideal
emitter (T2 = 2T1) if we take xn̄ = Ω2T 2

1 . Under weak
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excitation limit, xn̄ and Ω2T1T2 in fact mean the same
thing, i.e., the excited state |e⟩ population under an in-
cident flux of n̄ or an Ω Rabi driving frequency of T1
duration. With high-quality QD-micropillar devices of-
fering efficient input-coupling25 and strong β-factor22, we
expect x ∼ 2, which provides a unique test-point to our
model.

Equation (2) yields another experimentally verifiable
prediction. By setting the AMZI’s phase to φ = π, port
d output contains two single-photon terms (|1⟩t |ge⟩ and
|1⟩t |eg⟩) and a photon-pair term (with |2⟩t |gg⟩). This
output is equivalent to a pure two-photon state attenu-
ated by a beam splitter. In the auto-correlation measure-
ment, this state is expected to produce super-bunching
that is dependent on the population p1: g

(2)(0) = 1/p21.
The derivation of this relation is summarised in Section
IV of Supplementary Information.

Figure 1b shows the core experimental setup. We use
a device containing a single InAs QD embedded in a mi-
cropillar cavity of 2.4 µm in diameter and a quality factor
(Q) of 9350, featuring a low cavity resonance reflectiv-
ity of 0.015. It is kept in a closed-cycle cryostat and
the QD’s neutral exciton is temperature-tuned to res-
onate with the micropillar cavity at 13.6 K, emitting at
911.54 nm. We use a confocal microscope setup equipped
with a tunable continuous-wave (CW) laser of 100 kHz
linewidth as the excitation source and an optical circula-
tor made of a polarising beam splitter and a quarter-wave
plate for collecting the RF in a co-polarisation configu-
ration22. The QD is characterised to have a Purcell en-
hanced lifetime of T1 = 67.2 ps (Fp ≃ 10), corresponding
to a natural linewidth of Γ∥/2π = 2.37 GHz, which is 15
times narrower than the cavity mode (κ/2π = 35 GHz).
The RF is fed into a custom-built AMZI with a fixed
delay of τ = 4.92 ns for interference before detection
by two single photon detectors. With additional ap-
paratuses, the whole setup allows characterisations of
high-resolution spectroscopy, auto-correlation function
g(2)(∆t), the first-order correlation function g(1)(τ), and
two-photon interference. For detailed description of the
experimental setup, see Section VI of Information Sec-
tion.

In the first experiment, we use a weak excitation flux
of n̄ = 0.0068, corresponding to a Rabi frequency of
Ω/2π = 210 MHz (∼ 0.09Γ∥). Here, the flux, defined as
n̄ = PinT1/hν, is strictly calibrated to represent the aver-
age number of photons incident upon the sample surface
over T1 duration. Figure 1c shows the auto-correlation
function g(2)(∆t) for both the RF (orange line) and the
laser (blue line). While the laser exhibits a flat g(2) be-
cause of its Poissonian statistics, the RF is strongly anti-
bunched, with g(2)(0) = 0.024±0.002, at the 0-delay over
a time-scale of ∼ T1, confirming that the QD scatters one
photon at a time.

Figure 1d shows the RF frequency spectrum (orange
line) measured with a scanning Fabry-Pérot interferom-
eter (FPI). It is dominated by a sharp line that overlaps
the laser spectrum (blue line) with a linewidth that is lim-

ited by the FPI resolution (20 MHz). The RF contains
additionally a broadband pedestal whose amplitude is
over 3 orders of magnitude weaker. The overall spectrum
can be excellently fit with two Lorentzians of 20 MHz
and 2.3 GHz linewidths, shown as cyan and black dashed
lines, respectively. The bandwidth of the latter closely
matches the TLE’s natural linewidth of 1

2πT1
. Follow-

ing the discussion surrounding equation (3), we attribute
the sharp feature to the interference outcome of the RF
signal passing through the FPI. The spectral weight of
this laser-like peak can be measured using our AMZI
(Fig. 1b), which has a suitable delay that meets the con-
dition T1 ≪ τ ≪ TL. An example result is shown in
Fig. 1e, which gives a fringe visibility, or the laser-like
fraction, of 0.94 for the RF. As comparison, the laser
signal exhibits 0.9998 interference visibility.

a

b

or

Fig. 2 |Coherence versus excitation flux at the
single-photon level. a, High-resolution RF spectra;
The cyan bar illustrates the laser-like spectral part. b,
The interference visibility |g(1)| (solid circles) measured
with the AMZI (see Fig. 1b), the laser-like spectral
weight Ill/Itot (solid stars) extracted from data in panel
a, and the auto-correlation measured without any
spectral filtering. The red dashed line is a fitting using
either |g(1)| ∝ 1

1+xn̄ with x = 1.94 or |g(1)| ∝ 1
1+Ω2T1T2

with T2 = 1.62T1.
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Figure 2a shows high-resolution RF spectra under dif-
ferent excitation fluxes. As the flux increases, the broad-
band component increases its share of the total RF, and
becomes considerably broadened when n̄ exceeds 0.25.
It starts to develop into Mollow triplets at the few pho-
ton level as reported previously22. Nevertheless, the RF
remains its single-photon characteristics for a flux up to
n̄ = 6.8 when measured before the AMZI and without any
spectral filtering, as demonstrated by the auto-correlation
data (open squares) in Fig. 2b. At n̄ = 6.8, we measure
g(2)(0) = 0.37, which is still below the limit (0.5) for a
classical emitter.

The growing broadband component deteriorates the
RF’s coherence. To quantify, we measure the interfer-
ence visibility (|g(1)|) by passing the RF through the
AMZI, with results shown as solid circles in Fig. 2b.
This quantification method is equivalent to, and more
precise than, calculating the area ratio of the laser-like
peak to the total RF signal. The results from the latter
method are shown as stars. At low fluxes (n̄ < 0.01),
|g(1)| is plateaued at 0.946, rather than 1.0 as expected
from equation (3). We attribute this discrepancy to pho-
ton distinguishability26, which could arise from phonon-
scattering27–29 and QD environmental charge fluctua-
tion30 as well as a small amount of laser mixed into the
RF. As the flux increases until n̄ = 3, we observe a gen-
eral trend of a decreasing visibility. For n̄ > 3.0, the visi-
bility reverses its downward trend and climbs up. In this
regime, the RF signal starts to saturate22 while the laser
background continues to rise, as evidenced by the accom-
panying rise in g(2)(0). At very strong fluxes (n̄ > 100),
the laser background dominates and thus the measured
photon number statistics approaches Poissonian distribu-
tion, i.e., g(2)(0) ≈ 1.

We attribute the interference visibility drop in Fig. 2b
to the increasing population (p1) of the QD’s exited state.
Based on equations (3, 4), we obtain a near perfect fit,
|g(1)| = 0.946/(1+xn̄) and x = 1.94, to the experimental
data in the region where the RF signal remains domi-
nant. Our QD device’s β-factor lies in the region of 0.83
– 0.95 according to the calculation method outlined in
Ref.31, from which we estimate the light coupling effi-
ciency into the cavity is in the range of 0.80 – 0.98 for
our device. This estimation on ηin appears to agree with
the previously reported value on a similar device25. It
is also viable to fit the g(1) data using the traditional
model2,11,25: |g(1)| ∝ 1

1+Ω2T1T2
, the result of which is

shown by the identical dashed line. In the fitting, we use
T2 = 1.62T1 and extrapolate the Rabi frequencies from
the splittings in Mollow spectral triplets measured un-
der strong excitation. While both models work, ours is
substantially simpler in the sense that it links the RF’s
coherence directly to the incident flux down the single
photon excitation level for the first time. This experi-
ment gives strong support to our simple model and sug-
gests an efficient coupling of light into our QD-micropillar
device.

In the next experiment (Fig. 3a), we use the AMZI to

filter out the laser-like component by setting its phase
to φ = π and then study the photon number statistics
of the filtered RF output. As compared with a narrow-
band filter6–8, this technique uses two-path, instead of
multi-path, interference and thus the subsequent photon
number statistics is easier to analyse. For the theoretical
analysis, see Section IV of Supplementary Information.
Two AMZI-filtered spectra are shown in Fig. 3b. Each
spectrum consists of a broadband signal with fringes
of 203 MHz spacing corresponding to the AMZI’s de-
lay (τ = 4.92 ns), while the laser-like component is re-
jected entirely. Subjecting the filtered RF to the auto-
correlation measurement, we acquire a set of data shown
in Fig. 3c. We observe super-bunching at 0-delay with
g(2)(0) = 168.9 at the lowest flux of n̄ = 0.0062, and
attribute it to two-photon interference between an early
single photon passing through the long arm and and a
late one passing through the short arm of the AMZI. At
∆t = ±τ , interference between three temporal modes
happens. Theoretically, g(2)(±τ) ≈ 1

4g
(2)(0) under such

incident flux. To compare, we have measured an aver-
age value of 47.6 for g(2)(±τ), amounting to 0.282 of the
corresponding g(2)(0) value.
The level of super-bunching decreases with the ex-

citation photon flux, as shown in Fig. 3c. This is in
qualitative agreement with the theoretical prediction of
g(2)(0) = 1/p21. At n̄ = 0.62, we deduce p1 = 0.546 using
p1 = 1.94n̄/(1+1.94n̄) and thus expect a photon bunch-
ing value of 3.35. To compare, we measure g(2)(0) = 2.6,
which is in fair agreement with the expected value. The
discrepancy could arise from the increased laser back-
ground as well as finite photon indistinguishability26.
Finally, we perform phase-dependent two-photon in-

terference experiment with the setup shown in Fig. 1b,
and summarize the results in Fig. 4a with observations:
(1) The coincidence baseline is phase-dependent, while
the gap between traces shrinks as the excitation power
increases; (2) Strong anti-bunching at ∆t = 0 for all ex-
citation fluxes and phase values; (3) Features at ∆t =
±4.92 ns, caused by the AMZI’s delay τ , can exhibit as
peaks or dips depending on both the excitation power
and the phase delay. We note that observation (3) is
strikingly different from incoherently excited quantum
emitters25,32, where the side features always display as
dips with depth limited to 0.75.
To understand the two-photon interference results, we

approximate the RF output as a superposition of photon-
number states: |ψph⟩t =

√
p0|0⟩t+√

p1|1⟩t+√
p2|2⟩t with

a small two-photon probability p2 ≪ p21/2 and derive the
coincidence probabilities as detailed in Section V of Sup-
plementary Information. We reproduce the main results
below.

C(0) = p2
4

(1− p0M cos 2φ) +
p21 + 4p1p2 + 4p22

8
(1−M ′),

(5A)

C(±τ) = p21
16

(3− 2p0M cos 2φ), (5B)
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Fig. 3 |Correlation of the AMZI-filtered RF. a, Experimental setup; The AMZI is set to have a π phase so
that the laser-like RF coherent is dumped at port c; The filtered RF at port d contains only broadband RF, and is
fed into a HBT setup. b, Filtered RF spectra; c, Second-order correlation functions measured for various excitation
fluxes.

C0 =
p21
4

(
1− p20M cos2 φ

)
, (5C)

where M represents indistinguishability of the RF pho-
tons while M ′ has a similar definition but additionally
takes the detector time-resolution into account33. C(∆t)
represents the coincidence probability at time interval ∆t
while C0 is the baseline coincidence. Equations (5A-5C)
show all coincidence probabilities are phase-dependent.
C0 and C(±τ)’s dependence arises from the first-order
interference, while C(0) contains contributions from |2⟩t
states as well as incomplete HOM interference between
two RF photons emitted separately by the AMZI delay τ .
Figures 4b, 4c plot the phase dependence of the theoret-
ical (solid lines) and experimental (symbols) coincidence
rates for ∆t = ±τ and ∆t = 0, normalised to the base-
line coincidence. We use maximum likelihood estimation
method to determine a realistic set of parameters for each
excitation flux that provide the best fit to the data. The
theoretical simulations are in excellent agreement with
the experimental data for three incident fluxes and have
also successfully reproduced the crossover between C(±τ)
and C0 for n̄ = 0.25.

Over past 50 years, it has been prevalent to discuss

resonance fluorescence in the context of “coherently”
and “incoherently” scattered light5–9,11,12,23. In liter-
ature, interchangeable terminologies, such as resonant
Rayleigh scattering (RRS) vs. resonant photolumines-
cence (RPL)25 and elastic vs. inelastic scattering34, are
also in use. The term “incoherent scattering” is rather
misleading. As we have elucidated, both the laser-like
and broadband parts arise from the very same coherent
process, i.e., resonant absorption and spontaneous emis-
sion. The two parts are integral. Their integrity is key
to the joint observation of “sub-natural” linewidth and
anti-bunching. Conversely, compromise in the integrity
will change the photonic state and may lead to differ-
ent observations, e.g., loss of anti-bunching after spectral
filtering6–8 or super-bunching after the AMZI filtering
(Fig. 3). We stress that photon bunching does not nec-
essarily require simultaneous scattering of two photons8

for an explanation.
To conclude, we have presented a novel picture to

explain the coherence of resonance fluorescence under
continuous-wave excitation. We link the RF’s coher-
ence to the incident flux down to the single-photon level
and show how to manipulate photon number statistics
through simple two-path interference. We clarify that
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Fig. 4 |Phase-dependent two-photon interference. a, Cross-correlation traces measured with the setup shown
in Fig. 1b for three different excitation intensities: n̄ = 0.0062 (left), 0.25 (middle) and 0.62 (right panel). b,
Measured (solid symbols) and theoretical (solid lines) coincidence probabilities at ∆t = ±τ delays, normalised to the

coincidence baseline (dashed line). We use C(±τ) = 1
2 (C(+τ) + C(−τ)). c, Normalised experimental (solid symbols)

and theoretical (solid lines) coincidence probabilities at ∆t = 0. Experimental data in panels b and c are extracted
from data in panel a. The theoretical results are fitted using maximum likelihood estimation based on equations
(5A)∼(5C). Fitted parameters {p0, p1, p2;M ′} corresponding to different excitation fluxes n̄ = 0.0062, 0.25, 0.62 are
{0.98, 0.023, 8.0× 10−6; 0.96}, {0.69, 0.30, 2.2× 10−3; 0.94} and {0.49, 0.50, 8.0× 10−3; 0.92}, respectively. A fixed
value of M = 0.89, extracted from the plateaued |g(1)| = 0.946 shown in Fig. 2b through M = |g(1)|2, is used for
photon indistinguishability.

coherent scattering can be treated as a process of absorp-
tion and re-emission of single photons and does not need
to involve higher-order scattering processes to explain ex-
periments. Our work adds clarity to the knowledge pool

of RF-based quantum light sources and we believe it will
help foster new applications. One opportunity is to ex-
ploit the RF’s coherence for quantum secure communi-
cation35,36.
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I. CHANNEL LOSS

In any resonance fluorescence (RF) setup, there is in-
evitably channel loss from the source to the final detec-
tion. Here we prove that the channel loss does not affect
the analysis of the first or second-order correlation func-
tions, irrespective whether the light field is described by
a pure or a mixed state.

Consider a quantum channel with transmission effi-
ciency η, the corresponding light field operator transfor-
mation relation is

xt →
√
ηyt +

√
1− ηzt, (S.1)

where xt is annihilation operator of the input light field,
yt and zt are the annihilation operator of transmission
and reflection part in quantum channel, respectively.
Tracing over mode zt leads to:

⟨x†t′xt⟩ → η⟨y†t′yt⟩,
⟨x†txt⟩ → η⟨y†t yt⟩,

⟨x†tx†t′xt′xt⟩ → η2⟨y†t y†t′yt′yt⟩.
(S.2)

Then, we can calculate the first-order correlation function

g(1)(τ) =
⟨x†t+τxt⟩
⟨x†txt⟩

=
⟨y†t+τyt⟩
⟨y†t yt⟩

,
(S.3)

and the second-order correlation function

g(2)(τ) =
⟨x†tx†t+τxt+τxt⟩

⟨x†txt⟩2
=

⟨y†t y†t+τyt+τyt⟩
⟨y†t yt⟩2

. (S.4)

∗ wubang@baqis.ac.cn
† hlyin@ruc.edu.cn
‡ yuanzl@baqis.ac.cn

Equations (S.3, S.4) mean that channel loss does not af-
fect the analysis of the first- or second-order correlation
functions. Therefore, we will ignore all channel losses in
our subsequent derivation of the RF’s coherence.

II. THE FIRST-ORDER CORRELATION
FUNCTION g(1)(τ) AND OPTICAL FREQUENCY
SPECTRUM OF RESONANCE FLUORESCENCE

The first-order correlation function g(1)(τ) charac-
terises the coherence of an optical field1. It measures
the normalised interference outcome of an optical field
with its delayed copy by time τ ,

g(1)(τ) =
⟨Ê(−)

t+τ Ê
(+)
t ⟩

⟨Ê(−)
t Ê

(+)
t ⟩

, (S.5)

where Ê
(+)
t = E0a

′
t and Ê

(−)
t = E0a

′†
t with a′t and a′†t

being photon annihilation and creation operators and E0

the electric field per photon. A light source is said to be
incoherent if |g(1)(τ)| = 0 and coherent if |g(1)(τ)| = 1 for
τ ̸= 0. For example, a monochromatic light is perfectly
coherent as |g(1)(τ)| ≡ 1. With knowledge of its g(1)(τ),
the frequency spectrum of a light source can be calculated
using Wiener-Khinchin theorem,

I(ν) =

∫ ∞

0

g(1)(τ)ei2πντdτ, (S.6)

where ν denotes optical frequency. A coherent source has
a δ-function like spectrum. Experimentally, g(1)(τ) can
be measured through an asymmetric Mach-Zehnder in-
terferometer (AMZI) with a variable delay τ , as schemat-
ically shown in Supplementary Fig. 1a. Its absolute value
represents the interference visibility: V ≡ |g(1)(τ)|.
We now derive the first-order correlation function for

the RF of a quantum two-level emitter (TLE) driven by a
continuous-wave laser with a coherence time of TL. Here,
we start with an ideal scenario, i.e., the emitter is free
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Supplementary Fig. 1. The first-order coherence function and optical frequency spectrum. a, An experimental
schematic diagram that can be used to measure first-order correlation function g(1)(τ). b, Theoretical g(1)(τ) of RF under a

finite excitation power. The curve reveals that the double-exponential decay of |g(1)(τ)| = p1 exp(−τ/T2) + p0 exp(−τ/TL).

As a comparison, we also provide the theoretical |g(1)(τ)| = exp(−τ/TL) of the laser. c, RF spectrum obtained by performing

Fourier transform on the first-order correlation function |g(1)(τ)| shown in panel b. The laser-like component of the spectrum

corresponds to the slowly decaying portion in |g(1)(τ)|, while the broadband corresponds to the rapidly decaying portion of

|g(1)(τ)|. In the calculation, we use T2 = 137.4 ps and TL = 1.59 µs, corresponding to our experimental parameters of QD’s
lifetime of 67.2 ps and the laser’s linewidth of 100 kHz.

from any extrinsic dephasing process (T2 = 2T1), and the
RF signal is free from any laser background. As proposed
in Main Text, we write the entangled state between the
RF and the TLE under steady-state condition as

|ψ⟩t =
√
p0 |0⟩t |g⟩t +

√
p1e

i2πνt |0⟩t |e⟩t + |1⟩t |g⟩t√
2

,

(S.7)
where |0⟩t denotes vacuum state while |1⟩t represents a
single photon emitted into temporal mode t. p0 + p1 = 1
and with optical excitation we have p0 < 1.

Plugging the above light-matter state into equa-
tions (S.3) and (S.4) for T1 ≪ τ ≪ TL, we obtain the
first-order correlation function,

g(1)(τ) =
⟨ψ|t+τ ⟨ψ|t a

′†
t+τa

′
t |ψ⟩t |ψ⟩t+τ

⟨ψ|t a
′†
t a

′
t |ψ⟩t

= p0e
−i2πντ ,

(S.8)
and the second-order correlation function

g(2)(0) =
⟨ψ|t a

′†
t a

′†
t a

′
ta

′
t |ψ⟩t

⟨ψ|t a
′†
t a

′
t |ψ⟩2t

= 0, (S.9)

where a′†t and a′†t+τ act in quantum states |ψ⟩t and |ψ⟩t+τ ,
respectively. The RF has a finite coherence (p0 < 1) and
simultaneously photon anti-bunching, which is in agree-
ment with experiments.

For short delays, i.e., τ ∈ [0, T2], the first-order cor-
relation function measures the interference of each RF
photon with itself. Therefore, g(1) is governed by the
TLE’s dephasing time T2 under weak excitation, and will
become mediated by the Rabi oscillation under strong ex-
citation. Then, we have |g(1)(0)| = 1 at τ = 0, followed
by a fast decay to the plateaued value of p0. When τ be-
comes comparable to or exceeds the laser coherence time
TL, |g(1)(τ)| will start its second exponential decay. The
overall dependence on τ is illustrated in Fig. 1b.
Through Fourier transform, we can calculate the RF

frequency spectrum as shown in Supplementary Fig. 1c.
Closely resembling the experimental data (Fig. 1d, Main
Text), the spectrum contains a sharp peak that inher-
its the laser linewidth and a broadband pedestal of the
TLE’s bandwidth. The laser-like (ll) part has a spectral
weight of Ill/Itot = |g(1)(τ)| = p0 < 1.

III. ORIGIN OF THE RF’S COHERENCE AND
ITS PARTIAL LOSS

To reveal how the RF obtains or loses its coherence, we
derive the interference outcome when passing it through
an AMZI (T1 ≪ τ ≪ TL). As two-path interference oc-
curs between a late temporal mode |ψ⟩t passing through
the short arm and an early mode |ψ⟩t−τ through the long
arm, we derive from equation (S.7) the joint input state
between two temporal modes as a tensor product

|ψ⟩t−τ |ψ⟩t = |00⟩
[
p0 |gg⟩+

√
p0p1√
2

(|ge⟩+ |eg⟩) + p1
2

|ee⟩
]

+

√
p0p1√
2

|gg⟩ (|10⟩+ |01⟩) + p1
2
(|10⟩ |ge⟩+ |01⟩ |eg⟩) + p1

2
|11⟩ |gg⟩ ,

(S.10)
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where all time evolution phases are dropped for clarity.
State |01⟩ represents 0-photon at temporal mode t − τ
and 1-photon at mode t, state |ge⟩ denotes the TLE oc-
cupying the ground state at time t − τ and the excited
state at time t. All other bracket states are defined in
the same way.

The first term in equation (S.10) contains no photons.
The second term contains |10⟩ + |01⟩, which represents
a typical single-photon entanglement between two tem-
poral modes and will produce interference between |10⟩
passing through the long arm and |01⟩ the short arm.
This interference is the origin of the RF’s coherence.

To derive the AMZI output, we use port labelling as
shown in Fig. 1b, Main Text. The transformation re-
lation between input and output light field annihilation
operators of the AMZI can be given by

a′t =
1

2

{
[dt+τ + ct+τ ] + e−iφ[dt − ct]

}
,

a′t−τ =
1

2

{
[dt + ct] + e−iφ[dt−τ − ct−τ ]

}
. (S.11)

The joint output quantum state of ports c and d at time
t is the interference result of the RF state at times t− τ

and t, see equation (S.10). Note that we have proved in
Supplementary Section I that the attenuation along the
optical path does not affect the RF’s first-order coher-
ence. Therefore, for clarity of expression, we treat the
first beam splitter of the AMZI as a 3 dB attenuation
without changing the form of the quantum state2. For
simple calculation and intuitive understanding, we use
pure state analysis without considering channel loss and
the first beam splitter of the AMZI. This treatment is
equivalent to interfering the RF field with a delayed copy
of itself, thus simplifying the derivation of the AMZI’s
output state. The simplified operator transformation re-
lation is as follows (normalized)

a′t =
1√
2
e−iφ[dt − ct],

a′t−τ =
1√
2
[dt + ct].

(S.12)

With the input state described in equation (S.10), the
normalized output joint quantum state of ports c and d
at time t then becomes

|Ψout⟩t = |0c0d⟩t
(
p0 |gg⟩+

√
p0p1√
2

|ge⟩+
√
p0p1√
2

|eg⟩+ p1
2

|ee⟩
)

+ |1c0d⟩t
√
p0p1√
2

1− eiφ√
2

|gg⟩+ |1c0d⟩t
p1

2
√
2

(
|ge⟩ − eiφ |eg⟩

)
− |2c0d⟩t eiφ

p1

2
√
2
|gg⟩

+ |0c1d⟩t
√
p0p1√
2

1 + eiφ√
2

|gg⟩+ |0c1d⟩t
p1

2
√
2

(
|ge⟩+ eiφ |eg⟩

)
+ |0c2d⟩t eiφ

p1

2
√
2
|gg⟩ ,

(S.13)

when all RF photons are indistinguishable. The first line
contains no photons, while the second and third lines
represent complimentary outputs at ports c and d. Let’s
look just at port c. It contains a phase-dependent term
|1c⟩t |gg⟩, corresponding to the TLE’s transition from

(|ge⟩ + |eg⟩)/
√
2 → |gg⟩. Varying the AMZI’s phase

φ, this term produces interference fringes with an am-
plitude of p0p1

2 . The remaining terms are non-interfering
because |1c⟩ |ge⟩, |1c⟩ |eg⟩ and |2c⟩ |gg⟩ are projected onto
different matter states. The corresponding transitions
are from the same |ee⟩ state, to different final states |ge⟩,
|eg⟩ and |gg⟩ respectively. The first two transitions cor-
respond to the TLE emitting one photon into just one
of the two temporal modes, while the last one means
emitting one photon to each temporal mode and Hong-
Ou-Mandel (HOM) interference produces the two-photon
term |2c⟩. Altogether, these non-interfering terms con-

tribute
p2
1

8 × 2 +
p2
1

4 =
p2
1

2 . Therefore, we obtain an inter-

ference fringe visibility as p0p1

2 /(p0p1

2 +
p2
1

2 ) = p0, which is

identical to the earlier result of equation (S.8). To sum
up, the RF gains and loses its coherence both through
spontaneous emission.

The discussion above is based on the assumption that
single photons emitted by the TLE are perfectly indistin-
guishable. However, photons scattered out by the TLE
underwent spontaneous emission processes, and there-
fore their indistinguishability would be degraded by the
TLE’s extrinsic scattering processes that are inherent in
solid-state quantum systems. Taking into account of pho-
ton distinguishability, the first order coherence is revised
accordingly to2

∣∣∣g(1)RF (τ)
∣∣∣ =

√
Mp0, (S.14)

whereM represents the indistinguishability of single pho-
tons between different temporal modes,

M =
∣∣⟨1t|1(t−τ)→t⟩

∣∣2 , (S.15)
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Supplementary Fig. 2. Phase-dependent second-
order correlations. a g(2)(∆t) measurement setup for RF
after π-phase AMZI filtering. b, HOM interferometer with a
variable phase delay φ. c, Due to the AMZI delay τ , each
coincidence count is related to up to four emission times at
the RF source.

where (t − τ) → t means delaying mode t − τ by τ for
temporally overlapping |1t⟩ and |1t−τ ⟩.

IV. PHOTON SUPER-BUNCHING IN THE
AMZI-FILTERED RF

According to equation (S.13), all the interfering single-
photon fraction (laser-like) will exit from the port c if
we set the AMZI’s phase to φ = π. With the laser-
like spectrum rejected, the port d will then contain two
non-interfering single photon terms |1d⟩ |ge⟩ and |1d⟩ |eg⟩
as well as a two-photon term |2d⟩ |gg⟩. Measured with
an auto-correlation setup as shown in Supplementary
Fig. 2a, the port d output will exhibit super-bunching
that arises from the two-photon term. Note this super-
bunching is simply a result of two-photon interference
and does not necessitate simultaneous scattering of two
photons3 for an explanation.

In the HBT setup (Supplementary Fig. 2a), a coin-
cidence event with f detector clicked at t1 and h at t2
involves the input of up to four non-degenerate tempo-
ral modes, t1, t1 − τ , t2 and t2 − τ , see Supplementary
Fig. 2c. Below, we will analyse the second-order correla-
tion according to the level of their time degeneracy.

A. Non-degenerate

For interval ∆t = t2 − t1 that meets both |∆t ± τ | ≫
T1 and |∆t| ≫ T1, there is no degeneracy in the four
involved temporal modes. In Schrodinger picture, the
second-order correlation function at ∆t ̸= 0,±τ is given
by

g(2)φ=π(∆t)

=
⟨Ψout|t2 ⟨Ψout|t1 d

†
t2d

†
t1dt1dt2 |Ψout⟩t1 |Ψout⟩t2

⟨Ψout|t1 d
†
t1dt1 |Ψout⟩2t1

=
⟨Ψout|t2 d

†
t2dt2 |Ψout⟩t2 ⟨Ψout|t1 d

†
t1dt1 |Ψout⟩t1

⟨Ψout|t1 d
†
t1dt1 |Ψout⟩2t1

= 1,
(S.16)

where state |Ψout⟩t is given by in equation (S.13) and
|Ψout⟩t1 |Ψout⟩t2 is the tensor product state between t1
and t2.

B. Doubly degenerate: t1 = t2

At ∆t = 0, the four temporal modes become doubly
degenerate: t1 = t2 = t and t1 − τ = t2 − τ = t − τ . we
work out the second-order correlation function for the
0-delay:

g(2)φ=π(0) =
⟨Ψout| [d†t ]2d2t |Ψout⟩
⟨Ψout| d†tdt |Ψout⟩2

=
1

p21
. (S.17)

We obtain super-bunching at 0-delay and it is excita-
tion power dependent. The lower the excitation power,

the higher the g
(2)
φ=π(0) value becomes. At the limit of

n̄ → 0, g2φ=π(0) can be infinitely large in theory. We
emphasise again that this super-bunching does not re-
quire a higher-order scattering mechanism, contrary to
previously suggested3.

C. Singly-degenerate: t2 − t1 = ±τ

For time intervals t2 − t1 = ∆t = ±τ , three temporal
modes at the AMZI input contribute to the coincidence at
∆t = ±τ . For ∆t = τ , the corresponding modes are t−τ ,
t and t+τ . Input temporal mode t is split into two halves
by the AMZI entrance beam splitter. The half passing
through the short (long) arm interferes half of temporal
mode t− τ (t+ τ) passing through the long (short) arm.
At the AMZI output d, we just need to consider two
temporal modes t and t + τ for calculating its g(2)(+τ).
We use the transformation relation (normalized) between
output and input light field annihilation operators of the
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AMZI with φ = π

dt =
1√
2

[
a′t−τ − a′t

]
,

dt+τ =
1√
2

[
a′t − a′t+τ

]
, (S.18)

where we ignore the loss by the first beam splitter. Us-
ing the Heisenberg picture, the second order correlation
function can be derived using

g(2)φ=π(τ) =
⟨ψin| d†t+τd

†
tdtdt+τ |ψin⟩

⟨ψin| d†tdt |ψin⟩2
. (S.19)

where operators evolve according to equation (S.18) and
we have |ψin⟩ = |ψ⟩t−τ |ψ⟩t |ψ⟩t+τ . With time-evolving
phases dropped for clarity, we have

dt |ψin⟩ =
1√
2

[
a′t−τ − a′t

]
|ψ⟩t−τ |ψ⟩t |ψ⟩t+τ =

p1

2
√
2
[|00⟩ (|ge⟩+ |eg⟩) + (|01⟩+ |10⟩) |gg⟩] |ψ⟩t+τ . (S.20)

and

dtdt+τ |ψin⟩ =
1

2

[
a′t−τ − a′t

] [
a′t − a′t+τ

]
|ψ⟩t−τ |ψ⟩t |ψ⟩t+τ

=
p1
4

{√
p0 |000⟩ |ggg⟩+

√
p1√
2

[
|000⟩ (|gge⟩ − |geg⟩+ |gge⟩) + (|001⟩ − |010⟩+ |100⟩) |ggg⟩

]}
.

(S.21)

We then obtain the second order correlation function at
∆t = τ :

g(2)φ=π(τ) =
p21(1 + 2p1)/16

(p21/2)
2

=
1 + 2p1
4p21

. (S.22)

Similarly, we derive the same conclusion for ∆t = −τ ,
i.e., g

(2)
φ=π(τ) = g

(2)
φ=π(−τ). When p1 ≪ 1, we can have

1 + 2p1 ≈ 1 and the second order interference coherence
can be written as

g(2)φ=π(±τ) ≈
1

4p21
=

1

4
g(2)φ=π(0). (S.23)

V. PHASE-DEPENDENT HONG-OU-MANDEL
INTERFERENCE

Hong-Ou-Mandel interferometry is an indispensable
tool for evaluating indistinguishability among photons
emitted by a pulsed single photon source4. As shown
in Supplementary Fig. 2b, a typical HOM interferome-
ter consists of an AMZI with a path difference of sev-
eral nanoseconds and two single photon detectors. The
AMZI’s differential delay (τ) can bring two single pho-
tons separated by τ to temporally overlap for interfer-
ence. If perfectly indistinguishable, two photons will coa-
lesce and therefore the possibility for registering a photon
simultaneously at each detector port is 0.

Continuous-wave HOM interference differs from the
aforementioned results for pulsed single photons. The
reason lies in the fact that when the detector’s time
resolution is arbitrarily high, unity indistinguishability
would be obtained, i.e., M = 1, even if the two pho-

tons’ spectral and temporal envelopes are not identical.
More interestingly, in our experiments, due to the RF’s
long first-order coherence, coincidences of ∆t = ±τ are
significantly different from those sources having short co-
herence times 5,6. As shown in Fig. 4 of the Main Text,
we observe strong dependencies of the coincidence on the
AMZI phase and excitation strength. Below, we give the-
oretical derivations of the coincidence C(∆t) for phase-
and excitation power dependent HOM interference.

A. General description

As shown in Supplementary Fig. 2b, a quantum light
input, now described by a density matrix ρt for conve-
nience, enters the AMZI through port a′ and is split
equally into two paths a and b. With path a accumu-
lating a phase of φ and path b a delay of τ , the split
signals recombine at the exit 50/50 beam splitter to in-
terfere. Photons exiting from ports c and d are detected
by two single photon detectors. The transformation re-
lation between output and input light field annihilation
operators of the AMZI can be given by

ct =
1

2

[
a′t−τ − eiφa′t

]
,

dt =
1

2

[
a′t−τ + eiφa′t

]
,

(S.24)

where we have included the loss by the first beam splitter.

If we drop the phase ei2πνt in equation (S.7) that does
not affect the result of the calculation, the density matrix
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for describing the RF state can be written as

2p0 + p1
2

|0⟩ ⟨0|+ p1
2

|1⟩ ⟨1|+
√
p0p1
2

(|1⟩ ⟨0|+ |0⟩ ⟨1|) ,
(S.25)

after performing partial trace over system TLE. The
resulting density matrix is equivalent to a pure state
|ϕ⟩ = √

p0 |0⟩+√
p1 |1⟩ after 3 dB channel loss and per-

forming partial trace over the lost part. As we have
proven in Section I that the channel loss does not affect
the first and second order interference coherence, we can
conveniently use the pure state |ϕ⟩ =

√
p0 |0⟩ + √

p1 |1⟩
to calculate the coincidence probabilities in the HOM in-
terference without loss of generality.

In the following derivation, we will use the pure state

|ϕt⟩ =
√
p0 |0t⟩+

√
p1 |1t⟩+

√
p2 |2t⟩ (S.26)

with p0+p1+p2 = 1 and p2 ≪ p21/2, instead of a mixture
state density matrix as the incident light source for cal-
culation. The introduction of the two-photon term |2t⟩ is
to reflect the experimental setup imperfection that mixes
a small amount of laser photons into the RF. The two-
photon term is significant only for the calculation of the
HOM dip.

B. Coincidence probability

A coincidence event with c detector clicked at t1 and
d at t2 involves the input of up to four non-degenerate
times, t1, t1−τ , t2 and t2−τ , see Supplementary Fig. 2c.
Below, we will analyse their coincidence probabilities ac-
cording to the level of their time degeneracy.

1. Non-degenerate

For intervals ∆t = t2−t1that meets both |∆t±τ | ≫ T1
and |∆t| ≫ T1, there is no degeneracy in the four in-
volved times and each coincidence therefore is a result of
two independent first-order interference events. For the
incident quantum state, since the contribution of multi-
photon components is small and has little impact on
the final count, we consider only the lowest-order pho-
ton state |1⟩ to capture the main characteristics of the
baseline coincidence probability. The count probabilities

of detectors in ports c and d can be written as

Pc = ⟨ϕt1 | ⟨ϕt1−τ | c†t1ct1 |ϕt1−τ ⟩ |ϕt1⟩
= |ct1 |ϕt1−τ ⟩ |ϕt1⟩|2

=

∣∣∣∣
1

2

[√
p0p1

(
1− eiφ

)
|00⟩+ p1

(
|01⟩ − eiφ |10⟩

)]∣∣∣∣
2

=
p1
2
(1− p0 cosφ),

(S.27)
and

Pd = ⟨ϕt2 | ⟨ϕt2−τ | d†t2dt2 |ϕt2−τ ⟩ |ϕt2⟩
=
p1
2
(1 + p0 cosφ),

(S.28)

where a′t1 and a′t1−τ act in quantum states |ϕt1⟩ and
|ϕt1−τ ⟩, respectively and state |ϕt⟩ =

√
p0 |0⟩ + √

p1 |1⟩
after ignoring the two-photon component. Taking into
account of imperfect photon indistinguishability defined
in equation (S.15), we have

Pc =
p1
2
(1−

√
Mp0 cosφ),

Pd =
p1
2
(1 +

√
Mp0 cosφ). (S.29)

Consequently, the coincidence probability is simply the
product of the count probabilities of individual detectors,

C0 = PcPd =
p21
4

(
1−Mp20 cos

2 φ
)
. (S.30)

C0 the coincidence baseline depends on the AMZI’s phase.
At φ = π/2, it reaches its maximum.
Next we give a different deviation method to elaborate

the correctness of equation (S.30). It will show the special
properties of a continuous-wave RF, i.e., approximating
the RF’s quantum state as a coherent superposition of
|0⟩ and |1⟩ is an acceptable treatment as long as the ex-
amined time interval is much larger than T1. Rigorously,
its coincidence probability can be derived using2,7,

C(∆t) = ⟨ψin| c†t1ct1d
†
t2dt2 |ψin⟩

= ⟨ψin| d†t2c
†
t1ct1dt2 |ψin⟩ ,

(S.31)

where |ψin⟩ is the input quantum state and

ct1dt2 =
1

4

[
a′t1−τ − eiφa′t1

] [
a′t2−τ + eiφa′t2

]
. (S.32)

Let t1 = t, then t2 = t+∆t, which leads to

ct1dt2 = ctdt+∆t =
1

4

[
a′t−τa

′
t+∆t−τ + a′t−τa

′
t+∆te

iφ − a′ta
′
t+∆t−τe

iφ − a′ta
′
t+∆te

i2φ
]
. (S.33)

Since there are four temporal modes involved in the above operator expression and the time interval between each
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other is much larger than T1, the input quantum state can be expressed as a tensor product of the four temporal
modes, i.e., |ψin⟩ = |ϕt−τ ⟩ |ϕt⟩ |ϕt+∆t−τ ⟩ |ϕt+∆t⟩. Therefore,

ctdt+∆t |ψin⟩

=

[
p0p1

(
−ei2φ + eiφ − eiφ + 1

)
|0000⟩+

√
p0p31

(
1 + eiφ

)
|0100⟩

+
√
p0p31

(
−eiφ − ei2φ

)
|1000⟩+

√
p0p31

(
1− eiφ

)
|0001⟩

+
√
p0p31

(
eiφ − ei2φ

)
|0010⟩+ p21|0101⟩+ p21e

iφ|0110⟩ − p21e
iφ|1001⟩+ p21e

i2φ|1010⟩
]
/4,

(S.34)

thereby

C(∆t) = ⟨ψin| d†t2c
†
t1ct1dt2 |ψin⟩ =

1

4
p20p

2
1 sin

2 φ+
1

2
p0p

3
1 +

1

4
p41. (S.35)

Considering the influence of photon indistinguishability, C(∆t) should be corrected as

C(∆t) =1

4
p20p

2
1

(
1−M cos2 φ

)
+

1

2
p0p

3
1 +

1

4
p41

=
1

4
p21

[
(p0 + p1)

2 −Mp20 cos
2 φ

]

=
1

4
p21

[
1−Mp20 cos

2 φ
]
= C0.

(S.36)

We obtain the same result as equation (S.30).

2. Singly-degenerate: t2 − t1 = ±τ

For intervals ∆t = ±τ , two out of the four time slots become degenerate. Let’s first consider ∆t = +τ . In this case,
we write the operator corresponding based on equation (S.33),

ctdt+τ =
1

4

[
a′t−τa

′
t + eiφa′t−τa

′
t+τ − eiφa′ta

′
t − ei2φa′ta

′
t+τ

]
. (S.37)

Since the contribution of multi-photon components has negligible contribution to the coincidence at this delay, we use
quantum state |ϕt⟩ = √

p0 |0⟩+√
p1 |1⟩ to capture the main characteristics of the coincidence probability.

According to the expression of ctdt+τ , the output state of the AMZI at time t is the interference result between the
input state at time t− τ taking the long path and the input state at time t taking the short path. Accordingly, the
output state of the AMZI at time t + τ is the interference result between the input state at time t taking the long
path and the input state at time t+ τ taking the short path. The input state for deriving C(+τ), i.e., the coincidence
probability at +τ interval between detectors c and d, should therefore be the tensor product of quantum states of
three times t− τ , t and t+ τ , i.e., |ψin⟩ = |ϕt−τ ⟩ |ϕt⟩ |ϕt+τ ⟩

ctdt+τ |ϕt−τ ⟩ |ϕt⟩ |ϕt+τ ⟩ =
1

4

[
p1
√
p0

(
1 + eiφ − ei2φ

)
|000⟩+

√
p31

(
|001⟩+ eiφ |010⟩ − ei2φ |100⟩

)]
, (S.38)

where a′t+τ , a
′
t and a′t−τ act on states |ϕt−τ ⟩, |ϕt⟩, and

|ϕt+τ ⟩, respectively. We then obtain the coincidence
probability

C(τ) = 1

16
p0p

2
1(3− 2 cos 2φ) +

3

16
p31. (S.39)

For ∆t = −τ , one can follow the same derivation pro-
cess and obtain C(−τ) = C(+τ). Taking into account of

imperfect photon indistinguishability, C(±τ) is corrected
to

C(±τ) = 1

16
p0p

2
1(3− 2M cos 2φ) +

3

16
p31. (S.40)
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3. Doubly degenerate: t1 = t2

At ∆t = 0, the four time slots (Supplementary Fig. 2c)
become doubly degenerate: t1 = t2 = t and t1 − τ =
t2 − τ = t − τ . Coincidence at this interval has two
contributions: (1) multi-photon components in the input
and (2) imperfect two-photon interference. As these two
contributions are on the same magnitude, it is necessary
to include the two-photon term in the input state in order
to derive the correct coincidence probability. We use the
pure state |ϕt⟩ = √

p0 |0⟩+√
p1 |1⟩+√

p2 |2⟩ as the input.
Following equation (S.33), the operator for ∆t = 0 and

t1 = t2 = t can be written as

ctdt =
1

4

[
a′t−τa

′
t−τ − ei2φa′ta

′
t + eiφa′t−τa

′
t − eiφa′ta

′
t−τ

]
,

(S.41)

where the first two terms produce interference between
an early two-photon state taking the long arm and a late
two-photon state passing the short arm, while the under-
lined terms cause two-photon HOM interference between
an early and a late single photon. If photons are not
identical and the detector resolution is limited, the out-
put by the underlined terms will not cancel completely.
According the above equation, we only need to consider
the states of two input temporal modes t− τ and t, i.e.,
|ψin⟩ = |ϕt−τ ⟩ |ϕt⟩ leading to

ctdt |ϕt−τ ⟩ |ϕt⟩ =
1

4

{[√
2p0p2(1− ei2φ) + p1e

iφ − p1e
iφ
]
|00⟩+

√
2p1p2

(
1 + eiφ − eiφ

)
|01⟩

+
√

2p1p2
(
eiφ − eiφ − ei2φ

)
|10⟩+ 2p2

(
eiφ − eiφ

)
|11⟩

+
√
2p2

(
|02⟩ − ei2φ |20⟩

)}
,

(S.42)

where a′t−τ and a′t act in quantum states |ϕt−τ ⟩ and |ϕt⟩ respectively. If photons are all identical, all underlined terms
cancel out, leaning to

C(0) = 1

4
p0p2(1− cos 2φ) +

1

4
p1p2 +

1

4
p22 =

p2
4

(1− p0 cos 2φ) . (S.43)

When considering finite photon indistinguishability de-
fined in equation (S.15), all terms that depend on φ must
be corrected accordingly and we then obtain

C(0) = p2
4

(1− p0M cos 2φ) +
p21 + 4p1p2 + 4p22

8
(1−M ′) ,

(S.44)
where M ′ has similar definition as M but further takes
into account for the detector time resolution. Effec-
tively, we let |eiφ − eiφ|2 = 2(1−M ′) in obtaining equa-
tion (S.44).

VI. EXPERIMENTAL SETUP

The main experimental apparatus is shown in Supple-
mentary Fig. 3a. Here, a polarising beam splitter (PBS)
and a ∼45◦ quarter-wave plate are used together as an
optical router to direct the RF from the quantum dot
(QD) to the measurement apparatuses shown in pan-
els b, c and d. A continuous-wave excitation laser (M
SQUARED SolsTis PSX XF 5000, with a linewidth of
∼100 kHz) is used as the excitation source. Unlike typ-
ical RF setups5,6, the reflected laser and the RF in our
experiment have the same polarisation, thanks to our

microcavity design8 that minimises the laser reflection
to have negligible impacts on the measurements.

Supplementary Fig. 3b shows a standard Hanbry-
Brown Twiss (HBT) setup for measuring the auto-
correlation function g(2)(∆t) that evaluates the single-
photon purity of the input signal. It consists of a 50:50
fibre beam splitter and two single photon detectors. An
ideal single-photon state corresponds to g(2)(0) = 0.

Supplementary Fig. 3c illustrates a setup for charac-
terising the first-order correlation function g(1)(τ). In
this setup, both beam splitters have a nominal 50:50
reflectance-to-transmittance ratio, and the AMZI’s dif-
ferential delay is 4.92 ns. The count rates at the detec-
tors oscillate with a free-drifting phase φ. By measur-
ing the maximum and minimum values of this oscilla-
tion, we can calculate the interference fringe visibility:
V ≡ |g(1)(τ)| = Cmax−Cmin

Cmax+Cmin
. Usually, one detector would

suffice. However, to avoid the QD blinking affecting the
measurement result, we use a two-channel summation
method to normalise each detector’s count rate to the
combined count rate for the visibility calculation. In the
super-bunching (Fig. 3, Main Text) and phase-dependent
two-photon interference (Fig. 4, Main Text) experiments,
the phase of the AMZI is stabilised to a set value for every
measurement.
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Supplementary Fig. 3. Experimental setup. a, Coherent single photon source generation device. b, Fibre beam splitter
for g(2)(∆t) measurement. c, Mach-Zehnder interferometer for g(1)(τ) measurement. d, Setup for the spectrum measurement
of RF or excitation laser.

Supplementary Fig. 3d is the setup for measuring the
RF frequency spectrum. The RF signal is split into two
paths. One path enters the scanning Febri-Pérot Inter-
ferometer (FPI) with a single photon detector (SPD1)
recording the signal count rate as a function of the FPI
transmission frequency, which is controlled by a piezo ac-
tuator. The other path enters a second single photon de-
tector (SPD2) for normalising SPD1’s detection results.
The scanning FPI has a free spectral range of 20 GHz
and a resolution of 20 MHz.

Two superconducting nanowire single photon detectors
(SNSPDs) are used for single photon detection. These
SNSPDs are characterised to have a single-photon detec-
tion efficiency of 78 % and a time jitter of 48 ps at the

wavelength of 910 nm. A time-tagger is used for correla-
tion and time-resolved measurements.
Our sample consists of a λ-GaAs layer contain sin-

gle layer of low-density In(Ga)As QDs sandwiched be-
tween two distributed Bragg reflectors formed by 18 (top)
and 30.5 (bottom) GaAs/Al0.9Ga0.1As layer pairs. Us-
ing scanning reflectance spectroscopy, we determine the
resonance of the HE11 cavity mode to have a central
wavelength of 911.54 nm and a linewidth of 0.0975 nm
(κ = 35 GHz), corresponding to a quality factor (Q) of
approximately 9350. Using a picosecond Ti:S laser, the
QD exciton lifetime is characterised to be 67.2 ps, see
Supplementary Fig. 4, which corresponds to a radiative
linewidth of Γ∥/2π = 2.37 GHz.
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Supplementary Fig. 4. Exciton lifetime of the QD.
The black dots represent the time evolution of the measured
intensity reflected by the device using pulsed excitation. The
primary rapid decay is attributed to the instrument response
caused by the residual laser pulse. The green dots are ex-
tracted to fit the exciton lifetime and the red dashed line is
the fitted curve, which gives the exciton lifetime of 67.2 ps.


