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We investigate the energy spectrum of a single and two electron quantum dot (QD) embedded in
two dimensional electron gas at the interface between SrTiO3 and LaAlO3, in the presence of the
external magnetic field. For this purpose the three band model of 3d-electrons defined on the square
lattice of Ti ions was utilized. We demonstrate that, for the weak parabolic confinement potential,
the low energy spectrum is sufficiently well described by the effective Hamiltonian reduced to the one
dxy orbital with the spin-orbit interaction originating from the coupling to the dxz, dyz bands. This
is not the case for stronger confinement where contribution of the states related to the dxz/yz orbital
is relevant. Based on the time depended calculations we discuss in details the manipulation of the
electron spin in QD by external AC voltages, in the context of the electric dipole spin resonance.
The allowed and forbidden transitions are discussed in details with respect to the parity selection
rule. Our calculations show that for a single electron QD the spin-flip in the ground-state has a
character of a Rabi resonance while for two electrons the singlet-triplet transition is forbidden by
the parity symmetry. For the two electrons QD, we demonstrate that the spin-flip transition can
still be accomplished via a second-order, two-photon process that has a two-state Rabi character
for low AC field amplitude. The violation of the parity symmetry on the spin-flip transitions is also
analyzed.

I. INTRODUCTION

The spin dynamics of electrons confined in quantum
dots (QDs) has attracted an increasing interest in re-
cent years as a fundamental aspect for constructing spin
qubits for future quantum information processing1,2. The
key element in utilizing spin qubits in quantum technol-
ogy is an effective control of their states through the
coherent spin manipulation. In the case of a single
quantum dot, this can be realized through the electron
spin resonance-Rabi oscillations induced by an external
microwave radiation, which drives resonant transitions
between the Zeeman-split energy levels in a magnetic
field3–5. Alternatively, two-electron spin states in QDs
have been demonstrated to be effectively tunable by ex-
change coupling6.

A significant breakthrough in this field has been
achieved in electrostatically defined quantum dots7,8,
where the microwave field has been successfully replaced
by AC gate voltages9,10. Periodic changes in the poten-
tial induced by the AC field affect the spin of the confined
electron through the momentum-dependent spin-orbit
(SO) interaction11,12. This technique, called electric-
dipole spin resonance (EDSR)13–16, has been reported
in two-electron double-quantum-dot systems using Pauli
blockade of the current flow, which occurs when the dots
are occupied by electrons with parallel spins9,10.

The number of operations which can be performed on
a spin-qubit is a result of the switching time (mainly
determined by the SO coupling strength) and the spin
decoherence. The latter is strongly influenced by the host
material, which sets the strength of hyperfine interaction

with nuclear spins as well as the coupling of the electron
spin with the lattice vibrations and charge fluctuations
via the SO interaction. Thus, the SO coupling, on the
one hand, is responsible for coherent spin manipulations,
but on the other hand it is also the source of detrimental
spin decoherence.

The two-dimensional electron gas (2DEG) formed at
the interface between SrTiO3 (STO) and other insulat-
ing transition metal oxides, such as LaAlO3 (LAO)17 is
considered a promising material platform for the QD-
based spin qubits fabrication. The increasing interest
in this platform is mainly due to the fact that the con-
sidered 2DEG interface exhibits a unique combination
of characteristics, including high mobility18, large spin-
orbit coupling19,20, gate-tunable superconductivity21–24,
magnetic ordering25, and ferroelectricity26. Its suscepti-
bility to electrostatic gating, comparable to semiconduc-
tor materials, has brought significant advances in oxide-
2DEG nanotechnology27–30. A recent study of single QDs
based on LAO/STO reveals the Coulomb blockade di-
amonds characteristic for well-defined electrostatic con-
finement27. The electron spin in the STO-based QDs can
be controlled by a large SO coupling, switched on and
off by moderate gate voltages, which is hardly achiev-
able with semiconducting platforms19. Note, moreover,
that the STO-based 2DEG is expected to have another
significant advantage over semiconductors. It is charac-
terized by a smaller impact of direct and indirect sources
of decoherence, as the hyperfine interaction with the nu-
clear spin bath should be suppressed by 3d-character of
electrons - their wave functions have node at the nuclei
positions31. All these properties, combined with the ca-
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pability to interconvert charge and spin currents through
Edelstein and spin Hall effects32–35, exhibiting some of
the highest efficiencies among solid-state materials, make
LAO/STO-based quantum dots a promising platform for
a development of fast spin qubits with inherent scalabil-
ity of 2D systems. However, so far, the electronic struc-
ture and spin dynamics in the STO-based QDs have not
been systematically explored. Note, that the structural
lateral confinement of the 2DEG at the SrTiO3/LaAlO3

interface using nanolitography has also been applied36 for
formation of QDs.

In this paper, based on the three band model we in-
vestigate an electronic spectrum of a single and two elec-
trons STO-based QD. We derive the simplified one band
Hamiltonian for the dxy orbital with inclusion of the SO
interaction and demonstrate that it can sufficiently well
describe the low energy range of the spectrum for the
low parabolic confinement. Based on the time depen-
dent scheme we simulate the electric dipole spin reso-
nance with the electron spin in QD controlled by the AC
electric field. The calculated transitions between states
are discussed with respect to the direct (single photon)
and second order (two-photon) processes determined by
the parity symmetry of states. The organization of the
manuscript is the following: in Sec. II we present a theo-
retical model in the k-vector and real space as well as the
simplified Hamiltonian for the dxy band, Sec. II contains
the analysis of electronic spectrum of a single and two
electron QD as well as results of time dependent sim-
ulations (EDSR), finally summary and conclusions are
included in Sec. IV.

II. THEORETICAL MODEL

A. Single-electron Hamiltonian for (001)-oriented
LAO/STO interface.

At the (001)-oriented LAO/STO, the conduction band
is formed by the Ti t2g orbitals (ddxy, dyz, dxz) coupled
through 2p states of oxygen on the square lattice. At the
interface, where a narrow quantum well is created25,37,38

as a result of the polarization discontinuity, the degen-
eracy of the t2g bands is lifted, resulting in 2D discrete
states with the band dxy being lower in energy with re-
spect to the bands dyz, dxz. In wave vector space, 2DEG
at the (001) LAO/STO interface can be described by the
Hamiltonian39

Ĥk =
∑
k

Ĉ†
k(Ĥ0 + ĤRSO + ĤSO + ĤB)Ĉk, (1)

where Ĉk = (ĉ↑k,xy, ĉ
↓
k,xy, ĉ

↑
k,xz, ĉ

↓
k,xz, ĉ

↑
k,yz, ĉ

↓
k,yz)

T corre-
sponds to the vector of anihilation operators for electrons
with spin σ =↑, ↓ on the orbital dxy, dxz, dyz, in the state
k. In Eq. (1), Ĥ0 describes the kinetic energy and is

given by

Ĥ0 =

 ϵxyk 0 0
0 ϵxzk ϵhk
0 ϵhk ϵyzk

⊗ σ̂0 , (2)

with dispersion relations

ϵxyk = 4tl − 2tl cos kx − 2tl cos ky −∆E ,

ϵxzk = 2tl + 2th − 2tl cos kx − 2th cos ky,

ϵyzk = 2tl + 2th − 2th cos kx − 2tl cos ky,

(3)

and the hybridization term defined by

ϵhk = 2td sin kx sin ky. (4)

In Eq. (3) and (4) tl, th are the hopping parameters
(energies) for the light and heavy mass and td is the en-
ergy which determines the coupling between the dxz/dyz
band. Due to the lack of the inversion symmetry oc-
curring in a natural way at interfaces, LAO/STO-based
2DEG exhibits the SO coupling, in this case, consisting
of two components: the atomic and Rashba part. The
former appears as an effect of the atomic L ·S interaction
and can be expressed in the form40

ĤSO =
∆SO

3

 0 iσx −iσy
−iσx 0 iσz
iσy −iσz 0

 , (5)

where ∆SO determines the strength of the atomic spin-
orbit energy and σx, σy, σz are the Pauli matrices.
The Rashba-like spin-orbit term ĤRSO, occurring as a
result of the mirror symmetry breaking, is induced by
the out-of-plane offset of atom positions at the interface
and is given by

ĤRSO = ∆RSO

 0 i sin ky i sin kx
−i sin ky 0 0
−i sin kx 0 0

⊗σ̂0 , (6)

where ∆RSO determines the energy of the Rashba SO
coupling.

Finally, the coupling of the external magnetic field to
the spin and orbital momentum of electrons is taken into
account by the Hamiltonian

ĤB = µB(L⊗ σ0 + g13×3 ⊗ S) ·B/ℏ, (7)

where µB is the Bohr magneton, g is the Landé factor,
S = ℏσσσ/2 with σσσ = (σx, σy, σz) and L = (Lx, Ly, Lz)
with

Lx =

 0 i 0
−i 0 0
0 0 0

 , Ly =

 0 0 −i
0 0 0
i 0 0

 , Lz =

 0 0 0
0 0 i
0 −i 0

 .

(8)

In our calculations, we assume the tight-binding pa-
rameters tl = 875 meV, th = 40 meV, td = 40 meV,
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∆E = 47 meV taken from Ref. 21, the Landé fac-
tor41 g = 3 and the SO coupling parameters ∆SO =
10 meV, ∆RSO = 20 meV corresponding to that mea-
sured experimentally19,20. The dispersion relation E(k)
for the chosen parameters is presented in Fig. 1.
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FIG. 1. Dispersion relation E(kx, ky = 0) for the (001)-
oriented LAO/STO heterostructures.

For confined nanostructures, such as QDs it is neces-
sary to express Hamiltonian (1) in the real space. On
the square lattice, with the position indexed by (µ, ν),
the single-electron Hamiltonian (1) takes the form

Ĥ =
∑
µ,ν

Ĉ†
µ,ν(Ĥ

0 + ĤSO + ĤB)Ĉµ,ν + (9)

∑
µ,ν

Ĉ†
µ+1,νĤ

xĈµ,ν +
∑
µ,ν

Ĉ†
µ,ν+1Ĥ

yĈµ,ν +

+
∑
µ,ν

Ĉ†
µ+1,ν−1ĤmixĈµ,ν −

∑
µ,ν

Ĉ†
µ+1,ν+1ĤmixĈµ,ν + h.c.,

where Ĉµ,ν = (ĉ↑µ,ν,xy, ĉ
↓
µ,ν,xy, ĉ

↑
µ,ν,xz, ĉ

↓
µ,ν,xz, ĉ

↑
µ,ν,yz, ĉ

↓
µ,ν,yz)

T

corresponds to the vector of anihilation operators of
electron with spin σ =↑, ↓ on the orbital dxy, dxz, dyz and
the position (µ, ν), Ĥ0 defines the on-site energy related
to the kinetic term and the confinement potential V (r)

Ĥ0 =

 4tl −∆E 0 0
0 2tl + 2th 0
0 0 2tl + 2th

⊗ σ̂0

+

 Vµ,ν 0 0
0 Vµ,ν 0
0 0 Vµ,ν

⊗ σ̂0, (10)

while

Ĥx =

 −tl 0 0
0 −tl 0
0 0 −th

⊗σ̂0+
∆RSO

2

 0 0 −1
0 0 0
1 0 0

⊗σ̂0 ,

(11)

Ĥy =

 −tl 0 0
0 −th 0
0 0 −tl

⊗σ̂0+
∆RSO

2

 0 −1 0
1 0 0
0 0 0

⊗σ̂0,

(12)

Ĥmix =
td
2

 0 0 0
0 0 1
0 1 0

⊗ σ̂0, (13)

determines the energy of hopping to the nearest neigh-
bours related to the kinetic energy and Rashba SO cou-
pling (11, 12) as well as the hybridization (13). In Eq. (9),
ĤSO and ĤB have the same form as in the wave vector
space formulation and are given by Eqs. (5) and (7).

B. Simplified Hamiltonian for the dxy band

The position the dxy band on the energy scale lowered
by ∆E relative to the dyz/dxz bands, together with the
low effective mass, may lead to the dominant role of dxy
states when the confinement of QD is weak. In such a
case, one can anticipate that the influence of the higher-
lying bands, dyz and dxz, is negligible. It is essential
to note that reducing the Hamiltonian (1) solely to the
dxy part is not sufficient, as it overlooks the SO coupling
arising from the interaction with the dxz/yz bands via
the terms HRSO and HSO. For this reason, more sophis-
ticated methods are required to reduce the full Hamil-
tonian to the effective one describing the dxy band. To
derive it, let us express Hamiltonian (1) in the following
form

Ĥ =

(
Ĥxy Ĥc

Ĥ†
c Ĥxz/yz

)
−∆E16×6, (14)

where

Ĥxy =

(
ϵxyk +∆E 0

0 ϵxyk +∆E

)
+

1

2
gµBB · σσσ, (15)

Ĥxz/yz =

 ϵxzk +∆E 0 0 0
0 ϵxzk +∆E 0 0
0 0 ϵyzk +∆E 0
0 0 0 ϵyzk +∆E

 ,

(16)
while the coupling between the states dxy and dxz/dyz is
given by

Ĥc =
∆SO

3

(
0 i 0 −1
i 0 1 0

)
(17)

+ i∆RSO

(
sin ky 0 sin kx 0
0 sin ky 0 sin kx

)
.

Note that in Ĥxz/yz we neglect the coupling of the bands
dxz/dyz to the magnetic field and their hybridization as-
suming that the kinetic and SO energy constitute the
major contribution to the energy.

Using the standard folding-down transformation, we
can reduce the 6 × 6 model (14) into the effective 2 × 2
Hamiltonian for the dxy electrons

Ĥeff
xy = Ĥxy + Ĥc(Ĥxz/yz − E)−1Ĥ†

c . (18)
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If we assume that ∆E is much larger than the kinetic
energy in the dxz/dyz band, we can expand (Ĥxz/yz −
E)−1 from Eq. (18) in the Taylor series

(Ĥxz/yz − E)−1 =
1

ϵ
xz/yz
k +∆E − E

14×4 ≈ 1

∆E
14×4.

(19)
Then, we the effective Hamiltonian is reduced to the fol-
lowing form

Ĥeff
xy =

(
ϵxzk +

2∆SOγ

3(1− γ)

)
12×2 +

1

2
gµBB · σσσ

+ α(σy sin kx − σx sin ky) (20)

where γ = ∆SO/3∆E and α = ∆SO∆RSO/3∆E . The
last term in Eq. (20) is related to the SO coupling of
the Rashba type12,42 similar to that observed in semi-
conductor 2DEGs. It clearly demonstrates that the SO
coupling for the dxy band results from the relative inter-
play between the atomic and Rashba coupling through
the bands dxz/dyz.

The Hamiltonian (20) in the real space takes the form

Ĥeff
xy =

∑
µ,ν

Ĉ†
µ,ν

[(
4tl −

2∆SOγ

3(1− γ)

)
σ0+

+
1

2
gµBB · σσσ + Vµ,ν

]
Ĉµ,ν

+
∑
µ,ν

Ĉ†
µ+1,ν (−tlσ0 − iασy) Ĉµ,ν

+
∑
µ,ν

Ĉ†
µ,ν+1 (−tlσ0 + iασx) Ĉµ,ν + h.c (21)

which, as we will show later, can be successfully used
to describe the electronic structures of QDs with a weak
confinement. In the above expression, Vµ,ν corresponds
to the confining potential of QD.

C. Integration of the two-electron problem

We consider the case of two electrons confined in QD
embedded in 2DEG at the (001)-LAO/STO interface, de-
scribed by the Hamiltonian

Ĥ2 = Ĥ(1) + Ĥ(2) +
e2

4πϵ0ϵr12
, (22)

where Ĥ is the single-electron Hamiltonian (9) or in the
simplified model reduced to the dxy band, Ĥ = Ĥeff

xy , see
Eq. (21). We take the dielectric constant ϵ = 100ϵ0 which
is the upper limit of the electric field dependence of ϵ
given in Ref. 43. Although the dielectric constant of STO
is known to be significantly dependent on the electric field
and temperature, the assumed value is justified near the
interface where the triangular quantum well is created
and the electric field is large - see the Appendix.

The problem is solved in the basis of antisymmetrized
products of the single-electron eigenfunctions, i.e. in the
exact diagonalization approach applied for an electron
pair. For HΨq = EqΨq, the single-electron eigenfunction
is spanned over the 3d spin-orbitals of a Ti ion

Ψq(x, y, σ) =
∑
j

aqjdj(x, y, σ)

=
∑

rj ,oj ,sj

aqjdrj ,oj (x, y)Ssj (σ), (23)

where the summation runs over the position of ions rj ,
orbitals oj on the ion and the z-component of the spin
indexed by sj , and S is the spin-up or spin-down eigen-
state. In the sums j is equivalent to the triple of indeces
(rj , oj , sj) and drj ,oj is one of the 3d orbitals localized on
the ion position rj .

Evaluation of the matrix elements of the two-electron
Hamiltonian requires determination of the Coulomb in-
tegrals

Iq1q2q3q4 = ⟨Ψq1(1)Ψq2(2)|
1

r12
|Ψq3(1)Ψq4(2)⟩ (24)

=
∑

j1,j2,j3,j4

(aq1j1a
q2
j2
)∗aq3j3a

q4
j4
⟨dj1(1)dj2(2)|

1

r12
|dj3(1)dj4(2)⟩.

The integral over the spin-orbitals that appears in the
sum is calculated based on the formula

⟨dj1(1)dj2(2)|
1

r12
|dj3(1)dj4(2)⟩ =

δ(rj1 , rj3)δ(rj2 , rj4)δ(sj1 , sj3)δ(sj2 , sj4)×[
(1− δ(rj1 , rj2))

1

|rj1 − rj2 |
δ(oj1 , oj3)δ(oj2 , oj4) +

δ(rj1 , rj2)ε(oj1 , oj2 , oj3 , oj4)

]
, (25)

where

ε(oj1 , oj2 , oj3 , oj4) = ⟨dj1(1)dj2(2)|
1

r12
|dj3(1)dj4(2)⟩

(26)
is the integral for the four orbitals localized on the same
ion. The Kronecker deltas in the second line in Eq. (25)
introduce the two-center approximation44 and the or-
thogonality of the spin states. The third line is responsi-
ble for the contributions to the integral with the first and
second electrons occupying different ions. In this term
we assume that the Coulomb potential changes slowly
allowing us to use the orthogonality of the orbitals. The
last line of Eq. (25) is responsible for the Coulomb inte-
grals over the same ion with electrons occupying various
orbitals – that is denoted as ε integral. This integral
is evaluated using the Monte-Carlo technique. For or-
bitals numbered as dxy = N exp(−Z∗r/3)xy → 1, dxz =
N exp(−Z∗r/3)xz → 2, dyz = N exp(−Z∗r/3)yz → 3,
using the hydrogen-like 3d orbitals with the normaliza-
tion factor N and the effective atomic number Z∗ = 3.65
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FIG. 2. Single-electron spectra as functions of the perpendicular magnetic field B, for parabolic confinement with energy
ℏω0 = 9.344meV (a-d), ℏω0 = 18.689 meV (e-h), and ℏω0 = 37.378 meV (i-l). The left column of plots (a,e,i) presents the
results of the exact Hamiltonian (9). The second column (b,f,j) displays the share of dxy orbitals with the wave functions of
the states within the Hamiltonian (9). The third column (c,g,k) shows the spectra as obtained with the dxz and dyz orbitals
excluded from the basis, still with Hamiltonian (9). The last column (d,h,l) shows the results of the effective Hamiltonian (21)
reduced to the dxy orbitals.

n E +∆E Π |eFx1n| (meV) dxy ↓ dxy ↑ dxz ↓ dxz ↑ dyz ↑ dyz ↓
1 -29.30 -1 0 0.99493 0.00007 0.00085 0.00165 0.00085 0.00165
2 -27.57 1 0.00382 0.00010 0.99444 0.00186 0.00087 0.00186 0.00087
3 -12.72 1 1.866 0.98711 0.00019 0.00412 0.00223 0.00412 0.00223
4 -11.00 -1 0 0.00041 0.98529 0.00250 0.00465 0.00250 0.00465
5 -8.81 1 1.859 0.97891 0.00053 0.00783 0.00245 0.00783 0.00245
6 -7.08 -1 0 0.00039 0.97977 0.00313 0.00679 0.00313 0.00679
7 3.67 -1 0 0.95177 0.00103 0.01921 0.00438 0.01921 0.00438

TABLE I. The energy levels (second column) for ℏω0 = 18.689 meV at B = (0, 0, 10)T. The 3rd column gives the parity Π
eigenvalue. The dipole matrix element with the ground state and the n -th eigenstate is given in the fourth column for an
electric field of 1mV/nm. The subsequent columns provide the contributions of the atomic spin orbitals to the Hamiltonian (9)
eigenstates.
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given by the Slater rules for the Ti orbitals, the non-zero
values of the on-site Coulomb integral are: ε(i, i, i, i) =
0.336, ε(i, j, i, j) = 0.306, and ε(i, j, j, i) = 0.015 (for
i ̸= j) in the atomic units. The remaining 12 integrals
with other sequence of the orbitals are zero due to nega-
tive parity of the integrated functions.

In the calculations, we use up to 50 lowest-energy
single-electron states that produce 1225 Slater determi-
nants as a basis for the two-electron problem.

D. Time evolution

For discussion of spin dynamics in the external elec-
tric field, we assume a periodic perturbation of the
potential VAC(t) = −eFx sin(2πωt). We solve the
Schrödinger equation with the time-dependent Hamilto-
nian Ĥt = Ĥ + VAC(t). The solution is obtained on
the basis of time-independent Hamiltonian eigenstates,
Ψ(t) =

∑
m cm(t) exp (−iEnt/ℏ) |m⟩ with Ĥ|m⟩ =

Em|m⟩. Upon substitution of this wave function to the
Schrödinger equation followed by a projection on the ⟨n|
state we obtain a system of equations for cn(t),

iℏc′n(t) = −eF
∑
m

cm(t) exp [i (En − Em) t/ℏ]

× sin(2πωt)⟨n|x|m⟩, (27)

that is solved using the Crank-Nicolson scheme. In the
initial condition we take cn(t = 0) = δn,1. We moni-
tor the maximal occupation (max |cn(t)|2) of the excited
states during the simulation that covers a time interval
of 5 ns.

The present model assumes that the quantum dot is a
closed system subject to external fields, hence no decay
and dephasing mechanisms are taken into account. In
quantum dots the decay or relaxation of the system from
the excited state to the ground-state with opposite spin
occurs with electron-acoustic phonon coupling in pres-
ence of the spin-orbit interaction. In terms of the EDSR
experiments the problem was studied in Ref.45. The re-
laxation may induce off-resonant transition to a third
state with a lower energy than the couple participating
in the EDSR. This situation corresponds in particular to
the double quantum dot, when the states participating
in the EDSR are two spin states of charge configuration
corresponding to separated charges and the third state –
lower in the energy – with both electrons in the deeper
dot. In the present work, with a single quantum dot con-
sidered there is no the third state of a lower energy that
could appear in the time evolution. In the simulations
described in the manuscript the ground-state is always
the initial state of the EDSR process.

The main source of the spin decoherence in III-V or Si
quantum dots is the coupling of the electron spins with
the nuclear spin-bath via the hyperfine interaction. In
terms of the EDSR experiments this decoherence leads to
a reduction of the spin-oscillations as a function of time46.

STO-based 2DEGs are expected to be characterized by
a smaller of decoherence, as the Hyperfine Interaction
(HFI) with the nuclear spin bath is intrinsically low in
STO47 since the electron bands at the Fermi level are
built of 3d atomic orbitals which vanish at the nuclei.
Besides the spin-decoherence the evolution of the states
can be perturbed by the charge nosite. However, the
latter is mitigated by a large dielectric constant.

III. RESULTS

A. Single confined electron

The Hamiltonian (9) in the basis limited to the dxy or-
bitals is equivalent to a single-band Hamiltonian with an
isotropic electron effective mass of m = ℏ2

2a2tl
= 0.286m0,

where a = 0.39 nm is the lattice constant. Since the
electrostatic confinement is typically parabolic near its
minimum, we have considered single-electron spectra for
the external potential in the form V (x, y) = 1

2mω
2
0r

2

with ℏω0 = 9.344 meV, 18.689 meV, and 37.378 meV,
defining the range of a low, moderate and strong con-
finement. The spectra for a single confined electron are
given in Fig. 2, for the case of the magnetic field applied
perpendicular to 2DEG.

For the lowest confinement energy ℏω0 [Fig. 2(a)] the
share of dxy orbitals [Fig. 2(b)] in the low-energy part
of the spectra is close to 1 and the basis limited to dxy

orbitals [Fig. 2(c)] provides nearly exact results in the
low-energy range. For ℏω0 = 18.689 meV [Fig. 2(e,f)]
the states with low contribution of dxy orbitals appear
already about 40 meV above the ground state and the
limited basis [Fig. 2(g)] produces results close to ex-
act ones only for a few lowest-energy states. For the
strongest confinement [Fig. 2(i-k)] only the two lowest
energy states can be described with the limited model.
The last column of the plots [Fig. 2(d,h,l)] shows the
results obtained with the Hamiltonian (21) reduced to
the dxy orbitals with SO coupling. Note that the simple
limitation of the basis to the dxy orbitals in Hamiltonian
(9) [Fig. 2(c,g,k)] excludes all spin-orbit coupling inter-
actions due to the absence of direct coupling between
the dxy,↑ and dxy,↓ spin-orbitals. On the other hand the
reduced model (20) transfers the spin-orbit interactions
originating from the coupling to dxz and dyz orbitals to
the basis dxy. Although the energy difference between
the two approaches is small, the spin-orbit interaction in
the model reduced to the dxy orbital is needed as it allows
for control of the electron spin using the electric field.

Now, let us consider the transitions driven by the AC
electric field oriented within the plane of confinement.
Direct transitions between the ground state and the ex-
cited states are governed by the values of the dipole ma-
trix elements. The values xnm = ⟨n|x|m⟩ for n = 1
are listed in Table I for the magnetic field of 10 T ori-
ented perpendicular to the confinement plane. The spin-
flipping transition from the ground state to the first ex-
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FIG. 3. (a) The single-electron spectrum of Fig. 2(e) (ℏω0 =
18.688 meV) but plotted with the colours indicating the Π
parity of energy levels in a perpendicular magnetic field. The
black color stands for the negative parity and the red color
for the positive parity. (b) The single-electron spectrum with
the same confinement energy but the external magnetic field
oriented in the x direction. The colors indicate the sign of the
x component of the spin.

cited state 1 → 2 has a small but non-zero matrix ele-
ment. The states 1 and 2 have opposite parity, hence the
matrix element for 1 → 2 transition is non-zero. The ele-
ment is small since the integration of the matrix element
involves products of the spin-up and spin-down contri-
butions to both the states and their dominant spins are
opposite.

The matrix elements for spin-conserving transitions
to the 3rd and 5th states are about 500 times larger
than ⟨1|x|2⟩. A direct spin-flipping transition to the
fourth state and the direct spin-conserving transition
to the sixth state are forbidden. There is a symme-
try reason for the vanishing transition matrix elements
to the 4th and 6th states. Note that the Hamiltonian
(9) commutes with a generalized diagonal parity opera-
tor Π = diag[P,−P,−P, P,−P, P ], where P is the scalar
parity operator Pψ(r) = ψ(−r). As a result, each of the
components of the eigenfunctions has a definite – even or
odd – scalar parity. It means that, for a given orbital,
the P parity of the spin-up and spin-down components
is opposite. Moreover, for a given spin, the scalar parity
of the dyz, dxz components is the same and opposite to
the parity of the dxy component. The eigenvalues of the
Π parity for the lowest energy levels are listed in Table I
and the spectrum with parity marked by colors is plot-
ted in Fig. 3(a). The fourth and sixth states have the
same parity as the ground state leading to the vanishing
dipole matrix element for each of the six components in
the scalar product ⟨1|x|n⟩ with n = 4 or 6.

Figure 4 shows the maximum occupation for the driv-
ing AC field of 1 mV/nm with the full (a) and reduced (b)
Hamiltonians, defined by Eqs. (9) and (21), respectively.
In Fig. 4(a) and (b), above the driving energy of 10 meV
we can see wide overlapping maxima due to the allowed
spin-conserving transitions to the 3rd and 5th state [cf.

Table I]. In the same energy range, the maximum occu-
pancy of the seventh energy level is also observed. Note,
however, that the direct transition 1 → 7 is forbidden by
the parity symmetry, but the energy difference E7−E1 is
nearly equal to 2(E3−E1), so the transition to the 7th en-
ergy level occurs through transitions via the 3rd energy
level 1 → 3 → 7. In Fig. 4(a) the narrow yellow and
red peaks near 11 meV correspond to two-photon transi-
tions to the 6th and 9th states, respectively, and appear
at half the energy of the forbidden direct (i.e. single-
photon) transition. The two-photon processes appear in
the second-order time-dependent perturbation theory via
a third state m that intermediates the transition between
the initial and final states. In the second-order pertur-
bation theory, the values of the coefficients in the wave
function expansion are given by48

cn(t) = cn(0) + c1n(t) + c2n(t), (28)

where

c(1)n (t) =
−eF
ℏ

xn1 exp

(
i
(ωn1 − ω′)t

2

)
sin(ωn1−ω′

2 t)

(ωn1 − ω′)
(29)

and

c(2)n (t) =
e2F 2

2iℏ2
∑
m

xnmxm1[
ei

ωnm+ωm1−2ω′
2 t sin(ωnm+ωm1−2ω′

2 t)

(ωm1 − ω′)(ωnm + ωm1 − 2ω′)

−eiωnm−ω′
2 t sin(ωnm−ω′

2 t)

(ωm1 − ω′)(ωnm − ω′)

]
, (30)

with ω′ = hω/ℏ and ωnm = (En − Em)/ℏ.
The formula for c(2)n (t) involves a sum of the matrix

elements products xnmxm1 with a resonance at 2hν =
En − E1 (hence the two-photon nomenclature), due to
the expression in the second line of Eq. (30). Although
the direct (first-order) transition 1 → 6 and 1 → 7 is for-
bidden by the same parity of the initial and final states,
the two-photon process is still allowed due to nonzero
values of matrix elements with |m⟩ states of the opposite
parity.

At a lower energy range of Fig. 4(a) we notice a peak
at hω = 5.53 meV for the transition to the third excited
state. This in turn is a three-photon (third-order) pro-
cess at the driving energy of 1/3 of the energy difference
between the energy levels (see Table I). The two-photon
transition 1 → 3 is forbidden, since the parity of any in-
termediate state m will agree with the parity of states
1 or 3, thus making one of the dipole matrix elements
in the product equal to zero - see Eq. (30). The contri-
butions of the separate eigenstates as a function of time
for this transition is plotted in Fig. 4(d). The apparent
large width of the lines result from rapid oscillations of
the contributions |c3|2 and |c1|2. In Fig. 4(a) the peak
does not exactly reaches 1. In Fig. 4(c) we can see that
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FIG. 4. The results of the integration of the time-dependent Schrödinger equation for ℏω0 = 18.689 meV, the perpendicular
magnetic field of 10 T with the AC electric potential, VAC(t) = −eFx sin(ωt). The simulation time is set to 5 ns and the
amplitude of the electric field to 1 mV/nm. In (a,b) we plot the maximal occupancy of the n − th state defined as maximal
|cn(t)|2 over the simulation time. Panel (a) shows the results for the Hamiltonian (9) and panel (b) the results for the
Hamiltonian (21), reduced to the dxy orbitals. In (c-e) we plot the results obtained with the full Hamiltonian as in (a). The
lines show contributions of eigenstates as a function of time for ℏω = 1.727 meV (c) – where the peak for the direct 1 → 2
transition is found in (a), for ℏω = 5.53 meV – for the third-order transition peak 1 → 3 of panel (a), and off-resonant
excitation with ℏω = 10 meV. In (c-e) we use the same colors for the same states as in (a,b). Additionally in (c,e) we plotted
the contribution of the ground state with the black line.

the contribution of the 7th energy level reaches maximum
at the same moment as the contibution of the 3rd state,
which limits the maximal value of the latter.

The lowest energy peak in Fig. 4(a) and (b) is the
1 → 2 spin-flipping transition near the driving energy of
1.727 meV - compare with Table I. This is the EDSR spin-
flip transition that we focus on in this work. We find that
at the resonance, for the amplitude of the electric field of
F = 1 mV/nm, the spin inversion time is 537.9 ps, and
for the amplitude decreased by half the spin inversion
time is twice longer – just as for the Rabi oscillation
involving two states only. The time dependence of the
contributions for this transition is given in Fig. 4(d).
Note that indeed at the driving frequency for the spin-flip
the higher-energy states have only a residual presence in
the wave function, hence the transitions can be identified
as the Rabi resonance.

The reduced model incorporating the spin-orbit effects
to the effective dxy Hamiltonian (21), presented in Fig.
4(b), produces similar results for the direct transitions,
including the lowest-energy spin flip, and the structure of
the wide maxima between 10 meV and 30 meV is similar.
The matrix elements for the reduced model are given in
Table II.

The estimated spin-flip time at the resonance for the
amplitude of 1mV/nm is 379.81 ps. Note, however, that
the two-photon transitions to the sixth and eighth states
as well as the three-photon transition to the third state
of Fig. 4(a) are missing as these transitions occur via
the state with the dxz and dyz component. Moreover,
a narrow peak corresponding to the transition to the
seventh excited state at 8.4 meV in Fig. 4(b) is pro-

n E +∆E Π |eFx12| (meV). dxy ↓ dxy ↑
1 17.404 -1 0 0.9998 0.0002
2 19.139 1 0.0054 0.00029 0.99971
3 34.157 1 1.80 0.99960 0.0004
4 35.899 -1 0 0.00049 0.99951
5 38.198 1 1.880 0.99951 0.00049
6 39.922 -1 0 0.00058 0.99942
7 50.901 -1 0 0.00069 0.99931

TABLE II. Same as Table I only for the dxy-reduced Hamil-
tonian (21).

nounced but missing in Fig. 4(a). In summary, the re-
duced model does not exactly reproduce the results of
the full model for the higher-order transition processes
that involve intermediate states between the initial and
final state in terms of the time-dependent perturbation
theory. The spectrum of the reduced Hamiltonian misses
part of the higher-energy states, which thus cannot assist
in the transitions as the intermediates. Importantly, the
EDSR transition between the lowest states with opposite
spins is correctly captured by this simplified one band
model.

Finally, our calculations demonstrated that spin-flip
from the ground state is only possible with the presence
of both the atomic spin-orbit and the Rashba couplings.
The hopping Rashba interaction is diagonal in spin and
cannot drive spin transitions by itself. On the other hand,
the atomic spin-orbit coupling does not couple the dxy
the spin-up and spin-down orbitals which dominate in



9

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  2  4  6  8  10

total

spin-down

spin-up

|<
1
|e

Fx
|2

>
| 
(m

e
V

)

Bz (T)

(a)
 5

 10

 15

 20

 0  5  10  15  20

B z=
0.

24
T

T
 (

n
s)

F (mV/nm)

(b)

0

1

2

3

4

5

6

7

0.038 0.04 0.042 0.044

1mV/nm

2mV/nm

4mV/nm

6mV/nm

8mV/nm

10mV/nm

12mV/nm

p

(meV)

2nd
3rd
4th
5th
6th
7th
8th

ℏ wω

(c)

FIG. 5. The results for the single electron and confinement
energy ℏω0 = 18.688 meV. (a) The absolute value of the dipole
matrix element for AC field of F = 1 mV/nm (black line), and
the absolute values of the contributions to the matrix element
from the spin-up and spin-down components. These contri-
butions have opposite sign and exactly cancel each other at
B = 0. (b) The spin-flip time as a function of the AC am-
plitude for Bz = 0.24 T, where the energy splitting between
the ground (spin-down) and the first excited state (spin-up)
is equal ∼ 0.0414 meV that corresponds to the microwave
frequency of ∼ 10 GHz. (c) The maximal occupancy of the
lowest-energy levels for the time evolution starting from the
ground-state and lasting 5ns. The AC field amplitude in-
creases from the bottom to the top. The subsequent plots for
higher amplitudes are shifted by +1 each.

the lowest-energy spectrum. Therefore, only a mutual
presence of both spin-orbit interactions opens the way
for spin flips.

The manipulation of the spin with an electric field is
also possible for the magnetic field oriented within the
plane of confinement. Figure 3(b) shows the energy spec-
trum as a function of Bx. The second and third excited
energy levels in Fig. 3(b) are nearly two times degener-
ate with a splitting of about 0.01 meV at Bx = 10 T. At
the scale of the Figure the lifting of the degeneracy is not
resolved. For Bx = 10 T and the amplitude of the elec-
tric field of 1mV/nm, the matrix element for the lowest-

energy spin-flip transition induced by the AC electric field
oriented in the x direction is 3.7µeV. On the other hand,
this matrix element is 0 for the AC field oriented in the
y direction. The role of the orientation of the AC field
and the external magnetic field is characteristic for the
Rashba 2D interactionHR = αR(kyσx−kxσy)12,42, which
translates the motion in the y (x) direction into an effec-
tive magnetic field oriented along the x (y) axis49. The
external magnetic field (Bx, 0, 0) polarizes the spin par-
allel or antiparallel to the x direction. Then the motion
induced by the AC electric field parallel to the x direc-
tion induces the y component of the magnetic field that
induces the spin-flips49. On the other hand, the AC field
oriented in the y direction produces an effective magnetic
field oriented parallel or antiparallel to the external mag-
netic field. It can only affect the spin-splitting energy but
does not couple the states with spins oriented in opposite
directions along the x axis.

The analysis given above describes the spin-flipping
transitions for the energy difference between the low- and
high-spin states of a few meV. Note, however, that EDSR
experiments2 are usually performed with the AC field ap-
plied to the gate electrodes in a microwave range of about
10 GHz which corresponds to the spin splitting energy
of ∼ 0.041 meV. For the single-electron spectrum with
ℏω0 = 18.689 meV [cf. Fig. 2(e-h)] this energy differ-
ence between the spin-down ground state and the spin-
up first excited state corresponds to the magnetic field of
the magnitude Bz = 0.24 T for which the dipole matrix
elements ⟨1|eFx|2⟩ are lower than at Bz = 10 T. The de-
pendence of ⟨1|eFx|2⟩ on the magnetic field is presented
in Fig. 5 (a). Note that the transition matrix element
⟨1|eFx|2⟩ is calculated by summation of the integrals
over the six spin-orbital channels. We find that at B = 0
the sum of components integrated over the spin-up or-
bitals is exactly opposite to the ones integrated over the
spin-down orbitals [see Fig. 5(a)]. In consequence, the
transition matrix element at B = 0 is exactly zero. As
Bz increases, the spin-down components are promoted by
the spin Zeeman effect so that the contributions to the
matrix element from both the spin channels become un-
equal which results in the non-zero value which changes a
linear function of the external magnetic field [Fig. 5(a)].
For the chosen magnetic field Bz = 0.24 T and F = 1
mV/nm we estimate the spin-flip time equal to 22.36 ns
(compare with the spin-flip transition at 10 T discussed
in Section III.A which is 537.9 ps only). The spin-flip
time can be shortened by applying AC field of the larger
amplitude. Note, however, that the increased amplitude
of the AC field may lead to appearance of the higher en-
ergy states and changes the nature of the transition from
the Rabi resonance to a more complex dynamics. The
spin flip time as a function of the amplitude is plotted
in Fig. 5(b) and the maximal occupancy of the states
in Fig. 5(c). We find that the shortest spin-flip time of
5.71 ns is found near F ≃ 7 mV/nm. Interestingly, the
spin-flip time is an inverse function of the matrix element
– as in the Rabi oscillation – only for F below 4 mV/nm.
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FIG. 6. Energy spectra for a confined electron pair ℏω0 = 9.344meV (a-d), ℏω0 = 18.689 meV (e-g), and ℏω0 = 37.378 meV
(h-l). The first column of the plots shows the results of the full model Hamiltonian (9). The colour on the first, third and
fourth (second) columns corresponds to the z component of the total spin (share of dxy orbitals). The third column shows the
spectra for the Hamiltonian (9) but with the basis limited to dxy orbitals. The last column presents the results for dxy-reduced
Hamiltonian (21), with the SO coupling effects integrated into the dxy band.

n E +∆E Π | − eFx1n| (meV). dxy ↓ dxy ↑ dxz ↓ dxz ↑ dyz ↑ dyz ↓
1 -52.276749 -1 0 0.995 0.994 0.00279 0.00252 0.00279 0.00252
2 -39.169408 -1 0 1.982 0.000 0.00484 0.00381 0.00484 0.00381
3 -37.100982 +1 0.0097 0.991 0.990 0.00463 0.00461 0.00463 0.00461
4 -36.026479 +1 2.63 0.991 0.990 0.00462 0.00457 0.00463 0.00457
5 -35.032511 -1 0 0.001 1.979 0.00444 0.00538 0.00444 0.00538
6 -34.466481 -1 0 1.972 0.001 0.00927 0.00409 0.00927 0.00409
7 -32.389505 +1 0.0149 0.986 0.987 0.00727 0.00607 0.00727 0.00607
8 -31.313806 +1 2.62 0.987 0.987 0.00718 0.00613 0.00718 0.00613

TABLE III. Results for two electrons, confinement energy ℏω0 = 18.688 meV and the vertical magnetic field of 12 T. The
results are organized as in Table I for a single electron.
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At larger F the 3-rd and 5-th state (both spin-down) ap-
pear over the entire studied range of ℏω - see Fig. 5(c).
Importantly, the 4-th and 6-th states (both spin-up) ap-
pear within the range of the resonant spin-flip maximum,
that indicates that the electron is first transferred to the
2-nd energy level and next strongly couple to higher spin-
up energy states50. Note, that the spin-flip resonance in
Fig. 5(c) is black-shifted for a higher AC field amplitude.
This effect is known as the Bloch-Siegert shift51.

B. Two confined electrons

1. Spectra

The energy spectra for the confined electron pair are
diplayed in Fig. 6, for the exact Hamiltonian (9) (first
three columns of plots) and the effective Hamiltonian
(21). In the third column the basis was limited to solely
dxy orbitals in Hamiltonian (9). The efective Hamilto-
nian (fourth column) and the limited basis applied to
the exact Hamiltonian (third column) produce similar
results although with a small shift on the energy scale.
The splitting between the energy levels that move parallel
in the magnetic field is smaller in the exact Hamiltonian
(the first column in Fig. 6) than in the approximate ap-
proaches (the last two columns in Fig. 6). The share of
dxy orbitals in the low-energy states depends on the en-
ergy eigenvalue and the strength of confinement similarly
as in the single-electron case (cf. Fig. 2).

In the following, we are mainly interested in the spin-
flip between the spin singlet ground state and the first-
excited triplet state with the spins polarized antiparallel
to the external magnetic field. The contributions of the
orbitals, the parity, and the dipole matrix elements are
given in Table III for ℏω0 = 18.688 meV and the perpen-
dicular magnetic field of 12 T. In the table we see that
the transition of the main interest 1 → 2 is forbidden by
the parity symmetry while the transitions are allowed to
the pairs of even Π parity states – the 3rd and the 4th
as well as the 7th and the 8th. Each pair is split by ∼ 1
meV and the energy levels of the pair move parallel when
the magnetic field is changed [Fig. 6(e)]. In each pair,
the transition to a lower-energy state has a much smaller
probability than to a higher-energy one which can be ex-
plained as follow. In the basis limited to dxy orbitals
(third column in Fig. 6) the spatial and spin degrees of
freedom separate due to the absence of the spin-orbit cou-
pling effects. Then, the lower-energy state corresponds to
the spin-triplet with spin z component equal to zero and
the antisymmetric spatial wave function. The higher-
energy state corresponds to the symmetric spatial wave
function characteristic to the spin singlet.

The matrix elements for the transition from the singlet
ground-state calculated with the x1+x2 operator are then
zero due to the antisymmetry of the spatial part of the
wave function with respect to the electrons interchange.
The lifting of the separation between the spin and the
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FIG. 7. The results for two electrons, confinement en-
ergy ℏω0 = 18.688 meV and the vertical magnetic field of
12 T. Maximal occupation probability of excited states for
the ground state as the initial one in the time evolution last-
ing 5 ns for AC potential VAC = −eFx sin(hωt) with the
amplitude (a) 0.5 mV/nm and (b,c) 1 mV/nm. Panels (a)
and (b) show the results of the full model while results for
the effective Hamiltonian reduced to the dxy orbitals (21) are
given in (c). The spin-flip transition 1→ 2 in the two-photon
process takes 4.7 ns for F = 1 mV/nm.

space by the spin-orbit interaction included in the com-
plete basis opens the direct channel for the transition to
the lower-energy level of each pair, but the matrix ele-
ment for the lower-energy state is small.

The results of the time evolution in VAC(t) field are
plotted in Fig. 7 where, for the AC amplitude of
0.5 mV/nm, we can see wide maxima corresponding to
the direct transitions to the 4th and 8th states. Besides
the wide maxima we can observe a peak for the direct
transition to the 7th state near ℏω = 20 meV. Two nar-
row peaks corresponding to the transition to the 3rd state
appear near ℏω = 15 meV and next we see a third order
transition to the 8th state. The second order transition
to this state is forbiden by the symmetry (cf. Table III).
To left of this peak there is the lower one due to the
two-photon transition of our main interest: to the sec-
ond energy level – the one which corresponds to the flip
of one of the spins from the ground-state for which the
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n |eFx1n|,V0 = 2meV |eFx1n|,V0 = 20meV ← reduced mod.
1 0.1300 1.1726 1.1298
2 0.0006 0.0039 0.0013
3 0.0094 0.0058 0.0029
4 2.5800 2.0464 2.1145
5 0.0019 0.0094 0.0558
6 0.0011 0.0098 0.0042
7 0.0056 0.0054 0.0049
8 2.6800 3.0296 3.0039

TABLE IV. The dipole matrix elements in meV for the two-
electron system with the Gaussian perturbation to the har-
monic oscillator potential with confinement energy ℏω0 =
18.688 meV and the vertical magnetic field of 12 T, for the
amplitude of the AC electric potential eF of 1 mV/nm. The
second (third) column gives the results for V0 = 2 meV
(V0 = 20 meV). The 4th column lists the results for V0 = 20
meV obtained with the reduced Hamiltonian.
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FIG. 8. The energy spectra for two-electrons and the confine-
ment energy ℏω0 = 18.688 meV in presence of the off-center
Gaussian perturbation with (a) V0 = 2 meV and (b) V0 = 20
meV.

direct transition is forbidden by the parity symmetry.
For the amplitude of the AC field increased to

1 mV/nm [Fig. 7(b)] the spin-flip 1 → 2 transition prob-
ability within the 5 ns of the simulation is increased to
98.8% via the second order two-photon process that takes
4.7 ns. For comparison, for the AC field amplitude set
at 0.5 mV/nm the spin flip via the second order pro-
cess takes 24.7 ns and the transition to the triplet state
is achieved with the probability of 99.645%. The in-
creased fidelity of the spin-flip by reduction of the AC
field amplitude is due to the reduction of the contribu-
tion of higher energy states in the time evolution (cf.
Fig. 7(a) and (b)). Therefore, there is a trade-off be-
tween the transition time and the fidelity. Note, that in
the results for the effective Hamiltonian reduced to the
dxy orbitals the peak due to the two-photon second-order
spin-flipping transition to the second energy level is miss-
ing [Fig. 7(c)]. Although the reduced model worked well
for the direct spin-inversion in the single-electron case,
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FIG. 9. The maximal occupation of the states for the simula-
tion starting from the ground-state and lasting 5 ns. Results
for two electrons with Gaussian perturbation with V0 = 20
meV.

the second-order transition is missed out. In fact a closer
inspection of the results reveals the second-order peak
but with a tiny magnitude of the order of 10−4, which
is outside the resolution of Fig. 7(c). Already in the
single-electron case we noticed that the reduced model is
not completely reliable for the description of the higher-
order transitions, which go via intermediate states, part
of which are missing in the reduced Hamiltonian eigen-
spectrum.

The two-photon process for the spin-flip transition
1 → 2 is not very fast and the direct one is missing due to
the dipole matrix element that vanishes due to the parity
symmetry reason. One can try to speed-up the process
by e.g. perturbation of the confinement potential lifting
its inversion symmetry and thus the parity selection rule.
In order to lower the symmetry we have placed a Gaus-
sian perturbation Vg = V0 exp

(
−
(
(x− xr)

2 + y2
)/
s2),

with xr = 3 nm and s = 2 nm, to the parabolic con-
finement potential. The matrix elements for V0 = 2 meV
and V0 = 20 meV are listed in Table IV. We see that
the largest transition elements to 4th and 8th states are
weakly changed by the Gaussian perturbation to the po-
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FIG. 10. The energy spectrum for two-electrons with ℏω0 =
18.688 meV in the magnetic field oriented parallel to the x
axis. Panel (b) is a zoom of (a).

tential while the transition from the ground state to the
first excited state, involving a transition from zero to
spin-polarized spin becomes nonzero in presence of the
perturbation.

The two-electron energy spectra for the potential with
the Gaussian perturbation are displayed in Fig. 8 for
V0 = 2 meV and V0 = 20 meV. The Gaussian perturba-
tion opens avoided crossings between states of the same
spin and the parity which is opposite for the symmetric
potential. The transition spectra are plotted in Fig. 9 for
V0 = 20 meV and the AC field amplitude of 0.25 mV/nm
(a), 0.5 mV/nm (b) and 1 mV/nm (c). In each panel both
the first-order and the second-order spin flipping transi-
tions 1 → 2 are observed. As the amplitude of the AC
field increases, the second-order peak near ℏω = 6 meV
grows up but the first-order peak near ℏω = 12 meV de-
creases. The decrease of the single-photon transition is
due to the widening of the maxima related to transitions
to the 6th and 8th states that compete in the evolution
process with the transition to the 2nd state. The spin-flip
times for the second-order process for the AC amplitudes
of 0.25, 0.375, 0.5, 0.75 and 1 mV/nm are 39.2, 17.7, 10.2,
4.9 and 3.09 ns, respectively. The maximal occupation of
the second energy level are 99.9%, 99.6%, 99%, 98.7% and
97.7%, respectively. For the first-order transition the spin
flip times are: 2.25, 1.6, 1.4, 1.24, and 3.1 ns, with the
fidelity of the transfer to the 2nd excited state of 98.6%,
96.9%, 91.2%, 90.6% and 83.7%. Remarkably, in this case
the spin-flip transition slows down when the amplitude
is increased from 0.75 mV/nm to 1 mV/nm that is due
to participation of the other excited states in the time
evolution besides the initial and the targeted one. For
both the second- and first-order transitions the fidelity
of the spin flip decreases with the AC amplitude due to
leakage of the wave function to the higher-energy states.
However, the fidelity of the transfer via the second-order
processes is larger due to the lower background of the
other excited states in the lower energy range.

The first order spin-fliping transitions can also be ob-

n E +∆E ⟨Sx⟩ |eFx1n| (µeV)
1 -53.009 -0.001 0
2 -37.574 -1.993 3.42
3 -37.563 -1.990 0.021
4 -35.632 -0.000 0.049
5 -35.602 -0.001 12.228
6 -34.542 -0.000 4.630
7 -34.541 -0.001 3737.6
8 -33.686 1.992 9.046
9 -33.642 1.988 0.028

TABLE V. The energy levels, the average value of Sx, and
the transition matrix element for Bx = 12 T (see Fig. 10)
with the AC field amplitude of 1 mV/nm.
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FIG. 11. The results for two electrons for confinement energy
ℏω0 = 18.688 meV and the external magnetic oriented par-
allel to the x axis, Bx = 12 T. The maximal occupation of
the states for the simulation starting from the ground state
and lasting 5 ns is shown. The amplitude of the AC electric
field oriented in the x direction is (a) 0.25, (b) 0.5 and (c)
1 mV/nm.

served for an ideally parabolic confinement potential but
with the in-plane magnetic field that lifts the Π symme-
try. In Fig. 10(a) we plotted the two-electron spectrum
as a function of the magnetic field oriented along the
x axis with the structure of the lowest-energy excited
state enlarged in Fig. 10(b). The value of the energies
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obtained at Bx = 12 T with the average spin x compo-
nent and the transition matrix elements from the ground
state are given in Table V. At Bx = 12 T all the ex-
cited states considered in Table V are nearly two-fold de-
generate. The magnetic field oriented in-plane does not
produce the orbital effects present for the perpendicular
magnetic field hence the splitting is primarily due to the
spin-orbit interaction. The splitting of the excited energy
levels is resolved in Fig. 10(b) with the exception of the
two energy levels below -34.5 meV that in the absence
of the SO interaction correspond to spin-singlet. All the
other energy levels in Fig. 10(b) in the absence of SO
coupling correspond to a spin-triplet. For each couple of
the excited states the transition matrix elements from the
ground-state is large for one of the states of the couple
and much smaller to the other - see Table V. In the table
we see that the largest is the transition matrix element
to an excited ”singlet” state. The simulated spectra of
excitations are plotted in Fig. 11 for the AC electric field
oriented along the x axis with the amplitude (a) 0.25, (b)
0.5 and (c) 1 meV. The transition to the spin singlet – the
7th state – corresponds to the wide maximum, with the
narrower peaks due to the 3rd order process and 5th order
process (c) for the largest AC amplitude. We find that
the spin-flip channels go through the first-order process
for the 2nd energy level and the second-order process for
the 3rd energy level. As the AC amplitude is increased
the peak corresponding to the second order process in-
creases and the one due to the direct transition is reduced
due to the strengthened presence of the 7th energy level
in this excitation energy range. The spin-flip times for
the AC amplitudes of 0.25, 0.5 and 1 mV/nm in the first
order transition to the 2nd energy level are 2.4 ns, 1.1
ns, and 502 ps, with the fidelity of the transfer of 96.9%,
89.3% and 75.6%, respectively. The corresponding num-
bers for the second-order transitions to the 3rd state and
the listed amplitudes are: 11.67 ns, 3.03 ns and 845 ps
and 99.64%, 99.54% and 98.48%, respectively.

Similarly as in the single electron QD now, let us ana-
lyze what happens when VAC(t) is set in the GHz regime.
For a symmetric confinement potential and vertical mag-
netic field the singlet-triplet first-order transition is for-
bidden by the parity selection rule. To set the spin-flip
AC field frequency in the second-order process to about
10 GHz we need the singlet-triplet energy difference to
be equal to about 2× 0.0413 meV. In the magnetic field
range given in Fig. 6 this situation is observed only for
the weakest confinement of ℏω0 = 9.344 meV, i.e. at
Bz = 25.4848 T, just below the singlet-triplet crossing
in Fig. 6(a). Fig. 12(a) shows the maximal occupancy of
the lowest-energy levels for the 5 ns time evolution in AC
field as a function of the driving frequency. The black-
shift for this second-order process with the field ampli-
tude is stronger than in the first-order process discussed
above for the single-electron. The fourth excited state
(spin-singlet) participates in the time evolution for all
the considered amplitudes. The 5th excited state (spin-
down polarized triplet) appears in the evolution near the
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FIG. 12. The results for the two electrons and confinement
energy ℏω0 = 9.344 meV at Bz = 25.4848 T. (a) The maximal
occupancy of the lowest-energy levels for the time evolution
lasting 5 ns starting from the spin-singlet ground-state and
AC field amplitude increasing from the bottom to the top.
The subsequent plots for higher amplitudes are shifted by +1
each. (b) The singlet-triplet transition time as a function of
the AC amplitude.

resonance for the singlet-triplet transition. The spin-flip
time can be taken from 10.6 ns (for F = 1 mV/nm) to
0.22 ns (for F = 20 mV/nm). The transitions are faster
than in the single-electron case discussed above but the
magnetic field is by two-orders of the magnitude larger.

Finally, as the considered QD is created electrostati-
cally by the top and bottom gate, another issue which can
be regarded is the possible application of the AC electric
field perpendicular to the 2DEG using those gates. Al-
though this specific scenario was not addressed in the
manuscript, in order to delve into this situation fur-
ther, three issues need to be raised: (i) as stated in our
manuscript, in the considered 2D model of QD, the tran-
sition rate between the states with opposite spins de-
pends on the relative orientation between the magnetic
and electric fields - they need to be oriented in such a way
that the effective SO magnetic field has a component per-
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pendicular to the spin direction. For this reason, in our
calculations, no transitions are observed when the mag-
netic field is directed along the y-axis. In the case of
the perpendicular electric field, the effective SO field is
perpendicular to the spin orientation for the out-of-plane
magnetic field. It means that the transitions between
the spin states oriented in-plane should have a similar
character as described in the paper. (ii) The orbitals of
d-electrons are spatially oriented due to the vertical elec-
tric field. For this reason, we would expect that dxz/yz.
orbitals could play a more significant role for the per-
pendicular field orientation, leading to the increase of
the transition elements between those orbitals. (iii) The
model considered in the paper is the projection of the real
3D Hamiltonian into 2D x-y space, assuming that elec-
trons occupy the ground state related to the confinement
in the z-direction. The transitions induced by a verti-
cal AC field would involve excited states of the vertical
quantization. Due to the nature of the 2DEG, these exci-
tations should require a large amount of energy. The de-
scription of these processes is however beyond the scope
of the present paper.

IV. SUMMARY AND CONCLUSIONS

We have studied a single and two electrons confined in
a lateral quantum dot defined within the two-dimensional
electron gas on the (001)-oriented LAO/STO surface.
For this purpose, we have developed a real space tight-
binding Hamiltonian spanned by 3D orbitals of Ti. The
reduced Hamiltonian integrating the spin-orbit coupling
effects due to the dxz and dyz orbitals into an effective in-
plane dxy band has been also derived and analyzed with
respect to the full 3 bands model. We have analyzed the
energy spectrum in a parabolic confinement and demon-
strated that for a weakly confined systems the low-energy
eigenstates can be identified with the dxy orbitals. In this
case the spectrum is close to the one of the harmonic os-
cillator with the electron effective mass of m = 0.286m0.
For stronger confinement the states related to the orthog-
onal bands appear lower in the energy spectrum.

In the paper, we have discussed the manipulation of the
confined spin by external AC voltages in the context of
the electric dipole spin resonance and demonstrated that
the spin-flip in the ground-state can be accomplished by
a Rabi resonance with the transition time of the order
of 0.5 ns for the amplitude of the AC field of the or-
der of 1mV/nm. For the electron pair in the harmonic
oscillator potential and the perpendicular magnetic field
the singlet-triplet transition is forbidden by the parity
symmetry. However, the spin-flip can still be obtained
via a second-order, two-photon process that has a two-
state Rabi character for low AC field amplitude. The
parity selection rule excluding the single-order transition
can be lifted by a perturbation of the external potential
or in-plane orientation of the external magnetic field. In
this case the first-order transition deviates from the Rabi

oscillation due to the participation of higher energy sin-
glet states in the time evolution. We have also found
that fidelity of the transfer increases when lowering the
amplitude of the AC field and can reach almost 97% val-
ues. Our results can be verified in EDSR experiments
on LAO/STO QD27 and demonstrate the possibility of
quantum operation on oxides QDs with high fidelity and
fast control.
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Appendix: Dielectric constant at the LAO/STO
interface.

It is widely known that the dielectric constant of stron-
tium titanate strongly depends on the temperature and
electric field, reaching values as high as 10000. However,
it is important to note that the electric field near the
interface where 2DEG is created is very strong, leading
to a reduction in the dielectric constant52. To support
our assumption regarding the relatively low value of ϵ
at approximately 100ϵ0, we conducted additional calcu-
lations to determine the dielectric permittivity profile at
the LAO/STO interface For this purpose, we employed
the Schrödinger-Poisson approach, as detailed in Ref.52,
utilizing the spatially dependent ϵ(z) which varies accord-
ing to the following formula, applicable for low tempera-
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FIG. 13. Self-consistent potential profile at the LAO/STO
interface (black line, left axis) together with the corresponding
electric field (black curve, right axis). Horizontal dashed lines
mark the energy of the ground state for the dxy (black) and
dyz/xz (red) orbitals.
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FIG. 14. The dielectric constant as a function of the position
at the LAO/STO interface. The black and red lines present a
square of the wave function for the lowest-energy state of the
vertical quantization for dxy (black) and dxz/yz (red) orbitals.

tures

ϵ = ϵ0 +
1

A+B|F | , (A.1)

where F is the electric filed, A = 4.097 × 10−5, B =
4.907 × 10−10 m/eV and ϵ0 = 70. In the simulations we
took 2DEG electron density at the level 2 × 1013 cm−2

wile the trapped charge profile was assumed in such a
way as to achieve an energy difference between the dxy
and dxz/yz ground states of approximately 47 meV, as
stated in the paper and experimentally measured36.

In Fig. 13 we present the self-consistent potential pro-
file showing that the electric field near the interface where
2DEG is embedded is significant. In this range of about
10 nm, where wave functions of the ground state for the
dxy and dxz/yz orbitals are localized, the dielectric con-
stant changes in the range (80−200)ϵ0 for the dxy orbital
and (80 − 500)ϵ0 for the dxz/yz orbital - see Fig. 14. As
the main contribution to the electronic structure of QD
comes from dxy band, due to the shift of this band by
47 meV with respect to dxz/yz, we assumed the dielectric
constant equal to 100ϵ0 as the average value of ϵ deter-
mined for this band. Furthermore, we confirmed that
varying ϵ from 100ϵ0 to 300ϵ0 does not significantly af-
fect our results.
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