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ABSTRACT
Community detection is the problem of identifying natural divi-

sions in networks. Efficient parallel algorithms for identifying such

divisions is critical in a number of applications, where the size

of datasets have reached significant scales. This technical report

presents one of the most efficient parallel implementation of the

Leiden algorithm, a high quality community detectionmethod. On a

server equippedwith dual 16-core Intel XeonGold 6226R processors,

our Leiden implementation, which we term as GVE-Leiden, outper-

forms the original Leiden, igraph Leiden, and NetworKit Leiden by

436×, 104×, and 8.2× respectively - achieving a processing rate of

403𝑀 edges/s on a 3.8𝐵 edge graph. Compared to GVE-Louvain,

our parallel Louvain implementation, GVE-Leiden achieves a total

elimination of disconnected communities, with only a 13% increase

in runtime. In addition, GVE-Leiden improves performance at an

average rate of 1.6× for every doubling of threads.
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1 INTRODUCTION
Community detection is the problem of identifying subsets of ver-

tices that exhibit higher connectivity among themselves than with

the rest of the network. The identified communities are intrinsic

when based on network topology alone, and are disjoint when each

vertex belongs to only one community. These communities, also

known as clusters, shed light on the organization and function-

ality of the network. It is an NP-hard problem with applications

in topic discovery, protein annotation, recommendation systems,

and targeted advertising [11]. The Louvain method [3] is a popular

heuristic-based approach for community detection. It employs a

two-phase approach, comprising a local-moving phase and an ag-

gregation phase, to iteratively optimize the modularity metric — a

measure of community quality [20].

Despite its popularity, the Louvain method has been observed to

produce internally-disconnected and badly connected communities.

To address these shortcomings, Traag et al. [33] propose the Leiden

algorithm. It introduces an additional refinement phase between the

local-moving and aggregation phases. The refinement phase allows

vertices to explore and potentially form sub-communities within the

communities identified during the local-moving phase. This enables

the Leiden algorithm to identify well-connected communities [33].

However, applying the original Leiden algorithm to massive

graphs has raised computational bottlenecks, mainly due to its in-

herently sequential nature — similar to the Louvain method [12]. In

contexts where scalability is paramount, the development of an op-

timized parallel Leiden algorithm becomes imperative — especially

in the multicore/shared memory setting, due to its energy efficiency

and the prevalence of hardware with large memory sizes. Existing

studies on parallel Leiden algorithm [21, 34] propose a number of

parallelization techniques, but do not address optimization for the

aggregation phase of the Leiden algorithm, which emerges as a

bottleneck after the local-moving phase of the algorithm has been

optimized. In addition, a number of optimization techniques that

apply to the Louvain method also apply to the Leiden algorithm.

In this paper, we present our parallel multicore implementation

of the Louvain algorithm
1
. It incorporates several optimizations,

including parallel prefix sums, preallocated Compressed Sparse

Row (CSR) data structures for community vertex identification and

super-vertex graph storage during aggregation, fast collision-free

per-thread hash tables for the local-moving and aggregation phases,

and prevention of unnecessary aggregations. Additionally, we em-

ploy a greedy refinement phase where vertices optimize for delta-

modularity within their community bounds, yielding improved

performance and quality compared to a randomized approach. Fur-

thermore, we utilize established techniques such as asynchronous

computation, OpenMP’s dynamic loop schedule, threshold-scaling

optimization, and vertex pruning. To the best of our knowledge,

our implementation is the most efficient implementation of Leiden

algorithm on multicore CPUs to date. We conduct comprehensive

comparisons with other state-of-the-art implementations, including

multi-core, multi-node implementations, detailed in Table 1. Both

direct and indirect comparisons are provided, with further details

outlined in Sections 5.2 and A.3, respectively.

Table 1: Speedup of our multicore implementation of Leiden
algorithm compared to other state-of-the-art implementa-
tions. Direct comparisons entail running the given imple-
mentation on our server, while indirect comparisons (marked
with a ∗, explained in Section A.3) involve comparing results
relative to a common reference.

Leiden implementation Published Our Speedup

Original Leiden [33] 2019 22×
igraph Leiden [6] 2006 50×

NetworKit Leiden [29] 2016 20×
KatanaGraph Leiden [1] 2023 166×∗

ParLeiden-S [13] 2023 22×∗
ParLeiden-D (8 nodes) [13] 2023 18×∗

1
https://github.com/puzzlef/leiden-communities-openmp
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2 RELATEDWORK
The Louvain method, introduced by Blondel et al. [3] from the

University of Louvain, is a greedy modularity-optimization based

algorithm for community detection [15]. While it is favored for

identifying communities with high modularity, it often results in

internally disconnected communities. This occurs when a vertex,

acting as a bridge, moves to another community during iterations.

Further iterations aggravate the problem, without decreasing the

quality function. Further, the Louvain method may identify commu-

nities that are not well connected, i.e., splitting certain communities

could improve the quality score — such as modularity [33].

To address these limitations, Traag et al. [33] from the University

of Leiden, propose the Leiden algorithm. It introduces a refinement
phase after the local-moving phase, where vertices within each

community undergo constrained merges in a randomized fashion

proportional to the delta-modularity of the move. This allows ver-

tices to find sub-communities within those obtained from the local-

moving phase. The Leiden algorithm guarantees that the identified

communities are both well separated (like the Louvain method) and

well connected. When communities have converged, it is guaran-

teed that all vertices are optimally assigned, and all communities

are subset optimal [33]. Shi et al. [28] also introduce an additional

refinement phase after the local-moving phase with the Louvain

method, which they observe minimizes bad clusters. It should how-

ever be noted that methods relying on modularity maximization

are known to suffer from resolution limit problem, which prevents

identification of communities of certain sizes [9, 33]. This can be

overcome by using an alternative quality function, such as the

Constant Potts Model (CPM) [32].

We now discuss a number of algorithmic improvements proposed

for the Louvain method, that also apply to the Leiden algorithm.

These include ordering of vertices based on importance [2], attempt-

ing local move only on likely vertices [22, 25, 28, 38], early pruning

of non-promising candidates [12, 25, 37, 38], moving vertices to a

random neighbor community [30], subnetwork refinement [33, 35],

multilevel refinement [8, 24, 28], threshold cycling [10], threshold

scaling [12, 17, 19], and early termination [10]. A number of par-

allelization techniques have been also attempted for the Louvain

method, that may also be applied to the Leiden algorithm. These

include using adaptive parallel thread assignment [7, 18, 19, 27],

parallelizing the costly first iteration [36], ordering vertices via

graph coloring [12], performing iterations asynchronously [23, 28],

and using sort-reduce instead of hashing [5].

A few open source implementations and software packages have

been developed for community detection using Leiden algorithm.

The original implementation of the Leiden algorithm [33], called

libleidenalg, is written in C++ and has a Python interface called

leidenalg. NetworKit [29] is a software package designed for an-

alyzing the structural aspects of graph data sets with billions of

connections. It utilizes a hybrid with C++ kernels and a Python

frontend. The package features a parallel implementation of the

Leiden algorithm by Nguyen [21] which uses global queues for

vertex pruning, and vertex and community locking for updating

communities. igraph [6] is a similar package, written in C, with

Python, R, andMathematica frontends. It is widely used in academic

research, and includes an implementation of the Leiden algorithm.

3 PRELIMINARIES
Consider an undirected graph𝐺 (𝑉 , 𝐸,𝑤), where 𝑉 represents the

set of vertices, 𝐸 the set of edges, and𝑤𝑖 𝑗 = 𝑤 𝑗𝑖 denotes the weight

associated with each edge. In the case of an unweighted graph,

we assume unit weight for each edge (𝑤𝑖 𝑗 = 1). Additionally, the

neighbors of a vertex 𝑖 are denoted as 𝐽𝑖 = { 𝑗 | (𝑖, 𝑗) ∈ 𝐸}, the
weighted degree of each vertex as 𝐾𝑖 =

∑
𝑗∈ 𝐽𝑖 𝑤𝑖 𝑗 , the total number

of vertices as 𝑁 = |𝑉 |, the total number of edges as𝑀 = |𝐸 |, and the
sum of edge weights in the undirected graph as𝑚 =

∑
𝑖, 𝑗∈𝑉 𝑤𝑖 𝑗/2.

3.1 Community detection
Disjoint community detection involves identifying a community

membership mapping, 𝐶 : 𝑉 → Γ, where each vertex 𝑖 ∈ 𝑉

is assigned a community-id 𝑐 from the set of community-ids Γ.
We denote the vertices of a community 𝑐 ∈ Γ as 𝑉𝑐 , and the

community that a vertex 𝑖 belongs to as 𝐶𝑖 . Further, we denote

the neighbors of vertex 𝑖 belonging to a community 𝑐 as 𝐽𝑖→𝑐 =

{ 𝑗 | 𝑗 ∈ 𝐽𝑖 𝑎𝑛𝑑 𝐶 𝑗 = 𝑐}, the sum of those edge weights as 𝐾𝑖→𝑐 =∑
𝑗∈ 𝐽𝑖→𝑐

𝑤𝑖 𝑗 , the sum of weights of edges within a community 𝑐

as 𝜎𝑐 =
∑
(𝑖, 𝑗 ) ∈𝐸 𝑎𝑛𝑑 𝐶𝑖=𝐶 𝑗=𝑐 𝑤𝑖 𝑗 , and the total edge weight of a

community 𝑐 as Σ𝑐 =
∑
(𝑖, 𝑗 ) ∈𝐸 𝑎𝑛𝑑 𝐶𝑖=𝑐 𝑤𝑖 𝑗 [16].

3.2 Modularity
Modularity serves as ametric for evaluating the quality of communi-

ties identified by heuristic-based community detection algorithms.

It is calculated as the difference between the fraction of edges within

communities and the expected fraction if edges were randomly dis-

tributed, yielding a range of [−0.5, 1], where higher values signify
superior results [4]. The modularity 𝑄 of identified communities

is determined using Equation 1, where 𝛿 represents the Kronecker

delta function (𝛿 (𝑥,𝑦) = 1 if 𝑥 = 𝑦, 0 otherwise). The delta mod-
ularity of moving a vertex 𝑖 from community 𝑑 to community 𝑐 ,

denoted as Δ𝑄𝑖:𝑑→𝑐 , can be calculated using Equation 2.

𝑄 =
1

2𝑚

∑︁
(𝑖, 𝑗 ) ∈𝐸

[
𝑤𝑖 𝑗 −

𝐾𝑖𝐾𝑗

2𝑚

]
𝛿 (𝐶𝑖 ,𝐶 𝑗 ) =

∑︁
𝑐∈Γ

[
𝜎𝑐

2𝑚
−
(
Σ𝑐
2𝑚

)
2

]
(1)

Δ𝑄𝑖:𝑑→𝑐 =
1

𝑚
(𝐾𝑖→𝑐 − 𝐾𝑖→𝑑 ) −

𝐾𝑖

2𝑚2
(𝐾𝑖 + Σ𝑐 − Σ𝑑 ) (2)

3.3 Louvain algorithm
The Louvain method [3] is an agglomerative algorithm that opti-

mizes modularity to identify high quality disjoint communities in

large networks. It has a time complexity of 𝑂 (𝐿 |𝐸 |), where 𝐿 is the

total number of iterations performed, and a space complexity of

𝑂 ( |𝑉 | + |𝐸 |) [15]. This algorithm comprises two phases: the local-
moving phase, in which each vertex 𝑖 greedily decides to join the

community of one of its neighbors 𝑗 ∈ 𝐽𝑖 to maximize the increase

in modularity Δ𝑄𝑖:𝐶𝑖→𝐶 𝑗
(using Equation 2), and the aggregation

phase, where all vertices in a community are merged into a single

super-vertex. These phases constitute one pass, which is repeated

until there is no further increase in modularity is observed [3, 16].

2
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3.4 Leiden algorithm
As mentioned earlier, the Louvain method, while effective, may

identify internally disconnected communities and arbitrarily badly

connected ones. Traag et al. [33] proposed the Leiden algorithm to

address these issues. The algorithm introduces a refinement phase
subsequent to the local-moving phase, wherein vertices within each

community undergo constrained merges to other sub-communities

within their community bounds (obtained from the local-moving

phase), starting from a singleton sub-community. This is performed

in a randomized manner, with the probability of joining a neigh-

boring sub-community within its community bound being pro-

portional to the delta-modularity of the move. This facilitates the

identification of sub-communities within those obtained from the

local-moving phase. Once communities have converged, it is guar-

anteed that all vertices are optimally assigned, and all communities

are subset optimal [33]. It has a time complexity of𝑂 (𝐿 |𝐸 |), where 𝐿
is the total number of iterations performed, and a space complexity

of 𝑂 ( |𝑉 | + |𝐸 |), similar to the Louvain method.

4 APPROACH
4.1 Optimizations for Leiden algorithm
We extend our optimization techniques, originally designed for

the Louvain method [26], to the Leiden algorithm. Specifically,

we implement an asynchronous version of the Leiden algorithm,

allowing threads to operate independently on distinct sections

of the graph. While this approach promotes faster convergence,

it also introduces variability into the final result [28]. To ensure

efficient computations, we allocate a dedicated hashtable per thread.

These hashtables serve two main purposes: they keep track of

the delta-modularity associated with moving to each community

connected to a vertex during the local-moving/refinement phases,

and they record the total edge weight between super-vertices in

the aggregation phase of the algorithm [26].

Our optimizations include utilizing OpenMP’s dynamic loop

scheduling, capping the number of iterations per pass at 20, em-

ploying a tolerance drop rate of 10 (threshold scaling), initiating

with a tolerance of 0.01, using an aggregation tolerance of 0.8 to

avoid performing aggregations of minimal utility, implementing

flag-based vertex pruning (instead of a queue-based one [21]), utiliz-

ing parallel prefix sum, and using preallocated CSRs for identifying

community vertices and storing the super-vertex graph during ag-

gregation. Additionally, we employ fast collision-free per-thread

hashtables, well separated in their memory addresses [26].

We attempt two approaches of the Leiden algorithm. One uses a

greedy refinement phase where vertices greedily optimize for delta-

modularity (within their community bounds), while the other uses a

randomized refinement phase (using fast xorshift32 random number

generators), where the likelihood of selection of a community to

move to (by a vertex) is proportional to its delta-modularity, as

originally proposed [33]. Our results, shown in Figures 1 and 2,

indicate the greedy approach performs the best on average, both in

terms of runtime and modularity. We also try medium and heavy

variants for both approaches, which disables threshold scaling and

aggregation tolerance (including threshold scaling) respectively,

However, we do not find them to perform well overall.
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Figure 1: Average relative runtime for the greedy and ran-
dom approaches (includingmedium and heavy variants) of
parallel Leiden algorithm for all graphs in the dataset.
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Figure 2: Average modularity for the greedy and random ap-
proaches (including medium and heavy variants) of parallel
Leiden algorithm for all graphs in the dataset.

4.2 Our optimized Leiden implementation
We now explain the implementation of GVE-Leiden in Algorithms 1,

2, 3, and 4. A flow diagram illustrating the first pass of GVE-Leiden

is shown in Figure 3.

4.2.1 Main step of GVE-Leiden. The main step of GVE-Leiden

(leiden() function) is outlined in Algorithm 1. It encompasses

initialization, the local-moving phase, the refinement phase, and the

aggregation phase. Here, the leiden() function accepts the input

graph 𝐺 , and returns the community membership 𝐶 of each vertex.

In line 2, we first initialize the community membership 𝐶 for each

vertex in 𝐺 , and perform passes of the Leiden algorithm, limited

to 𝑀𝐴𝑋_𝑃𝐴𝑆𝑆𝐸𝑆 (lines 3-15). During each pass, we initialize the

total edge weight of each vertex 𝐾 ′, the total edge weight of each
community Σ′, and the community membership 𝐶′ of each vertex

in the current graph 𝐺 ′ (line 4).
Subsequently, in line 5, we perform the local-moving phase by

invoking leidenMove(), which optimizes community assignments.

Following this, we set the community bound of each vertex (for the

3
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Input Graph

Weighted vector2d /
Weighted CSR with degree

Initial Community 
memberships

Local-moving

Pass 1

Community 
bounds

Counting & Renumbering

Pass 1

Renumbered community 
memberships

Aggregation

Pass 1

Community 
vertices

Plain CSR

Super-vertex Graph

Weighted Holey CSR
with degree

Initial Super-vertex 
community memberships

Local-moving

Pass 2

Refinement

Pass 1

Updated community 
memberships

Figure 3: A flow diagram illustrating the first pass of GVE-Leiden for either a Weighted 2D-vector-based or a Weighted CSR
with degree-based input graph. In the local-moving phase, vertex community memberships are updated to obtain community
bounds for the refinement phase, until the cumulative delta-modularity change across all vertices reaches a specified threshold.
Then, in the refinement phase, the each vertex starts in a singleton community, and community memberships are updated
similarly to the local-moving phase, with vertices changing communities within their bounds. These community memberships
are then counted and renumbered. In the aggregation phase, community vertices in a CSR are first obtained. This is used to
create the super-vertex graph stored in a Weighted Holey CSR with degree. Subsequent passes use a Weighted Holey CSR with
degree and initial community memberships for super-vertices from the previous pass as input.

refinement phase) as the community membership of each vertex

just obtained, and reset the membership of each vertex, and the total

weight of each community as singleton vertices in line 6. In line 7,

the refinement phase is carried out by invoking leidenRefine(),
which optimizes the community assignment of each vertex within

its community bound. If the local-moving phase converges in a

single iteration, global convergence is implied and we terminate

the passes (line 8). Further, if the drop in the number of communities

|Γ | is marginal, we halt the algorithm at the current pass (line 10).

If convergence has not been achieved, we proceed to renumber

communities (line 11), update top-level community memberships𝐶

with dendrogram lookup (line 12), perform the aggregation phase by

calling leidenAggregate(), and adjust the convergence threshold
for subsequent passes, i.e., perform threshold scaling (line 15). The

next pass commences in line 3. At the end of all passes, we perform

a final update of the top-level community memberships 𝐶 with

dendrogram lookup (line 16), and return the top-level community

membership 𝐶 of each vertex in 𝐺 .

4.2.2 Local-moving phase of GVE-Leiden. The pseuodocode for

the local-moving phase of GVE-Leiden is shown in Algorithm 2,

which iteratively moves vertices between communities to maximize

modularity. Here, the leidenMove() function takes the current

graph 𝐺 ′, community membership 𝐶′, total edge weight of each
vertex𝐾 ′ and each community Σ′, the iteration tolerance 𝜏 as input,

and returns the number of iterations performed 𝑙𝑖 .

Lines 3-15 represent the main loop of the local-moving phase.

In line 2, we first mark all vertices as unprocessed. Then, in line

4, we initialize the total delta-modularity per iteration Δ𝑄 . Next,
in lines 5-14, we iterate over unprocessed vertices in parallel. For

each unprocessed vertex 𝑖 , we mark 𝑖 as processed - vertex pruning

(line 6), scan communities connected to 𝑖 - excluding self (line 7),

determine the best community 𝑐∗ to move 𝑖 to (line 9), and calculate

the delta-modularity of moving 𝑖 to 𝑐∗ (line 10). We then update the

community membership of 𝑖 (lines 12-13) and mark its neighbors as

Algorithm 1 GVE-Leiden: Our parallel Leiden algorithm.

▷ 𝐺 : Input graph

▷ 𝐶: Community membership of each vertex

▷ 𝐺 ′: Input/super-vertex graph
▷ 𝐶′: Community membership of each vertex in 𝐺 ′

▷ 𝐾 ′: Total edge weight of each vertex

▷ Σ′: Total edge weight of each community

□ 𝐺 ′
𝐶′ : Community vertices (CSR)

□ 𝐻𝑡 : Collision-free per-thread hashtable

□ 𝑙𝑖 , 𝑙 𝑗 : Number of iterations performed (per pass)

□ 𝑙𝑝 : Number of passes performed

□ 𝜏 : Per iteration tolerance

□ 𝜏𝑎𝑔𝑔 : Aggregation tolerance

1: function leiden(𝐺)

2: Vertex membership: 𝐶 ← [0..|𝑉 |) ; 𝐺 ′ ← 𝐺

3: for all 𝑙𝑝 ∈ [0..MAX_PASSES) do
4: Σ′ ← 𝐾 ′ ← 𝑣𝑒𝑟𝑡𝑒𝑥𝑊𝑒𝑖𝑔ℎ𝑡𝑠 (𝐺 ′) ; 𝐶′ ← [0..|𝑉 ′ |)
5: 𝑙𝑖 ← 𝑙𝑒𝑖𝑑𝑒𝑛𝑀𝑜𝑣𝑒 (𝐺 ′,𝐶′, 𝐾 ′, Σ′, 𝜏) ⊲ Alg. 2

6: 𝐶′
𝐵
← 𝐶′ ; 𝐶′ ← [0..|𝑉 ′ |) ; Σ′ ← 𝐾 ′

7: 𝑙 𝑗 ← 𝑙𝑒𝑖𝑑𝑒𝑛𝑅𝑒 𝑓 𝑖𝑛𝑒 (𝐺 ′,𝐶′
𝐵
,𝐶′, 𝐾 ′, Σ′, 𝜏) ⊲ Alg. 3

8: if 𝑙𝑖 + 𝑙 𝑗 ≤ 1 then break ⊲ Globally converged?

9: |Γ |, |Γ𝑜𝑙𝑑 | ← Number of communities in 𝐶 , 𝐶′

10: if |Γ |/|Γ𝑜𝑙𝑑 | > 𝜏𝑎𝑔𝑔 then break ⊲ Low shrink?

11: 𝐶′ ← Renumber communities in 𝐶′

12: 𝐶 ← Lookup dendrogram using 𝐶 to 𝐶′

13: 𝐺 ′ ← 𝑙𝑒𝑖𝑑𝑒𝑛𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝐺 ′,𝐶′) ⊲ Alg. 4

14: 𝐶′ ←Map 𝐶′ to 𝐶′
𝐵

⊲ Use move-based membership

15: 𝜏 ← 𝜏/TOLERANCE_DROP ⊲ Threshold scaling

16: 𝐶 ← Lookup dendrogram using 𝐶 to 𝐶′

17: return 𝐶

4
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Algorithm 2 Local-moving phase of GVE-Leiden.

▷ 𝐺 ′: Input/super-vertex graph
▷ 𝐶′: Community membership of each vertex

▷ 𝐾 ′: Total edge weight of each vertex

▷ Σ′: Total edge weight of each community

□ 𝐺 ′
𝐶′ : Community vertices (CSR)

□ 𝐻𝑡 : Collision-free per-thread hashtable

□ 𝑙𝑖 : Number of iterations performed

□ 𝜏 : Per iteration tolerance

1: function leidenMove(𝐺 ′,𝐶′, 𝐾 ′, Σ′, 𝜏)
2: Mark all vertices in 𝐺 ′ as unprocessed
3: for all 𝑙𝑖 ∈ [0..MAX_ITERATIONS) do
4: Total delta-modularity per iteration: Δ𝑄 ← 0

5: for all unprocessed 𝑖 ∈ 𝑉 ′ in parallel do
6: Mark 𝑖 as processed (prune)

7: 𝐻𝑡 ← 𝑠𝑐𝑎𝑛𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 ({},𝐺 ′,𝐶′, 𝑖, 𝑓 𝑎𝑙𝑠𝑒)
8: ▷ Use 𝐻𝑡 , 𝐾

′, Σ′ to choose best community

9: 𝑐∗ ← Best community linked to 𝑖 in 𝐺 ′

10: 𝛿𝑄∗ ← Delta-modularity of moving 𝑖 to 𝑐∗

11: if 𝑐∗ = 𝐶′ [𝑖] then continue
12: Σ′ [𝐶′ [𝑖]]− = 𝐾 ′ [𝑖] ; Σ′ [𝑐∗]+ = 𝐾 ′ [𝑖] atomic
13: 𝐶′ [𝑖] ← 𝑐∗ ; Δ𝑄 ← Δ𝑄 + 𝛿𝑄∗
14: Mark neighbors of 𝑖 as unprocessed

15: if Δ𝑄 ≤ 𝜏 then break ⊲ Locally converged?

16: return 𝑙𝑖

17: function scanCommunities(𝐻𝑡 ,𝐺
′,𝐶′, 𝑖, 𝑠𝑒𝑙 𝑓 )

18: for all ( 𝑗,𝑤) ∈ 𝐺 ′ .𝑒𝑑𝑔𝑒𝑠 (𝑖) do
19: if not 𝑠𝑒𝑙 𝑓 and 𝑖 = 𝑗 then continue
20: 𝐻𝑡 [𝐶′ [ 𝑗]] ← 𝐻𝑡 [𝐶′ [ 𝑗]] +𝑤
21: return 𝐻𝑡

unprocessed (line 14) if a better community was found. In line 15,

we check if the local-moving phase has converged. If so, we break

out of the loop (or if𝑀𝐴𝑋_𝐼𝑇𝐸𝑅𝐴𝑇𝐼𝑂𝑁𝑆 is reached). At the end,

in line 16, we return the number of iterations performed 𝑙𝑖 .

4.2.3 Refinement phase of GVE-Leiden. The pseuodocode for the
refinement phase of GVE-Leiden is presented in Algorithm 2. This

is similar to the local-moving phase, but utilizes the obtained com-

munity membership of each vertex as a community bound, where
each vertex must choose to join the community of another vertex

within its community bound. At the start of the refinement phase,

the community membership of each vertex is reset, such that each

vertex belongs to its own community. Here, the leidenRefine()
function takes the current graph 𝐺 ′, the community bound of each

vertex𝐶′
𝐵
, the initial community membership𝐶′ of each vertex, the

total edge weight of each vertex 𝐾 ′, the initial total edge weight
of each community Σ′, and the current per iteration tolerance 𝜏 as

input, and returns the number of iterations performed 𝑙 𝑗 .

Lines 2-12 represent the core of the refinement phase. In the

refinement phase, we perform, what is called the constrained merge

procedure [33]. The idea here is to allow vertices, within each

community bound, to form sub-communities by only allowing

Algorithm 3 Refinement phase of GVE-Leiden.

▷ 𝐺 ′: Input/super-vertex graph
▷ 𝐶′: Community membership of each vertex

▷ 𝐾 ′: Total edge weight of each vertex

▷ Σ′: Total edge weight of each community

□ 𝐺 ′
𝐶′ : Community vertices (CSR)

□ 𝐻𝑡 : Collision-free per-thread hashtable

□ 𝜏 : Per iteration tolerance

1: function leidenRefine(𝐺 ′,𝐶′
𝐵
,𝐶′, 𝐾 ′, Σ′, 𝜏)

2: for all 𝑖 ∈ 𝑉 ′ in parallel do
3: 𝑐 ← 𝐶′ [𝑖]
4: if Σ′ [𝑐] ≠ 𝐾 ′ [𝑖] then continue
5: 𝐻𝑡 ← 𝑠𝑐𝑎𝑛𝐵𝑜𝑢𝑛𝑑𝑒𝑑 ({},𝐺 ′,𝐶′

𝐵
,𝐶′, 𝑖, 𝑓 𝑎𝑙𝑠𝑒)

6: ▷ Use 𝐻𝑡 , 𝐾
′, Σ′ to choose best community

7: 𝑐∗ ← Best community linked to 𝑖 in 𝐺 ′ within 𝐶′
𝐵

8: 𝛿𝑄∗ ← Delta-modularity of moving 𝑖 to 𝑐∗

9: if 𝑐∗ = 𝑐 then continue
10: if 𝑎𝑡𝑜𝑚𝑖𝑐𝐶𝐴𝑆 (Σ′ [𝑐], 𝐾 ′ [𝑖], 0) = 𝐾 ′ [𝑖] then
11: Σ′ [𝑐∗]+ = 𝐾 ′ [𝑖] atomically
12: 𝐶′ [𝑖] ← 𝑐∗

13: function scanBounded(𝐻𝑡 ,𝐺
′,𝐶′

𝐵
,𝐶′, 𝑖, 𝑠𝑒𝑙 𝑓 )

14: for all ( 𝑗,𝑤) ∈ 𝐺 ′ .𝑒𝑑𝑔𝑒𝑠 (𝑖) do
15: if not 𝑠𝑒𝑙 𝑓 and 𝑖 = 𝑗 then continue
16: if 𝐶′

𝐵
[𝑖] ≠ 𝐶′

𝐵
[ 𝑗] then continue

17: 𝐻𝑡 [𝐶′ [ 𝑗]] ← 𝐻𝑡 [𝐶′ [ 𝑗]] +𝑤
18: return 𝐻𝑡

19: function atomicCAS(𝑝𝑜𝑖𝑛𝑡𝑒𝑟, 𝑜𝑙𝑑, 𝑛𝑒𝑤 )

20: ▷ Perform the following atomically

21: if 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 = 𝑜𝑙𝑑 then 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ← 𝑛𝑒𝑤 ; return 𝑜𝑙𝑑
22: else return 𝑝𝑜𝑖𝑛𝑡𝑒𝑟

isolated vertices (i.e., vertices belonging to their own community)

to change their community membership. This procedure splits any

internally-disconnected communities identified during the local-

moving phase, and prevents the formation of any new disconnected

communities. Here, for each isolated vertex 𝑖 (line 4), we scan

communities connected to 𝑖 within the same community bound
- excluding self (line 5), evaluate the best community 𝑐∗ to move

𝑖 to (line 7), and compute the delta-modularity of moving 𝑖 to 𝑐∗
(line 8). If a better community was found, we attempt to update the

community membership of 𝑖 if it is still isolated (lines 10-12).

4.2.4 Aggregation phase of GVE-Leiden. Finally, we show the psue-

docode for the aggregation phase in Algorithm 4, where communi-

ties are aggregated into super-vertices in preparation for the next

pass of the Leiden algorithm (which operates on the super-vertex

graph). Here, the leidenAggregate() function takes the current

graph 𝐺 ′ and the community membership 𝐶′ as input, and returns

the super-vertex graph 𝐺 ′′.
In lines 3-4, the offsets array for the community vertices CSR

𝐺 ′
𝐶′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 is obtained. This is achieved by initially counting the

number of vertices in each community using countCommunityVert
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Algorithm 4 Aggregation phase of GVE-Leiden.

▷ 𝐺 ′: Input/super-vertex graph
▷ 𝐶′: Community membership of each vertex

□ 𝐺 ′
𝐶′ : Community vertices (CSR)

□ 𝐺 ′′: Super-vertex graph (weighted CSR)

□ ∗.𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠: Offsets array of a CSR graph

□ 𝐻𝑡 : Collision-free per-thread hashtable

1: function leidenAggregate(𝐺 ′,𝐶′)
2: ▷ Obtain vertices belonging to each community

3: 𝐺 ′
𝐶′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 ← 𝑐𝑜𝑢𝑛𝑡𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝐺 ′,𝐶′)

4: 𝐺 ′
𝐶′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 ← 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝑆𝑐𝑎𝑛(𝐺 ′

𝐶′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠)
5: for all 𝑖 ∈ 𝑉 ′ in parallel do
6: Add edge (𝐶′ [𝑖], 𝑖) to CSR 𝐺 ′

𝐶′ atomically

7: ▷ Obtain super-vertex graph

8: 𝐺 ′′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 ← 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒 (𝐺 ′,𝐶′)
9: 𝐺 ′′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 ← 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝑆𝑐𝑎𝑛(𝐺 ′′ .𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠)
10: |Γ | ← Number of communities in 𝐶′

11: for all 𝑐 ∈ [0, |Γ |) in parallel do
12: if degree of 𝑐 in 𝐺 ′

𝐶′ = 0 then continue

13: 𝐻𝑡 ← {}
14: for all 𝑖 ∈ 𝐺 ′

𝐶′ .𝑒𝑑𝑔𝑒𝑠 (𝑐) do
15: 𝐻𝑡 ← 𝑠𝑐𝑎𝑛𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 (𝐻,𝐺 ′,𝐶′, 𝑖, 𝑡𝑟𝑢𝑒)
16: for all (𝑑,𝑤) ∈ 𝐻𝑡 do
17: Add edge (𝑐, 𝑑,𝑤) to CSR 𝐺 ′′ atomically

18: return 𝐺 ′′

ices() and subsequently performing an exclusive scan on the array.

In lines 5-6, a parallel iteration over all vertices is performed to

atomically populate vertices belonging to each community into the

community graph CSR𝐺 ′
𝐶′ . Following this, the offsets array for the

super-vertex graph CSR is obtained by overestimating the degree

of each super-vertex. This involves calculating the total degree of

each community with communityTotalDegree() and performing

an exclusive scan on the array (lines 8-9). As a result, the super-

vertex graph CSR becomes holey, featuring gaps between the edges

and weights arrays of each super-vertex in the CSR.

Then, in lines 11-17, a parallel iteration over all communities

𝑐 ∈ [0, |Γ |) is performed. For each vertex 𝑖 belonging to community

𝑐 , all communities 𝑑 (with associated edge weight𝑤 ), linked to 𝑖 as

defined by scanCommunities() in Algorithm 2, are added to the

per-thread hashtable𝐻𝑡 . Once𝐻𝑡 is populated with all communities

(and associatedweights) linked to community 𝑐 , these are atomically

added as edges to super-vertex 𝑐 in the super-vertex graph 𝐺 ′′.
Finally, in line 18, we return the super-vertex graph 𝐺 ′′.

5 EVALUATION
5.1 Experimental Setup
5.1.1 System used. We employ a server equipped with two Intel

Xeon Gold 6226R processors, each featuring 16 cores running at

a clock speed of 2.90 GHz. Each core is equipped with a 1 MB L1

cache, a 16 MB L2 cache, and a 22 MB shared L3 cache. The system

is configured with 376 GB RAM and set up with CentOS Stream 8.

5.1.2 Configuration. We use 32-bit integers for vertex ids and 32-

bit float for edge weights but use 64-bit floats for computations

and hashtable values. We utilize 64 threads to match the number

of cores available on the system (unless specified otherwise). For

compilation, we use GCC 8.5 and OpenMP 4.5.

5.1.3 Dataset. The graphs used in our experiments are given in

Table 2. These are sourced from the SuiteSparse Matrix Collection

[14]. In the graphs, number of vertices vary from 3.07 to 214 million,

and number of edges vary from 25.4 million to 3.80 billion. We

ensure edges to be undirected and weighted with a default of 1.

Table 2: List of 13 graphs obtained SuiteSparse Matrix Col-
lection [14] (directed graphs are marked with ∗). Here, |𝑉 |
is the number of vertices, |𝐸 | is the number of edges (after
adding reverse edges), 𝐷𝑎𝑣𝑔 is the average degree, and |Γ | is
the number of communities obtained with GVE-Leiden.

Graph |𝑉 | |𝐸 | 𝐷𝑎𝑣𝑔 |Γ |
Web Graphs (LAW)

indochina-2004
∗

7.41M 341M 41.0 2.68K

uk-2002
∗

18.5M 567M 16.1 41.8K

arabic-2005
∗

22.7M 1.21B 28.2 2.92K

uk-2005
∗

39.5M 1.73B 23.7 18.2K

webbase-2001
∗

118M 1.89B 8.6 2.94M

it-2004
∗

41.3M 2.19B 27.9 4.05K

sk-2005
∗

50.6M 3.80B 38.5 2.67K

Social Networks (SNAP)
com-LiveJournal 4.00M 69.4M 17.4 3.09K

com-Orkut 3.07M 234M 76.2 36

Road Networks (DIMACS10)
asia_osm 12.0M 25.4M 2.1 2.70K

europe_osm 50.9M 108M 2.1 6.13K

Protein k-mer Graphs (GenBank)
kmer_A2a 171M 361M 2.1 21.1K

kmer_V1r 214M 465M 2.2 10.5K

5.2 Comparing Performance of GVE-Leiden
We now compare the performance of GVE-Leiden with the orig-

inal Leiden [33], igraph Leiden [6], and NetworKit Leiden [29].

For the original Leiden, we use a C++ program to initialize a

ModularityVertexPartition upon the loaded graph, and invoke

optimise_partition() to obtain the community membership of

each vertex in the graph. On graphs with a large number of edges,

such aswebbase-2001 and sk-2005, using ModularityVertexPartit
ion introduces disconnected communities due to issues with nu-

merical precision (i.e. the improvement of separating two discon-

nected parts may be positive, but due to the enormous weight,

this may effectively be near 0) [31]. For such graphs, we instead

use RBConfigurationVertexPartition, which uses unscaled im-

provements to modularity (i.e. they do not scale with the total

weight). For igraph Leiden, we use igraph_community_leiden()
with a resolution of 1/2|𝐸 |, a beta of 0.01, and request the algo-

rithm to run until convergence. For NetworKit Leiden, we write a

6
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 1

 10

 100

 1000

indochina-2
004

uk-2
002

ara
bic-2

005
uk-2

005

webbase
-2001

it-2
004

sk-
2005

com-Liv
eJo

urnal

com-Orku
t

asia
_osm

europ
e_osm

km
er_

A2a

km
er_

V1r

S
p
ee
d
u
p

Original Leiden igraph Leiden NetworKit Leiden

38
9 57

2

65
6

40
8 68

7

65
6

45
8

21
9

50
9

20
6 34

1

27
5

29
1

70

96 12
9

77

14
2

12
0

12
9

62

19
4

47

92 99 10
1

5.
6 8.

9

7.
9

6.
1

16
.9

11
.2

6.
1

2.
4

2.
4

6.
1 13

.0

10
.4

10
.2

(b) Speedup of GVE-Leiden (logarithmic scale) with respect to Original Leiden, igraph Leiden, NetworKit Leiden.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

indochina-2
004

uk-2
002

ara
bic-2

005
uk-2

005

webbase
-2001

it-2
004

sk-
2005

com-Liv
eJo

urnal

com-Orku
t

asia
_osm

europ
e_osm

km
er_

A2a

km
er_

V1r

M
o
d
u
la
ri
ty

Original Leiden igraph Leiden NetworKit Leiden GVE-Leiden

0.
93

0 0.
99

1

0.
99

0

0.
98

4

0.
98

5

0.
97

8

0.
97

9

0.
75

3

0.
67

6

0.
99

9

0.
99

9

0.
97

4

0.
94

9

0.
93

0 0.
99

1

0.
99

0

0.
98

4

0.
98

5

0.
97

8

0.
97

8

0.
74

5

0.
67

9

0.
99

9

0.
99

9

0.
97

4

0.
94

9

0.
89

6

0.
91

5

0.
91

9

0.
90

4

0.
89

2

0.
90

7

0.
91

3

0.
64

0

0.
59

5

0.
52

4

0.
52

5

0.
54

0

0.
52

1

0.
94

9

0.
99

0

0.
99

0

0.
98

2

0.
98

3

0.
97

8

0.
97

5

0.
71

8

0.
65

7

0.
99

9

0.
99

9

0.
97

3

0.
94

6
(c) Modularity of communities obtained with Original Leiden, igraph Leiden, NetworKit Leiden, and GVE-Leiden.
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Figure 4: Runtime in seconds (log-scale), speedup (log-scale), modularity, and fraction of disconnected communities (log-scale)
with Original Leiden, igraph Leiden, NetworKit Leiden, and GVE-Leiden for each graph in the dataset.
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(c) Modularity of communities obtained with GVE-Louvain and GVE-Leiden.
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Figure 5: Runtime in seconds (log-scale), speedup, modularity, and fraction of disconnected communities (log-scale) with
GVE-Louvain and GVE-Leiden for each graph in the dataset.
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Python script to call ParallelLeiden(), while limiting the num-

ber of passes to 10. For each graph, we measure the runtime of each

implementation and the modularity of the communities obtained,

five times, for averaging. We also save the community membership

vector to a file and later count the number of disconnected compo-

nents using Algorithm 5. In all instances, we use modularity as the

quality function to optimize for.

Figure 4(a) shows the runtimes of the original Leiden, igraph

Leiden, NetworKit Leiden, and GVE-Leiden on each graph in the

dataset. On the sk-2005 graph, GVE-Leiden finds communities in 9.4

seconds, and thus achieve a processing rate of 403 million edges/s.

Figure 4(b) shows the speedup of GVE-Leiden with respect to each

implementation mentioned above. GVE-Leiden is on average 436×,
104×, and 8.2× faster than the original Leiden, igraph Leiden, and

NetworKit Leiden respectively. Figure 4(c) shows the modularity

of communities obtained with each implementation. GVE-Leiden

on average obtains 0.3% lower modularity than the original Lei-

den and igraph Leiden, and 25% higher modularity than NetworKit

Leiden (especially on road networks and protein k-mer graphs).

Finally, Figure 4(d) shows the fraction of disconnected communi-

ties obtained with each implementation. Here, the absence of bars

indicates the absence of disconnected communities. Communities

identified by NetworKit Leiden have on average 1.5 × 10−2 frac-
tion of disconnected communities, while none of the communities

identified by the original Leiden, igraph Leiden, and GVE-Leiden

are internally-disconnected. As the Leiden algorithm guarantees

the absence of disconnected communities [33], those observed with

NetworKit Leiden are likely due to implementation issues.

Next, we compare the performance of GVE-Leiden with GVE-

Louvain [26], our parallel implementation of the Louvain method.

As above, for each graph in the dataset, we run both algorithms

5 times to minimize measurement noise. Figure 5(a) shows the

runtimes of GVE-Louvain and GVE-Leiden on each graph in the

dataset. Figure 5(b) shows the speedup of GVE-Leiden with re-

spect to GVE-Louvain. GVE-Leiden is on average 13% slower than

GVE-Louvain. This increase in computation time is a trade-off for

identifying communities that are not internally-disconnected, as

given below. Figure 5(c) shows the modularity of communities

obtained with GVE-Louvain and GVE-Leiden. GVE-Leiden on aver-

age obtains the same modularity as GVE-Louvain. Finally, Figure

5(d) shows the fraction of internally-disconnected communities

obtained. Communities identified by GVE-Louvain on average have

4.0% disconnected communities, while GVE-Leiden has none.

5.3 Analyzing Performance of GVE-Leiden
We now analyze the performance of GVE-Leiden. The phase-wise

and pass-wise split of GVE-Leiden is shown in Figures 6(a) and

6(b) respectively. Figure 6(a) reveals that GVE-Leiden devotes a

significant portion of its runtime to the local-moving and refine-

ment phases onweb graphs, road networks, and protein k-mer graphs,
while it dedicates majority of its runtime in the aggregation phase

on social networks. The pass-wise split, shown in Figure 6(b), indi-

cates that the first pass is time-intensive for high-degree graphs

(web graphs and social networks), while subsequent passes take

precedence in execution time on low-degree graphs (road networks
and protein k-mer graphs).

On average, GVE-Leiden spends 46% of its runtime in the local-

moving phase, 19% in the refinement phase, 20% in the aggregation

phase, and 15% in other steps (initialization, renumbering commu-

nities, dendrogram lookup, and resetting communities). Further,

63% of the runtime is consumed by the first pass of the algorithm,

which is computationally demanding due to the size of the orig-

inal graph (subsequent passes operate on super-vertex graphs).

We also observe that graphs with lower average degree (road net-
works and protein k-mer graphs) and those with poor community

structure (e.g., com-LiveJournal and com-Orkut) exhibit a higher
runtime/|𝐸 | factor, as shown in Figure 7.

5.4 Strong Scaling of GVE-Leiden
Finally, we assess the strong scaling performance of GVE-Leiden.

In this analysis, we vary the number of threads from 1 to 64 in

multiples of 2 for each input graph, and measure the total time

taken for GVE-Leiden to identify communities, encompassing its

phase splits (local-moving, refinement, aggregation, and others),

repeated five times for averaging. The results are shown in Figure

8. With 32 threads, GVE-Leiden achieves an average speedup of

11.4× compared to a single-threaded execution, indicating a perfor-

mance increase of 1.6× for every doubling of threads. Nevertheless,

scalability is restricted due to the sequential nature of steps/phases

in the algorithm. At 64 threads, GVE-Leiden is affected by NUMA

effects, resulting in a speedup of only 16.0×.

6 CONCLUSION
In conclusion, this study addresses the design of the most optimized

multicore implementation of the Leiden algorithm [33], to the best

of our knowledge. On a system equipped with two 16-core Intel

Xeon Gold 6226R processors, our implementation of the Leiden

algorithm, referred to as GVE-Leiden, attains a processing rate

of 403𝑀 edges per second on a 3.8𝐵 edge graph. It surpasses the

original Leiden implementation, igraph Leiden, and NetworKit Lei-

den by factors of 436×, 104×, and 8.2× respectively. GVE-Leiden

identifies communities of equivalent quality to the first two im-

plementations, and 25% higher quality than NetworKit. Doubling

the number of threads results in an average performance scaling

of 1.6× for GVE-Leiden. In comparison to GVE-Louvain (our par-

allel Louvain implementation) [26], the original Leiden, igraph

Leiden, and NetworKit Leiden, GVE-Leiden completely eliminates

internally-disconnected communities.

In a previous version of this report, we implemented the refine-

ment phase of the Leiden algorithm utilizing a constrained move
procedure, which does not guarantee the absence of disconnected

communities. In this current version of the report, we have tran-

sitioned to employing the constrained merge procedure alongside
atomics to ensure no internally-disconnected communities. We also

addressed issues in measuring disconnected communities for the

original Leiden and igraph Leiden, which arose due to the number

of vertices in a graph varying between the Matrix Market and the

Edgelist formats (which does not have isolated vertices), and used

the RBConfigurationVertexPartition with the original Leiden

for large graphs (i.e., webbase-2001 and sk-2005).
9
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A APPENDIX
A.1 Community labels of super-vertices
We also attempt two different variations of Parallel Leiden algo-

rithm, one where the community labels of super-vertices (upon

aggregation) is based on the local-moving phase (move-based), and
the other where the community labels of super-vertices is based on

the refinement phase (refine-based). Our observations indicate that
both approaches have roughly the same runtime and modularity on

average, as indicated by Figures 9 and 10. Accordingly, we stick to

the move-based approach, which is the one recommended by Traag

et al. [33]. However, refine-based approach may be more suitable

for the design of dynamic Leiden algorithm (for dynamic graphs).
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based communities for super-vertices upon aggregation with
parallel Leiden algorithm, for all graphs in the dataset.
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parallel Leiden algorithm, for all graphs in the dataset.

A.2 Finding disconnected communities
We now outline our parallel algorithm for identifying disconnected

communities, given the original graph and the community mem-

bership of each vertex. The core concept involves determining the

size of each community, selecting a vertex from each community,

traversing within the community from that vertex (avoiding ad-

jacent communities), and marking a community as disconnected

if all its vertices cannot be reached. We explore four distinct ap-

proaches, differing in the use of parallel Depth-First Search (DFS)

or Breadth-First Search (BFS) and whether per-thread or shared

visited flags are employed. If shared visited flags are used, each

thread scans all vertices but processes only its assigned community

based on the community ID. Our findings suggest that utilizing

parallel BFS traversal with a shared flag vector yields the fastest

results. As this is not a heuristic algorithm, all approaches produce

identical outcomes. Algorithm 5 illustrates the pseudocode for this

approach. Here, the disconnectedCommunities() function takes

the input graph 𝐺 and the community membership 𝐶 as input, and

it returns the disconnected flag 𝐷 for each community.

Algorithm 5 Finding disconnected communities in parallel.

▷ 𝐺 : Input graph

▷ 𝐶: Community membership of each vertex

□ 𝐷 : Disconnected flag for each community

□ 𝑆 : Size of each community

□ 𝑓𝑖 𝑓 : Perform BFS to vertex 𝑗 if condition satisfied

□ 𝑓𝑑𝑜 : Perform operation after each vertex is visited

□ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 : Number of vertices reachable from 𝑖 to 𝑖’s community

□ 𝑤𝑜𝑟𝑘𝑡 : Work-list of current thread

1: function disconnectedCommunities(𝐺,𝐶)

2: 𝐷 ← {} ; 𝑣𝑖𝑠 ← {}
3: 𝑆 ← 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑆𝑖𝑧𝑒𝑠 (𝐺,𝐶)
4: for all threads in parallel do
5: for all 𝑖 ∈ 𝑉 do
6: 𝑐 ← 𝐶 [𝑖] ; 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← 0

7: ▷ Skip if community 𝑐 is empty, or

8: ▷ does not belong to work-list of current thread.

9: if 𝑆 [𝑐] = 0 or 𝑐 ∉ 𝑤𝑜𝑟𝑘𝑡 then continue
10: 𝑓𝑖 𝑓 ← ( 𝑗) =⇒ 𝐶 [ 𝑗] = 𝑐
11: 𝑓𝑑𝑜 ← ( 𝑗) =⇒ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 + 1
12: 𝑏𝑓 𝑠𝑉 𝑖𝑠𝑖𝑡𝐹𝑜𝑟𝐸𝑎𝑐ℎ(𝑣𝑖𝑠,𝐺, 𝑖, 𝑓𝑖 𝑓 , 𝑓𝑑𝑜 )
13: if 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 < 𝑆 [𝑐] then 𝐷 [𝑐] ← 1

14: 𝑆 [𝑐] ← 0

15: return 𝐷

We now explain Algorithm 5 in detail. First, in line 2, the dis-

connected community flag 𝐷 , and the visited vertices flags 𝑣𝑖𝑠 are

initialized. In line 3, the size of each community 𝑆 is obtained in

parallel using the communitySizes() function. Subsequently, each
thread processes each vertex 𝑖 in the graph𝐺 in parallel (lines 5-14).

In line 6, the community membership of 𝑖 (𝑐) is determined, and the

count of vertices reached from 𝑖 is initialized to 0. If community 𝑐 is

empty or not in the work-list of the current thread𝑤𝑜𝑟𝑘𝑡 , the thread

proceeds to the next iteration (line 9). If however the community 𝑐 is

non-empty and in the work-list of the current thread𝑤𝑜𝑟𝑘𝑡 , BFS is

performed from vertex 𝑖 to explore vertices in the same community,

using lambda functions 𝑓𝑖 𝑓 to conditionally perform BFS to vertex 𝑗

if it belongs to the same community, and 𝑓𝑑𝑜 to update the count of

𝑟𝑒𝑎𝑐ℎ𝑒𝑑 vertices after each vertex is visited during BFS (line 12). If

12
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the number of vertices 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 during BFS is less than the commu-

nity size 𝑆 [𝑐], the community 𝑐 is marked as disconnected (line 13).

Finally, the size of the community 𝑆 [𝑐] is updated to 0, indicating

that the community has been processed (line 14). Note that the

work-list𝑤𝑜𝑟𝑘𝑡 for each thread with ID 𝑡 , is defined as a set con-

taining communities [𝑡 𝜒, 𝑡 (𝜒 +1)) ∪ [𝑇 𝜒 +𝑡 𝜒, 𝑇 𝜒 +𝑡 (𝜒 +1)) ∪ . . .,
where 𝜒 is the chunk size, and 𝑇 is the number of threads. We use

a chunk size of 𝜒 = 1024.

A.3 Indirect Comparison with State-of-the-art
Leiden Implementations

Finally, we conduct an indirect comparison of the performance of

our multicore implementation of the Leiden algorithm with other

similar state-of-the-art implementations, as listed in Table 1. Hu

et al. [13] introduce ParLeiden, a parallel Leiden implementation

for distributed environments, which uses thread locks and efficient

buffers, to resolve community joining conflicts and reduce commu-

nication overheads. They refer to their single node version of Par-

Leiden as ParLeiden-S, and their distributed version as ParLeiden-D.

On a cluster with 8 nodes, with each node being equipped with a

48 core CPU, Hu et al. observe a speedup of 12.3×, 9.9×, and 1.32×
for ParLeiden-S, ParLeiden-D, and a baseline Leiden implemented

on KatanaGraph, on the com-LiveJournal graph, with respect to

original Leiden [33] (refer to Table 2 in their paper [13]). In con-

trast, on the same graph, we observe a speedup of 219× relative

to original Leiden. Consequently, our Leiden implementation out-

performs ParLeiden-S, ParLeiden-D, and KatanaGraph Leiden by

approximately 18×, 22×, and 166× respectively.
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