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We propose an interferometric method to probe pair correlations in a gas of spin-1/2 fermions. The method
consists of a Ramsey sequence where both spin states of the Fermi gas are set in a superposition of a state at rest
and a state with a large recoil velocity. The two-body density matrix is extracted via the fluctuations of the trans-
ferred fraction to the recoiled state. In the pair-condensed phase, the off-diagonal long-range order is directly
reflected in the asymptotic behavior of the interferometric signal for long interrogation times. The method also
allows to probe the spatial structure of the condensed pairs: the interferometric signal is an oscillating function
of the interrogation time in the Bardeen-Cooper-Schrieffer regime; it becomes an overdamped function in the
molecular Bose-Einstein condensate regime.

Introduction: At low temperatures, the behavior of quan-
tum matter is often marked by the emergence of coherent or-
dered phases displaying remarkable macroscopic properties.
Such condensed phases appear in various contexts, such as
solid-state physics [1], nuclear or neutron matter [2], and
ultracold atomic gases [3, 4]. They are characterized by
long-range coherence carried by a macroscopically occupied
wavefunction. In the simple case of the weakly interacting
Bose gas, this order shows up as off-diagonal long-range or-
der (ODLRO) in the one-body density matrix ρ1(r, r

′) =
⟨Ψ̂†(r)Ψ̂(r′)⟩ (where Ψ̂ is the Bose field operator), such
that lim|r−r′|→∞ ρ1(r, r

′) = n0 is the density of the Bose-
Einstein condensate (BEC). The ODLRO in a Bose gas has
been measured for instance via the single-particle momentum
distribution [5, 6], which for a translationally invariant system
is the Fourier transform of ρ1.

In spin-1/2 Fermi systems, the one-body density matrix
cannot exhibit ODLRO, owing to Pauli’s exclusion princi-
ple, and the momentum distribution remains smooth across
the phase transition [7]. Instead, a macroscopically occu-
pied wavefunction signalling pair condensation can only ap-
pear in the two-body (pair) density matrix ρ2(r1, r2, r′1, r

′
2) =〈

Ψ̂†
↑(r1)Ψ̂

†
↓(r2)Ψ̂↓(r

′
2)Ψ̂↑(r

′
1)
〉

(where Ψ̂σ is the Fermi field
operator for the fermion of spin σ) [3, 8]. Measurements
of ODLRO are for this reason considerably more challeng-
ing in Fermi systems. Rapid ramps of the magnetic field
have been used to project the pair condensate onto a BEC
of molecules [9–12]; however, the measured molecular frac-
tion is notoriously difficult to interpret theoretically, due to
the various two- and many-body time scales involved in the
problem [13]. Measurements of pair correlations in time-
of-flight images have been proposed as a way to access
ODLRO [14, 15]; an analogous protocol has been imple-
mented, albeit on a small Fermi system [16].

Interferometric protocols offer an alternative route to mea-
sure the coherence properties of quantum gases. Cold-atom
experiments are particularly well suited for matter-wave inter-
ferometry, due to the possibilities of creating a coherent copy

of the gas by manipulating the internal or external state of the
atoms [17]. In Bose gases, direct real-space measurements of
ρ1(r, r

′) were performed using Ramsey sequences based on
interferometry of Bragg-diffracted gases [18–21]. In Fermi
gases, matter-wave interference between small atom numbers
extracted by spatially resolved Bragg pulses was proposed as
a way to measure ρ2 [22].

Inspired by such techniques, we propose a protocol to mea-
sure ρ2 from the fluctuations of a Ramsey-Bragg interferom-
eter. A copy of the spin-1/2 Fermi gas is created by imparting
a large velocity to a fraction of the atoms. Interactions are
turned off, and the copy travels ballistically, thereby stretch-
ing or translating the pairs of fermions by a distance propor-
tional to the interrogation time. When the interferometric se-
quence is closed by the second pulse, the stretched and trans-
lated pairs interfere with those at rest, and a measurement of
the correlations between the number of spin ↑ and spin ↓ re-
coiling atoms reveal the most important features of ρ2. In the
pair-condensed phase, the interferometric signal carries infor-
mation on the magnitude of the fermionic condensate and on
the wavefunction of the fermionic pairs.

Interferometric protocol: In Fig. 1 we show a sketch of the
proposed measurement protocol. We consider a homogeneous
spin-1/2 Fermi gas in a cubic box of size L [23]. At t = 0,
a first Bragg pulse is shined on the gas for a duration tpulse.
We place ourselves in the regime of a short and intense pulse,
designed to be resonant with the whole gas and to create a
moving copy of the cloud whose momentum distribution does
not overlap with the original one (see Fig. 1). Both spin states
are in a superposition of two components: a copy with no av-
erage momentum, and a copy with a large average momentum
qrec. Assuming that the gas initially has zero mean velocity,
the energy transferred by the pulse is adjusted to ℏω = ϵqrec

(where ϵk = ℏ2k2/2m is the kinetic energy andm is the mass
of the fermion), in resonance with the atoms at rest. Since the
atoms traveling at a velocity ℏk/m ̸= 0 experience a detun-
ing ℏω − ϵk+qrec

+ ϵk = −ℏ2qrec · k/m, the duration of the
pulse tpulse should be short enough so that this detuning re-
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mains negligible compared to the Fourier broadening over the
typical range δk of the momentum distribution of the gas:

ℏqrecδk
m

tpulse ≪ 1. (1)

Note that the pulse duration should also be long enough i.e.
tpulse ≫ m/ℏq2rec such that second-order transitions to states
of momenta k+2qrec or k−qrec remain negligible. To eval-
uate the condition (1), let us consider the case of contact in-
teractions between ↑ and ↓ fermions, characterized by an s-
wave scattering length a. On the Bardeen-Cooper-Schrieffer
side (BCS, a < 0), one can estimate δk ≈ ρ1/3, where ρ
is the total density, and on the molecular Bose-Einstein con-
densate side (BEC, a > 0) δk ≈ 1/a. In this limit, the
broadening of the momentum distribution implies that fulfill-
ing 1/qrec ≪ ℏqrectpulse/m ≪ 1/δk will no longer be possi-
ble at fixed qrec.

In the intense-pulse regime of condition (1), the gas can be
approximated by a two-level system undergoing Rabi oscilla-
tions between a state at rest (violet distribution in the upper
sketches of Fig. 1) and a recoiling one (green distribution).
The evolution during the first Bragg pulse corresponds to a ro-
tation of angle θ = ΩRtpulse (where ΩR is the Rabi frequency
of the Bragg pulse) on the Bloch sphere of this effective two-
level system:(

âk,σ
âk+qrec,σ

)
(tpulse) = S (θ, 0)

(
âk,σ

âk+qrec,σ

)
(0). (2)

Here âk,σ annihilates a fermion of wavevector k and spin σ
and the matrix S (θ, φ) =(

cos(θ/2) −i sin(θ/2)eiφ
−i sin(θ/2)e−iφ cos(θ/2)

)
describes a rotation of

angle θ around the vector (cosφ, − sinφ, 0) of the equato-
rial plane of the Bloch sphere.

After this first pulse, the recoiling and non-recoiling com-
ponents evolve ballistically during an interrogation time τ . In
contrast to the Ramsey-Bragg interferometry of weakly inter-
acting gases [18, 20], it is crucial that interactions are turned
off in strongly interacting gases before the first Bragg pulse.
This would mitigate both fast many-body evolution during the
interrogation sequence, and the high collisional density that
would prevent the diffracted component from flying freely
[24]. This could be achieved either with a fast Feshbach field
ramp or with fast Raman pulses [16, 25]. The recoiling com-
ponent travels a distance xτ ≡ ℏτqrec/m, at a velocity suffi-
ciently large to exit the trapping potential (in the direction of
propagation). This means that only a fraction (1 − xτ/L) of

the cloud remains within the box volume after the interroga-
tion time (assuming qrec is aligned with an axis of the cubic
trap) and gives an upper limit τ < mL/ℏqrec to the interroga-
tion time.

After the interrogation time, the dephasing between the re-
coiling and non-recoiling components is φk(τ) = ((ϵk+qrec

−
ϵk)/ℏ − ω)τ relatively to the Bragg transition, and a second
Bragg pulse recombines the two components:(

âk,σ
âk+qrec,σ

)
(τ+2tpulse) = S (θ, ωτ)

(
âk,σ

âk+qrec,σ

)
(τ+tpulse)

= S (θ, φk(τ))S (θ, 0)

(
âk

âk+qrec

)
(0). (3)

Eq. (3) thus describes a Ramsey sequence with a dephasing
φk(τ) that depends on the initial momentum of the atoms1.
This makes the interferometer sensitive to the spatial struc-
ture of the gas, where short interrogation times allow to probe
short-range correlations, and long times probing long-range
correlations. Since the number of recoiling atoms is zero
before the measurement sequence, the terms proportional to
âk+qrec

(0) can be omitted. For the operator describing the
recoiling atoms at tf = τ + 2tpulse this gives

âk+qrec,σ(tf) → −i
sin θ

2
e−iϵk+qrecτ

(
1 + eiφk(τ)

)
âk(0)

(4)
After the Ramsey sequence, these recoiling atoms are spa-

tially separated from the atoms at rest by a time of flight ttof.
An absorption image is taken to measure their number in each
spin component:

N̂rec,σ ≡
∑
k∈B

â†k+qrec,σ
(tf)âk+qrec,σ(tf)

=

∫
Ψ̂†

rec,σ(r)Ψ̂rec,σ(r)dr. (5)

The summation over k is here restricted to the recoiling atoms,
that is, to a neighborhood B of qrec of typical size δk, small
compared to qrec. Using Eq. (4), we have expressed N̂rec,σ
in terms of a field operator which superimposes atoms from
different initial positions in the gas:

Ψ̂rec,σ(r) =
sin θ

2

(
Ψ̂σ(r) + Ψ̂σ(r− xτ )

)
, (6)

where Ψ̂σ(r) = (1/
√
L3)

∑
k∈B e−ik·râk,σ(0) is the field op-

erator at t = 0. Consequently, pairs of recoiling atoms are
described by the pairing field Ψ̂rec,↓Ψ̂rec,↑, which yields the
superposition depicted in Fig. 1:

1 Note that the dephasing φk(2tpulse) accumulated during the two Bragg pulses is negligible by virtue of Eq. (1).
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FIG. 1. (a) Sketch of the Ramsey-Bragg interferometer applied to a pair of fermions. The blue (resp. red) circles represent spin ↑ (resp.
↓) atoms. The Bragg pulses create superpositions of atoms at rest and moving with a recoil momentum qrec. After the time of flight, the
component at rest and the recoiling one are separated by xtof . For clarity, the finite pulse duration tpulse is not shown.

Ψ̂rec,↓(r2)Ψ̂rec,↑(r1) =
sin2 θ

4

[
Ψ̂↓(r2)Ψ̂↑(r1) + Ψ̂↓(r2)Ψ̂↑(r1 − xτ ) + Ψ̂↓(r2 − xτ )Ψ̂↑(r1) + Ψ̂↓(r2 − xτ )Ψ̂↑(r1 − xτ )

]
.

(7)

The four terms here represent respectively a pair at rest, a pair
where the ↑ or the ↓ fermion has been stretched by xτ , and a
pair globally translated by xτ .

Measuring long-range pair ordering: As in Bose gases, the
measurements of N̂rec give access to one-body correlations:

N̂rec,σ =
sin2 θ

2

[
N̂σ + ρ̂1,σ(xτ )

]
. (8)

where ρ̂1,σ(xτ ) =
∫
Ψ̂†

σ(r)Ψ̂σ(r − xτ )dr is the one-body
correlation operator and N̂σ is the total number of atoms of
spin σ; we assumed that ρ̂1,σ is symmetric under parity, i.e.
ρ̂1,σ(−xτ ) = ρ̂1,σ(xτ ).

In Fermi gases, ρ2 is more interesting since it is the observ-
able that exhibits long-range (pair) order. To measure ρ2, we
propose to record the correlations of the numbers of spin ↑
and ↓ recoiling atoms:

S(xτ ) =
〈
N̂rec,↑(xτ )N̂rec,↓(xτ )

〉
−
〈
N̂rec,↑(xτ )

〉〈
N̂rec,↓(xτ )

〉
(9)

Such interferometric signal is constructed by averaging indi-
vidual realizations of Nrec,↑ and Nrec,↓. Using Eq. (7) to ex-
press the quartic part of S, we recognize the following con-

tractions of ρ2:

ftr(xτ ) =

∫
ρ2(r1 − xτ , r2 − xτ ; r1, r2)dr1dr2 (10)

fstr,↑(xτ ) =

∫
ρ2(r1 − xτ , r2; r1, r2)dr1dr2 (11)

fstr,↓(xτ ) =

∫
ρ2(r1, r2 − xτ ; r1, r2)dr1dr2 (12)

fstr,↑↓(xτ ) =

∫
ρ2(r1 − xτ , r2; r1, r2 − xτ )dr1dr2. (13)

These functions have a simple interpretation: ftr measures the
overlap between the translated and the original pair of Eq. (7),
fstr,σ the overlap between the pair stretched by the spin σ
fermion and the original one, and fstr,↑↓ the overlap between
the two pairs stretched by the fermion of the opposite spin.
Using Eq. (8) for the quadratic part of S, we finally obtain:

S =
sin4 θ

4

[
fstr,↑ + fstr,↓ +

fstr,↑↓ + ftr
2

−ρ1,↑ρ1,↓ −N↑ρ1,↓ −N↓ρ1,↑] , (14)

where ρ1,σ ≡ ⟨ρ̂1,σ(xτ )⟩. The signal S is maximum for
θ = π/2; we thus set θ at this value from now on. When the
gas is in the normal phase, the functions fstr, ftr and ρ1 van-
ish at large distances. On the contrary, when the gas is pair
condensed, the contribution of the translated pairs ftr does
not vanish when xτ → +∞. In this case, ρ2 has a macro-
scopic eigenvalueN0 associated to a wavefunction ϕ0 and be-
haves at large distances (that is, when the pair center of mass
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R = |r1+r2|/2 and R′ = |r′1+r′2|/2 are infinitely separated)
as

lim
|R−R′|→+∞

ρ2(r1, r2, r
′
1, r

′
2) = N0ϕ

∗
0(r1, r2)ϕ0(r

′
1, r

′
2).

(15)
This implies that lim

xτ→+∞
ftr(xτ ) = N0, such that

S∞ ≡ lim
xτ→+∞

S(xτ ) =
N0

8
. (16)

We have assumed here that fluctuations of the total atom num-
bers, if there are any, are uncorrelated: ⟨N̂↑N̂↓⟩ = N↑N↓.
Eq. (16) provides a direct measurement of the magnitude N0

of the long-range order, a quantity that cannot be measured
using the rapid ramp technique [9, 10]. Note that N0 cannot
be interpreted as the number of condensed pairs away from
the BEC limit2.

The contribution of the stretched pairs to S through fstr,σ
and fstr,↑↓, although negligible at distances greater than the
pair size ξpair, carries essential information on the condensate
wavefunction ϕ0. It is possible to isolate the contribution of
fstr,σ using a spin-selective Bragg pulse, such that the dis-
placements xτ,↑ and xτ,↓ of the two spins no longer coincide.
For xτ,↓ = 0 and xτ,↑ ̸= 0, Eq. (14) becomes

S(xτ ↑) =
fstr,↑(xτ ↑)−N↓ρ1,↑(xτ ↑)

2
. (17)

This result can be used to reveal the momentum structure of
ϕ0. Let us suppose that the system is isotropic and transla-
tionally invariant. If the pairs are tightly bound (as in the BEC
limit), then ϕ0(r1, r2) decreases rapidly and almost monoton-
ically with x = |r1−r2|, and so does fstr,σ; the corresponding
behavior for S is schematically depicted in Fig. 2(a). Con-
versely, if pairing occurs at a non-zero wavenumber, as in the
BCS limit, ϕ0 oscillates as a function of x at a wavelength
corresponding to the inverse of that wavenumber, and so does
fstr,σ (see Figs. 2(b)-(c)).

BCS mean-field approximation: To obtain a more explicit
expression for S, and illustrate its behavior when xτ ≈ ξpair,
we now use the BCS mean-field approximation and assume
that the gas is balanced, such that N↑ = N↓, fstr,↑ = fstr,↓
and ρ1,↑ = ρ1,↓. The total density ρ = ρ↑ + ρ↓ defines the
Fermi wavenumber kF = (3π2ρ)1/3, and in the BCS state ρ2
factorizes into

ρ2(r1, r2, r
′
1, r

′
2) = N0ϕ

∗
0(r1, r2)ϕ0(r

′
1, r

′
2)

+ ρ1(r1, r
′
1)ρ1(r2, r

′
2). (18)

2 The pair-condensate annihilation operator b̂0 =∫
ϕ∗
0(r1, r2)Ψ̂↓(r1)Ψ̂↑(r2)dr1dr2 is not bosonic, as

〈[
b̂0, b̂

†
0

]〉
≤ 1

(the inequality is saturated only in the BEC limit). Therefore,
N0 =

〈
b̂†0b̂0

〉
is not the number of atoms in the condensate in the

general case.

FIG. 2. The interferometric signal S(x) as a function of the dis-
tance x for different values of the interaction strength, calculated
using the mean-field BCS theory (solid curves); here, we assume
x = xτ,↑ = xτ,↓. On the BCS side, where S oscillates, the envelope
is (x0/πx) exp(−x/ξx) (dashed lines). (a)-(c) Sketches of the inter-
ference patterns for S originating from the condensate wavefunction
ϕ0. The copy at rest is shown in blue (|ϕ0(r1, r2)|2) and the trans-
lated one in red (|ϕ0(r1, r2 + xτ )|2), where x = |xτ |; (a) in the
BEC regime, (b) in the BCS regime, where the displacement x cor-
responds to the first cancellation of S (see main panel), and (c) in the
BCS regime, where the displacement corresponds to the first mini-
mum of S.

If the gas is translationally invariant and isotropic, the func-
tions previously defined in Eqs. (10)–(13) depend only on
xτ = |xτ |. Since symmetry-breaking BCS states do not
have a fixed number of particles, there is a nonzero covariance
⟨ψBCS|N̂↑N̂↓|ψBCS⟩ ≠ N↑N↓. We get rid of this well-known
artifact of BCS theory, by projecting the BCS states onto the
subspace with a fixed number of atoms (see e.g. Eq. (41)
in [26]). The interferometric signal in the case xτ,↑ = xτ,↓
[Eq. (14)] becomes:

S(xτ ) =
N0

8

[
1 + 4f(xτ ) + f(2xτ )

]
. (19)

Here the function

f(x) =

∫
ϕ∗0(r1 − x, r2)ϕ0(r1, r2)dr1dr2 (20)

is the overlap between a stretch and an original pair of the
condensate; it is related to the functions introduced before by
fstr,σ = N0f + Nσρ1 and fstr,↑↓(x) = N0f(2x) + ρ21(x).
The condensate wavefunction in Fourier space ϕk, defined as
ϕ0(r1, r2) =

∑
k ϕke−ik·(r1−r2)/L3, takes the form

ϕk =
∆

2Ek

√
NBCS

0

, (21)

where ∆ is the gap, Ek =
√
(ϵk − µ)2 +∆2 is the BCS dis-

persion relation, and µ is the chemical potential. The associ-
ated macroscopic eigenvalue isNBCS

0 =
∑

k ∆
2/(4E2

k). The
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maximum of |ϕk| is reached at the minimum of the BCS dis-
persion relation, that is, at kmin =

√
2mµ/ℏ on the BCS side

(µ > 0) and k = 0 on the BEC side (µ < 0). Using the
BCS condensate wavefunction Eq. (21), we can calculate the
integral over k analytically in Eq. (20), which yields

f(x) = e−x/ξxsinc(πx/x0), (22)

where the exponential decay length

ξ2x =
ℏ2

m∆

(
µ

∆
+

√
1 +

µ2

∆2

)
(23)

can be identified with the characteristic length of the one-body
density matrix [27, 28], and

x20
π2

=
ℏ2

m∆

1

µ
∆ +

√
1 + µ2

∆2

. (24)

is the oscillation length.
Oscillations of S are visible before S reaches its asymptotic

value depending on the ratio x0/ξx. In the BCS limit (µ/∆ →
+∞ or kFa→ 0−), the oscillation length x0 ∼ π/kF is much
shorter than the exponential-decay length ξx ∼ ℏ2kF/m∆
which diverges as O(ξpair). Thus, in the BCS regime, S ex-
hibits oscillations (the dark and light red curves in Fig. 2 cor-
respond to 1/kFa = −1 and −3); the oscillations decay as a
cardinal sine, on a typical length scale 1/kF.

Conversely, in the BEC limit (µ/∆ → −∞ or kFa→ 0+),
ξx ∼ a tends to zero like the size of the bosonic dimers. At
the same time, the oscillation frequency diverges as x0 ∼√

3π/4kFa (π/kF), such that no oscillations are visible in
this regime (the dark and light blue curves on Fig. 2 corre-
spond to 1/kFa = 1 and 3). A transition between the two
regimes (illustrated in the top panel of Fig. 3) occurs around
the point where ξx = x0/π, that is, µ = 0, which coincides
with the point where the minimum kmin of the BCS disper-
sion relation reaches 0. A measurement of the BCS gap is
also accessible through the relation

ξxx0
π

=
ℏ2

m∆
. (25)

In Fig. 3, we compare ξx to the pair size
defined as ξpair = (

∫
ρ2(r1, r2, r1, r2)|r1 −

r2|2dr1dr2/
∫
ρ2(r1, r2, r1, r2)dr1dr2)1/2 [29] (see the

blue line), showing that the two quantities remain comparable
throughout the BEC-BCS crossover3. We also compare the
wavenumber π/x0 of the overlap function f to the location

3 We derived the analytic expression:

ξ2pair =
ℏ2

2m∆

4α2(α+ rα) + 7α+ 5rα

8rα(α+ rα)
,

where α = µ/∆ and rα =
√
1 + α2.

2
√
2

0

0.5

1

1.5

2

2.5

3

µ = 0-2 -1 0 1 2 3

√
2

1/kFa

ξx/ξpair
π/kFx0

kmin/kF

FIG. 3. (Top panel) The interferometric signal S(x) − S∞ nor-
malized to N0 as a function of x/ξpair and 1/kFa within the mean-
field BCS approximation. The boundary between the BEC and BCS
regime (µ = 0 at 1/kFa ≃ 0.54) is marked by the black dashed line.
On the BCS side, we compare the local minima of the oscillatory sig-
nal to xn = (n+1/2)π/kmin (white dashed curves). (Bottom panel)
The wavenumber π/x0 (normalized to kF) and the exponential at-
tenuation length ξx (normalized to the Cooper pair size ξpair) of the
overlap function f in the BEC-BCS crossover. The dashed red curve
shows the location of the dispersion minimum kmin =

√
2mµ/ℏ on

the BCS side (µ > 0).

of the dispersion minimum kmin =
√
2mµ/ℏ: they coincide

in the BCS limit but differ outside, in particular because
π/x0 does not vanish (solid red curve on Fig. 3), unlike kmin

(dashed red line).

While our quantitative discussion of S(x) is restricted to
the mean-field approximation, we note that ρ2 in general, and
the contractions introduced in (10)–(13) in particular, have
been computed using more advanced diagrammatic approx-
imations [27]. Away from the BCS limit, where fluctuations
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in the bosonic collective modes become important, a slower
decay than the exponential one predicted by Eq. (22) is ex-
pected, which is reminiscent of the power-law convergence of
ρ1 to the condensed fraction in a Bose gas [30].

In summary, we proposed an interferometric protocol to
probe the two-body density matrix in spin-1/2 Fermi gases.
By measuring the correlations between the recoiling atoms
of ↑ and ↓ after a Ramsey-Bragg sequence, one records as
a function of the interrogation time a damped oscillatory sig-
nal whose attenuation time, frequency, and asymptotic value
give access all at once to the size of the Cooper pairs, to
their relative wave number, and to the macroscopic eigenvalue
of the two-body density matrix. Those important features
of fermionic condensates are difficult to access experimen-
tally [31]. Furthermore, this method has the advantage that a
fine spatial resolution on ρ2 is obtained through a fine tempo-
ral resolution, which is rather easy to achieve experimentally.
The correlation signal recorded at the end of the sequence also
involves a macroscopic fraction of the atoms initially present
in the trap, which makes it more robust to experimental noise.
In the future, it would be interesting to extend this calculation
to the case of fermions with three internal states [32].
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