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Using a functional renormalization group approach we derive the renormalization group (RG)
flow of a dissipative variant of the Yukawa-Sachdev-Ye-Kitaev model describing N fermions on a
quantum dot which interact via a disorder-induced Yukawa coupling with M bosons. The inverse
Euclidean propagator of the bosons is assumed to exhibit a non-analytic term proportional to the
modulus of the Matsubara frequency. We show that, to leading order in 1/N and 1/M , the hierarchy
of formally exact flow equations for the irreducible vertices of the disorder-averaged model can be
closed at the level of the two-point vertices. We find that the RG flow exhibits a non-Fermi liquid
fixed point characterized by a finite fermionic anomalous dimension η which is related to the bosonic
anomalous dimension γ via the scaling law 2 = 2η + γ with 0 < η < 1/2. We explicitly calculate η
and the critical exponents characterizing the linearized RG flow in the vicinity of the fixed point as
functions of N/M .

I. INTRODUCTION

The Yukawa-Sachdev-Ye-Kitaev (YSYK) model de-
scribes N fermions on a quantum dot which are coupled
to M phonons via infinite-range random couplings [1–9].
Recently this model has also attracted attention because
it features maximally chaotic behavior [7, 10]. In the
limit N → ∞ and M → ∞ with N/M = O(1) (which
we call for simplicity large-N limit) the YSYK model ex-
hibits a non-Fermi liquid state which can be studied in a
controlled way. In this limit the perturbative expansion
of the fermionic and bosonic self-energies is dominated
by so-called melon-diagrams which can be summed to all
orders in perturbation theory by solving coupled Dyson-
Schwinger (DS) equations. Alternatively, the DS equa-
tions can be derived from the large-N saddle point of a
suitably defined functional integral involving special bi-
local composite fields [1, 11, 12]. From the numerical
solution of the DS equations for the YSYK model Pan et
al. [5] have shown that the model exhibits for vanishing
chemical potential µ a non-Fermi liquid phase where the
fermionic and bosonic self-energies display power-law be-
havior characterized by exponents which depend on the
ratioN/M . Moreover, the power-law behavior of the self-
energies persists even for finite values of µ, a phenomenon
which has been called self-tuned criticality [5]. The lead-
ing power-law behavior in the non-Fermi liquid phase has
also been extracted analytically by self-consistently solv-
ing the DS equation at low energies [6]. However, the
physical reason for the self-tuned criticality of the non-
Fermi liquid phase of the YSYK model has not been iden-
tified.

From the point of view of the renormalization group
(RG) the phenomenon of self-tuned criticality has a sim-
ple explanation: the critical state must be associated
with a fixed point with only attractive directions. Such
a fixed point is called a sink [13–15] and describes a sta-
ble phase of matter. In fact, the non-Fermi liquid phase
of the Sachdev-Ye-Kitaev model with complex fermions
has recently been shown to be associated with such a

sink [15]. Unfortunately, we have not been able to ob-
tain sensible results for the critical behavior of the YSYK
model using a straightforward generalization of the func-
tional renormalization group (FRG) approach developed
in our previous work [15] for the SYK model. The rea-
son for this failure of the standard FRG approach are
not entirely clear to us at this point; possible expla-
nations are the failure of the low-energy expansion or
subtleties associated with the proper regulator choice in
coupled Fermi-Bose systems with two types of frequency
scaling [16]. It turns out, however, that these technical
complications do not arise for the dissipative variant of
the YSYK model where the frequency-dependence of the
inverse boson propagator is proportional to the modulus
|Ω| of the bosonic Matsubara frequency. In this work we
will therefore focus on this dissipative YSYK model and
use a generalization of the FRG approach developed in
Ref. [15] to investigate the RG flow of this model. Our
motivation for studying this model is not solely techni-
cal, because the dissipative YSYK model can be viewed
as a toy model for understanding the behavior of strongly
correlated fermions that are coupled to bosons with dis-
sipative dynamics.

We define the dissipative YSYK model via the follow-
ing Euclidean action,

S = S2 +
1√
MN

∑
ijk

gijk
∑
σ

∫ β

0

dτ c̄iσ(τ)cjσ(τ)ϕk(τ),

(1.1)
where β is the inverse temperature, ϕk(τ) is a real bosonic
field depending on a flavor index k and imaginary time
τ , ciσ(τ) and c̄iσ(τ) are Grassmann variables represent-
ing electrons of type i with spin projection σ, and the
quadratic part of the action is in frequency space given
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by

S2 = − 1

β

∑
ω

N∑
i=1

∑
σ

(iω + µ)c̄iσωciσω

+
1

2β

∑
Ω

M∑
k=1

(|Ω|+∆)ϕ∗
kΩϕkΩ. (1.2)

Here ∆ defines the bare energy scale of the bosons, ω and
Ω are fermionic and bosonic Matsubara frequencies, and
the Fourier components of the fields are defined by

ciσω =

∫ β

0

dτeiωτ ciσ(τ), ϕkΩ =

∫ β

0

dτeiΩτϕk(τ).

(1.3)
The Yukawa couplings gijk in Eq. (1.1) are indepen-
dent Gaussian random variables with vanishing aver-
age and constant variance. In general the couplings
gijk = g′ijk + ig′′ijk are complex. The hermiticity of the
Hamiltonian implies that the real and imaginary parts
have the symmetries g′ijk = g′jik and g′′ijk = −g′′jik. A

finite imaginary part g′′ijk is a manifestation of broken

time-reversal symmetry [6]. The second moments of the
couplings are assumed to be of the form [6]

⟨g′ijkg′i′j′k′⟩ = g21(δii′δjj′ + δij′δji′)δkk′ , (1.4a)

⟨g′′ijkg′′i′j′k′⟩ = g22(δii′δjj′ − δij′δji′)δkk′ , (1.4b)

⟨g′ijkg′′i′′j′k′⟩ = 0, (1.4c)

where ⟨. . .⟩ denotes averaging over the Gaussian prob-
ability distribution of the random couplings. The non-
analytic |Ω|-dependence in the bosonic part of S2 de-
scribes dissipative bosonic dynamics due to the coupling
to some other degrees of freedom that do not explic-
itly appear in the above action. Note that the usual
YSYK model can be obtained by replacing |Ω| → Ω2 in
Eq. (1.2).

The rest of this work is organized as follows. In Sec. II
we derive FRG flow equations for the irreducible ver-
tices of the disorder-averaged YSYK model and develop a
truncation of the hierarchy of FRG flow equations which
becomes exact for N → ∞ and M → ∞. The result-
ing flow equations are not precisely equivalent to the DS
equations [1–9] for the YSYK model. However, the DS
equations can be recovered if we modify our flow equa-
tions using the so-called Katanin substitution [17]. In
Sec. III we simplify our FRG flow equations for the ir-
reducible self-energies using a standard low-energy ex-
pansion which reduces our functional flow equations to

a system of ordinary differential equations for five scale-
dependent couplings associated with the chemical poten-
tial, the boson gap, and three types of wave-function
renormalization factors. In Sec. IV we show that our
flow equations have a non-trivial non-Fermi liquid fixed
point. We derive the linearized RG flow in the vicinity of
this fixed point and show that it has only one repulsive
direction corresponding to a linear combination of the
rescaled chemical potential and a parameter describing
the spectral asymmetry. All other couplings are irrele-
vant at this fixed point, so that fine-tuning of the bosonic
energy scale ∆ in Eq. (1.2) is not necessary to realize the
non-Fermi liquid phase. Finally, in Sec. V we present our
conclusions.

II. LARGE-N TRUNCATION OF THE EXACT
RG FLOW EQUATIONS

To calculate the disorder average of the grand canoni-
cal potential and of the correlation functions of our model
we should use the replica trick [1]. Note that for the SYK
model with Majorana fermions replica-nonsymmetric
large-N saddle points with energies lower than the
replica-symmetric saddle point have been found [18].
Whether this happens also for the YSYK model has not
been thoroughly investigated. Here we assume that the
replica symmetry is not broken, so that we can simply
average the partition function and treat the gijk as ad-
ditional complex fields which should be integrated over.
The average partition function can be written as

⟨Z⟩ =
∫

D[c, c̄, ϕ]e−S2

×
〈
e
− 1√

NM

∑
ijk gijk

∑
σ

∫ β
0

dτc̄iσ(τ)cjσ(τ)ϕk(τ)
〉
.

(2.1)

Since the probability distribution of the gijk is Gaussian,
the averaging in Eq. (2.1) generates the usual Debye-
Waller factor,

⟨Z⟩ =
∫

D[c, c̄, ϕ]e−S2−S6 , (2.2)

where the interaction S6 involves six powers of the fields,

S6 = − 1

2NM

∑
ijk

∑
i′j′k′

⟨gijkgi′j′k′⟩
∑
σσ′

∫ β

0

dτ

∫ β

0

dτ ′

× c̄iσ(τ)cjσ(τ)ϕk(τ)c̄i′σ′(τ ′)cj′σ′(τ ′)ϕk′(τ ′). (2.3)

Using our assumptions (1.4) for the second moments we
obtain
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S6 = − 1

2MN

∑
ijk

∑
σσ′

∫ β

0

dτ c̄iσ(τ)cjσ(τ)ϕk(τ)

∫ β

0

dτ ′
{
g21 [c̄iσ′(τ ′)cjσ′(τ ′) + (i ↔ j)]

− g22 [c̄iσ′(τ ′)cjσ′(τ ′)− (i ↔ j)]
}
ϕk(τ

′)

= − 1

2MN

∑
ijk

∑
σσ′

∫ β

0

dτ

∫ β

0

dτ ′ϕk(τ)ϕk(τ
′)
{
(g21 − g22)c̄iσ(τ)cjσ(τ)c̄iσ′(τ ′)cjσ′(τ ′)

+ (g21 + g22)c̄iσ(τ)cjσ(τ)c̄jσ′(τ ′)ciσ′(τ ′)
}

= − 1

4MN

∑
ijk

∑
σσ′

∫ β

0

dτ

∫ β

0

dτ ′ϕk(τ)ϕk(τ
′)
{
g21 [c̄iσ(τ)cjσ(τ) + (i ↔ j)][c̄iσ′(τ ′)cjσ′(τ ′) + (i ↔ j)]

− g22 [c̄iσ(τ)cjσ(τ)− (i ↔ j)][c̄iσ′(τ ′)cjσ′(τ ′)− (i ↔ j)]
}
. (2.4)

In frequency space this interaction can be written as

S6 = − 1

2NMβ6

∑
n′
1n

′
2n2n1

∑
σ′
1σ

′
2σ2σ1

∑
ω′

1ω
′
2ω2ω1

∑
k1k2

∑
Ω1Ω2

βδω′
1+ω′

2,ω2+ω1+Ω2+Ω1
βδω′

2,ω2+Ω2
δk1,k2

×
{
(g21 − g22)δσ′

1,σ1
δσ′

2,σ2
δn′

1,n
′
2
δn1,n2 + (g21 + g22)δσ′

1,σ1
δσ′

2,σ2
δn′

1,n2
δn′

2,n1

}
c̄1′ c̄2′c2c1ϕk1Ω1ϕk2Ω2 , (2.5)
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FIG. 1. (a) Graphical representation of the bare interaction
vertices in the bare action S6 given in Eq. (2.6). Outgoing
arrows represent c̄iσω, incoming arrows represent ciσω, wavy
external lines represent ϕkΩ, the red dashed line represents
the bare interaction vertex g21 − g22 while the blue dashed line
represents g21+g22 . Note that on both ends of the dashed lines
the frequencies are separately conserved. (b) Graphical rep-
resentation of the (anti)-symmetrized bare interaction vertex

Γc̄c̄ccϕϕ
0 (1′, 2′; 2, 1; k1Ω1, k2Ω2) in Eq. (2.6).

where we have introduced the abbreviations 1 =
(n1, σ1, ω1), 1′ = (n′

1, σ
′
1, ω

′
1) etc. for the fermionic la-

bels. A graphical representation of the non-symmetrized
interaction vertices in Eq. (2.6) is shown in Fig. 1. For
the derivation of formally exact FRG flow equations it is
convenient to work with vertices which are antisymmet-
ric with respect to permutation of the outgoing and the
incoming fermion labels, and symmetric with respect to
permutation of the boson labels. Therefore we write the
bare interaction S6 in the symmetrized form

S6 =
1

(2!)3NMβ6

∑
n′
1n

′
2n2n1

∑
σ′
1σ

′
2σ2σ1

∑
ω′

1ω
′
2ω2ω1

∑
k1k2

∑
Ω1Ω2

× βδω′
1+ω′

2,ω2+ω1+Ω1+Ω2
Γc̄c̄ccϕϕ
0 (1′, 2′; 2, 1; k1Ω1, k2Ω2)

× c̄1′ c̄2′c2c1ϕk1Ω1
ϕk2Ω2

, (2.6)

where the mixed six-point vertex

Γc̄c̄ccϕϕ
0 (1′, 2′; 2, 1; k1Ω1, k2Ω2) is antisymmetric with

respect to the exchange 1′ ↔ 2′ and 1 ↔ 2, and
symmetric with respect to the exchange k1Ω1 ↔ k2Ω2.
Explicitly, the bare value of the properly symmetrized
mixed six-point vertex is

Γc̄c̄ccϕϕ
0 (n′

1σ
′
1ω

′
1, n

′
2σ

′
2ω

′
2;n2σ2ω2, n1σ1ω1; k1Ω1, k2Ω2) = −δk1k2

β

2

{
(g21 + g22)

[
δn′

1n2
δn′

2n1
δσ′

1σ1
δσ′

2σ2
(δω′

1,ω1+Ω1
+ δω′

2,ω2+Ω2
)− δn′

2n2
δn′

1n1
δσ′

2σ1
δσ′

1σ2
(δω′

2,ω1+Ω1
+ δω′

1,ω2+Ω2
)
]

+ (g21 − g22)δn′
1n

′
2
δn1n2

[
δσ′

1σ1
δσ′

2σ2
(δω′

1,ω1+Ω1
+ δω′

2,ω2+Ω2
)− δσ′

2σ1
δσ′

1σ2
(δω′

2,ω1+Ω1
+ δω′

1,ω2+Ω2
)
]
+ (Ω1 ↔ Ω2)

}
. (2.7)



4

For later reference let us also calculate the site-averaged mixed six-point vertex

Γc̄c̄ccϕϕ
0 (σ′

1ω
′
1, σ

′
2ω

′
2;σ2ω2, σ1ω1; Ω1,Ω2) =

1

N2M

N∑
n1n2=1

M∑
k=1

Γc̄c̄ccϕϕ
0 (n1σ

′
1ω

′
1, n2σ

′
2ω

′
2;n2σ2ω2, n1σ1ω1; kΩ1, kΩ2). (2.8)

Actually, for our purpose we only need this vertex in the limit of large N and M where only the terms involving
δn′

1,n1
δn′

2,n2
in Eq. (2.7) contribute,

Γc̄c̄ccϕϕ
0 (σ′

1ω
′
1, σ

′
2ω

′
2;σ2ω2, σ1ω1; Ω1,Ω2) =

β

2
(g21+g22)δσ′

2,σ1
δσ′

1,σ2
(δω′

2,ω1+Ω1
+δω′

1,ω2+Ω2
)+(Ω1 ↔ Ω2)+O(1/N). (2.9)

To derive formally exact FRG flow equations for the
irreducible vertices of the model defined by the bare ac-
tion S2+S6 in Eqs. (1.2, 2.6) we add frequency-dependent

regulators RΛ(ω) and Rϕ
Λ(Ω) to the quadratic part of the

action, where the cutoff-parameter Λ should be chosen
such that the regulators vanish for Λ = 0 and diverge for
Λ → ∞. At this point it is not necessary to specify the
regulators. The modified quadratic part of the Euclidean
action is then

S2,Λ = − 1

β

∑
nσω

G−1
0,Λ(ω)c̄nσωcnσω

+
1

2β

∑
kΩ

F−1
0,Λ(Ω)ϕ

∗
kΩϕkΩ, (2.10)

where we have introduced the regularized inverse propa-
gators

G−1
0,Λ(ω) = iω + µ−RΛ(ω), (2.11)

F−1
0,Λ(Ω) = |Ω|+∆+Rϕ

Λ(Ω). (2.12)

To obtain the flow equation for the generating functional
of the irreducible vertices of the YSYK model for finite
N and M we introduce the cutoff-dependent generating
functional of the connected imaginary time correlation
functions,

eGΛ[j̄,j,J] =

∫
D[c̄, c, ϕ]e−S2,Λ−S6+(j̄,c)+(c̄,j)+(J,ϕ)∫

D[c̄, c, ϕ]e−S2,Λ
, (2.13)

where j̄nσω and jnσω are independent Grassmann
sources, JkΩ is a bosonic source, and we have introduced
the notations

(j̄, c) + (c̄, j) =
1

β

∑
nσω

[j̄nσωcnσω + c̄nσωjnσω], (2.14)

(J, ϕ) =
1

β

∑
kΩ

J∗
kΩϕkΩ. (2.15)

The generating functional of the irreducible vertices (av-
erage effective action) can now be defined via the sub-
tracted Legendre transform

ΓΛ[⟨c̄⟩, ⟨c⟩, ⟨ϕ⟩]
= (j̄, ⟨c⟩) + (⟨c̄⟩, j) + (J, ⟨ϕ⟩)− GΛ[j̄, j, J ]

− 1

β

∑
nσω

RΛ(ω)⟨c̄nσω⟩⟨cnσω⟩ −
1

2β

∑
kΩ

Rϕ
Λ(Ω)⟨ϕ

∗
kΩ⟩⟨ϕkΩ⟩,

(2.16)

where on the right-hand side the sources j̄ and j should
be expressed in terms of the source-dependent expecta-
tion values ⟨c̄⟩, ⟨c⟩, and ⟨ϕ⟩ by inverting the relations

⟨cnσω⟩ =
δGΛ[j̄, j, J ]

δj̄nσω
, (2.17a)

⟨c̄nσω⟩ = −δGΛ[j̄, j, J ]

δjnσω
, (2.17b)

⟨ϕkΩ⟩ =
δGΛ[j̄, j, J ]

δJ∗
kΩ

. (2.17c)

The functional ΓΛ[⟨c̄⟩, ⟨c⟩, ⟨ϕ⟩] satisfies the usual Wet-
terich equation [19–22] for systems involving both
bosonic and fermionic fields [14]. For notational simplic-
ity we will now rename ⟨c̄⟩ → c̄, ⟨c⟩ → c and ⟨ϕ⟩ → ϕ,
i.e., the symbols c̄, c and ϕ now denote the expectation
values of the corresponding quantum fields in the pres-
ence of sources. For finite N and M the first few terms
in the vertex expansion of the functional ΓΛ[c̄, c, ϕ] then
have the following structure,
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ΓΛ[c̄, c, ϕ] = βΩΛ +
1

β

∑
n′nσω

[−δnn′(iω + µ) + Σn′n
Λ (ω)]c̄n′σωcnσω +

1

2β

∑
k′kΩ

[δkk′(|Ω|+∆) + Πk′k
Λ (Ω)]ϕ∗

k′ΩϕkΩ

+
1

(2!)2Nβ4

∑
n′
1n

′
2n2n1

∑
σ′
1σ

′
2σ2σ1

∑
ω′

1ω
′
2ω2ω1

βδω′
1+ω′

2,ω2+ω1
Γc̄c̄cc
Λ (1′, 2′; 2, 1)c̄n′

1σ
′
1ω

′
1
c̄n′

2σ
′
2ω

′
2
cn2σ2ω2

cn1σ1ω1

+
1

4!Mβ4

∑
k1k2k3k4

∑
Ω1...Ω4

βδΩ1+Ω2+Ω3+Ω4,0Γ
ϕϕϕϕ
Λ (k1Ω1, k2Ω2, k3Ω3, k4Ω4)ϕk1Ω1

ϕk2Ω2
ϕk2Ω3

ϕn4Ω4

+
1

2!Mβ4

∑
n′nk1k2

∑
σ

∑
ω′ωΩ1Ω2

βδω′,ω+Ω1+Ω2Γ
c̄cϕϕ
Λ (n′σω′;nσω; k1Ω1k2Ω2)c̄n′σω′cnσωϕk1Ω1ϕk2Ω2

+
1

(2!)3NMβ6

∑
n′
1n

′
2n2n1

∑
σ′
1σ

′
2σ2σ1

∑
ω′

1ω
′
2ω2ω1

∑
k1k2

∑
Ω1Ω2

βδω′
1+ω′

2,ω2+ω1+Ω1+Ω2
Γc̄c̄ccϕϕ
Λ (1′, 2′; 2, 1; k1Ω1, k2Ω2)

× c̄n′
1σ

′
1ω

′
1
c̄n′

2σ
′
2ω

′
2
cn2σ2ω2

cn1σ1ω1
ϕk1Ω1

ϕk2Ω2
,+ . . . , (2.18)

where in the arguments of the fermionic four-point ver-
tex and in the six-point vertex we have abbreviated
n1σ1ω1 → 1 and similarly for the other fermionic labels,
and we have omitted other six-point vertices involving
different field combinations as well as vertices involving
more than six fields.

Using the general flow equations generated by the ver-
tex expansion of the Wetterich equation given in Ref. [14],
we may now write down formally exact flow equations
for vertices in the above expansion for finite N and M .
The scale-dependent grand canonical potential satisfies
the exact flow equation

∂ΛΩΛ =
1

β

∑
nσω

Gnn
Λ (ω)∂ΛRΛ(ω)

+
1

2β

∑
kΩ

F kk
Λ (Ω)∂ΛR

ϕ
Λ(Ω), (2.19)

where Gnn
Λ (ω) and F kk

Λ (Ω) are the diagonal elements of
the scale-dependent propagator matrices whose inverse is
given by the following matrices in the flavor-indices,

[G−1
Λ (ω)]

nn′
= δnn′ [iω + µ−RΛ(ω)]− Σnn′

Λ (ω),
(2.20)

[F−1
Λ (Ω)]

kk′
= δkk′ [|Ω|+∆+Rϕ

Λ(Ω)] + Πkk′

Λ (Ω).
(2.21)

The irreducible fermionic self-energy Σnn′

Λ (ω) satisfies the

exact flow equation

∂ΛΣ
nn′

Λ (ω) =

1

Nβ

∑
mm′

∑
σ′ω′

Ġmm′

Λ (ω′)Γc̄c̄cc
Λ (nσω,mσ′ω′;m′σ′ω′, n′σω)

+
1

2Mβ

∑
kk′

∑
Ω

Ḟ kk′

Λ (Ω)Γc̄cϕϕ
Λ (nσω;n′σω; kΩ̄, k′Ω),

(2.22)

while the scale-dependent bosonic self-energy satisfies

∂ΛΠ
kk′

Λ (Ω) =

1

Mβ

∑
nn′

∑
σω

Ġnn′

Λ (ω)Γc̄cϕϕ
Λ (nσω;n′σω; kΩ̄, k′Ω)

+
1

2Mβ

∑
ll′

∑
Ω′

Ḟ ll′

Λ (Ω′)Γϕϕϕϕ
Λ (lΩ̄′, l′Ω′, kΩ̄, k′Ω), (2.23)

where we have introduced the abbreviation Ω̄ = −Ω
and Ġnn′

Λ (ω) and Ḟ kk′

Λ (Ω) are the fermionic and bosonic
single-scale propagators [14]. Graphical representations
of the flow equations (2.22) and (2.23) are shown in
Fig. 2. The right-hand sides of these flow equations de-
pend on three different types of four-point vertices, which
in turn satisfy flow equations involving not only four-
point vertices but also various types of six-point vertices.
For example, the exact flow equation for the fermionic
four-point vertex is

∂ΛΓ
c̄c̄cc
Λ (n′

1σ
′
1ω

′
1, n

′
2σ

′
2ω

′
2;n2σ2ω2, n1σ1ω1)

=
1

Nβ

∑
nn′

∑
σω

Ġnn′

Λ (ω)Γc̄c̄c̄ccc
Λ (1′, 2′, nσω;n′σω, 2, 1)

+
1

2Mβ

∑
kk′

∑
Ω

Ḟ kk′

Λ (Ω)Γc̄c̄ccϕϕ
Λ (1′, 2′; 2, 1; kΩ̄, k′Ω)

+ Lpp
Λ (1′, 2′; 2, 1) + Lph

Λ (1′, 2′; 2, 1) + Lbos
Λ (1′, 2′; 2, 1),

(2.24)

where on the right-hand side we have used again the ab-
breviation 1 = (n1σ1ω1), and in the last line we have
introduced three different loop contributions,
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FIG. 2. Graphical representation of the exact FRG flow equa-
tions for the irreducible two-point vertices: (a) flow equation
(2.22) of the fermionic self-energy; (b) flow equation (2.23)
of the bosonic self-energy. The dot above the vertices on the
left-hand side represents the scale derivative ∂Λ. Outgoing
arrows represent external legs associated with c̄ while incom-
ing arrows represent c. The external wavy lines correspond
to ϕ. Slashed lines with arrows represent the fermion single-
scale propagator ĠΛ(ω), while slashed wavy lines represent

the boson single-scale propagator ḞΛ(Ω). The blue symbols
represent three different types of four-point vertices distin-
guished by the externals legs.

Lpp
Λ (1′, 2′; 2, 1) = − 1

N2β

∑
nn′

∑
mm′

∑
σσ′

∑
ω

Ġnn′

Λ (ω)Gmm′

Λ (ω1 + ω2 − ω)

× Γc̄c̄cc
Λ (1′, 2′;nσ′ω1 + ω2 − ω,mσω)Γc̄c̄cc

Λ (m′σω, n′σ′ω1 + ω2 − ω; 2, 1), (2.25)

Lph
Λ (1′, 2′; 2, 1) =

1

N2β

∑
nn′

∑
mm′

∑
σσ′

∑
ω

[
Ġnn′

Λ (ω)Gmm′

Λ (ω + ω1 − ω′
1) +Gnn′

Λ (ω)Ġmm′

Λ (ω + ω1 − ω′
1)
]

× Γc̄c̄cc
Λ (1′,m′σ′ω + ω1 − ω′

1;nσω, 1)Γ
c̄c̄cc
Λ (2′, n′σω;mσ′ω + ω1 − ω′

1, 2)

− {(n1σ1ω1) ↔ (n2σ2ω2)} , (2.26)

Lbos
Λ (1′, 2′; 2, 1) = − 1

M2β

∑
kk′

∑
ll′

∑
Ω

Ḟ kk′

Λ (Ω)F ll′

Λ (Ω + ω1 − ω′
1)

× Γc̄cϕϕ
Λ (1′; 1; kΩ, lΩ̄− ω1 + ω′

1)Γ
c̄cϕϕ
Λ (2′; 2; k′Ω̄, l′Ω− ω2 + ω′

2)

+ {(n1σ1ω1) ↔ (n2σ2ω2)} . (2.27)

A graphical representation of the exact flow equation
(2.24) for the fermionic four-point vertex is shown in
Fig. 3. The six-point vertices on the right-hand side of
Eq. (2.24) satisfy flow equations involving various types
of eight-point vertices. Obviously, for finite N and M the
FRG vertex expansion generates an infinite hierarchy of
flow equations.

The crucial point is now that in the limit N → ∞ and
M → ∞ the system of flow equations can be closed to
leading order in 1/N and 1/M where we can retain only
the contributions to the flow equations which have finite

limits for N → ∞ and M → ∞. The self-energies are
then diagonal in the site-indices,

Σnn′

Λ (ω) = δnn′ΣΛ(ω) +O(1/N), (2.28)

Πkk′

Λ (Ω) = δkk′ΠΛ(Ω) +O(1/N), (2.29)

where the symbol O(1/N) represents also terms of order
1/M because we assume that the ratio N/M is of order
unity. The leading large-N limit of the four-point ver-
tices is more complicated. Consider first the fermionic
four-point vertex Γc̄c̄cc

Λ (n′
1σ

′
1ω

′
1, n

′
2σ

′
2ω

′
2;n2σ2ω2, n1σω1).
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+
1

2

−

=
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1
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1’ 1

2 2’ 2 1’

12’

+

1’ 1

2’ 2 1’

2’

2

1

+
−

+ +

FIG. 3. Graphical representation of the exact FRG flow equa-
tion (2.24) for the fermionic 4-point vertex. The gray square
represents the fermionic six-point vertex, while the gray trian-
gle represents the mixed six-point vertex with four fermionic
and two bosonic external legs. The internal lines with ar-
rows represent the exact scale-dependent fermion propagator
GΛ(ω), whereas wavy internal lines represent the boson prop-
agator FΛ(Ω). The cross inside the loops means that one
should sum up two diagrams where either the right or the left
propagator forming the loop is replaced by the corresponding
single-scale propagator. The rest of the symbols is defined in
the caption of Fig. 2.

We obtain a consistent large-N truncation of the hierar-
chy of FRG flow equations if we assume that the leading
components of the fermionic four-point vertex are con-
strained by the condition that site labels n′

1 and n′
2 of

the two outgoing fermions agree with the site-labels n1

and n2 of the two incoming fermions up to a permutation.
Taking into account the antisymmetry of Γc̄c̄cc

Λ (1′, 2′; 2, 1)
with respect to the exchange 1′ ↔ 2′ and 1 ↔ 2, this im-
plies

Γc̄c̄cc
Λ (n′

1σ
′
1ω

′
1, n

′
2σ

′
2ω

′
2;n2σ2ω2, n1σ1ω1) =

δn′
1n1

δn′
2n2

Γc̄c̄cc
Λ (σ′

1ω
′
1, σ

′
2ω

′
2;σ2ω2, σ1ω1)

− δn′
1n2

δn′
2n1

Γc̄c̄cc
Λ (σ′

2ω
′
2, σ

′
1ω

′
1;σ2ω2, σ1ω1) +O(1/N),

(2.30)

where

Γc̄c̄cc
Λ (σ′

1ω
′
1, σ

′
2ω

′
2;σ2ω2, σ1ω1) =

lim
N→∞

Γc̄c̄cc
Λ (n1σ

′
1ω

′
1, n2σ

′
2ω

′
2;n2σ2ω2, n1σ1ω1). (2.31)

Note that to leading order in 1/N the fermionic four-
point vertex gives the following contribution to the ver-
tex expansion of the average effective action defined in
Eq. (2.18),

1

(2!)2Nβ4

∑
n′
1n

′
2n2n1

∑
σ′
1σ

′
2σ2σ1

∑
ω′

1ω
′
2ω2ω1

βδω′
1+ω′

2,ω2+ω1
Γc̄c̄cc
Λ (1′, 2′; 2, 1)c̄n′

1σ
′
1ω

′
1
c̄n′

2σ
′
2ω

′
2
cn2σ2ω2cn1σ1ω1

≈ N

2!β4

∑
σ′
1σ

′
2σ2σ1

∑
ω′

1ω
′
2ω2ω1

βδω′
1+ω′

2,ω2+ω1
Γc̄c̄cc
Λ (σ′

1ω
′
1, σ

′
2ω

′
2;σ2ω2, σ1ω1)Ψσ′

1ω
′
1σ1ω1

Ψσ′
2ω

′
2σ2ω2

, (2.32)

where we have introduced the site-averaged composite
field

Ψσ′ω′σω =
1

N

∑
n

c̄nσ′ω′cnσω. (2.33)

This field resembles the collective Hubbard-Stratonovich

field introduced in the path integral derivation of the
Dyson-Schwinger equations from the large-N saddle
point [1, 11, 12]. However, in Eq. (2.33) the symbols
c̄nσ′ω′ and cnσω represent the source-dependent expec-
tation values of the corresponding Grassmann fields, so
that the above Ψσ′ω′σω cannot be identified with the
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Hubbard-Stratonovich field introduced in the path inte-
gral approach.

To solve our flow equations for the two-point vertices
for large N we also need the leading large-N limit of the
mixed four-point vertex,

Γc̄cϕϕ
Λ (n′σω′;nσω; k1Ω1, k2Ω2) =

δn′nδk1k2Γ
c̄cϕϕ
Λ (σω′;σω; Ω1,Ω2) +O(1/N), (2.34)

where

Γc̄cϕϕ
Λ (σω′;σω; Ω1,Ω2) =

lim
N→∞

Γc̄cϕϕ
Λ (nσω′;nσω; kΩ1, kΩ2). (2.35)

Finally, the purely bosonic four-point vertex has for large
N the form

Γϕϕϕϕ
Λ (k1Ω1, k2Ω2, k3Ω3, k4Ω4) =

δk1k2
δk3k4

Γϕϕϕϕ
Λ (Ω1,Ω2,Ω3,Ω4)

+δk1k3
δk2k4

Γϕϕϕϕ
Λ (Ω1,Ω3,Ω2,Ω4)

+δk1k4
δk2k3

Γϕϕϕϕ
Λ (Ω1,Ω4,Ω2,Ω3) +O(1/N), (2.36)

with

Γϕϕϕϕ
Λ (Ω1,Ω2,Ω3,Ω4) =

lim
N→∞

Γϕϕϕϕ
Λ (k1Ω1, k1Ω2, k2Ω3, k2Ω4). (2.37)

It turns out that the bosonic four-point vertex does not
contribute to the flow of the two-point vertices to leading
order in 1/N because this vertex vanishes in the bare
action and is not generated by the FRG flow to this order.

It is now easy to see that the loop contributions Lpp
Λ ,

Lph
Λ and Lbos

Λ defined in Eqs. (2.25 – 2.27) do not con-
tribute to the flow of the fermionic four-point vertex to
leading order in 1/N [23]. Consider first the particle-
particle loop Lpp

Λ (1′, 2′; 2, 1) in Eq. (2.25) for the relevant
index combinations n′

1 = n1, n
′
2 = n2 or n′

1 = n2, n
′
2 =

n1. Keeping in mind that for large N the propagators
are diagonal in the flavor indices, we see that the flavor
sums in Eq. (2.25) collapses to 2 = O(1) terms, so that

Lpp
Λ (1′, 2′; 2, 1) = O(1/N2). Moreover, in Lph

Λ (1′, 2′; 2, 1)
and Lbos

Λ (1′, 2′; 2, 1) only one of the flavor sums collapses,
so that these contributions are of order 1/N . By the same
argument, the leading large-N contribution in the FRG
flow equations for any n-point vertex is given by the term
where two legs of the (n + 2)-point vertex are joined by
a single propagator line. In the flow equations for the
four-point vertices, we therefore have to consider only
the contributions from the six-point vertices. Given the
fact that the bare action S6 given in Eq. (2.6) depends

only on the mixed six-point vertex Γc̄c̄ccϕϕ
Λ with initial

value given in Eq. (2.7), to leading order in 1/N we can
neglect the FRG flow of all other six-point vertices. If we
insert this initial value on the right-hand side of the flow
equation (2.24), we see that only the site-average of the
six-point vertex given in Eq. (2.9) contributes. Moreover,

following the analysis of the diagrams in the flow equa-
tion for the fermionic four-point vertex presented in the
paragraph after Eq. (2.24), and using the fact that the
bare action does not contain any eight-point vertices, we
see that to leading order in 1/N the mixed six-point ver-
tex is not renormalized. We thus arrive at the following
large-N truncation of the formally exact FRG flow equa-
tions for the YSYK model: The flow of the site-diagonal
two-point vertices is related to the large-N limits of four-
point vertices defined in Eqs. (2.31) and (2.35) as follows,

∂ΛΣΛ(ω) =
1

β

∑
σ′ω′

ĠΛ(ω
′)Γc̄c̄cc

Λ (σω, σ′ω′;σ′ω′, σω)

+
1

2β

∑
Ω

ḞΛ(Ω)Γ
c̄cϕϕ
Λ (σω;σω;−Ω,Ω),

(2.38)

∂ΛΠΛ(Ω) =
N

Mβ

∑
σω

ĠΛ(ω)Γ
c̄cϕϕ
Λ (σω;σω;−Ω,Ω),

(2.39)

where the single-scale propagators are

ĠΛ(ω) = −G2
Λ(ω)∂ΛG

−1
0,Λ(ω) = G2

Λ(ω)∂ΛRΛ(ω),

(2.40)

ḞΛ(Ω) = −F 2
Λ(Ω)∂ΛF

−1
0,Λ(Ω) = −F 2

Λ(Ω)∂ΛR
ϕ
Λ(Ω),

(2.41)

and the scale-dependent propagators are related to the
corresponding self-energies via the regularized Dyson
equations

GΛ(ω) =
1

G−1
0,Λ(ω)− ΣΛ(ω)

=
1

iω + µ−RΛ(ω)− ΣΛ(ω)
, (2.42)

FΛ(Ω) =
1

F−1
0,Λ(Ω) + ΠΛ(Ω)

=
1

|Ω|+∆+Rϕ
Λ(Ω) + ΠΛ(Ω)

. (2.43)

The four-point vertices on the right-hand side of the flow
equations (2.38) and (2.39) for the two-point vertices sat-
isfy

∂ΛΓ
c̄c̄cc
Λ (σ′

1ω
′
1, σ

′
2ω

′
2;σ2ω2, σ1ω1) =

1

2β

∑
Ω

ḞΛ(Ω)

× Γc̄c̄ccϕϕ
0 (σ′

1ω
′
1, σ

′
2ω

′
2;σ2ω2, σ1ω1;−Ω,Ω), (2.44)

and

∂ΛΓ
c̄cϕϕ
Λ (σ′ω′;σω; Ω1,Ω2) =

1

β

∑
σ1ω1

ĠΛ(ω1)

× Γc̄c̄ccϕϕ
0 (σ′ω′, σ1ω1;σ1ω1, σω; Ω1,Ω2), (2.45)

where the large-N limit of the initial value of the site-

averaged mixed six-point vertex Γc̄c̄ccϕϕ
0 (. . .) is given in
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FIG. 4. Graphical representation of our large-N truncation
of the hierarchy of FRG flow equations for the YSYK model.
(a) fermionic self-energy, Eq. (2.38); (b) bosonic self-energy,
Eq. (2.39); (c) fermionic four-point vertex, Eq. (2.44); (d)
mixed four-point vertex, Eq. (2.45). The empty triangle rep-
resents the large-N limit of the symmetrized bare six-point
vertex given in Eq. (2.9).

Eq. (2.9). A graphical representation of the above large-
N truncation of the FRG flow equations is shown in
Fig. 4. Substituting our explicit expression (2.9) for the
initial value of the site averaged six-point vertex into
Eqs. (2.44) and (2.45), we see that the fermionic four-
point vertex in the flow equation (2.38) is spin-diagonal
while the mixed four-point vertex in Eq. (2.39) is actually
independent of the spin label σ so that we can write

Γc̄c̄cc
Λ (σω, σ′ω′;σ′ω′, σω) = δσσ′Γc̄c̄cc

Λ (ω, ω′;ω′, ω),
(2.46)

Γc̄cϕϕ
Λ (σω;σω;−Ω,Ω) = Γc̄cϕϕ

Λ (ω;ω;−Ω,Ω). (2.47)

With this notation the flow equations (2.38, 2.39) for the

self-energies can be written as

∂ΛΣΛ(ω) =
1

β

∑
ω′

ĠΛ(ω
′)Γc̄c̄cc

Λ (ω, ω′;ω′, ω)

+
1

2β

∑
Ω

ḞΛ(Ω)Γ
c̄cϕϕ
Λ (ω;ω;−Ω,Ω), (2.48)

∂ΛΠΛ(Ω) =
p

β

∑
ω

ĠΛ(ω)Γ
c̄cϕϕ
Λ (ω;ω;−Ω,Ω), (2.49)

while the flow of the scale-dependent four-point vertices
is

∂ΛΓ
c̄c̄cc
Λ (ω, ω′;ω′, ω) = g2ḞΛ(ω − ω′), (2.50)

∂ΛΓ
c̄cϕϕ
Λ (ω;ω;−Ω,Ω) = g2

[
ĠΛ(ω +Ω) + ĠΛ(ω − Ω)

]
.

(2.51)

Here

g2 = g21 + g22 (2.52)

is the relevant bare coupling and we have introduced the
parameter

p =
(2S + 1)N

M
=

2N

M
, (2.53)

where 2S+1 = 2 is the spin-degeneracy for spin S = 1/2.
The four coupled flow equations (2.48–2.51) uniquely

determine the scale-dependent fermionic and bosonic
self-energies and the two relevant interaction vertices.
We emphasize that Eqs. (2.48–2.51) have been obtained
from the formally exact hierarchy of flow equations for
the irreducible vertices of the YSYK model by retain-
ing all terms which have a finite limit for N → ∞ and
M → ∞.
We now show that our FRG flow equations (2.48–

2.51) can be reduced to the usual DS equations for
the self-energies of the YSYK model if we use the so-
called Katanin substitution [17] to replace the single-
scale propagators on the right-hand sides by the total
scale-derivatives of the propagators,

ĠΛ(ω) → ∂ΛGΛ(ω) = ĠΛ(ω) +G2
Λ(ω)∂ΛΣΛ(ω) (2.54)

ḞΛ(Ω) → ∂ΛFΛ(Ω) = ḞΛ(Ω)− F 2
Λ(Ω)∂ΛΠΛ(Ω). (2.55)

With this substitution the right-hand sides of the flow
equations (2.50, 2.51) become total Λ-derivatives so that
we may trivially integrate both sides over the flow pa-
rameter Λ. Taking into account that for Λ0 → ∞ the
regularized propagators vanish we obtain

Γc̄c̄cc
Λ (ω, ω′;ω′, ω) = g2FΛ(ω − ω′), (2.56)

and

Γc̄cϕϕ
Λ (ω;ω;−Ω,Ω) = g2

[
GΛ(ω+Ω)+GΛ(ω−Ω)

]
. (2.57)
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Substituting these equations into the flow equations
(2.38) and (2.39) for the two-point functions we obtain

∂ΛΣΛ(ω) =
g2

β

∑
Ω

[ḞΛ(Ω)GΛ(ω − Ω)

+ FΛ(Ω)ĠΛ(ω − Ω)], (2.58)

∂ΛΠΛ(Ω) = p
g2

β

∑
ω

[ĠΛ(ω)GΛ(ω − Ω)

+GΛ(ω)ĠΛ(ω − Ω)]. (2.59)

Using once more the Katanin substitution (2.54, 2.55)
to transform the right-hand side of the above equations
into total Λ-derivatives and integrating both sides over
Λ we obtain for Λ → 0 the DS equations for the YSYK
model [1, 6],

Σ(ω) =
g2

β

∑
Ω

F (Ω)G(ω − Ω), (2.60)

Π(Ω) = p
g2

β

∑
ω

G(ω)G(ω − Ω). (2.61)

We conclude that our large-N truncation of the FRG flow
equations in combination with the Katanin substitution
is equivalent to the DS equations obtained from the large-
N saddle point of a suitably defined functional integral
representation of the YSYK model. Note that without
the Katanin substitution our large-N FRG flow equations
are not equivalent to the DS equations (2.60) and (2.61)
because the Katanin substitution in Eqs. (2.54, 2.55) re-
sums higher orders in the coupling g2. However, for the
SYK model we have shown in Ref. [15] that the Katanin
substitution does not modify the value of the fermionic
anomalous dimension. Whether this is also true for the
YSYK model is an interesting question beyond the scope
of this work.

III. LOW-ENERGY EXPANSION

Our aim is to determine possible fixed points of the
system of FRG flow equations given in Eqs. (2.48–2.51)
at zero temperature, β−1 = 0. As usual, we anticipate
that the fixed points are determined by the leading low-
energy behavior of the vertices, so that for our purpose
it is sufficient to expand the irreducible self-energies to
linear order in the frequencies. Taking the possibility of
dissipative terms proportional to |ω| and |Ω| into account,
the expansion is of the form

ΣΛ(ω) = ΣΛ(0)−AΛ|ω| − (BΛ − 1)iω +O(ω2), (3.1)

ΠΛ(Ω) = ΠΛ(0) + (Y −1
Λ − 1)|Ω|+O(Ω2), (3.2)

where AΛ, BΛ, and YΛ are dimensionless. The coupling
AΛ parametrizes the asymmetry in the fermion spectral
function which is expected to emerge for finite values of

the chemical potential µ [3]. The usual fermionic wave-
function renormalization factor ZΛ is then given by

ZΛ =
1√

A2
Λ +B2

Λ

, (3.3)

which defines the scale-dependent fermionic anomalous
dimension via

ηΛ =
Λ∂ΛZΛ

ZΛ
. (3.4)

Using for simplicity a sharp frequency regulator, the low-
energy form of the scale-dependent fermionic propagator
and the corresponding single-scale propagator can then
be written as [24]

GΛ(ω) =
ZΛΘ(|ω| − Λ)

aΛ|ω|+ ibΛω + µΛ
, (3.5a)

ĠΛ(ω) = − ZΛδ(|ω| − Λ)

aΛΛ + ibΛΛsgnω + µΛ
, (3.5b)

where

aΛ = ZΛAΛ =
AΛ√

A2
Λ +B2

Λ

, (3.6a)

bΛ = ZΛBΛ =
BΛ√

A2
Λ +B2

Λ

, (3.6b)

and

µΛ = ZΛ[µ− ΣΛ(0)]. (3.7)

Note that by construction a2Λ + b2Λ = 1. Similarly, using
also a sharp frequency cutoff for the bosons, the bosonic
propagator and the corresponding single-scale propaga-
tor are at low energies given by

FΛ(Ω) =
YΛΘ(|Ω| − Λ)

|Ω|+ rΛ
, (3.8a)

ḞΛ(Ω) = −YΛδ(|Ω| − Λ)

Λ + rΛ
, (3.8b)

where

rΛ = YΛ[∆ + ΠΛ(0)]. (3.9)

The logarithmic scale-dependence of the bosonic wave-
function renormalization factor YΛ defines the scale-
dependent bosonic anomalous dimension

γΛ =
Λ∂ΛYΛ

YΛ
. (3.10)

For later convenience we introduce the dimensionless cou-
pling

ul =
Z2
l Ylg

2

πΛ2
, (3.11)

which by definition satisfies the flow equation

∂lul = (2− 2ηl − γl)ul, (3.12)
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where l = ln(Λ0/Λ) is the logarithmic flow parameter
and ∂l = −Λ∂Λ. From now on all quantities will be
considered to be functions of l instead of Λ; in the case
of dimensionless quantities we simply rename ηΛ → ηl,
γΛ → γl, aΛ → al and bΛ → bl, while the dimension-
ful couplings µΛ and rΛ are divided by Λ to obtain the
corresponding dimensionless rescaled couplings,

µl =
µΛ

Λ
=

ZΛ[µ− ΣΛ(0)]

Λ
, (3.13)

rl =
rΛ
Λ

=
YΛ[∆ + ΠΛ(0)]

Λ
. (3.14)

To find the fixed points of the renormalization group, we
introduce the dimensionless rescaled self-energies

Σ̃l(ω̃) =
ZΛΣΛ(Λω̃)

Λ
, (3.15)

Π̃l(Ω̃) =
YΛΠΛ(ΛΩ̃)

Λ
, (3.16)

which depend on the dimensionless frequencies ω̃ = ω/Λ

and Ω̃ = Ω/Λ. Using the flow equation (2.48) and (2.49)
for the dimensionful self-energies we find that the corre-
sponding dimensionless rescaled quantities satisfy

∂lΣ̃l(ω̃) = (1− ηl − ω̃∂ω̃)Σ̃l(ω̃) + Σ̇l(ω̃), (3.17)

∂lΠ̃l(Ω̃) = (1− γl − Ω̃∂Ω̃)Π̃l(Ω̃) + Π̇l(Ω̃), (3.18)

where

Σ̇l(ω̃) = − ZΛ∂ΛΣΛ(ω)

=

∫
dω̃′

2π
˙̃Gl(ω̃

′)Γ̃c̄c̄cc
l (ω̃, ω̃′; ω̃′, ω̃)

+
1

2

∫
dΩ̃

2π
˙̃Fl(Ω̃)Γ̃

c̄cϕϕ
l (ω̃, ω̃;−Ω̃, Ω̃), (3.19)

Π̇l(Ω̃) = − YΛ∂ΛΠΛ(Ω)

= p

∫
dω̃

2π
˙̃Gl(ω̃)Γ̃

c̄cϕϕ
l (ω̃, ω̃;−Ω̃, Ω̃). (3.20)

Here we have introduced the dimensionless rescaled four-
point vertices,

Γ̃c̄c̄cc
l (ω̃, ω̃′; ω̃′, ω̃) =

Z2
Λ

Λ
Γc̄c̄cc
Λ (Λω̃,Λω̃′; Λω̃′,Λω̃),

(3.21)

Γ̃c̄cϕϕ
l (ω̃, ω̃;−Ω̃, Ω̃) =

ZΛYΛ

Λ
Γc̄cϕϕ
Λ (Λω̃; Λω̃;−ΛΩ̃,ΛΩ̃),

(3.22)

and the dimensionless single-scale propagators,

˙̃Gl(ω̃) = −Λ2

ZΛ
ĠΛ(Λω) ≈

δ(|ω̃| − 1)

al + iblsgnω + µl
, (3.23)

˙̃Fl(ω̃) = −Λ2

YΛ
ḞΛ(Λω) ≈

δ(|Ω̃| − 1)

1 + rl
. (3.24)

From the flow equations (2.50) and (2.51) we obtain for
the flow of the rescaled four-point vertices

∂lΓ̃
c̄c̄cc
l (ω̃′

1, ω̃
′
2; ω̃2, ω̃1) = (1− 2ηl − ω̃′

1∂ω̃′
1
− ω̃′

2∂ω̃′
2
− ω̃2∂ω̃2 − ω̃1∂ω̃1)Γ̃

c̄c̄cc
l (ω̃′

1, ω̃
′
2; ω̃2, ω̃1)

+ π
ul

2

[
˙̃Fl(ω̃1 − ω̃′

2) +
˙̃Fl(ω̃2 − ω̃′

1)
]
, (3.25)

∂lΓ̃
c̄cϕϕ
l (ω̃1, ω̃2; Ω̃1, Ω̃2) = (1− ηl − γl − ω̃1∂ω̃1

− ω̃2∂ω̃2
− Ω̃1∂Ω̃1

− Ω̃2∂Ω̃2
)Γ̃c̄cϕϕ

l (ω̃1, ω̃2; Ω̃1, Ω̃2)

+ π
ul

2

[
˙̃Gl(ω̃1 + Ω̃1) +

˙̃Gl(ω̃2 + Ω̃1) +
˙̃Gl(ω̃1 + Ω̃2) +

˙̃Gl(ω̃2 + Ω̃2)
]
. (3.26)

These linear first-order partial differential equations can be solved analytically [14]. For the external frequencies
needed in Eqs. (3.19) and (3.20) we obtain

Γ̃c̄c̄cc
l (ω̃, ω̃′; ω̃′, ω̃) = e

∫ l
0
dτ(1−2ητ )Γ̃c̄c̄cc

0 (e−lω̃, e−lω̃′; e−lω̃′, e−lω̃)

+ π

∫ l

0

dte
∫ l
l−t

dτ(1−2ητ )ul−t
˙̃Fl−t(e

−t(ω̃ − ω̃′)), (3.27)

Γ̃c̄cϕϕ
l (ω̃; ω̃;−Ω̃, Ω̃) = e

∫ l
0
dτ(1−ητ−γτ )Γ̃c̄cϕϕ

0 (e−lω̃; e−lω̃;−e−lΩ̃, e−lΩ̃)

+ π

∫ l

0

dte
∫ l
l−t

dτ(1−ητ−γτ )ul−t

[
˙̃Gl−t(e

−t(ω̃ − Ω̃)) + ˙̃Gl−t(e
−t(ω̃ + Ω̃))

]
. (3.28)
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After substituting these expressions into Eqs. (3.19) and (3.20) and performing the frequency integrations we obtain

Σ̇l(ω̃) =
1

2

∫ l

0

dtul−t

{
e
∫ l
l−t

dτ(1−2ητ )

1 + rl−t

[
δ(e−t|1− ω̃| − 1)

µ̃l + ibl
+

δ(e−t|1 + ω̃| − 1)

µ̃l − ibl

]

+
e
∫ l
l−t

dτ(1−ητ−γτ )

1 + rl

[
δ(e−t|1− ω̃| − 1)

µ̃l−t − ibl−tsgn(1− ω̃)
+

δ(e−t|1 + ω̃| − 1)

µ̃l−t + ibl−tsgn(1 + ω̃)

]}
, (3.29)

Π̇l(Ω̃) = p

∫ l

0

dtul−te
∫ l
l−t

dτ(1−ητ−γτ )Re

[
δ(e−t|1− Ω̃| − 1)

(µ̃l + ibl)(µ̃l−t + ibl−tsgn(1− Ω̃))
+

δ(e−t|1 + Ω̃| − 1)

(µ̃l + ibl)(µ̃l−t + ibl−tsgn(1 + Ω̃))

]
,

(3.30)

where we have introduced the shifted rescaled chemical potential,

µ̃l = µl + al. (3.31)

Assuming |ω̃| < 1 and |Ω̃| < 1 and using the fact that in this case the δ-functions can be written as

δ(e−t|1± ω̃| − 1) = δ(t− ln(1± ω̃)), (3.32)

we can now carry out the t-integrations. Defining Lω̃ = ln(1+ |ω̃|) and assuming l > Lω̃ and l > LΩ̃ we finally obtain

Σ̇l(ω̃) =
ul−Lω̃

2

[
e
∫ l
l−Lω̃

dτ(1−2ητ )

(1 + rl−Lω̃
)(µ̃l − iblsgnω)

+
e
∫ l
l−Lω̃

dτ(1−ητ−γτ )

(1 + rl)(µ̃l−Lω̃
+ ibl−Lω̃

sgnω)

]
, (3.33)

Π̇l(Ω̃) = pul−LΩ̃
e
∫ l
l−L

Ω̃
dτ(1−ητ−γτ )

Re

[
1

(µ̃l + ibl)(µ̃l−LΩ̃
+ ibl−LΩ̃

)

]
. (3.34)

The flow equations for µl and rl can now be obtained
from Eqs. (3.33) and (3.34) by setting the external fre-
quencies equal to zero,

∂lµl = (1− ηl)µl − Σ̇l(0)

= (1− ηl)µl − ul
µ̃l

(1 + rl)(b2l + µ̃2
l )
, (3.35)

∂lrl = (1− γl)rl + Π̇l(0)

= (1− γl)rl − pul
b2l − µ̃2

l

(b2l + µ̃2
l )

2
. (3.36)

To determine the scale-dependent anomalous dimensions
ηl and γl we need the linear terms in the expansions of
Σ̇l(ω̃) and Π̇l(Ω̃),

Σ̇l(ω̃) = Σ̇l(0)− αl|ω̃| − βliω̃ +O(ω̃2), (3.37)

Π̇l(Ω̃) = Π̇l(0) + γl|Ω̃|+O(Ω̃2). (3.38)

The fermionic anomalous dimension is then given by

ηl = alαl + blβl, (3.39)

where al and bl satisfy

∂lal = −ηlal + αl, (3.40)

∂lbl = −ηlbl + βl, (3.41)

with

αl =
ul

2(1 + rl)

{
µ̃l

(b2l + µ̃2
l )

[
2− ηl − γl −

∂lrl
1 + rl

]

+
(b2l − µ̃2

l )∂lµ̃l − µ̃l∂lb
2
l

(b2l + µ̃2
l )

2

}
, (3.42)

βl =
ul

2(1 + rl)

{
bl

(b2l + µ̃2
l )

[
ηl − γl −

∂lrl
1 + rl

]

+
(b2l − µ̃2

l )∂lbl + bl∂lµ̃
2
l

(b2l + µ̃2
l )

2

}
. (3.43)

Finally, the bosonic anomalous dimension is

γl = pul

[
(1− ηl)(b

2
l − µ̃2

l )

(b2l + µ̃2
l )

2
+Re

∂l(µ̃l + ibl)

(µ̃l + ibl)3

]
. (3.44)

IV. NON-FERMI LIQUID FIXED POINT

To find possible fixed points of the above system of
differential equations, we note that the flow equation
(3.12) for the coupling ul implies that at a non-trivial
fixed point with liml→∞ ul = u∗ ̸= 0 the fermionic and
bosonic anomalous dimensions must satisfy the scaling
relation

γ∗ = 2− 2η∗. (4.1)
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Using this to eliminate γ∗ in favor of η∗ we find that
the fixed point values µ∗, r∗, a∗, b∗, η∗, and u∗ of the
six scale-dependent parameters µl, rl, al, bl, ηl, and ul are
constrained by the following six equations,

(1− η∗)µ∗ =
u∗(µ∗ + a∗)

(1 + r∗)[b2∗ + (µ∗ + a∗)2]
, (4.2a)

(2η∗ − 1)r∗ = pu∗
b2∗ − (µ∗ + a∗)

2

[b2∗ + (µ∗ + a∗)2]2
, (4.2b)

η∗a∗ =
η∗u∗(µ∗ + a∗)

2(1 + r∗)[b2∗ + (µ∗ + a∗)2]
, (4.2c)

η∗b∗ =
(3η∗ − 2)u∗b∗

2(1 + r∗)[b2∗ + (µ∗ + a∗)2]
, (4.2d)

(1− η∗) = (1− η∗)
pu∗

2

b2∗ − (µ∗ + a∗)
2

[b2∗ + (µ∗ + a∗)2]2
,

(4.2e)

a2∗ + b2∗ = 1. (4.2f)

We have analytically determined the solutions of this sys-
tem of equations. For u∗ > 0 we find physically accept-
able solutions only for µ∗ = a∗ = 0 implying b∗ = 1.
Actually, if we allow for (unphysical) complex values of
η∗ the above system has additional solutions where µ∗,
a∗, and b∗ are all finite. Moreover, for negative u∗ we
find additional solutions with b∗ = 0, a∗ = ±1, and finite
µ∗ which we do not further discuss in this work [25]. To
determine the values of η∗, r∗, and u∗ at the physical
fixed point, we set µ∗ = a∗ = 0 and b∗ = 1 in Eqs. (4.2)
and obtain

u∗ =
2

p
, (4.3a)

r∗ =
2

2η∗ − 1
, (4.3b)

pη∗ =
3η∗ − 2

1 + r∗
=

3η∗ − 2

1 + 2
2η∗−1

. (4.3c)

The resulting quadratic equation for η∗ has the two so-
lutions

η+∗ =
7 + p+

√
1 + 30p+ p2

4(3− p)
, (4.4a)

η−∗ =
4

7 + p+
√
1 + 30p+ p2

. (4.4b)

We discard the η+∗ solution because it exhibits a singular-
ity at p = 3 that we believe to be unphysical. The only
physical solution of our fixed point equation (4.3c) for
the fermionic anomalous dimension is therefore η∗ ≡ η−∗
given in Eq. (4.4b), which is shown in Fig. 5(a). Obvi-
ously, η∗(p) is a continuous function of p for all p with

η∗ =
1

2
− p+O(p2), (4.5)

for small p, while for large p the leading asymptotics is

η∗ =
2

p
+O(1/p2). (4.6)

η*

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

p

(a)

r*

u*

0 2 4 6 8 10

-5

0

5

p

(b)

FIG. 5. (a) Physical branch η∗ ≡ η−
∗ of the fermionic anoma-

lous dimension at the non-Fermi liquid fixed point given in
Eq. (4.4b). (b) Corresponding fixed point values of r∗ (blue)
and u∗ (red).

The corresponding fixed point values of r∗ and u∗ are
shown in Fig. 5(b). Note that 1 + r∗ is negative for all p
and diverges for p → 0 as r∗ ∼ −1/p = −u∗/2. For 0 <
p ≪ 1 both |r∗| and u∗ are large compared with unity,
indicating the non-perturbative nature of the non-Fermi
liquid fixed point in this regime. Given the fact that
γ∗ = 2 − 2η∗ > 1, we conclude that for small imaginary
frequencies the boson propagator scales as

F (Ω) ∼ −k∗|Ω|γ∗−1, (4.7)

with some positive real constant k∗. For p → ∞ where
γ∗ → 2 this implies F (Ω) ∼ −k∗|Ω|, so that the ana-
lytic continuation from the upper frequency plane to real
frequencies (|Ω| → −iΩ) gives for the retarded boson
propagator

Fret(Ω + i0) ∼ ik∗Ω. (4.8)

The resulting spectral function satisfies

ΩImFret(Ω + i0) ≥ 0, (4.9)

which is a general property of any bosonic spectral func-
tion. For finite p where 1 < γ∗ < 2 we have to choose
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FIG. 6. RG flow in the µ−a plane for p = 1 close to the fixed
point µ∗ = a∗ = 0 obtained from the linearized flow equations
(4.10). Note that the physical initial condition corresponding
to the bare action is given by the horizontal line a0 = 0.

the physical Riemann sheet of the multi-valued complex
function zγ∗−1 to obtain the physical spectral function
that satisfies the positivity condition (4.9), see Ref. [26]
for a careful discussion.

To investigate the stability of the non-Fermi liquid
fixed point, we now study the linearized RG flow in the
vicinity of this fixed point. Given the fact that at the
fixed point µ∗ = a∗ = 0 we find from Eqs. (3.35, 3.40,
3.42) that the linearized flow in the µ−a-plane decouples
from the flow of the other parameters,

∂l

(
µl

al

)
=

(
Mµµ Mµa

Maµ Maa

)(
µl

al

)
, (4.10)

with

Mµµ = 1− η∗ −
u∗

1 + r∗
, (4.11a)

Mµa = − u∗

1 + r∗
, (4.11b)

Maµ = u∗

(
1

1 + r∗
− 1

2(1 + r∗)− u∗

)
, (4.11c)

Maa = −η∗ −
u2
∗

(1 + r∗)[2(1 + r∗)− u∗]
. (4.11d)

The resulting RG flow in the µ − a-plane is shown in
Fig. 6. Obviously, the RG flow in the µ − a-plane has
one attractive and one repulsive direction. To charac-
terize the behavior of the RG trajectories quantitatively,
we calculate the eigenvalues λ± of the 2 × 2 matrix in

λ+

λ-

0 2 4 6 8 10

-0.5

0.0

0.5

1.0

1.5

p

FIG. 7. Graph of the eigenvalues λ+ (blue) and λ− (red) of
the matrix in Eq. (4.10) which characterize the linearized RG
flow in the µ− a-plane around the fixed point µ∗ = a∗ = 0.

Eq. (4.10),

λ± =
Mµµ +Maa

2
±

√(
Mµµ −Maa

2

)2

+MµaMaµ.

(4.12)
At small and large p, they behave as

λ+ =
3

2
− 3p+O(p2), (4.13a)

λ− = −1

2
+ p+O(p2), (4.13b)

and

λ+ = 1 +O(1/p2), (4.14a)

λ− = −2

p
+O(1/p2), (4.14b)

respectively. We plot these eigenvalues as function of p
in Fig. 7.
Next, let us discuss the linearized RG flow of the cou-

plings ul and rl in the vicinity of our non-Fermi liquid
fixed point. Using Eqs. (3.12, 3.43, 3.44) we find that
the linearized flow of δul = ul − u∗ completely decouples
from the other parameters,

∂lδul = −pu∗(1− η∗)δul = λuδul, (4.15)

with

λu = −pu∗(1− η∗) = −2(1− η∗), (4.16)

where we have used Eq. (4.3a) to set pu∗ = 2. Given the
fact that 0 < η∗ < 1/2, we conclude that the coupling
ul is irrelevant at the non-Fermi liquid fixed point with
scaling exponent λu < 0. A graph of λu as a function
of p is shown by the red line in Fig. 8. Finally, using
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-0.8

-0.6

p

FIG. 8. Graph of the eigenvalues λr (blue) and λu (red)
of the linearized flow in the vicinity of the non-Fermi liquid
fixed point, see Eqs. (4.16) and (4.18a).

Eqs. (3.36, 3.43, 3.44) we obtain for the linearized flow
of δrl = rl − r∗,

∂lδrl = λrδrl + λruδul, (4.17)

where

λr = 2η∗ − 1− pr∗u
2
∗ (5η∗ − 3)

2(1 + r∗)2 − (1 + r∗)u∗ − pu2
∗
, (4.18a)

λru = −p

+ pr∗
pu2

∗ + 2(1 + r∗)
2(η∗ − 1) + u∗(1 + r∗)(2η∗ − 1)

2(1 + r∗)2 − (1 + r∗)u∗ − pu2
∗

.

(4.18b)

The eigenvalue λr as a function of p is represented by
the blue line in Fig. 8. It is always negative and has the
asymptotics

λr = −1

2
− 6p+O(p2), (4.19a)

λr = −1− 8

p
+O(1/p2) (4.19b)

for small and large p, respectively. A projection of the
linearized RG flow onto the plane spanned by δrl and δul

in the vicinity of the fixed point is shown in Fig. 9. Note
that the projected flow has only attractive directions, so
that fine tuning of the couplings rl and ul is not neces-
sary to realize the critical state associated with the non-
Fermi liquid fixed point. Our model therefore exhibits
self-tuned criticality [5] with respect to the bosonic mass
parameter ∆ + Π(0). Thus, the only relevant coupling
at the non-Fermi liquid fixed point is the scaling variable
associated with the positive eigenvalue λ+ of the 2 × 2-
matrix in Eq. (4.10), which is a linear combination of the
rescaled chemical potential µl and the spectral asymme-
try parameter al.
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0.10

0.15

0.20

0.25

FIG. 9. RG flow in the r − u-plane for p = 1 close to the
non-Fermi liquid fixed point obtained from the linearized flow
equations (4.15) and (4.17).

V. SUMMARY AND CONCLUSIONS

In this work we have developed a FRG approach for
a dissipative Yukawa-SYK model where the inverse bo-
son propagator exhibits a non-analytic |Ω| frequency de-
pendence. We have shown that, to leading order in
1/N and 1/M , the infinite hierarchy of FRG flow equa-
tions for this model can be reduced to a system of flow
equations for the irreducible fermionic and bosonic self-
energies and two types of scale-dependent four-point ver-
tices. This system is closed because the flow of the four-
point vertices can be expressed again in terms of the self-
energies. Within a standard low-energy expansion of the
self-energies we have found a non-trivial non-Fermi liquid
fixed point with critical exponents depending on the ratio
N/M . A stability analysis of the linearized RG flow in
the vicinity of this fixed point shows that it has only one
repulsive direction corresponding to a linear combination
of the rescaled chemical potential µl and a parameter al
which quantifies the spectral asymmetry. As a0 = 0 in
the microscopic action, the physical parameter that can
be tuned to reach the non-Fermi liquid fixed point is the
fermionic density. In particular, the rescaled boson mass
parameter rl and the Yukawa coupling ul are both irrel-
evant at the fixed point, so that no fine-tuning of these
parameters is necessary to realize the corresponding non-
Fermi liquid phase. Although in principle it should also
be possible to extract these results from the correspond-
ing Dyson-Schwinger equations, in practice our approach
based on FRG flow equations is more convenient because
it allows us to extract the low-energy properties analyti-
cally using well-established approximations.
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It would be interesting to extend our analysis to the
usual YSYK model where the inverse boson propagator
exhibits a quadratic frequency dependence. Our FRG
flow equations (2.48–2.51) remain valid also in this case,
so that from a numerical solution of these equations we
expect to recover the non-Fermi liquid solution of the
Dyson-Schwinger equations derived in Ref. [6]. Unfor-
tunately, the low-energy expansion of Sec. III, which is
crucial to make progress analytically, does not produce
sensible results in this case, at least when it is combined
with a sharp frequency regulator. Possibly, an ultra-

smooth regulator of the type proposed by Husemann and
Salmhofer [27] might solve this problem.

ACKNOWLEDGEMENTS

We thank Olexandr Tsyplyatyev for useful discussions
and the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) for financial support via TRR
288 - 422213477.

[1] I. Esterlis and J. Schmalian, Cooper pairing of incoherent
electrons: An electron-phonon version of the Sachdev-Ye-
Kitaev model, Phys. Rev. B 100, 115132 (2019).

[2] D. Hauck, M. J. Klug, I. Esterlis, and J. Schmalian,
Eliashberg equations for an electron-phonon version of
the Sachdev-Ye-Kitaev model: Pair-breaking in non-
Fermi liquid superconductors, Ann. Phys. (Amsterdam)
417, 168120 (2020).

[3] Y. Wang and A. V. Chubukov, Quantum phase transi-
tion in the Yukawa-SYK model, Phys. Rev. Research 2,
033084 (2020).

[4] Y. Wang, Solvable strong-couoling quantum-dot model
with a non-Fermi liquid pairing transition, Phys. Rev.
Lett. 124, 017002 (2020).

[5] G. Pan, W. Wang, A. Davis, Y. Wang and Z. Y. Meng.
Yukawa-SYK model and self-tuned quantum criticality,
Phys. Rev. Research 3, 013250 (2021).

[6] L. Classen and A. Chubukov, Superconductivity of inco-
herent electrons in the Yukawa Sachdev-Ye-Kitaev model,
Phys. Rev. B 104, 125120 (2021).

[7] A. Davies and Y. Wang, Quantum chaos and phase tran-
sition in the Yukawa-SYK model, Phys. Rev. B 107,
205122 (2023).

[8] D. Valentinis, G. A. Inkof, and J. Schmalian, Correlation
between phase stiffness and condensation energy across
the non-Fermi to Fermi-liquid crossover in the Yukawa-
Sachdev-Ye-Kitaev model on a lattice, Phys. Rev. Re-
search 5, 043007 (2023).

[9] D. Valentinis, G. A. Inkof, and J. Schmalian, BCS to
incoherent superconductivity crossovers in the Yukawa-
SYK model on a lattice, Phys. Rev. B 108, L140501
(2023).

[10] J. Kim, X. Cao, and E. Altman, Low-rank Sachdev-Ye-
Kitaev models, Phys. Rev. B 101, 125112 (2020).

[11] S. Sachdev, Bekenstein-Hawking Entropy and Strange
Metals, Phys. Rev. X 5, 041025 (2015).

[12] A. Kitaev and S. J. Suh, The soft mode in the Sachdev-
Ye-Kitaev model and its gravity dual, J. High. Energ.
Phys. 05 (2018) 183.

[13] N. Goldenfeld, Lectures on Phase Transitions and
the Renormaliztion Group, (Addison-Wesley Publishing
Company, Reading, Massachusetts, 1992).

[14] P. Kopietz, L. Bartosch, and F. Schütz, Introduction to
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