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Abstract. In this paper we study a time-inconsistent portfolio optimization problem for competitive agents
with CARA utilities and non-exponential discounting. The utility of each agent depends on her own
wealth and consumption as well as the relative wealth and consumption to her competitors. Due
to the presence of a non-exponential discount factor, each agent’s optimal strategy becomes time-
inconsistent. In order to resolve time-inconsistency, each agent makes a decision in a sophisticated
way, choosing open-loop equilibrium strategy in response to the strategies of all the other agents. We
construct explicit solutions for the n-agent games and the corresponding mean field games (MFGs)
where the limit of former yields the latter. This solution is unique in a special class of equilibria.
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1. Introduction. Due to the fact that peer interaction sometimes makes remarkable im-
pacts on agent’s decision making, portfolio games, as a game-theoretic extension of classical
Merton problem [27], have received considerable attention in recent years. Relative perfor-
mance is becoming an appealing way to model the interaction because of the tractability
in mathematics and excellent economic motivations. The literature on portfolio games with
relative performance concerns dates by to Espinosa and Touzi [16], where they consider n-
agent games with portfolio constrains under the CARA utility by investigating the associated
quadratic BSDEs systems. Lacker and Zariphopoulo [23] consider the portfolio games for asset
specialized agents in log-normal markets under both CARA and CRRA relative performance
criteria. The constant Nash equilibrium and mean field equilibrium (MFE) are explicitly con-
structed. In a similar fashion, Lacker and Soret [22] extend the problem by incorporating the
dynamic consumption. Bo et al. [7] revisit the MFGs and the n-agent games under CRRA
relative performance by allowing risky assets to have contagious jumps. A deterministic MFE
in an analytical form is obtained by using the FBSDE and stochastic maximum principle. Fur-
thermore, an approximate Nash equilibrium for the n-agent games is constructed. Recently,
Fu and Zhou [17] study the mean field portfolio games with general market parameters. A
one-to-one correspondence between the Nash equilibrium and the solution to some FBSDE is
established by martingale optimality principle.

Another research direction with fruitful outcomes is time-inconsistent control problem,
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where the Bellman optimality principle does not hold. There are many important problems
in mathematical finance and economics incurring time-inconsistency, for example, the mean-
variance selection problem and the investment-consumption problem with non-exponential
discounting. The main approaches to handle time-inconsistency are to search for, instead of
optimal strategies, time-consistent equilibrium strategies within a game-theoretic framework.
Ekeland and Lazrak [14] and Ekeland and Pirvu [15] introduce the precise definition of the
equilibrium strategy in continuous-time setting for the first time. Björk et al. [5] derive
an extended HJB equation to determine the equilibrium strategy in a Markovian setting.
Yong [30] introduces the so-called equilibrium HJB equation to construct the equilibrium
strategy in a multi-person differential game framework with a hierarchical structure. The
solution concepts considered in [5, 30] are closed-loop equilibrium strategies and the methods
to handle time-inconsistency are extensions of the classical dynamic programming approaches.
In contrast to the aforementioned literature, Hu et al. [20] introduce the concept of open-loop
equilibrium control by using a spike variation formulation, which is different from the closed-
loop equilibrium concepts. The open-loop equilibrium control is characterized by a flow of
FBSDEs, which is deduced by a duality method in the spirit of Peng’s stochastic maximum
principle. Some recent studies devoted to the open-loop equilibrium concept can be found in
[2, 3, 29, 18]. Specially, Alia et al. [3], closely related to our paper, study a time-inconsistent
investment-consumption problem under a general discount function, and obtain an explicit
representation of the equilibrium strategies for some special utility functions, which is different
from most of existing literature on the time-inconsistent investment-consumption problem,
where the feedback equilibrium strategies are derived via several complicated nonlocal ODEs;
see, e.g., [26, 6].

To the best of our knowledge, the n-agent games and MFGs under relative performance
when the non-exponential discounting is considered have not been studied before. The con-
stant discount rate is a common assumption in classical portfolio management problems under
discounted utility which suggests the discount function should be exponential. But results from
experimental studies contradict this assumption, indicating that agents may be impatient in
the face of choices in the short term but be patient when choosing between long-term alterna-
tives; see, e.g., [1]. Therefore, it is interesting to investigate the non-exponential discounting
case.

Our paper aims to contribute to the literature of the aforementioned n-agent games and
MFGs under relative performance by considering general discount functions. Specially, the
discount function only needs to satisfy some weak conditions; see Definition 2.4 in Section 2.
Meanwhile, we adopt the asset specialization framework in [23, 7] with a common noise. A lot
of literature on equilibrium strategy under non-exponential discounting suggest that the in-
vestment strategy is independent of discount function, which indicates that time-inconsistency
does not influence agent’s portfolio policy; see, e.g., [26, 6]. Thus instead of portfolio games,
we incorporate consumption in the same spirit of [22] and focus on CARA relative performance
utility. As opposed to the previous works, the presence of non-exponential discounting gives
rise to time-inconsistency, which induces the failure of the principle of optimality. In order to
resolve time-inconsistency, we replace each agent’s optimal strategy in time-consistent setting
by its open-loop equilibrium (consistent) strategy in time-inconsistent setting. As a result,
there are two levels of game-theoretic reasoning intertwined. (1) The intra-personal equilib-
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rium among the agent’s current and future selves. (2) The equilibrium among n-agents. For
tractability, we search only for DF equilibrium strategy, see Definition 2.11. To construct the
DF equilibrium strategy, we first characterize the open-loop consistent control for each single
agent given an arbitrary (but fixed) choice of competitors’ controls by a FBSDE system. By
assuming that all the other agents choose DF strategies, see Definition 2.2, we derive a closed
form representation of the strategy via a PDE system. We then construct the desired equilib-
rium by solving a fixed point problem. While for MFG, the solution technique is analogous
to the n-agent setting and the resulting MFE takes similar forms as its n-agent counterparts.

The contributions of our paper are as follows: first, as far as we know, our work is the
first paper to incorporate consumption into CARA portfolio game with relative performance
concerns. Portfolio games under relative consumption are generally underexplored, with the
exception of [22], which focuses solely on CRRA utilities under zero discount rate. Our paper
fills this gap in the literature. Second, our work can be viewed as a game-theoretic extension
of the exponential utility case presented in [3]. In the special case of a single stock, the
DF equilibrium strategy takes the same form as the open-loop equilibrium in [3], but with a
modified risk tolerance. This effective risk tolerance parameter has already appeared in some
works on a similar topic but with a time-consistent model; see, e.g., [23, 19]. Moreover, in the
case with constant discount rate, the equilibrium reduces to the solution of classical Merton
problem, which indicates that the equilibrium concept in our paper is the natural extension
of equilibrium in classical time-consistent setting to time-inconsistent setting. Third, our
work also provides a new explicitly solvable mean field game model. Since the pioneering
works by [24, 21], MFGs have been actively studied and widely applied in economics, finance
and engineering. To name a few recent developments in theories and application, we refer
to [12, 8, 13, 9, 10] among others. However, few studies combine the MFGs with time-
inconsistency problem, except some linear quadratic examples; see, e.g., [28, 4]. Our result
adds a new explicitly solvable non-LQ example to intersection of these two fields.

The rest of paper is organized as follows. In Section 2, we formulate and solve the n-agent
games under CARA relative preference and a general discount function. Then, in Section 3, we
study the infinite population counterpart of this problem, and identify resulting MFE agree
with the limiting expressions from the n-agent games. Section 4 presents some qualitative
comments on the MFE. Some conclusion remarks and future research directions are given in
Section 5. Finally, the proofs of some auxiliary results are in Appendix.

Notations. For any Euclidean space E with norm | · |, and any t ∈ [0, T ], denote
L2
Ft
(Ω;E): the set of E-valued Ft-measurable random variables X, such that

E
[
|X|2

]
<∞.

S2F(t, T ;E): the space of E-valued F-adapted and continuous processes Y with

E

[
sup

s∈[t,T ]
|Ys|2

]
<∞.

H2
F(t, T ;E): the space of E-valued F-progressively measurable processes Z with

E
[∫ T

t
|Zs|2 ds

]
<∞.
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2. The n-agent games. In this section, we consider the n-agent games. The market
model is same as [23] and each agent invests in their own specific stock or in a common
riskless bond which offers zero interest rate. The common time horizon for all agents is [0, T ]
with T > 0. The price process of stock i, in which only agent i trades, follows the following
stochastic differential equation (SDE)

(2.1)
dSi

t

Si
t

= µidt+ νidW
i
t + σidBt

with constant parameters µi > 0, σi ≥ 0, and νi ≥ 0 with σi + νi > 0, where the Brownian
motions W 1, · · · ,Wn and B are independent on a filtered probability space (Ω,F ,F,P), in
which the natural filtration F := (Ft)t∈[0,T ] is generated by these n+ 1 Brownian motions.

We recall the single stock case, corresponding to the situation where µi = µ, νi = 0, and
σi = σ, for all i = 1, · · · , n and for some µ, σ > 0 independent of i.

Each agent i whose initial wealth at time t0 ∈ [0, T ) is xi0 ∈ R trades according to a
self-financing strategy, πi = {πit, t0 ≤ t ≤ T}, representing the amount invested in the stock
i, and consumes at a consumption rate ci = {cit, t0 ≤ t ≤ T}. Then the i-th agent’s wealth
process Xi = {Xi

t , t0 ≤ t ≤ T} is

(2.2) dXi
t = πit

(
µidt+ νidW

i
t + σidBt

)
− citdt, Xi

t0 = xi0 ∈ R.

Now, we introduce the admissible control as follows:

Definition 2.1 (Admissible control).
A control (π, c) is said to be admissible over [t, T ] if (π, c) ∈ H2

F(t, T ;R)×H2
F(t, T ;R). For

brevity, we denote At as the set of all admissible controls over [t, T ].

We focus on the DF (deterministic-feedback) strategy defined as follows:

Definition 2.2 (DF strategy).
An n-tuple of pairs

(
Πi, Ci

)n
i=1

is said to be a DF strategy, if for each i ∈ {1, · · · , n},
Πi : [0, T ] → R is a continuous function and Ci : [0, T ]× Rn → R is of an affine form:

Ci(t, x) =
n∑

k=1

pi,k(t)xk + qi(t), (t, x) ∈ [0, T ]× Rn,

for some continuous functions pi,k, qi : [0, T ] → R. We denote the set of DF strategies by Sn.
Moreover, a DF strategy

(
Πi, Ci

)n
i=1

∈ Sn is said to be simple if for every i ∈ {1, · · · , n}, the
function [0, T ]× Rn ∋

(
t, x =

(
x1, · · · , xn

))
→ Ci(t, x) ∈ R does not depend on

(
xk
)
k ̸=i

.

Let a DF strategy
(
Πi, Ci

)n
i=1

∈ Sn be given. Then, for each initial condition (t0, x0) ∈
[0, T )×Rn with x0 = (x10, · · · , xn0 ), we can solve the closed-loop system for X =

(
X1, · · · , Xn

)
:

(2.3)


dXi

t =
(
Πi(t)µi − Ci(t,Xt)

)
dt+Πi(t)νidW

i
t +Πi(t)σidBt, t ∈ [t0, T ],

i = 1, · · · , n,
Xi

t0 = xi0, i = 1, · · · , n.
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Then, it is easy to see that the outcome
(
πi, ci

)n
i=1

defined by

(2.4) πit := Πi(t), cit := Ci(t,Xt), t ∈ [t0, T ], i = 1, . . . , n,

is in An
t0 , that is, an n-tuple of admissible controls on [t0, T ].

Remark 2.3. It is worth noting that the DF strategy
(
Πi, Ci

)n
i=1

does not depend on the

initial condition (t0, x0), while the outcome
(
πi, ci

)n
i=1

depends on (t0, x0).

Let
(
Πi, Ci

)n
i=1

,
(
Π̃i, C̃i

)n
i=1

∈ Sn be given. For each initial condition (t0, x0) ∈ [0, T )×Rn,

denote by
(
πi(t0, x0), c

i(t0, x0)
)n
i=1

and by
(
π̃i(t0, x0), c̃

i(t0, x0)
)n
i=1

the corresponding out-

comes. Fix i ∈ {1, · · · , n}, and assume that
(
πit(t0, x0), c

i
t(t0, x0)

)
=
(
π̃it(t0, x0), c̃

i
t(t0, x0)

)
a.s.

for a.e. t ∈ [t0, T ] for every (t0, x0) ∈ [0, T ) × Rn. Then it holds that Πi(t) = Π̃i(t) and
Ci(t, x) = C̃i(t, x) for any (t, x) ∈ [0, T ]× Rn.

As we mention before, growing evidence suggests that the discount rate may not be constant,
and in our work, we discuss the general discounting preferences.

Definition 2.4 (Discount Function).
A discount function λ : [0, T ] → R is a continuous and strictly positive function satisfying

λ(0) = 1.

Remark 2.5. Definition 2.4 is general enough to cover some special discount functions,
such as exponential discount functions (see, e.g., [27]), quasi-exponential discount functions
(see, e.g., [15]) and hyperbolic discount functions (see, e.g., [31]). In fact, our result can be
extended to a more general form of the discount factor as [18], where the discount function
λ(·, ·) is a positive bivariate continuous function on {(t, s)|0 ≤ t ≤ s ≤ T} satisfying λ(t, t) = 1,
as the very thing we need is continuity of the discount function.

The utility function of the agent i is defined as follows:

Ui

(
xi, x

)
:= − exp

{
− 1

δi

(
xi − θix

)}
, x =

(
x1, . . . , xn

)
∈ Rn,

where x := 1
n

∑n
i=1 x

i and the constants δi > 0 and θi ∈ [0, 1] represent the personal risk
tolerance and competition weight parameters, respectively. Note that the utility function also
can be seen as a function of xi and x(i) := 1

n

∑
j ̸=i x

j :

Ui

(
xi, x(i)

)
:= − exp

{
− 1

δi

(
1− θi

n

)
xi +

θi
δi
x(i)
}
.

Each agent derives a reward from their discounted inter-temporal consumption and final
wealth, to be specific, for agent i, the expected payoff is

(2.5) E
[∫ T

t0

λ(t− t0)Ui

(
cit, c

(i)
t

)
dt+ λ(T − t0)Ui

(
Xi

T , X
(i)
T

)]
,

defined for any admissible controls (πi, ci)ni=1 ∈ An
t0 , where X

(i)
t := 1

n

∑
k ̸=iX

k
t and c

(i)
t :=

1
n

∑
k ̸=i c

k
t .
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For (πi, ci)ni=1 ∈ An
t0 , we introduce the following notations:

Ji(t,X
i
t , X

(i)
t , (πi, ci)ni=1) : = Et

[∫ T

t
λ(s− t)Ui

(
cis, c

(i)
s

)
ds+ λ(T − t)Ui

(
Xi

T , X
(i)
T

)]
,

where Xi is defined by (2.2), X
(i)

satisfies the following SDE:

(2.6)

{
dX

(i)
t = (µπ

(i)
t − c

(i)
t )dt+ σπ

(i)
t dBt +

1
n

∑
k ̸=i νkπ

k
t dW

k
t , t ∈ [t0, T ],

X
(i)
t0 = x

(i)
0 := 1

n

∑
k ̸=i x

k
0,

with µπ
(i)
t := 1

n

∑
k ̸=i µkπ

k
t and σπ

(i)
t := 1

n

∑
k ̸=i σkπ

k
t , and Et [·] := E [·|Ft].

It is well known that the optimal strategy of agent i turns out to be time-inconsistent
as soon as discounting is non-exponential. Hence, we assume that all agents are sophisti-
cated, which means that they aim to find the best current action in response to their future
selves’ behavior. When every future self also reasons in this way, the resulting strategy is an
equilibrium form which no future self has any incentive to deviate.

As in [3, 20], we consider open-loop Nash equilibrium by local spike variation. For t ∈
[t0, T ), any R2-valued, Ft-measurable and bounded random variable v = (v1, v2), and any
ϵ > 0, given an admissible control (π̂, ĉ) ∈ At0 , define

(2.7) (πt,ϵs , c
t,ϵ
s ) = (π̂s, ĉs) + v1[t,t+ϵ)(s)

for s ∈ [t0, T ], where 1[t,t+ϵ) denotes the indicator function for the interval [t, t+ ϵ).

Definition 2.6 (Open-loop consistent control).

Let i ∈ {1, · · · , n}, (t0, x0) ∈ [0, T ) × Rn and (π, c)(i) =
(
πk, ck

)
k ̸=i

∈ An−1
t0

be given.

An admissible control (π̂i, ĉi) ∈ At0 is said to be an open-loop consistent control for agent i
with respect to the initial condition (t0, x0) in response to

(
πk, ck

)
k ̸=i

if for every t ∈ [t0, T )

and every sequence {ϵn}n∈N ⊂ (0, T − t) such that lim
n→∞

ϵn = 0, the following local optimality

condition holds:

lim sup
n→∞

1

ϵn

{
Ji(t, X̂

i
t , X

(i)
t , (πi,t,ϵn , ci,t,ϵn), (π, c)(i))− Ji(t, X̂

i
t , X

(i)
t , (π̂i, ĉi), (π, c)(i))

}
≤ 0, a.s.,

where X̂i and X
(i)

are defined by (2.2) and (2.6), respectively, with the initial condition (t0, x0)

and the admissible controls (π̂i, ĉi), (π, c)(i), that is,{
dX̂i

t =
(
π̂itµi − ĉit

)
dt+ π̂itνidW

i
t + π̂itσidBt, t ∈ [t0, T ],

X̂i
t0 = xi0,

and {
dX

(i)
t = (µπ

(i)
t − c

(i)
t )dt+ σπ

(i)
t dBt +

1
n

∑
k ̸=i νkπ

k
t dW

k
t , t ∈ [t0, T ],

X
(i)
t0 = x

(i)
0 := 1

n

∑
k ̸=i x

k
0.
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Remark 2.7. We note that there is a slight difference between our definition and the
classical definition of open-loop equilibrium given by [20]. If we adapt the classical definition
to our problem, the open-loop consistent control should satisfy

lim sup
ϵ↓0

1

ϵ

{
Ji(t, X̂

i
t , X

(i)
t , (πi,t,ϵ, ci,t,ϵ), (π, c)(i))− Ji(t, X̂

i
t , X

(i)
t , (π̂i, ĉi), (π, c)(i))

}
≤ 0, a.s.,

where {Ji(t, X̂i
t , X

(i)
t , (πi,t,ϵ, ci,t,ϵ), (π, c)(i))}ϵ>0 is an uncountable family of random variables

and the a.s. limit as ϵ ↓ 0 may not be well-defined. Hence, we avoid to use this definition in
our problem.

We introduce the following technical integrability condition to ensure the uniqueness of
the open-loop consistent control.

Definition 2.8 (Integrability condition).
Let (t0, x0) ∈ [0, T ) × Rn be given. Admissible controls (πi, ci)ni=1 ∈ An

t0 satisfy the inte-
grability condition over [t0, T ] if for every i ∈ {1, · · · , n},

(2.8) E
[∫ T

t0

|Ui(c
i
t, c

(i)
t )|2dt+ |Ui(X

i
T , X

(i)
T )|2

]
<∞,

where Xi and X
(i)

are defined by (2.2) and (2.6), respectively, with the initial condition
(t0, x0) and the admissible controls (πi, ci)ni=1. For brevity, we denote In

t0,x0
as the set of all

n-tuple of controls (πi, ci)ni=1 that satisfy the integrability condition over [t0, T ].

According to the above definition, it is evident that In
t0,x0

⊂ An
t0 . As we shall see later in

Lemma A.3, the outcome of a DF strategy always satisfies the integrability condition. Note

that In
t0,x0

is analogous to Πx,p
2 ∩ Π

x,p/(p−1)
3 in [18], with p = 2 in our setting. Applying

a similar proof as in [18], we can derive the following uniqueness result for the open-loop
consistent control in the single-agent problem.

Theorem 2.9. Let i ∈ {1, · · · , n}, (t0, x0) ∈ [0, T ) × Rn and (π, c)(i) =
(
πk, ck

)
k ̸=i

∈ An−1
t0

be given. Consider two admissible controls (πi,1, ci,1) and (πi,2, ci,2) that satisfy the following
conditions:

(i)
(
(πi,1, ci,1), (π, c)(i)

)
∈ In

t0,x0
and

(
(πi,2, ci,2), (π, c)(i)

)
∈ In

t0,x0
.

(ii) Both (πi,1, ci,1) and (πi,2, ci,2) are open-loop consistent controls for agent i with respect
to the initial condition (t0, x0) in response to

(
πk, ck

)
k ̸=i

.

Then, (πi,1, ci,1) = (πi,2, ci,2).

Proof. As the proof is exactly the same as the proof of [18, Theorem 5.3], we omit it here.

Now, we are ready for the following definitions.

Definition 2.10 (Open-loop equilibrium control).
Let (t0, x0) ∈ [0, T )×Rn be given. An n-tuple of admissible controls (π∗,i, c∗,i)ni=1 ∈ An

t0 is
said to be an open-loop equilibrium control with respect to the initial condition (t0, x0) if for
every i ∈ {1, · · · , n}, (π∗,i, c∗,i) is an open-loop consistent control for agent i with respect to
the initial condition (t0, x0) in response to (π∗,k, c∗,k)k ̸=i.
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Definition 2.11 (DF equilibrium strategy).
A DF strategy

(
Π∗,i, C∗,i)n

i=1
∈ Sn is said to be a DF equilibrium strategy if for every

(t0, x0) ∈ [0, T ) × Rn, the corresponding outcome
(
π∗,i, c∗,i

)n
i=1

∈ An
t0 is an open-loop equilib-

rium control with respect to the initial condition (t0, x0). Moreover, a DF equilibrium strategy(
Π∗,i, C∗,i)n

i=1
is said to be simple if the DF strategy

(
Π∗,i, C∗,i)n

i=1
is simple.

Remark 2.12. For the sake of brevity we use the name “equilibrium strategy” but it is
different to “close-loop equilibrium strategies” or “subgame-perfect equilibrium strategies”
discussed in the literature of time-inconsistent problems. A more appropriate name would be
a “DF representation of open-loop equilibrium controls”.

The main result of this section is the following, which gives the explicit form of a DF equilib-
rium strategy:

Theorem 2.13. Assume that for all i = 1, · · · , n (n ≥ 2), we have δi > 0, θi ∈ [0, 1),
µi > 0, σi ≥ 0, νi ≥ 0 and σi + νi > 0. Then there exists a unique simple DF equilibrium
strategy (Π∗,i, C∗,i)ni=1 being the following form:

Π∗,i(t) =

δi µi

σ2i +
(
1− θi

n

)
ν2i

+ θi
σi

σ2i +
(
1− θi

n

)
ν2i

ϕn
1− ψn

 (T + 1− t) ,(2.9)

C∗,i(t, x) =
xi

T + 1− t
− δiĥ

i(t)− θi

1− θ
δĥ(t)−

(
δi + θi

δ

1− θ

)
ln [λ(T − t)] .(2.10)

The constants ϕn, ψn, δ and θ are

ϕn =
1

n

n∑
k=1

δk
σkµk

σ2k +
(
1− θk

n

)
ν2k

,

ψn =
1

n

n∑
k=1

θk
σ2k

σ2k +
(
1− θk

n

)
ν2k

,

δ =
1

n

n∑
k=1

δk, θ =
1

n

n∑
k=1

θk.

(2.11)

The function (ĥi(·), δĥ(·)) is

ĥi(t) =
Di

n

2

[
1

T + 1− t
− (T + 1− t)

]
− 1

T + 1− t

∫ T

t
ln [λ(T − s)] ds,

δĥ(t) =
1

n

n∑
k=1

δkĥ
k(t),

(2.12)
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where

Di
n =

1

2

(µi + σiA
i
n)

2

ν2i + σ2i
− 1

2

[
(Ai

n)
2 + Ci

n

]
−Bi

n,

Ai
n =

1

n

θi
δi

∑
k ̸=i

δk σkµk

σ2k +
(
1− θk

n

)
ν2k

+ θk
σ2k

σ2k +
(
1− θk

n

)
ν2k

ϕn
1− ψn

 ,
Bi

n =
1

n

θi
δi

∑
k ̸=i

δk µ2k

σ2k +
(
1− θk

n

)
ν2k

+ θk
µkσk

σ2k +
(
1− θk

n

)
ν2k

ϕn
1− ψn

 ,
Ci
n = (

1

n

θi
δi
)2
∑
k ̸=i

δk νkµk

σ2k +
(
1− θk

n

)
ν2k

+ θk
νkσk

σ2k +
(
1− θk

n

)
ν2k

ϕn
1− ψn

2

.

(2.13)

It is straightforward to obtain the following corollary, which covers the single stock case.

Corollary 2.14 (Single stock). Assume that for all i = 1, · · · , n (n ≥ 2), we have µi = µ >
0, σi = σ > 0, and νi = 0. Then the strategy (Π∗,i, C∗,i)ni=1 has the following form:

Π∗,i(t) =
µ

σ2

(
δi + θi

δ

1− θ

)
(T + 1− t) ,

C∗,i(t, x) =
xi

T + 1− t
+

(
δi + θi

δ

1− θ

)
H(t)−

(
δi + θi

δ

1− θ

)
ln [λ(T − t)] ,

(2.14)

where the function H(·) is

(2.15) H(t) = (
1

2

µ

σ
)2
[
(T + 1− t)− 1

T + 1− t

]
+

1

T + 1− t

∫ T

t
ln [λ(T − s)] ds.

Proof of Theorem 2.13. Let i ∈ {1, · · · , n} and (t0, x0) ∈ [0, T )×Rn be given. We denote
by (π̂i, ĉi) ∈ At0 a candidate control for agent i. Assume that the inputs (πk, ck)k ̸=i are of the
following form: (

πkt , c
k
t

)
=
(
Πk(t), Ck(t,Xt)

)
, k ̸= i, t ∈ [t0, T ],

where
(
Πk, Ck

)
k ̸=i

∈ Sn−1 and X = (X1, · · · , Xn) is the wealth process associated with(
π̂i, ĉi

)
and (πk, ck)k ̸=i satisfying

(2.16)


dXk

t =
(
Πk(t)µk − Ck(t,Xt)

)
dt+Πk(t)νkdW

k
t +Πk(t)σkdBt, k ̸= i, t ∈ [t0, T ],

dXi
t =

(
π̂itµi − ĉit

)
dt+ π̂itνidW

i
t + π̂itσidBt, t ∈ [t0, T ],

Xj
t0
= xj0, j = 1, . . . , n.

We now find the open-loop consistent control for agent i with respect to the initial
condition (t0, x0) in response to

(
πk, ck

)
k ̸=i

, then we resolve the resulting fixed point problem
to obtain the desired equilibrium.
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Open-loop consistent control for agent i. According to Theorem A.2 in Appendix A, we
first aim to find a classical solution of the following PDE:

(2.17)



V i
t (t, x

i, x(i)) + Π̂i(t, x)
(
V i
x(t, x

i, x(i))µi + V i
xy(t, x

i, x(i))σiσΠ
(i)
(t)
)

+1
2Π̂

i(t, x)2V i
xx(t, x

i, x(i))
(
ν2i + σ2i

)
− Ĉi(t, x)V i

x(t, x
i, x(i))

+V i
y (t, x

i, x(i))
(
µΠ

(i)
(t)− C

(i)
(t, x)

)
+1

2V
i
yy(t, x

i, x(i))

[(
σΠ

(i)
(t)
)2

+ 1
n2

∑
k ̸=i

(
νkΠ

k(t)
)2]

= 0, (t, x) ∈ [0, T ]× Rn,

V i(T, xi, x(i)) = 1
δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
xi + θi

δi
x(i)
}
, x ∈ Rn,

Π̂i(t, x) = −µiV
i(t,xi,x(i))+σiσΠ

(i)
(t)V i

y (t,x
i,x(i))

(ν2i +σ2
i )V

i
x(t,x

i,x(i))
, (t, x) ∈ [0, T ]× Rn,

Ĉi(t, x) = − δi
1− θi

n

ln

[
δi

1− θi
n

λ(T − t)V i(t, xi, x(i))

]
+ θi

1− θi
n

C
(i)
(t, x), (t, x) ∈ [0, T ]× Rn.

Based on the terminal condition, we guess that the solution has the following form:

V i(t, xi, x(i)) =
1

δi

(
1− θi

n

)
exp

{
f i(t)xi + gi(t)x(i) + hi(t)

}
,
(
t, xi, x(i)

)
∈ [0, T ]× R× R,

where f i(·), gi(·) and hi(·) ∈ C1([0, T ];R) such that f i(T ) = − 1
δi

(
1− θi

n

)
, gi(T ) = θi

δi
and

hi(T ) = 0.
Substituting the ansatz into (2.17), we obtain[
ḟ i(t) +

δi

1− θi
n

(
f i(t)

)2]
xi +

[
ġi(t) +

δi

1− θi
n

f i(t)gi(t)

]
x(i)

+ ḣi(t) +
δi

1− θi
n

f i(t)hi(t) +
δi

1− θi
n

f i(t) ln [λ(T − t)]

− 1

2

(
µi + σiσΠ

(i)
(t)gi(t)

)2
ν2i + σ2i

+ µΠ
(i)
(t)gi(t) +

1

2

[
gi(t)

]2 (σΠ(i)
(t)
)2

+
1

n2

∑
k ̸=i

(
νkΠ

k(t)
)2

−

(
θi

1− θi
n

f i(t) + gi(t)

)
C

(i)
(t, x) = 0, (t, x) ∈ [0, T ]× Rn.

Although the term C
(i)
(t, x) in the last line depends on x ∈ Rn, we can solve the above

equation correctly. Indeed, if f i and gi solve the following ODEs:

(2.18)


ḟ i(t) + δi

1− θi
n

(
f i(t)

)2
= 0, t ∈ [0, T ],

ġi(t) + δi
1− θi

n

f i(t)gi(t) = 0, t ∈ [0, T ],

f i(T ) = − 1
δi

(
1− θi

n

)
, gi(T ) = θi

δi
,



TIME-INCONSISTENT MEAN FIELD AND N-AGENT GAMES 11

whose unique solutions are given by

(2.19)

{
f i(t) = − 1

δi

(
1− θi

n

)
1

T+1−t ,

gi(t) = θi
δi

1
T+1−t ,

then it holds that θi
1− θi

n

f i(t) + gi(t) = 0 for any t ∈ [0, T ]. Thus, the coefficient of C
(i)
(t, x)

vanishes, and we obtain the ODE of hi:

ḣi(t) +
δi

1− θi
n

f i(t)hi(t) +
δi

1− θi
n

f i(t) ln [λ(T − t)]

− 1

2

(
µi + σiσΠ

(i)
(t)gi(t)

)2
ν2i + σ2i

+ µΠ
(i)
(t)gi(t) +

1

2

[
gi(t)

]2 (σΠ(i)
(t)
)2

+
1

n2

∑
k ̸=i

(
νkΠ

k(t)
)2

= 0

with terminal condition hi(T ) = 0, whose solution is given by

(2.20) hi(t) =
1

T + 1− t

∫ T

t
(T + 1− s)Gi((Πk(s))k ̸=i, s)ds,

where the deterministic function Gi : Rn−1 × [0, T ] → R is defined by

Gi((πk)k ̸=i, t) : = − 1

T + 1− t
ln [λ(T − t)]− 1

2

(
µi +

θiσi
(T+1−t)δi

σπ(i)
)2

ν2i + σ2i

+
θi

(T + 1− t) δi
µπ(i) +

θ2i
2(T + 1− t)2δ2i

(σπ(i))2 + 1

n2

∑
k ̸=i

(νkπ
k)2


for ((πk)k ̸=i, t) ∈ Rn−1 × [0, T ].

Then, by the representation of (Π̂i, Ĉi) in (2.17), we have

(2.21)


Π̂i(t, x) =

µi+σiσΠ
(i)

(t)
θi
δi

1
T+1−t

(ν2i +σ2
i )

[
1
δi
(1− θi

n
) 1
T+1−t

] , (t, x) ∈ [0, T ]× Rn,

Ĉi(t, x) = 1
T+1−tx

i − θi
1− θi

n

1
T+1−tx

(i) − δi
1− θi

n

hi(t)− δi
1− θi

n

ln [λ(T − t)]

+ θi
1− θi

n

C
(i)
(t, x), (t, x) ∈ [0, T ]× Rn.

In particular, Π̂i(t, x) = Π̂i(t) does not depend on the state argument x ∈ Rn. It is clear
that (Π̂i, Ĉi) ∈ S and does not depend on the initial condition (t0, x0). Using Lemma A.3
and Theorem A.2, we can conclude that the outcome (π̂i, ĉi) associated with (Π̂i, Ĉi) ∈ S is
indeed an open-loop consistent control for agent i with respect to the initial condition (t0, x0)
in response to

(
πk, ck

)
k ̸=i

.
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Fixed point problem. From the above discussion, we actually construct a best response
map

(2.22) F :
(
Πk, Ck

)n
k=1

→
(
Π̂k, Ĉk

)n
k=1

by (2.21), which maps a DF strategy into a DF strategy. Now, we aim to find the fixed point
of the map F .

We first address the investment strategies. For a candidate portfolio vector (Π1, . . . ,Πn)
to be the fixed point, we need Πi(t) = Π̂i(t), for i = 1, . . . , n and t ∈ [0, T ]. Let

σΠ(t) :=
1

n

n∑
k=1

σkΠ
k(t) = σΠ

(i)
(t) +

1

n
σiΠ

i(t).

Then,

Πi(t) = Π̂i(t) =
δiµi + θiσiσΠ(t)

1
T+1−t(

ν2i + σ2i
) (

1− θi
n

)
1

T+1−t

− θiσ
2
iΠ

i(t)

n
(
ν2i + σ2i

) (
1− θi

n

) ,
which yields

Πi(t) =
δiµi + θiσiσΠ(t)

1
T+1−t(

ν2i + σ2i
) (

1− θi
n

)
1

T+1−t

1 +
θiσ

2
i

n
(
ν2i + σ2i

) (
1− θi

n

)
−1

=
δiµi + θiσiσΠ(t)

1
T+1−t[

σ2i + (1− θi
n )ν

2
i

]
1

T+1−t

.

(2.23)

Multiplying both sides of (2.23) by σi and then averaging over i = 1, . . . , n, gives the
following fixed point equation:

(2.24) σΠ(t) = ϕn(T + 1− t) + ψnσΠ(t)

where (ϕn, ψn) is as defined in (2.11).
We then have the following cases to get the fixed point:
(i) If ψn < 1, then (2.24) yields σΠ(t) = [ϕn/ (1− ψn)] (T + 1− t) and the investment

strategy is given by (2.9).
(ii) If ψn = 1, then the equation (2.24) has no solution. Note that ψn = 1 and ϕn = 0

cannot happen. Using assumption δi > 0, µi > 0, and σi + νi > 0, one can easily get
a contradiction.

Next, we address the consumption strategies. Similarly, in order to be the fixed point, the
candidate consumption vector (C1, . . . , Cn) needs to satisfy Ci(t, x) = Ĉi(t, x), for i = 1, . . . , n
and (t, x) ∈ [0, T ]× Rn. Let

C(t, x) :=
1

n

n∑
k=1

Ck(t, x) = C
(i)
(t, x) +

1

n
Ci(t, x).
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Then,

Ci(t, x) =
1

T + 1− t
xi − θi

1− θi
n

1

T + 1− t
x(i) − δi

1− θi
n

ĥi(t) +
θi

1− θi
n

C(t, x)

− θi

1− θi
n

Ci(t, x)

n
− δi

1− θi
n

ln [λ(T − t)] ,

(2.25)

where ĥi(t) := 1
T+1−t

∫ T
t (T +1− s)

[
Gi((Π∗,k(s))k ̸=i, s)

]
ds. For explicit expression of ĥi(t) in

(2.12), see Appendix B.
The equation (2.25) implies

(2.26) Ci(t, x) =
1

T + 1− t

(
xi − θix

)
− δiĥ

i(t) + θiC(t, x)− δi ln [λ(T − t)] .

Averaging over i = 1, . . . , n, gives

(2.27)
(
1− θ

)
C(t, x) =

(
1− θ

)
x

T + 1− t
− δĥ(t)− δ ln [λ(T − t)] ,

where (·) represents the arithmetic mean.
Then, we have the following cases to get the fixed point:

(i) If θ < 1, then equation (2.27) yields C(t, x) = x
T+1−t −

δĥ(t)

1−θ
− δ

1−θ
ln [λ(T − t)], and

the consumption strategy is given by (2.10).

(ii) If θ = 1 and δĥ(t) + δ ln [λ(T − t)] ̸≡ 0, then equation (2.27) has no solution.

(iii) If θ = 1 and δĥ(t) + δ ln [λ(T − t)] ≡ 0, then there exist infinitely many solutions.
In order to remove ‘bad’ cases, we limit θi in [0, 1) for all i ∈ {1, · · · , n}. In summary, we

get that there exists a unique solution to the fixed point problem, which turns out to be a
simple DF equilibrium strategy (Π∗,i, C∗,i)ni=1 given by (2.9) and (2.10).

Uniqueness. We claim that a simple DF equilibrium strategy is equivalent to a fixed point
of the map F . Indeed, based on the above discussion, we conclude that the fixed point of F
must be a simple DF equilibrium strategy. To complete the argument, we need to demonstrate
that a simple DF equilibrium strategy must be a fixed point of F .

Assume that
(
Π∗,k, C∗,k)n

k=1
is a simple DF equilibrium strategy. Define(

Π̂k, Ĉk
)n
k=1

:= F
((

Π∗,k, C∗,k
)n
k=1

)
.

Take an arbitrary initial pair (t0, x0) ∈ [0, T )× Rn and fix i ∈ {1, · · · , n}. Then, we consider
the controls

(
π∗,k, c∗,k

)n
k=1

∈ An
t0 and

(
π̂[i],k, ĉ[i],k

)n
k=1

∈ An
t0 determined by

(
π∗,it , c∗,it

)
:=
(
Π∗,i(t), C∗,i(t,X∗

t )
)
, t ∈ [t0, T ],(

π∗,kt , c∗,kt

)
:=
(
Π∗,k(t), C∗,k(t,X∗

t )
)
, t ∈ [t0, T ], k ̸= i,


(
π̂
[i],i
t , ĉ

[i],i
t

)
:=
(
Π̂i(t), Ĉi(t, X̂

[i]
t )
)
, t ∈ [t0, T ],(

π̂
[i],k
t , ĉ

[i],k
t

)
:=
(
Π∗,k(t), C∗,k(t, X̂

[i]
t )
)
, t ∈ [t0, T ], k ̸= i,
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where X∗ =
(
X∗,1, · · · , X∗,n) and X̂ [i] =

(
X̂ [i],1, · · · , X̂ [i],n

)
are defined by

dX∗,i
t =

(
Π∗,i(t)µi − C∗,i(t,X∗

t )
)
dt+Π∗,i(t)νidW

i
t +Π∗,i(t)σidBt, t ∈ [t0, T ],

dX∗,k
t =

(
Π∗,k(t)µk − C∗,k(t,X∗

t )
)
dt+Π∗,k(t)νkdW

k
t +Π∗,k(t)σkdBt, t ∈ [t0, T ],

k ̸= i,

X∗
t0 = x0 ∈ Rn,


dX̂

[i],i
t =

(
Π̂i(t)µi − Ĉi(t, X̂

[i]
t )
)
dt+ Π̂i(t)νidW

i
t + Π̂i(t)σidBt, t ∈ [t0, T ],

dX̂
[i],k
t =

(
Π∗,k(t)µk − C∗,k(t, X̂

[i]
t )
)
dt+Π∗,k(t)νkdW

k
t +Π∗,k(t)σkdBt, t ∈ [t0, T ],

k ̸= i,

X̂
[i]
t0

= x0 ∈ Rn.

Since
(
Π∗,k, C∗,k)n

k=1
is simple, we see that X∗,k and X̂ [i],k solve the same SDE for each

k ̸= i, and we get X∗,k = X̂ [i],k by the uniqueness of the SDE. Again by the assumption that(
Π∗,k, C∗,k)n

k=1
is simple, we see that

(
π∗,k, c∗,k

)
k ̸=i

=
(
π̂[i],k, ĉ[i],k

)
k ̸=i

. By the construction of

controls
(
π∗,k, c∗,k

)n
k=1

and
(
π̂[i],k, ĉ[i],k

)n
k=1

, we have that

(i)
(
π∗,i, c∗,i

)
is an open-loop consistent control for agent i with respect to the initial

condition (t0, x0) in response to
(
π∗,k, c∗,k

)
k ̸=i

;

(ii)
(
π̂[i],i, ĉ[i],i

)
is an open-loop consistent control for agent i with respect to the initial

condition (t0, x0) in response to
(
π[i],k, c[i],k

)
k ̸=i

.

As both
(
π∗,k, c∗,k

)n
k=1

and
(
π̂[i],k, ĉ[i],k

)n
k=1

are outcomes of DF strategies, they are in In
t0,x0

by Lemma A.3. Then, we deduce that
(
π∗,i, c∗,i

)
=
(
π̂[i],i, ĉ[i],i

)
by the uniqueness of the

open-loop consistent control (with respect to the initial condition (t0, x0)), see Theorem 2.9,
and thus we have X∗ = X̂ [i]. Therefore, we have Π∗,i(t) = Π̂i(t) and C∗,i(t,X∗

t ) = Ĉi(t,X∗
t )

for any t ∈ [t0, T ]. In particular, we have Π∗,i(t0) = Π̂i(t0) and C
∗,i(t0, x0) = Ĉi(t0, x0). Since

(t0, x0) ∈ [0, T ) × Rn is arbitrary, we see that Π∗,i = Π̂i and C∗,i = Ĉi. As i ∈ {1, · · · , n} is
arbitrary, we see that

(
Π∗,k, C∗,k)n

k=1
is a fixed point of the map F : Sn → Sn. Using the fact

that F has a unique fixed point, we complete the proof.

Remark 2.15. Let us revisit the case of infinitely many solutions to the fixed point problem.
The discount function can be obtained by solving the following equations,{

δĥ(t) + δ ln [λ(T − t)] = 0, t ∈ [0, T ],

λ(0) = 1.

By calculation, we get{
δα(t) = δ

T+1−t

∫ T
t α(s)ds+ δDn

2

[
(T + 1− t)− 1

T+1−t

]
, t ∈ [0, T ],

α(T ) = 0,
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which is equivalent to the following ODE,{
α′(t) = − δDn

δ
, t ∈ [0, T ],

α(T ) = 0,

where α(t) := ln [λ(T − t)], δDn := 1
n

∑n
k=1 δkD

k
n and δ := 1

n

∑n
k=1 δk. Then, we can solve

that the discount function is λ(T − t) = exp{ δDn

δ
(T − t)}.

3. The mean field game. In this section, we investigate the limit as n→ ∞ of the n-agent
game discussed in Section 2.

First we will use a heuristic argument as [22, 23] do to build intuition. For the n-agent
games, we define, for each agent i = 1, · · · , n, the type vector

ξi := (δi, θi, µi, νi, σi).

These type vectors induce an empirical measure, called the type distribution, which is the
probability measure on the type space:

Z := (0,∞)× [0, 1)× (0,∞)× [0,∞)× [0,∞),

given by

mn(A) =
1

n

n∑
i=1

1A(ξ
i), for Borel sets A ⊂ Z.

We assume that mn converges to some limiting probability measure m. To pass to the
limit, let us denote a Z-valued random variable ξ = (δ, θ, µ, ν, σ) with distribution m. We
should expect the strategy (Π∗,i, C∗,i) to converge to

(3.1) lim
n→∞

Π∗,i(t) =

[
δi

µi
σ2i + ν2i

+ θi
σi

σ2i + ν2i

ϕ

1− ψ

]
(T + 1− t) ,

where

ψ := E
[
θ

σ2

σ2 + ν2

]
and ϕ := E

[
δ

µσ

σ2 + ν2

]
,

and

(3.2) lim
n→∞

C∗,i(t, x) =
xi

T + 1− t
− δiH

i(t)− θi
E
[
δHξ(t)

]
1− E [θ]

−
[
δi + θi

E[δ]
1− E[θ]

]
ln [λ(T − t)] ,

where H i(·) is

(3.3) H i(t) := lim
n→∞

ĥi(t) =
Di

2

[
1

T + 1− t
− (T + 1− t)

]
− 1

T + 1− t

∫ T

t
ln [λ(T − s)] ds,

with

Di : =
1

2

(
µi + σiA

i
)2

ν2i + σ2i
− 1

2

(
Ai
)2 −Bi,

Ai : = lim
n→∞

Ai
n =

θi
δi
E
[
δ

σµ

σ2 + ν2
+ θ

σ2

σ2 + ν2
ϕ

1− ψ

]
,

Bi : = lim
n→∞

Bi
n =

θi
δi
E
[
δ

µ2

σ2 + ν2
+ θ

σµ

σ2 + ν2
ϕ

1− ψ

]
,

(3.4)
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and Hξ is denoted as its randomization. In this section, we always assume E [f(ξ)] < ∞,
where f : Z → R is an arbitrary Borel measurable function. We explain that this assumption
is needed to construct the best response map. If one only wants to verify that the obtained
strategy is a DF equilibrium strategy, it is enough to assume all the expectations in the
aforementioned discussion are finite.

We next explain how this strategy arises as the equilibrium of the MFG. Now, we assume
that the filtered probability space (Ω,F ,FMF ,P) supports independent Brownian motions W
and B, as well as random type vector ξ = (δ, θ, µ, ν, σ) independent of W and B, and with
values in the space Z, where FMF := (FMF

t )t∈[0,T ] is the minimal filtration satisfying the

usual assumptions such that ξ is FMF
0 -measurable and both W and B are FMF - Brownian

motions. Let also FB := (FB
t )t∈[0,T ] denote the natural filtration generated by the Brownian

motion B.
Then the representative agent’s wealth process is determined by

(3.5) dXξ
t = πt (µdt+ νdWt + σdBt)− ctdt, Xξ

t0
= x0 ∈ R.

As before, we define admissible control and DF strategy in the framework of MFG.

Definition 3.1 (Admissible control).
A control (π, c) is said to be admissible over [t, T ], if (π, c) is an FMF -progressively mea-

surable process and for any given deterministic sample ξ0 = (δ0, θ0, µ0, ν0, σ0) ∈ Z,

E
[∫ T

t

∣∣πs∣∣2 + ∣∣cs∣∣2ds∣∣∣∣ξ = ξ0

]
<∞.

For brevity, we denote AMF
t as the set of all admissible controls over [t, T ].

Definition 3.2 (DF strategy).
A pair

(
Πξ, Cξ

)
is said to be a DF strategy, if Πξ(t) and Cξ(t, x, x) are of the following

forms:

Πξ(t) =

N∑
k=1

Πk
1(ξ)Π

k
2(t), (t, ξ) ∈ [0, T ]×Z,

Cξ (t, x, x) = p1(t)x+ p2(t, ξ)x+ q(t, ξ), (t, x, x, ξ) ∈ [0, T ]× R2 ×Z,

where N is a positive integer, Πk
1 : Z → R, p2 and q : [0, T ] × Z → R are Borel mea-

surable functions, and Πk
2, p1 : [0, T ] → R are continuous functions. Moreover, for any

ξ0 = (δ0, θ0, µ0, ν0, σ0) ∈ Z, p2(·, ξ0) and q(·, ξ0) : [0, T ] → R are continuous functions;
E [p2(·, ξ)] and E [q(·, ξ)] : [0, T ] → R are also continuous. We denote the set of DF strategies
by SMF . Similarly, a DF strategy

(
Πξ, Cξ

)
∈ SMF is said to be simple if Cξ does not depend

on x.

Remark 3.3. We explain that the special structure of the DF strategy is for the convenience
of deriving the dynamics of the average wealth process X. We note that one can not simply
take conditional expectation over the differential form of a SDE.
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Now we formulate the representative agent’s optimization problem. Note that this is a
mean field game with common noise B, so conditional expectations given B will be involved.
As argued in [11, 22], conditionally on the Brownian motion B, we can get some kind of law
of large numbers and asymptotic independence between the agents as n→ ∞, which suggests
that the average wealth Xt and consumption ct should be FB-adapted processes. Then, the
expected payoff of the representative agent is

(3.6) E
[∫ T

t0

λ(t− t0)U(ct, ct)dt+ λ(T − t0)U(Xξ
T , XT )

]
,

where λ(·) is a discount function defined in Definition 2.4 and U(x,m) := − exp{−1
δ (x−θm)}.

The objective of the representative agent is to find the open-loop consistent control.

Definition 3.4 (Integrability condition).
Let (t0, x0) ∈ [0, T ) × R be given. We say that an admissible control (π, c) ∈ AMF

t0 and
average processes (X, c) satisfy the integrability condition over [t0, T ], if for any deterministic
sample ξ0 = (δ0, θ0, µ0, ν0, σ0) ∈ Z, we have

E
[∫ T

t0

∣∣U(ct, ct)
∣∣2dt+ ∣∣U(Xξ

T , XT )
∣∣2∣∣∣∣ξ = ξ0

]
<∞,

where Xξ is defined by (3.5) with the initial condition (t0, x0) and the admissible control (π, c).

As the equilibrium (π∗,ξ, c∗,ξ) should lead to E
[
X∗,ξ

t

∣∣FB
t

]
= Xt and E

[
c∗,ξt

∣∣FB
t

]
= ct, we

formalize this discussion in the following definition.

Definition 3.5 (Mean Field Equilibrium).
Let (π∗,ξ, c∗,ξ) be an admissible control over [t0, T ], and consider the FB-adapted pro-

cesses Xt = E
[
X∗,ξ

t

∣∣FB
t

]
and ct = E

[
c∗,ξt

∣∣FB
t

]
, where X∗,ξ is the wealth process corre-

sponding to the control (π∗,ξ, c∗,ξ) with initial condition (t0, x0). We say that (π∗,ξ, c∗,ξ) is
a mean field equilibrium with respect to the initial condition (t0, x0) if (π

∗,ξ0 , c∗,ξ0) is an open-
loop consistent control corresponding to this choice of X and c for any deterministic sample
ξ0 = (δ0, θ0, µ0, ν0, σ0) ∈ Z with respect to the initial condition (t0, x0).

Definition 3.6 (DF equilibrium strategy).
A DF strategy

(
Π∗,ξ, C∗,ξ) ∈ SMF is said to be a DF equilibrium strategy if for every

(t0, x0) ∈ [0, T )×R, the corresponding outcome
(
π∗,ξ, c∗,ξ

)
∈ AMF

t0 is a mean field equilibrium
with respect to the initial condition (t0, x0). Moreover, a DF equilibrium strategy

(
Π∗,ξ, C∗,ξ)

is said to be simple if the DF strategy
(
Π∗,ξ, C∗,ξ) is simple.

Theorem 3.7. Assume that, a.s., δ > 0, θ ∈ [0, 1), µ > 0, σ ≥ 0, ν ≥ 0, and σ + ν > 0.
Define the constants

ψ := E
[
θ

σ2

σ2 + ν2

]
and ϕ := E

[
δ

µσ

σ2 + ν2

]
,

where we assume that both expectations are finite. Then there exists a unique simple DF



18 ZONGXIA LIANG AND KEYU ZHANG

equilibrium strategy (Π∗,ξ, C∗,ξ) taking the following form:

Π∗,ξ(t) =

[
δ

µ

σ2 + ν2
+ θ

σ

σ2 + ν2
ϕ

1− ψ

]
(T + 1− t),(3.7)

C∗,ξ(t, x) =
x

T + 1− t
− δHξ(t)− θ

E
[
δHξ(t)

]
1− E [θ]

−
[
δ + θ

E[δ]
1− E[θ]

]
ln [λ(T − t)] ,(3.8)

where Hξ(t) is the randomization of H i(t), given by

(3.9) Hξ(t) :=
D

2

[
1

T + 1− t
− (T + 1− t)

]
− 1

T + 1− t

∫ T

t
ln [λ(T − s)] ds,

where

D : =
1

2

(µ+ σA)2

ν2 + σ2
− 1

2
(A)2 −B,

A : =
θ

δ
E
[
δ

σµ

σ2 + ν2
+ θ

σ2

σ2 + ν2
ϕ

1− ψ

]
,

B : =
θ

δ
E
[
δ

µ2

σ2 + ν2
+ θ

σµ

σ2 + ν2
ϕ

1− ψ

]
,

(3.10)

and we assume that all the expectations are finite.

Similarly, we highlight the single stock case, noting that the form of the solution is essen-
tially the same as in the n-agent games, presented in Corollary 2.14.

Corollary 3.8 (Single stock). Suppose that (µ, ν, σ) are deterministic, with ν = 0 and
µ, σ > 0. Then the strategy (Π∗,ξ, C∗,ξ) has the following form:

Π∗,ξ(t) =
µ

σ2

(
δ + θ

E[δ]
1− E[θ]

)
(T + 1− t) ,(3.11)

C∗,ξ(t, x) =
x

T + 1− t
+

(
δ + θ

E[δ]
1− E[θ]

)
H(t)−

(
δ + θ

E[δ]
1− E[θ]

)
ln [λ(T − t)] ,(3.12)

where the function H(·) is the same as (2.15).

Proof of Theorem 3.7. First, observe that it suffices to restrict our attention to stochastic
processes X and c of the form Xt = E

[
Xξ

t

∣∣FB
t

]
and ct = E

[
ct
∣∣FB

t

]
, where Xξ is defined by

(3.5) with the initial condition (t0, x0) and the admissible control (π, c) ∈ AMF
t0 . Moreover,

we assume that (π, c) is the outcome of a DF strategy
(
Πξ, Cξ

)
∈ SMF :

πt = Πξ(t) =

N∑
k=1

Πk
1(ξ)Π

k
2(t), ct = Cξ(t,Xξ

t , Xt) = p1(t)X
ξ
t + p2(t, ξ)Xt + q(t, ξ), t ∈ [t0, T ],

where Πk
1, Π

k
2, p1, p2 and q are defined in Definition 3.2.

As ξ = (δ, θ, µ, ν, σ), W and B are independent, we have

ct = C(t,Xt) := E
[
Cξ(t,Xξ

t , Xt)
∣∣FB

t

]
= (p1(t) + E [p2(t, ξ)])Xt + E [q(t, ξ)]
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and the dynamic of X is 1

(3.13)


dXt =

[
− (p1(t) + E [p2(t, ξ)])Xt + E

[
Πξ(t)µ

]
− E [q(t, ξ)]

]
dt

+E
[
Πξ(t)σ

]
dBt, t ∈ [t0, T ],

Xt0 = x0.

We now find the open-loop consistent control for the representative agent, then we resolve the
resulting fixed point problem to obtain the desired equilibrium.

Open-loop consistent control for the representative agent. Let ξ0 = (δ0, θ0, µ0, ν0, σ0) rep-
resent a deterministic sample from its random type distribution for now. According to Theo-
rem A.5 in Appendix A, we aim to find a classical solution of the following PDE:

(3.14)



V ξ0
t (t, x, x) + Π̂ξ0(t, x, x)

(
V ξ0
x (t, x, x)µ0 + V ξ0

xx(t, x, x)σ0E
[
Πξ(t)σ

])
+1

2Π̂
ξ0(t, x, x)2V ξ0

xx(t, x, x)
(
ν20 + σ20

)
− Ĉξ0(t, x, x)V ξ0

x (t, x, x)

+V ξ0
x (t, x, x)

(
E
[
Πξ(t)µ

]
− C(t, x)

)
+1

2V
ξ0
xx(t, x, x)

(
E
[
Πξ(t)σ

])2
= 0, (t, x, x) ∈ [0, T ]× R2,

V ξ0(T, x, x) = 1
δ0

exp
(
− 1

δ0
x+ θ0

δ0
x
)
, (x, x) ∈ R2,

Π̂ξ0(t, x, x) = −µ0V ξ0 (t,x,x)+σ0E[Πξ(t)σ]V ξ0
x (t,x,x)

(ν20+σ2
0)V

ξ0
x (t,x,x)

, (t, x, x) ∈ [0, T ]× R2,

Ĉξ0(t, x, x) = −δ0 ln
[
δ0λ(T − t)V ξ0(t, x, x)

]
+ θ0C(t, x), (t, x, x) ∈ [0, T ]× R2.

We consider the following ansatz based on the terminal condition:

(3.15) V ξ0(t, x, x) =
1

δ0
exp

{
f ξ0(t)x+ gξ0(t)x+ hξ0(t)

}
, (t, x, x) ∈ [0, T ]× R2,

where f ξ0(·), gξ0(·) and hξ0(·) ∈ C1 ([0, T ];R) such that f ξ0(T ) = − 1
δ0
, gξ0(T ) = θ0

δ0
and

hξ0(T ) = 0.
Putting (3.15) into (3.14), we have[

ḟ ξ0(t) + δ0f
ξ0(t)2

]
x+

[
ġξ0(t) + δ0f

ξ0(t)gξ0(t)
]
x

+ ḣξ0(t) + δ0f
ξ0(t)hξ0(t) + δ0f

ξ0(t) ln [λ(T − t)]

− 1

2

(
µ0 + σ0g

ξ0(t)E
[
σΠξ(t)

])2
ν20 + σ20

+ gξ0(t)E
[
µΠξ(t)

]
+

1

2

(
gξ0(t)

)2 (
E
[
σΠξ(t)

])2
−
(
θ0f

ξ0(t) + gξ0(t)
)
C(t, x) = 0.

If f ξ0(·) and gξ0(·) solve the following ODEs:

(3.16)


ḟ ξ0(t) + δ0f

ξ0(t)2 = 0, t ∈ [0, T ],

ġξ0(t) + δ0f
ξ0(t)gξ0(t) = 0, t ∈ [0, T ],

f ξ0(T ) = − 1
δ0
, gξ0(T ) = θ0

δ0
,

1When (π, c) is the outcome of a DF strategy, the dynamic of Xξ is linear. Hence, it is standard to derive
the dynamics of X.
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which is explicitly solved by

(3.17)

{
f ξ0(t) = − 1

δ0
1

T+1−t ,

gξ0(t) = θ0
δ0

1
T+1−t ,

then it holds that θ0f
ξ0(t)+gξ0(t) = 0 for any t ∈ [0, T ]. Hence, we obtain the ODE for hξ0(t):

ḣξ0(t) + δ0f
ξ0(t)hξ0(t) + δ0f

ξ0(t) ln [λ(T − t)]

− 1

2

(
µ0 + σ0g

ξ0(t)E
[
σΠξ(t)

])2
ν20 + σ20

+ gξ0(t)E
[
µΠξ(t)

]
+

1

2

(
gξ0(t)

)2 (
E
[
σΠξ(t)

])2
= 0

with the terminal condition hξ0(T ) = 0, whose solution is given by

(3.18) hξ0(t) =
1

T + 1− t

∫ T

t
(T + 1− s)Gξ0(Πξ(s), s)ds,

where

Gξ0(π, t) := − 1

T + 1− t
ln [λ(T − t)]− 1

2

(
µ0 +

θ0σ0
(T+1−t)δ0

E[σπ]
)2

ν20 + σ20

+
θ0

(T + 1− t)δ0
E[µπ] +

θ20
2(T + 1− t)2δ20

(E[σπ])2.

(3.19)

Then, by the representation of (Π̂ξ0 , Ĉξ0) in (3.14), we have

Π̂ξ0(t, x, x) =
µ0 + σ0

θ0
δ0

1
T+1−tE[σΠ

ξ(t)](
ν20 + σ20

) (
1
δ0

1
T+1−t

) =
δ0µ0

ν20 + σ20
(T + 1− t) +

σ0θ0
ν20 + σ20

E[σΠξ(t)],

Ĉξ0(t, x, x) =
1

T + 1− t
x− θ0

1

T + 1− t
x− δ0h

ξ0(t)− δ0 ln [λ(T − t)] + θ0C(t, x).

(3.20)

Note that Π̂ξ0(t, x, x) = Π̂ξ0(t) is independent of the state argument x and x. In the same
manner as the n-agent case, we obtain that for ξ0-type agent, the outcome

(
π̂ξ0 , ĉξ0

)
associated

with
(
Π̂ξ0 , Ĉξ0

)
is an open-loop consistent control with respect to the initial condition (t0, x0).

Thus, the open-loop consistent control
(
π̂ξ, ĉξ

)
for the representative agent is

π̂ξt = Π̂ξ(t) =
δµ

ν2 + σ2
(T + 1− t) +

σθ

ν2 + σ2
E[σΠξ(t)], t ∈ [t0, T ],(3.21)

ĉξt = Ĉξ(t, X̂ξ
t , Xt) =

1

T + 1− t
X̂ξ

t − θ
1

T + 1− t
Xt − δhξ(t)− δ ln [λ(T − t)](3.22)

+ θC(t,Xt), t ∈ [t0, T ],

where
(
X̂ξ, X

)
is defined by

dX̂ξ
t =

(
Π̂ξ(t)µ− Ĉξ(t, X̂ξ

t , Xt)
)
dt+ Π̂ξ(t)νdWt + Π̂ξ(t)σdBt,

dXt =
[
− (p1(t) + E [p2(t, ξ)])Xt + E

[
Πξ(t)µ

]
− E [q(t, ξ)]

]
dt+ E

[
Πξ(t)σ

]
dBt,

X̂ξ
t0
= x0, Xt0 = x0.
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Moreover, if we assume that all the expectations associated with the random type vector

ξ is finite, then we get that
(
Π̂ξ, Ĉξ

)
is also a DF strategy. Hence, we have constructed a

best response map

(3.23) F :
(
Πξ, Cξ

)
→
(
Π̂ξ, Ĉξ

)
.

Fixed point problem. We first address the investment strategies. For the candidate invest-
ment strategy Πξ to be a fixed point, we need Πξ(t) = Π̂ξ(t), for t ∈ [0, T ]. In light of (3.21),
we have

(3.24) Π̂ξ(t) = δ
µ

ν2 + σ2
(T + 1− t) + θ

σ

ν2 + σ2
E[σΠ̂ξ(t)].

Multiply both sides of equation (3.24) by σ and average to find that E[σΠ̂ξ(t)] must satisfy
the following fixed point equation:

(3.25) E[σΠ̂ξ(t)] = ϕ(T + 1− t) + ψE[σΠ̂ξ(t)].

We then have the following cases to get the fixed point:
(i) If ψ < 1, then (3.25) yields E[σΠ̂ξ(t)] = [ϕ/ (1− ψ)] (T + 1− t), and the investment

strategy is given by (3.7).
(ii) If ψ = 1, then the equation (3.25) has no solution. Note that ψ = 1 and ϕ = 0 cannot

happen. By assumption δ > 0, µ > 0, and σ+ν > 0, one can easily get a contradiction.
Next, we address the consumption strategies. Similarly, the candidate consumption strategy
Ĉξ need to satisfy that

Ĉξ(t, X̂ξ
t , Xt) =

1

T + 1− t
X̂ξ

t − θ
1

T + 1− t
Xt − δĥξ(t)

+ θE
[
Ĉξ(t, X̂ξ

t , Xt)
∣∣FB

t

]
− δ ln [λ(T − t)] ,

where ĥξ(t) = 1
T+1−t

∫ T
t (T + 1− s)Gξ(Π∗,ξ(s), s)ds. In fact, using the result in Appendix B,

we have ĥξ(t) = Hξ(t). To avoid confusion, we use Hξ(t) instead of ĥξ(t). Then we should
solve the following fixed point problem:

Ĉξ(t, X̂ξ
t , Xt) =

1

T + 1− t
X̂ξ

t − θ
1

T + 1− t
Xt − δHξ(t)

+ θE
[
Ĉξ(t, X̂ξ

t , Xt)
∣∣FB

t

]
− δ ln [λ(T − t)] .

(3.26)

Taking the conditional expectation given FB
t both sides of (3.26) to find that

E
[
Ĉξ(t, X̂ξ

t , Xt)
∣∣FB

t

]
=

1− E[θ]
T + 1− t

Xt − E[δHξ(t)] + E[θ]E
[
Ĉξ(t, X̂ξ

t , Xt)
∣∣FB

t

]
− E[δ] ln [λ(T − t)] ,

(3.27)

then we have the following cases to find the fixed point:
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(i) If E[θ] < 1, then (3.27) yields E
[
Ĉξ(t, X̂ξ

t , Xt)
∣∣FB

t

]
= Xt

T+1−t −
E[δHξ(t)]
1−E[θ] − E[δ] ln[λ(T−t)]

1−E[θ] ,

and the consumption stratgey is given by (3.8).
(ii) If E[θ] = 1 and E[δH(t)] +E[δ] ln [λ(T − t)] ̸≡ 0, then equation (3.27) has no solution.
(iii) If E[θ] = 1 and E[δH(t)] + E[δ] ln [λ(T − t)] ≡ 0, then there exist infinitely many

solutions.
We limit θ in [0, 1) to remove ‘bad’ cases. In summary, we get that there exists a unique

solution to the fixed point problem, which turns out to be a simple DF equilibrium strategy
(Π∗,ξ, C∗,ξ) given by (3.7) and (3.8). Similar to the discussion on uniqueness in the proof
of Theorem 2.13, we can also conclude that (Π∗,ξ, C∗,ξ) is the unique simple DF equilibrium
strategy.

4. Discussion of the equilibrium. We now discuss the interpretation of equilibria. We
limit the discussion to the mean field case, for which the DF equilibrium strategy is given by
Theorem 3.7 and Corollary 3.8, as n-agent equilibria have essentially the same structure.

First, the investment strategy Π∗,ξ is FMF
0 -measurable and wealth independent, meaning

that as the agent gets richer, she will decrease the proportion of investment in the risky asset.
It’s worth noting that the investment strategy Π∗,ξ is independent of the discount function,
which is consistent with the result of [3] and [26]. Moreover, Π∗,ξ consists of two components.
The first, δµ

σ2+ν2
(T + 1− t), is the classical Merton portfolio. The second component is always

nonnegative, vanishing only when θ = 0, which means no competition. It is clear that with
increasing the competition weight θ, the agent will increase the allocation in the risky asset.
Note that Π∗,ξ is a linear function of (T +1− t), and the coefficient is equal to the solution of
the MFG in [23], where the consumption is not considered. Then it is obvious to see that as
time goes on, the agent will invest less in the risky asset, and at terminal time T , the amount
invested in the risky asset drops down to the equilibrium portfolio amount in [23]. For more
analysis of the influence of the parameters, we refer the reader to [23].

We further restrict our attention to the single stock case of Corollary 3.8, where the effects
of the parameter are more transparent. Note that if θ = 0, then we recover the open-loop
equilibrium strategy without competition, with Π∗,ξ(t) = µ

σ2 δ(T + 1 − t) and C∗,ξ(t, x) =
x

T+1−t + δH(t)− δ ln [λ(T − t)]; see [3] for comparison. For the general θ, we may still rewrite

Π∗,ξ and C∗,ξ in an analogous manner as

Π∗,ξ(t) =
µ

σ2
δ̂ (T + 1− t) ,

C∗,ξ(t, x) =
x

T + 1− t
+ δ̂H(t)− δ̂ ln [λ(T − t)] ,

where the effective risk tolerance parameter is

δ̂ = δ + θ
E[δ]

1− E[θ]
.

The parameter δ̂ has already appeared in [23] and [19] and it is obvious to see that δ̂ > δ if
θ > 0, the difference δ̂ − δ increases with θ, with E[δ], and with E[θ].

We consider the following hyperbolic discount function,

λ(t) = (1 + βt)
− ρ

β , t ∈ [0, T ],



TIME-INCONSISTENT MEAN FIELD AND N-AGENT GAMES 23

where ρ > 0, β > 0. In particular, limβ→0 λ(t) = e−ρt. In this case the DF equilibrium
strategy reduces to the solution of Merton problem:

Π∗,ξ(t) =
µ

σ2
δ̂ (T + 1− t) ,

C∗,ξ(t, x) =
x

T + 1− t
+
δ̂

2

[
1

2

(µ
σ

)2
+ ρ

] [
(T + 1− t)− 1

T + 1− t

]
,

which is consistent with the fact that time-consistent equilibrium strategy under exponential
discounting is nothing but the optimal strategy; see, e.g., [3, 6].

Finally, we numerically compute the average consumption E[C∗,ξ(t,X∗,ξ
t )]. The parame-

ters are µ = σ = 1, t0 = 0, x0 = 10, ρ = 0.1 and T = 2. As we can see in Figure 1, the average
consumption decreases with increasing β. Note that a larger β means that the agent is more
patient in the future; see, e.g., [25]. We can either say that the difference between the agent
and her future self is large when β is large. In order to make an agreement, the sophisticated
agent may give up more of her utility to the future. Hence, it is reasonable to spend less on
consumption. In Figure 2, we investigate the impact of competitiveness and risk tolerance on
the average consumption. It is clear that the average consumption increases with increasing
E[δ̂]. Since E[δ̂] increases when either E[δ] increases or E[θ] increases, we conclude that in an
environment with high competition or high risk tolerance, the average consumption is also
high.

Figure 1. Average consumption E[C∗,ξ(t,X∗,ξ
t )] versus t for various values of β.

5. Conclusions and future research. We have studied the MFGs and the n-agent games
under CARA relative performance by allowing general discount functions. To deal with the
time-inconsistency, each agent chooses the open-loop consistent strategy which is finally char-
acterized by a PDE. By solving a fixed point problem, we explicitly constructed the DF
equilibrium strategy. Next, we discuss some possible extensions for future research.

A natural extension is to consider the closed-loop equilibrium strategy, in which the equi-
librium strategy will be characterized by a system of nonlocal ODEs with complicated coupling
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Figure 2. Average consumption E[C∗,ξ(t,X∗,ξ
t )] versus t for various values of E[δ̂].

structure. Both theoretical analysis and numerical solution will be a huge challenge. It will
be interesting to extend our current work to a model with general market parameters, e.g.,
the incomplete market model considered in [18]. A closed form solution may not exist. The
existence of an MFE may require some different mathematical arguments.

Appendix A. The characterization of open-loop consistent control.

A.1. The n-agent games. In this section, we aim to characterize the open-loop consis-
tent control by verification argument in the same spirit of [3]. Moreover, similar to classical
time-consistent stochastic optimal control problem, we derive a PDE, which gives us a char-
acterization of open-loop consistent control.

Let i ∈ {1, · · · , n}, (t0, x0) ∈ [0, T )× Rn and (π, c)(i) =
(
πk, ck

)
k ̸=i

∈ An−1
t0

be given. We

denote by (π̂i, ĉi) ∈ At0 a candidate control for agent i and introduce the following BSDE
defined on the interval [t0, T ]:

(A.1)

{
dp(t) = qB(t)dBt +

∑n
k=1 q

k(t)dW k
t ,

p(T ) = 1
δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
X̂i

T + θi
δi
X

(i)
T

}
,

where X̂i and X
(i)

are given by{
dX̂i

t =
(
π̂itµi − ĉit

)
dt+ π̂itνidW

i
t + π̂itσidBt, t ∈ [t0, T ],

X̂i
t0 = xi0,

and {
dX

(i)
t = (µπ

(i)
t − c

(i)
t )dt+ σπ

(i)
t dBt +

1
n

∑
k ̸=i νkπ

k
t dW

k
t , t ∈ [t0, T ],

X
(i)
t0 = x

(i)
0 := 1

n

∑
k ̸=i x

k
0.
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If Ui(X̂
i
T , X

(i)
T ) = − exp

{
− 1

δi

(
1− θi

n

)
X̂i

T + θi
δi
X

(i)
T

}
∈ L2

FT
(Ω;R), then BSDE (A.1) has a

unique solution

(p(·), q(·)) ∈ S2F(t0, T ;R)×H2
F(t0, T ;Rn+1),

where q(·) = (qB(·), q1(·), . . . , qn(·)).
Then we have the following theorem:

Theorem A.1. Assume that Ui(X̂
i
T , X

(i)
T ) ∈ L2

FT
(Ω;R). Then, the (π̂i, ĉi) is an open-

loop consistent control for agent i with respect to the initial condition (t0, x0) in response
to (πk, ck)k ̸=i, if the following conditions hold

µip(t) + νiq
i(t) + σiq

B(t) = 0, t ∈ [t0, T ],(A.2)

− λ(T − t)p(t) +
1

δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
ĉit +

θi
δi
c
(i)
t

}
= 0, t ∈ [t0, T ].(A.3)

Proof of Theorem A.1. Suppose that (π̂i, ĉi) satisfies the conditions (A.2)-(A.3). For any
t ∈ [t0, T ] and ϵ ∈ (0, T − t), we consider (πi,t,ϵ, ci,t,ϵ) by (2.7) and define Xi,t,ϵ as the agent
i’s wealth process with the initial condition (t0, x

i
0) and the control (πi,t,ϵ, ci,t,ϵ), then we have

the following difference

∆(Ji) := Ji(t, X̂
i
t , X

(i)
t , (π̂i, ĉi), (π, c)(i))− Ji(t, X̂

i
t , X

(i)
t , (πi,t,ϵ, ci,t,ϵ), (π, c)(i))

= Et

[∫ T

t
λ(s− t)

[
exp

{
− 1

δi
(1− θi

n
)ci,t,ϵs +

θi
δi
c(i)s

}
− exp

{
− 1

δi
(1− θi

n
)ĉis +

θi
δi
c(i)s

}]
ds

+ λ(T − t)

[
exp

{
− 1

δi
(1− θi

n
)Xi,t,ϵ

T +
θi
δi
X

(i)
T

}
− exp

{
− 1

δi
(1− θi

n
)X̂i

T +
θi
δi
X

(i)
T

}]]
.

Using the concavity and the terminal condition in BSDE (A.1), we obtain

∆(Ji) ≥ Et

[∫ T

t

〈
λ(s− t)

1

δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
ĉis +

θi
δi
c(i)s

}
, ĉis − ci,t,ϵs

〉
ds

+ λ(T − t)
〈
p(T ), X̂i

T −Xi,t,ϵ
T

〉]
.

(A.4)

Applying Ito’s formula, we arrive at

Et

[〈
p(T ), X̂i

T −Xi,t,ϵ
T

〉]
= Et

[∫ T

t

〈
µip(s) + νiq

i(s) + σiq
B(s), π̂is − πi,t,ϵs

〉
+
〈
−p(s), ĉis − ci,t,ϵs

〉
ds

]
.

(A.5)
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Taking (A.5) in (A.4) yields

Ji(t, X̂
i
t , X

(i)
t , (πi,t,ϵ, ci,t,ϵ), (π, c)(i))− Ji(t, X̂

i
t , X

(i)
t , (π̂i, ĉi), (π, c)(i))

≤Et

[∫ T

t

〈
−λ(T − t)p(s) + λ(s− t)

1

δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
ĉis +

θi
δi
c(i)s

}
, ci,t,ϵs − ĉis

〉
+λ(T − t)⟨µip(s) + νiq

i(s) + σiq
B(s), πi,t,ϵs − π̂is⟩ds

]
=Et

[∫ t+ϵ

t

〈
−λ(T − t)p(s) + λ(s− t)

1

δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
ĉis +

θi
δi
c(i)s

}
, v2

〉
+ λ(T − t)⟨µip(s) + νiq

i(s) + σiq
B(s), v1⟩ds

]
.

According to the conditions (A.2) and (A.3), we get

Ji(t, X̂
i
t , X

(i)
t , (πi,ϵ, ci,ϵ), (π, c)(i))− Ji(t, X̂

i
t , X

(i)
t , (π̂i, ĉi), (π, c)(i))

≤ Et

[∫ t+ϵ

t
⟨(λ(s− t)λ(T − s)− λ(T − t))p(s), v2⟩

+ λ(T − t)⟨µip(s) + νiq
i(s) + σiq

B(s), v1⟩ds
]

= Et

[∫ t+ϵ

t
⟨(λ(s− t)λ(T − s)− λ(T − t))p(s), v2⟩ds

]
≤ max

t≤s≤t+ϵ
|λ(s− t)λ(T − s)− λ(T − t)|Et

[
sup

s∈[t,T ]
|p(s)|

]
|v2|ϵ, a.s.

Now dividing both sides of the last inequality by ϵ and taking the limit, as λ is continuous,
we conclude that (π̂i, ĉi) is an open-loop consistent control for agent i with respect to the initial
condition (t0, x0) in response to (πk, ck)k ̸=i.

In the view of Theorem A.1, we consider the following FBSDEs:

(A.6)



dX̂i
t = (π̂itµi − ĉit)dt+ π̂itνidW

i
t + π̂itσidBt, t ∈ [t0, T ],

dX
(i)
t = (µπ

(i)
t − c

(i)
t )dt+ σπ

(i)
t dBt +

1
n

∑
k ̸=i νkπ

k
t dW

k
t , t ∈ [t0, T ],

dp(t) = qB(t)dBt +
∑n

k=1 q
i(t)dW k

t , t ∈ [t0, T ],

X̂i
t0 = xi0, X

(i)
t0 = x

(i)
0 ,

p(T ) = 1
δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
X̂i

T + θi
δi
X

(i)
T

}
,

with conditions

µip(t) + νiq
i(t) + σiq

B(t) = 0, t ∈ [t0, T ],(A.7)

−λ(T − t)p(t) +
1

δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
ĉit +

θi
δi
c
(i)
t

}
= 0, t ∈ [t0, T ].(A.8)
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It is hard to solve the above system due to the non-Markovianity of the inputs (πk, ck)k ̸=i.
Hence, we assume that the inputs (πk, ck)k ̸=i are of the following form:(

πkt , c
k
t

)
=
(
Πk(t), Ck(t,Xt)

)
, k ̸= i, t ∈ [t0, T ],

where
(
Πk, Ck

)
k ̸=i

∈ Sn−1 and X = (X1, · · · , Xn) is the wealth process associated with(
π̂i, ĉi

)
and (πk, ck)k ̸=i satisfying

(A.9)


dXk

t =
(
Πk(t)µk − Ck(t,Xt)

)
dt+Πk(t)νkdW

k
t +Πk(t)σkdBt, k ̸= i, t ∈ [t0, T ],

dXi
t =

(
π̂itµi − ĉit

)
dt+ π̂itνidW

i
t + π̂itσidBt, t ∈ [t0, T ],

Xj
t0
= xj0, j = 1, . . . , n.

Now, the constrained FBSDEs bocomes

(A.10)



dX
(i)
t =

(
µΠ

(i)
(t)− C

(i)
(t,Xt)

)
dt+ σΠ

(i)
(t)dBt +

1
n

∑
k ̸=i νkΠ

k(t)dW k
t ,

dX̂i
t = (π̂itµi − ĉit)dt+ π̂itνidW

i
t + π̂itσidBt,

dp(t) = qB(t)dBt +
∑n

k=1 q
i(t)dW k

t ,

X̂i
t0 = xi0, X

(i)
t0 = x

(i)
0 ,

p(T ) = 1
δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
X̂i

T + θi
δi
X

(i)
T

}
,

with conditions

µip(t) + νiq
i(t) + σiq

B(t) = 0,(A.11)

−λ(T − t)p(t) +
1

δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
ĉit +

θi
δi
C

(i)
(t,Xt)

}
= 0,(A.12)

where

µΠ
(i)
(t) :=

1

n

∑
k ̸=i

µkΠ
k(t), σΠ

(i)
(t) :=

1

n

∑
k ̸=i

σkΠ
k(t), C

(i)
(t, x) =

1

n

∑
k ̸=i

Ck(t, x).

Based on the terminal condition of the BSDE (A.1), we consider the following ansatz:

(A.13) p(t) = V i(t, X̂i
t , X

(i)
t ), t ∈ [t0, T ],

for some deterministic function V i ∈ C1,2,2([0, T ] × R2) satisfying the following terminal
condition:

V i(T, xi, x(i)) =
1

δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
xi +

θi
δi
x(i)
}
.
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Applying Ito’s formula to (A.13) yields

dp(t) =
{
V i
t (t, X̂

i
t , X

(i)
t ) + V i

x(t, X̂
i
t , X

(i)
t )(π̂itµi − ĉit) + V i

y (t, X̂
i
t , X

(i)
t )
(
µΠ

(i)
(t)

−C(i)
(t,Xt)

)
+

1

2
V i
xx(t, X̂

i
t , X

(i)
t )(π̂it)

2(ν2i + σ2i ) +
1

2
V i
yy(t, X̂

i
t , X

(i)
t )

[(
σΠ

(i)
(t)
)2

+
1

n2

∑
k ̸=i

(
νkΠ

k(t)
)2+ V i

xy(t, X̂
i
t , X

(i)
t )σiπ̂

i
tσΠ

(i)
(t)

 dt+
(
V i
x(t, X̂

i
t , X

(i)
t )σiπ̂

i
t

+V i
y (t, X̂

i
t , X

(i)
t )σΠ

(i)
(t)
)
dBt +

1

n

∑
k ̸=i

V i
y (t, X̂

i
t , X

(i)
t )νkΠ

k(t)dW k
t

+ V i
x(t, X̂

i
t , X

(i)
t )νiπ̂

i
tdW

i
t .

Comparing the above equation with the third equation in (A.10), we deduce that

(A.14)



V i
t (t, x

i, x(i)) + Π̂i(t, x)
(
V i
x(t, x

i, x(i))µi + V i
xy(t, x

i, x(i))σiσΠ
(i)
(t)
)

+1
2Π̂

i(t, x)2V i
xx(t, x

i, x(i))
(
ν2i + σ2i

)
− Ĉi(t, x)V i

x(t, x
i, x(i))

+V i
y (t, x

i, x(i))
(
µΠ

(i)
(t)− C

(i)
(t, x)

)
+1

2V
i
yy(t, x

i, x(i))

[(
σΠ

(i)
(t)
)2

+ 1
n2

∑
k ̸=i

(
νkΠ

k(t)
)2]

= 0,

qB(t) =
(
V i
x(t, X̂

i
t , X

(i)
t )σiπ̂

i
t + V i

y (t, X̂
i
t , X

(i)
t )σΠ

(i)
(t)
)
,

qk(t) = 1{k=i}V
i
x(t, X̂

i
t , X

(i)
t )νiπ̂

i
t + 1{k ̸=i}

1
nV

i
y (t, X̂

i
t , X

(i)
t )νkΠ

k(t).

Putting the second and third equations of (A.14) into (A.7) and (A.8), we have

µiV
i(t, X̂i

t , X
(i)
t ) + ν2i V

i
x(t, X̂

i
t , X

(i)
t )π̂it + σ2i V

i
x(t, X̂

i
t , X

(i)
t )π̂it + σiσΠ

(i)
(t)V i

y (t, X̂
i
t , X

(i)
t ) = 0,

λ(T − t)V i(t, X̂i
t , X

(i)
t ) =

1

δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
ĉit +

θi
δi
C

(i)
(t,Xt)

}
,

which implies that
(
π̂i, ĉi

)
is in feedback form:

π̂it = Π̂i(t,Xt) = −
µiV

i(t, X̂i
t , X

(i)
t ) + σiσΠ

(i)
(t)V i

y (t, X̂
i
t , X

(i)
t )

(ν2i + σ2i )V
i
x(t, X̂

i
t , X

(i)
t )

,(A.15)

ĉit = Ĉi(t,Xt) = − δi

1− θi
n

ln

[
δi

1− θi
n

λ(T − t)V i(t, X̂i
t , X

(i)
t )

]
+

θi

1− θi
n

C
(i)
(t,Xt).(A.16)

Then, substituting the expressions (A.15) and (A.16) into the first equation of (A.14), we
obtain the following verification theorem.
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Theorem A.2. Under the assumption of Theorem A.1, if there exists a classical solution
V i ∈ C1,2,2((0, T )× R2) ∩ C([0, T ]× R2) of the following PDE:

(A.17)



V i
t (t, x

i, x(i)) + Π̂i(t, x)
(
V i
x(t, x

i, x(i))µi + V i
xy(t, x

i, x(i))σiσΠ
(i)
(t)
)

+1
2Π̂

i(t, x)2V i
xx(t, x

i, x(i))
(
ν2i + σ2i

)
− Ĉi(t, x)V i

x(t, x
i, x(i))

+V i
y (t, x

i, x(i))
(
µΠ

(i)
(t)− C

(i)
(t, x)

)
+1

2V
i
yy(t, x

i, x(i))

[(
σΠ

(i)
(t)
)2

+ 1
n2

∑
k ̸=i

(
νkΠ

k(t)
)2]

= 0, (t, x) ∈ [0, T ]× Rn,

V i(T, xi, x(i)) = 1
δi

(
1− θi

n

)
exp

{
− 1

δi

(
1− θi

n

)
xi + θi

δi
x(i)
}
, x ∈ Rn,

Π̂i(t, x) = −µiV
i(t,xi,x(i))+σiσΠ

(i)
(t)V i

y (t,x
i,x(i))

(ν2i +σ2
i )V

i
x(t,x

i,x(i))
, (t, x) ∈ [0, T ]× Rn,

Ĉi(t, x) = − δi
1− θi

n

ln

[
δi

1− θi
n

λ(T − t)V i(t, xi, x(i))

]
+ θi

1− θi
n

C
(i)
(t, x), (t, x) ∈ [0, T ]× Rn,

and if the (n-dimensional) SDE

(A.18)


dXk

t =
(
Πk(t)µk − Ck(t,Xt)

)
dt+Πk(t)νkdW

k
t +Πk(t)σkdBt, k ̸= i,

t ∈ [t0, T ],

dXi
t =

(
Π̂i(t,Xt)µi − Ĉi(t,Xt)

)
dt+ Π̂i(t,Xt)νidW

i
t + Π̂i(t,Xt)σidBt,

t ∈ [t0, T ], Xj
t0
= xj0, j = 1, . . . , n,

has a solution X = (X1, . . . , Xn) such that the controls (πjt , c
j
t ) := (Πj(t), Cj(t,Xt)), j ̸=

i, and (π̂it, ĉ
i
t) := (Π̂i(t,Xt), Ĉ

i(t,Xt)) are admissible over [t0, T ], then (π̂i, ĉi) is an open-
loop consistent control for agent i with respect to the initial condition (t0, x0) in response to
(πk, ck)k ̸=i.

We stress that in order to prove that
(
π̂i, ĉi

)
is an open-loop consistent control, one should

verify the following conditions:
(i) The SDE (A.18) has a solution;

(ii)
(
(π̂i, ĉi), (π, c)(i)

)
∈ An

t0 and Ui(X̂
i
T , X

(i)
T ) ∈ L2

FT
(Ω;R).

The following lemma shows that if
(
(Π̂i, Ĉi), (Π, C)(i)

)
∈ Sn, then conditions (i) and (ii)

are satisfied.

Lemma A.3. If
(
(Π̂i, Ĉi), (Π, C)(i)

)
∈ Sn, then the SDE (A.18) has a unique solution.

Moreover, the corresponding outcome
(
(π̂i, ĉi), (π, c)(i)

)
is in An

t0 and satisfies the conditions

of Theorem A.1 and Definition 2.8, i.e., Ui(X̂
i
T , X

(i)
T ) ∈ L2

FT
(Ω;R) and

(
(π̂i, ĉi), (π, c)(i)

)
∈

Int0,x0
.

Proof. Under the DF strategy
(
(Π̂i, Ĉi), (Π, C)(i)

)
∈ Sn, the SDE becomes a linear SDE

as follows:

(A.19)

{
dXt = (A(t)Xt + b(t)) dt+D(t)dWt, t ∈ [t0, T ],

Xt0 = x0,
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where Xt := (X1
t , . . . , X

n
t )

⊤, Wt :=
(
W 1

t , . . . ,W
n
t , Bt

)⊤
, x0 :=

(
x10 . . . , x

n
0

)⊤
and A(t) :

[0, T ] → Rn×n, b(t) : [0, T ] → Rn, D(t) : [0, T ] → Rn×(n+1) are deterministic continuous
functions.

Then, we get that (A.19) has a unique solution X ∈ S2F(t0, T ;Rn). Moreover, we have the
following estimate:

(A.20) E

[
sup

t∈[t0,T ]
|Xt|2

]
≤ C

for some constant C. Then, it is obvious to see the outcome
(
(π̂i, ĉi), (π, c)(i)

)
are admissible

over [t0, T ].
In fact, we can solve the SDE (A.19) explicitly:

(A.21) Xt = Φ(t)x0 +Φ(t)

∫ t

t0

Φ−1(s)b(s)ds+Φ(t)

∫ t

t0

Φ−1(s)D(s)dWs,

where Φ(t) is the unique solution of the following ODE:{
dΦ(t) = A(t)Φ(t)dt,

Φ(t0) = In×n,

and Φ−1(t) exists, satisfying {
dΦ−1(t) = −Φ−1(t)A(t)dt,

Φ−1(t0) = In×n.

We now claim a stronger result: for β⊤(t) := (β1(t), . . . , βn(t)) an n-dimensional continuous
function, the process

{
exp

(
β⊤(t)Xt

)
, t0 ≤ t ≤ T

}
is uniformly integrable. It suffices to prove

that supt∈[t0,T ] E
[
exp

(
pβ⊤(t)Xt

)]
<∞ for some p > 1.

Note that exp
(
pβ⊤(t)Xt

)
has the following form

exp

(
pβ⊤(t)Φ(t)x0 + pβ⊤(t)Φ(t)

∫ t

t0

Φ−1(s)b(s)ds+ pβ⊤(t)Φ(t)

∫ t

t0

Φ−1(s)D(s)dWs

)
,

and it is enough to focus on exp
(
pβ⊤(t)Φ(t)

∫ t
t0
Φ−1(s)D(s)dWs

)
.

Since Yt :=
∫ t
t0
Φ−1(s)D(s)dWs ∼ N(0,Σ(t)), where Σ(t) : [t0, T ] → Rn×n is a continuous

function, we can obtain

E
[
exp

(
pβ⊤(t)Φ(t)

∫ t

t0

Φ−1(s)D(s)dWs

)]
= E

[
exp

(
pβ⊤(t)Φ(t)Yt

)]
= exp

(
p2β⊤(t)Φ(t)Σ(t)Φ⊤(t)β(t)

2

)
.
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It follows that

sup
t∈[t0,T ]

E
[
exp

(
pβ⊤(t)Xt

)]
= max

t∈[t0,T ]
exp

(
pβ⊤(t)Φ(t)x0 + pβ⊤(t)Φ(t)

∫ t

t0

Φ−1(s)b(s)ds

+
p2β⊤(t)Φ(t)Σ(t)Φ⊤(t)β(t)

2

)
<∞,

which proves our claim. Therefore, for every i ∈ {1, · · · , n},

E
[∫ T

t0

|Ui(c
i
t, c

(i)
t )|2dt

]
=

∫ T

t0

E

[
exp

(
− 2

δi

(
1− θi

n

)( n∑
k=1

pi,k(t)Xk
t + qi(t)

)

+
∑
j ̸=i

2θi
nδi

(
n∑

k=1

pj,k(t)Xk
t + qj(t)

) dt <∞,

E
[
|Ui(X

i
T , X

(i)
T )|2

]
= E

[
exp

{
− 2

δi

(
1− θi

n

)
Xi

T + 2
θi
δi
X

(i)
T

}]
<∞.

Hence,
(
(π̂i, ĉi), (π, c)(i)

)
satisfies the conditions of Theorem A.1 and Definition 2.8, which

completes the proof.

A.2. The mean field game. Similar to the n-agent games, we can deduce a characteri-
zation of open-loop consistent control in the mean field game framework. Here, we only give
the corresponding result and omit the proof.

Let ξ0 = (δ0, θ0, µ0, ν0, σ0) represent a deterministic sample from its random type distribu-
tion and take an initial pair (t0, x0) ∈ [0, T )×R. We denote by (π̂ξ0 , ĉξ0) ∈ AMF

t0 a candidate
control. Now, we introduce the following BSDE defined on the interval [t0, T ]:

(A.22)

{
dp(t) = qB(t)dBt + qW (t)dWt,

p(T ) = 1
δ0

exp
(
− 1

δ0
X̂ξ0

T + θ0
δ0
XT

)
,

where X̂ξ0 is given by

(A.23)

{
dX̂ξ0

t =
(
π̂ξ0t µ0 − ĉξ0t

)
dt+ π̂ξ0t ν0dWt + π̂ξ0t σ0dBt, t ∈ [t0, T ],

X̂ξ0
t0

= x0,

and X is defined by (3.13).

Theorem A.4. Assume that exp
(
− 1

δ0
X̂ξ0

T + θ0
δ0
XT

)
∈ L2

FMF
T

(Ω;R). Then, (π̂ξ0 , ĉξ0) is an

open-loop consistent control for ξ0-type agent with respect to the initial condition (t0, x0), if
the following conditions hold

µ0p(t) + ν0q
W (t) + σ0q

B(t) = 0, t ∈ [t0, T ],

− λ(T − t)p(t) +
1

δ0
exp

(
− 1

δ0
ĉξ0t +

θ0
δ0
C(t,Xt)

)
= 0, t ∈ [t0, T ],

where C(t,Xt) := (p1(t) + E [p2(t, ξ)])Xt + E [q(t, ξ)].
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Similarly, by considering the following FBSDEs:

dX̂ξ0
t =

(
Π̂ξ0(t, X̂ξ0

t , Xt)µ0 − Ĉξ0(t, X̂ξ0
t , Xt)

)
dt+ Π̂ξ0(t, X̂ξ0

t , Xt)ν0dWt

+Π̂ξ0(t, X̂ξ0
t , Xt)σ0dBt, t ∈ [t0, T ],

dXt =
[
− (p1(t) + E [p2(t, ξ)])Xt + E

[
Πξ(t)µ

]
− E [q(t, ξ)]

]
dt

+E
[
Πξ(t)σ

]
dBt, t ∈ [t0, T ],

dp(t) = qB(t)dBt + qW (t)dWt, t ∈ [t0, T ],

X̂ξ0
t0

= x0, Xt0 = x0, p(T ) =
1
δ0

exp
(
− 1

δ0
X̂ξ0

T + θ0
δ0
XT

)
,

with conditions

µ0p(t) + ν0q
W (t) + σ0q

B(t) = 0, t ∈ [t0, T ],(A.24)

− λ(T − t)p(t) +
1

δ0
exp

(
− 1

δ0
ĉξ0t +

θ0
δ0
C(t,Xt)

)
= 0, t ∈ [t0, T ],(A.25)

we have the following verification theorem in the mean field game framework.

Theorem A.5. Under the assumption of Theorem A.4, if there exists a classical solution
V ξ0 ∈ C1,2,2((0, T )× R2,R) ∩ C([0, T ]× R2,R) of the following PDE:

V ξ0
t (t, x, x) + Π̂ξ0(t, x, x)

(
V ξ0
x (t, x, x)µ0 + V ξ0

xx(t, x, x)σ0E
[
Πξ(t)σ

])
+1

2Π̂
ξ0(t, x, x)2V ξ0

xx(t, x, x)
(
ν20 + σ20

)
− Ĉξ0(t, x, x)V ξ0

x (t, x, x)

+V ξ0
x (t, x, x)

(
E
[
Πξ(t)µ

]
− C(t, x)

)
+1

2V
ξ0
xx(t, x, x)

(
E
[
Πξ(t)σ

])2
= 0, (t, x, x) ∈ [0, T ]× R2,

V ξ0(T, x, x) = 1
δ0

exp
(
− 1

δ0
x+ θ0

δ0
x
)
, (x, x) ∈ R2,

Π̂ξ0(t, x, x) = −µ0V ξ0 (t,x,x)+σ0E[Πξ(t)σ]V ξ0
x (t,x,x)

(ν20+σ2
0)V

ξ0
x (t,x,x)

, (t, x, x) ∈ [0, T ]× R2,

Ĉξ0(t, x, x) = −δ0 ln
[
δ0λ(T − t)V ξ0(t, x, x)

]
+ θ0C(t, x), (t, x, x) ∈ [0, T ]× R2,

and if the SDE

(A.26)



dX̂ξ0
t =

(
Π̂ξ0(t, X̂ξ0

t , Xt)µ0 − Ĉξ0(t, X̂ξ0
t , Xt)

)
dt+ Π̂ξ0(t, X̂ξ0

t , Xt)ν0dWt

+Π̂ξ0(t, X̂ξ0
t , Xt)σ0dBt, t ∈ [t0, T ],

dXt =
[
− (p1(t) + E [p2(t, ξ)])Xt + E

[
Πξ(t)µ

]
− E [q(t, ξ)]

]
dt

+E
[
Πξ(t)σ

]
dBt, t ∈ [t0, T ],

X̂ξ0
t0

= x0, Xt0 = x0.

has a solution
(
X̂ξ0 , X

)
such that (π̂ξ0t , ĉ

ξ0
t ) :=

(
Π̂ξ0(t, X̂ξ0

t , Xt), Ĉ
ξ0(t, X̂ξ0

t , Xt)
)
are admissi-

ble over [t0, T ], then (π̂ξ0 , ĉξ0) is an open-loop consistent control for ξ0-type agent with respect
to the initial condition (t0, x0).
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Appendix B. Caculation on ĥi(t).
Recalling that

(B.1) ĥi(t) :=
1

T + 1− t

∫ T

t
(T + 1− s)

[
Gi((Π∗,k(s))k ̸=i, s)

]
ds,

where

Gi((πk)k ̸=i, t) = −1

2

[
µi + σiσπ

(i)gi(t)
]2

ν2i + σ2i
− 1

T + 1− t
ln [λ(T − t)] + gi(t)µπ(i)

+
1

2

[
gi(t)

]2 [
(σπ(i))2 +

1

n2

∑
k ̸=i

(νkπ
k)2
]

and

gi(t) =
θi
δi

1

(T + 1− t)
.

Let Ai
n := σΠ∗(i)(t)gi(t), Bi

n := µΠ∗(i)(t)gi(t) and Ci
n := 1

n2

∑
k ̸=i

(
νkΠ

∗,k(t)gi(t)
)2
. One

can check that Ai
n, B

i
n and Ci

n are constants:

Ai
n =

1

n

θi
δi

∑
k ̸=i

δk σkµk

σ2k +
(
1− θk

n

)
ν2k

+ θk
σ2k

σ2k +
(
1− θk

n

)
ν2k

ϕn
1− ψn

 ,
Bi

n =
1

n

θi
δi

∑
k ̸=i

δk µ2k

σ2k +
(
1− θk

n

)
ν2k

+ θk
µkσk

σ2k +
(
1− θk

n

)
ν2k

ϕn
1− ψn

 ,
Ci
n = (

1

n

θi
δi
)2
∑
k ̸=i

δk νkµk

σ2k +
(
1− θk

n

)
ν2k

+ θk
νkσk

σ2k +
(
1− θk

n

)
ν2k

ϕn
1− ψn

2

.

(B.2)

Then

Gi((Π∗,k(t))k ̸=i, t) = −1

2

(µi + σiA
i
n)

2

ν2i + σ2i
− 1

T + 1− t
ln [λ(T − t)] +Bi

n +
1

2
[(Ai

n)
2 + Ci

n].

Hence,

(B.3) ĥi(t) =
Di

n

2

[
1

T + 1− t
− (T + 1− t)

]
− 1

T + 1− t

∫ T

t
ln [λ(T − s)] ds,

where

(B.4) Di
n :=

1

2

(µi + σiA
i
n)

2

ν2i + σ2i
− 1

2
[(Ai

n)
2 + Ci

n]−Bi
n.
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If we assume that empirical measure mn has a weak limit m, by passing to limit, we then
have

Ai : = lim
n→∞

Ai
n =

θi
δi
E
[
δ

σµ

σ2 + ν2
+ θ

σ2

σ2 + ν2
ϕ

1− ψ

]
=
θi
δi

ϕ

1− ψ
= gi(t)E[σΠ∗,ξ(t)],

Bi : = lim
n→∞

Bi
n =

θi
δi
E
[
δ

µ2

σ2 + ν2
+ θ

σµ

σ2 + ν2
ϕ

1− ψ

]
= gi(t)E[µΠ∗,ξ(t)],

Ci : = lim
n→∞

Ci
n = 0,

Di : = lim
n→∞

Di
n =

1

2

(
µi + σig

i(t)E[σΠ∗,ξ(t)]
)2

ν2i + σ2i
− 1

2

(
gi(t)E[σΠ∗,ξ(t)]

)2
− gi(t)E[µΠ∗,ξ(t)].

Then the limit of ĥi(t) is given by

H i(t) := lim
n→∞

ĥi(t) =
Di

2

[
1

T + 1− t
− (T + 1− t)

]
− 1

T + 1− t

∫ T

t
ln [λ(T − s)] ds.

Note that

ĥξ(t) =
1

T + 1− t

∫ T

t
(T + 1− s)Gξ(Π∗,ξ(s), s)ds,

where

Gξ(π, t) = − 1

T + 1− t
ln [λ(T − t)]− 1

2

(
µ+ σgξ(t)E[σπ]

)2
ν2 + σ2

+ gξ(t)E[µπ] +
1

2

(
gξ(t)

)2
(E[σπ])2,

then

(B.5) ĥξ(t) =
D

2

[
1

T + 1− t
− (T + 1− t)

]
− 1

T + 1− t

∫ T

t
ln [λ(T − s)] ds = Hξ(t).
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