
ar
X

iv
:2

31
2.

14
72

2v
2 

 [
m

at
h.

A
G

] 
 2

7 
M

ar
 2

02
4

ON STRICTLY ELLIPTIC K3 SURFACES AND DEL PEZZO

SURFACES

PAOLA COMPARIN, PEDRO MONTERO, YULIETH PRIETO–MONTAÑEZ,
AND SERGIO TRONCOSO

Abstract. This article primarily aims at classifying, on certain K3
surfaces, the elliptic fibrations induced by conic bundles on smooth del
Pezzo surfaces. The key geometric tool employed is the Alexeev-Nikulin
correspondence between del Pezzo surfaces with log-terminal singular-
ities of Gorenstein index two and K3 surfaces with non-symplectic in-
volutions of elliptic type: the latter surfaces are realized as appropriate
double covers obtained from the former ones. The main application of
this correspondence is in the study of linear systems that induce elliptic
fibrations on K3 surfaces admitting a strictly elliptic non-symplectic in-
volution, i.e., whose fixed locus consists of a single curve of genus g ≥ 2.
The obtained results are similar to those achieved by Garbagnati and
Salgado for jacobian elliptic fibrations.
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We work over the field of complex numbers C.

1. Introduction

One of the principal algebraic invariants of a projective algebraic variety
X is its group of biregular automorphisms, denoted as Aut(X). In many
cases, this group can be used to discover geometric properties of the un-
derlying algebraic variety and its projective models. Furthermore, as we
will explore, the mere existence of suitable involutions has non-trivial con-
sequences regarding special linear systems on the corresponding variety.
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One of the main successful approaches to study the automorphism group
of a smooth projective variety X is to consider the natural induced action on
cohomology lattices. Indeed, a classical result by Lieberman [Lie78] states
that the neutral component Aut◦(X) has finite index in the kernel of the
linear representation Aut(X) → GL(H2(X,Z)), i.e., Aut(X) splits into its
neutral component Aut◦(X) and its discrete image in GL(H2(X,Z)) (see
e.g. [Can18] for further details).

The aforementioned strategy has been classically employed to investigate
the automorphism groups of smooth del Pezzo surfaces, which are projective
algebraic surfaces Z such that the anti-canonical divisor −KZ is ample.
In cases where these groups are finite, they are realized as subgroups of
the Weyl group of an appropriate lattice (see [Dol12, Chapters 8–9] for
details and a historical account). Another remarkable class of algebraic
varieties for which this method is commonly used are projective K3 surfaces,
i.e., simply connected smooth projective surfaces X with trivial canonical
bundle KX ∼ 0. Indeed, for these surfaces the relevance of the study of
automorphisms is a consequence of the celebrated Torelli theorem due to
Pyatetskii-Shapiro and Shafarevich [PSS71], and general lattice theoretic
results by Nikulin [Nik76, Nik79, Nik81].

Remarkably, these two classes of surfaces are naturally related thanks to
the work of Alexeev and Nikulin [AN06] (see also [Nak07, Zha98]) on the
classification of del Pezzo surfaces Z of Gorenstein index 2, i.e., the Weil
divisor −2KZ is an ample Cartier divisor. More precisely, let us recall that in
any K3 surfaceX there is a holomorphic and non-vanishing (i.e., symplectic)
2-form ωX such that H0(X,Ω2

X) = C ·ωX , and thus we say that σ ∈ Aut(X)
is symplectic if σ∗(ωX) = ωX , and that is non-symplectic otherwise. In this
terms, the correspondence [AN06] between K3 surfaces X and (possibly)
singular del Pezzo surfaces Z of Gorenstein index 2 goes as follows: the
so-called Smooth Divisor Theorem (see [AN06, Theorem 1.5]) ensures that,
given such a del Pezzo surface, there is a smooth irreducible curve C in
the linear system | − 2KZ |. Subsequently, a double cover W → Z can be
constructed, branched over both C and Sing(Z). The crucial observation
lies in the fact that the minimal resolution X → W is a K3 surface, and
the involution ι : X → X associated with the covering is such that ι∗ωX =
−ωX , i.e., ι is a non-symplectic involution. Through an analysis of X and
the quotient surface X/〈ι〉, the authors in [AN06] reduce the classification
problem for Z to the study of K3 surfaces with non-symplectic involutions.

It is worth mentioning that the above construction is a vast generaliza-
tion of the fact that the double cover of P2 branched over a smooth sextic
curve C is a K3 surface with a non-symplectic involution. This classical
construction (revisited by Dolgachev [Dol73] and Reid [Rei76] using modern
methods) was considered by Enriques and Campedelli (see [Cam40]), who
investigated double coverings of P2 that are birational to a K3 surface. An-
other remarkable recent construction in birational geometry, closely related
to our context, is the work of Peters and Sterk [PS20] where they consider
nodal Enriques surfaces constructed from a K3 surface obtained as a double
cover of a smooth del Pezzo surface of degree 6.
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Even in the simplest case where the quotient del Pezzo surfaces are smooth
(which will be our case of interest), the correspondence by Alexeev and
Nikulin enables a connection between the geometric properties of the del
Pezzo surface Z = X/〈ι〉 and the lattice-theoretic properties of the invariant
lattice NS(X)ι

∗
associated with the non-symplectic involution ι on the K3

surface (see §2.2 for details). For instance, it follows from results by Nikulin
in [Nik83] that the topology of the fixed locus Xι is determined by suitable
discrete invariants (r, a, δ) of the lattice NS(X)ι

∗
which, in turn, can be

interpreted through Z (e.g., the genus of the fixed curve Xι = Cg will be
given by g = K2

Z + 1).
After understanding the topology of the fixed locus, a natural next step

is to describe the possible linear systems on these K3 surfaces, following
the work initiated by Saint-Donat in [SD74]. Notably, linear systems in-
ducing elliptic fibrations (see Definition 2.11, and note that we do not
require the existence of a section) are of special interest, as they can be
characterized numerically thanks to the results in [PSS71, §3] and since
they have important arithmetic applications (see e.g. [Sch09]). Significant
progress has been made in this direction, particularly in the case where
the K3 surface is generic among those admitting a non-symplectic auto-
morphism with a given fixed locus (see Convention 2.15). More precisely,
in [Nik83, Ogu89, Klo06, CG14, GS19, GS20] the authors classify elliptic
fibrations on K3 surfaces with a non-symplectic involution in many cases,
using the fact that the fixed locus of the involution is either empty, the dis-
joint union of two elliptic curves or contains at least a rational curve (we
refer the reader to Remark 3.3 for further details). In order to complete
the classification of elliptic fibrations on such generic surfaces, it remains to
study the case when Xι = Cg consists of a single smooth irreducible curve
of genus g ≥ 2. In regard of the previous discussion,

the main purpose of this article is to address, through the
Alexeev-Nikulin correspondence, the remaining case in the
classification of (not necessarily jacobian) elliptic fibrations
on generic K3 surfaces (in the sense of Convention 2.15) that
admit a non-symplectic involution ι : X → X.

To achieve this, we will restrict ourselves to the case where Xι = Cg is a
smooth irreducible curve of genus g ≥ 2, and we will say that ι : X → X is a
strictly elliptic involution (see Definition 3.1). As we will observe in Propo-
sition 3.4, the main feature of the pair (X, ι) is that the Alexeev-Nikulin
correspondence results in a smooth del Pezzo surface Z = X/〈ι〉. In this
context, our main result (see Theorem 3.9) establishes that the quotient
projection π : X → Z = X/〈ι〉 induces a correspondence between elliptic
fibrations E : X → P1 and conic bundles (see Definition 2.4) f : Z → P1,
and moreover E = f ◦ π. It is worth noting that analogous results have
been obtained for other K3 surfaces with non-symplectic involutions, pro-
vided the fixed locus Xι contains rational curves (see e.g. [GS19, §5], [GS20,
§7.1] and [CG14, §5.10]). In contrast, the main advantage of our approach
using del Pezzo surfaces, as opposed to previous works relying on lattice-
theoretic methods (where the existence of a section of the elliptic fibration
or the presence of a rational curve in the fixed locus Xι is important), is its
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compatibility with standard tools from Mori theory (see e.g. [Deb01, Chap-
ter 6]). Notably, in our case, we can classify the effective classes of curves
inducing conic bundles on the surface Z (see Proposition 2.9), following a
similar approach as in the case of (−1)-curves in [Man86, §26], and use them
to describe all admissible singular fibers of the induced elliptic fibrations on
the corresponding K3 surface X (see §5).

Finally, it is noteworthy that, as a consequence of recent work [CM23] by
Clingher and Malmendier, the considered elliptic fibrations are not jacobian,
i.e., they do not admit sections. However, it is not difficult to observe (see
§5) that they admit bisections which can be induced by the (−1)-curves in
the associated del Pezzo surface (see Example 3.10). Despite the absence
of jacobian elliptic fibrations, and consequently the inability to consider
Weierstrass models, these K3 surfaces are quite special due to the fact that
by [AN06, §2.8] they have finite automorphism groups. Remarkably, they fall
within the recent work by Roulleau [Rou22], where some explicit projective
models are studied and where the full lattice NS(X) is described (see §4).
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Urzúa for various fruitful discussions regarding the constructions used in
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1240101. S.T. was partially supported by Fondecyt ANID Project 3210518.
The authors express their gratitude to Cećılia Salgado for her generous
hospitality extended to S.T. during his visit to the Bernoulli Institute at the
University of Groningen.

2. Background and preliminaries

2.1. Conic bundles and smooth del Pezzo surfaces. Let us recall that
a smooth projective surface Z is called a del Pezzo surface if the anti-
canonical divisor −KZ is ample. The positive integer d(Z) = (−KZ)

2 is
called the degree of Z, and it is the main invariant that allows for their
classification. More precisely, we have the following classical result (see e.g.
[Man86, §24] and [Dol12, Proposition 8.1.25]).

Theorem 2.1. Let Z be a smooth del Pezzo surface of degree d. Then,
1 ≤ d ≤ 9 and we have that:

(i) If d = 9, then Z ≃ P2.
(ii) If d = 8, then Z is isomorphic to either P1 ×P1 or to the blow-up

of P2 at one point (i.e., the Hirzebruch surface F1).
(iii) If 1 ≤ d ≤ 7, then Z ≃ Blp1,...,pr(P

2) where r = 9− d and where the
points p1, . . . , pr ∈ P2 are in general position.

Here, we say that the points are in general position if the following hold:

(1) no three points are on a line;
(2) no six points are on a conic;
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(3) no nodal or cuspidal cubic passes through eight points with one of
them being the singular point.

Conversely, any blow-up of r ≤ 8 points in general position is a smooth del
Pezzo surface.

Convention 2.2. We will denote by Z an arbitrary smooth del Pezzo surface.
Additionally, we will denote by Zd the del Pezzo surface of degree d ∈
{1, . . . , 8} obtained as the blow-up of 9− d points in general position in P2,
and by E1, . . . , E9−d the corresponding exceptional divisors.

It is worth mentioning that the geometry of exceptional curves on del
Pezzo surfaces is completely understood. For instance, it is known that
every irreducible curve with negative self-intersection on a smooth del Pezzo
surface Z is a (−1)-curve (see e.g. [Man86, Theorem 24.3]). More precisely,
we have the following result (see [Man86, §26] and [Dol12, §8.2.6]).

Theorem 2.3. Let Zd be a smooth del Pezzo surface of degree 1 ≤ d ≤ 8,
and let ε : Zd → P2 be its representation as the blow-up of r = 9− d points
p1, . . . , pr ∈ P2 in general position. Let Γ ⊆ Zd be a (−1)-curve, then the
image ε(Γ) ⊆ P2 is of one of the following types:

(1) one of the points pi;
(2) a line passing through 2 of the points pi;
(3) a conic passing through 5 of the points pi;
(4) a cubic passing through 7 of the points pi such that 1 of them is a

double point;
(5) a quartic passing through 8 of the points pi such that 3 of them are

double points;
(6) a quintic passing through 8 of the points pi such that 6 of them are

double points;
(7) a sextic passing through 8 of the points pi such that 7 of them are

double points and one is a triple point.

Moreover, the number n of (−1)-curves on Zd is given by the following table

d 8 7 6 5 4 3 2 1
r 1 2 3 4 5 6 7 8
n 1 3 6 10 16 27 56 240

Following the same line of ideas that allow classifying the images of (−1)-
curves in the above result, we can describe the possible conic bundles on
smooth del Pezzo surfaces. For the reader’s benefit, we recall the relevant
notions about conic bundles below.

Definition 2.4. [Sar79, §1] A conic bundle on a smooth projective surface
Z is a surjective morphism onto a smooth curve f : Z → C whose general
fiber is a smooth, irreducible curve of genus 0.

Remark 2.5. According to Lüroth’s Theorem, if Z is a rational surface (e.g.
a smooth del Pezzo surface) then the curve C must be isomorphic to P1.

Definition 2.6. Let Z be a smooth projective surface, we say that an ele-
ment [D] ∈ NS(Z) is a conic class if D is nef, D2 = 0, and D ·KZ = −2.
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Lemma 2.7. Let Z be smooth rational surface, then there exists a corre-
spondence between the set of conic bundles on Z and the set of conic classes
of NS(Z).

Proof. First, let [D] ∈ NS(Z) be a conic class, then by Riemman-Roch and
[Har97, Theo. III.1.(a)] the associated map φ|D| : Z → P1 is a well-defined
morphism, and since every fiber is linearly equivalent to D it is a conic
bundle on Z. On the other hand, let f : Z → P1 be a conic bundle, then it
is clear that the class of any fiber of f , say F , is a conic class. �

Remark 2.8. The number of singular fibers of a conic bundle is a numerical
invariant. For instance, for a conic bundle f : Zd → P1 on the del Pezzo
surface Zd, it is well-known that the number of singular fibers is 8−K2

Zd
=

8− d, as seen in [KM17, §1].

Proposition 2.9. Let Zd be a del Pezzo surface of degree d ≤ 8 obtained as
the blow-up of 9−d points in general position in P2. Then the conic classes
are listed in Table 1. Moreover, the number N of conic bundles on Zd is
given by the following table

d 8 7 6 5 4 3 2 1
r 1 2 3 4 5 6 7 8
N 1 2 3 5 10 27 126 2160

Proof. This is a classical fact that can be found in [Der06, §2] (see also
[TVAV09, Table 2]). For the reader’s convenience, we give a self-contained
proof.

Lemma 2.7 allows us to classify for each Zd, with 1 ≤ d ≤ 8, the canonical
classes [D] ∈ NS(Zd) that produces conic bundles. Indeed, since Zd is the
blow-up of P2 in 9− d points in general position, then

Pic(Zd) = ZL⊕
9−d
⊕

i=1

ZEi

where L is the class of pull-back of a line and each Ei is an exceptional
divisor. Thus, KZd

= −3L + E1 + · · · + E9−d and D = ℓL + a1E1 + · · · +
a9−dE9−d, so the numerical conditions that impose Lemma 2.7 are

{

ℓ2 = a21 + · · · + a29−d

−3ℓ+ 2 = a1 + · · ·+ a9−d
.

For each d, one gets the possibilities for D of Table 1 solving the Diophantine
equation system. A straightforward combinatorial computation gives the
total number of conic bundles N for each d depending on n. �

Remark 2.10. If Z ≃ P1 × P1 the only conic bundles are the 2 different
projections onto P1.

In what follows, we will relate the presence of conic bundles and elliptic
fibration, therefore we recall the definition of the latter.

Definition 2.11. An elliptic fibration on a smooth projective surface Z is
a surjective morphism π : X → B, where B is a smooth algebraic curve, the
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d = 8 D = L−E1

d = 7 D = L−Ei, i = 1, 2
d = 6 D = L−Ei, i = 1, 2, 3
d = 5 D = L−Ei, i = 1, 2, 3, 4

D = 2L−
4

∑

k=1

Ek

d = 4 D = L−Ei, i = 1, 2, 3, 4, 5

D = 2L−
∑

j∈J

Ej , J ⊂ {1, . . . , 5}, |J | = 4

d = 3 D = L−Ei, i = 1, 2, 3, 4, 5, 6.

D = 2L−
∑

j∈J

Ej , J ⊂ {1, . . . , 6}, |J | = 4

D = 3L− 2Ei −
∑

j∈J

Ej , i ∈ {1, . . . , 6}, J = {1, . . . , 6} \ {i}

d = 2 D = L−Ei, i = 1, . . . , 7

D = 2L−
∑

j∈J

Ej , J ⊂ {1, . . . , 7}, |J | = 4

D = 3L− 2Ei −
∑

j∈J

Ej , i ∈ {1, . . . , 7}, J = {1, . . . , 7} \ {i}, |J | = 5

D = 4L− 2
∑

j∈J

Ej −
∑

k∈K

Ek, J ⊂ {1, . . . , 7}, |J | = 4, K = {1, . . . , 7} \ J

D = 5L− Ei − 2
∑

j∈J

Ej , i ∈ {1, . . . , 7}, J = {1, . . . , 7} \ {i}

d = 1 D = L−Ei, i = 1, . . . , 8

D = 2L−
∑

j∈J

Ej , J ⊂ {1, . . . , 8}, |J | = 4

D = 3L− 2Ei −
∑

j∈J

Ej , i ∈ {1, . . . , 8}, J = {1, . . . , 8} \ {i}, |J | = 5

D = 4L− 2
∑

j∈J

Ej −
∑

k∈K

Ek, J,K ⊂ {1, . . . , 8}, |J | = 4, |K| = 3, J ∩K = ∅

D = 4L− 3Ei −
∑

j∈J

Ej , i ∈ {1, . . . , 8}, J = {1, . . . , 8} \ {i}

D = 5L− 3Ei − 2
∑

j∈J

Ej −
∑

k∈K

Eik , i ∈ {1, . . . , 8},

J,K ⊂ {1, . . . , 8} \ {i}, |J | = 3, |K| = 4, J ∩K = ∅

D = 5L− Ei − 2
∑

j∈J

Ej , i ∈ {1, . . . , 8}, J ⊂ {1, . . . , 8} \ {i}, |J | = 6

D = 6L− 3
∑

j∈J

Ej − 2
∑

k∈K

Ek −
∑

r∈R

Er,

J,K,R ⊂ {1, . . . , 8}, |J | = 2, |K| = 4, |R| = 2, J ∩K = J ∩R = K ∩R = ∅

D = 7L− 4Ei − 3Ej − 2
∑

k∈K

Ek, i ∈ {1, . . . , 8}, j ∈ {1, . . . , 8} \ {i}, K = {1, . . . , 8} \ {i, j}

D = 7L− Ei − 2
∑

j∈J

Ej − 3
∑

k∈K

Ek, i ∈ {1, . . . , 8}, J,K ⊂ {1, . . . , 8} \ {i}, |J | = 3, |K| = 4, J ∩K = ∅

D = 8L− 4Ei − 2
∑

j∈J

Ej − 3
∑

k∈K

Ek, i ∈ {1, . . . , 8}, J,K ⊂ {1, . . . , 8} \ {i}, |J | = 3, |K| = 4, J ∩K = ∅

D = 8L− Ei − 3
∑

j∈J

Ej , i ∈ {1, . . . , 8}, J = {1, . . . , 8} \ {i}

D = 9L− 2Ei − 4
∑

j∈J

Ej − 3
∑

k∈K

Ek, i ∈ {1, . . . , 8}, J,K ⊂ {1, . . . , 8} \ {i}, |J | = 2, |K| = 5, J ∩K = ∅

D = 10L− 3
∑

i∈I

Ei − 4
∑

j∈J

, I, J ⊂ {1, . . . , 8}, |J | = |K| = 4, J ∩K = ∅

D = 11L− 3Ei − 4
∑

j∈J

Ej , i ∈ {1, . . . , 8}, J = {1, . . . , 8} \ {i}

Table 1

fiber π−1(t) is a curve of genus 1 for all but finitely many t ∈ B and π is
relatively minimal.

Remark 2.12. Observe that in Definition 2.11 we do not ask for the presence
of a section, contrary to other works, e.g. [GS20].

2.2. Non-symplectic involutions on K3 surfaces. We refer the reader
to [Huy16, Kon20] for the notation and preliminaries on K3 surfaces and
elliptic fibrations (e.g. we consider the ADE lattices to be definite negative).
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Let X be a projective K3 surface and ϕ : X → X be an automorphism
of finite order n. Let us recall that ϕ is symplectic (resp. purely non-
symplectic) if ϕ∗ω = ω (resp. ϕ∗ω = λω for some λ a primitive n-rooth
of the unity), where ω is a non-degenerate holomorphic 2-form on X (i.e.,
H0(X,Ω2

X) = C ·ω). Given a K3 surface X and a non-symplectic involution

ι on X, we denote Xι the fixed locus of the involution and NS(X)ι
∗
the

invariant lattice, i.e.

NS(X)ι
∗
= {x ∈ NS(X) : ι∗x = x}.

Classical results on non-symplectic involutions on K3 surfaces allow us
to classify their fixed loci and invariant lattices. It is an elementary but
very useful observation that H2(X,Z)ι

∗
⊂ NS(X) as lattices for any non-

symplectic involution ι.

Proposition 2.13. [Nik83, Theorem 4.2.2] Let X be a K3 surface and ι be
a non-symplectic involution with a non-empty fixed locus. The fixed locus of
ι can be either the disjoint union of two elliptic curves, Xι = E1 ⊔ E2, or
the disjoint union

Xι = Cg ⊔R1 ⊔ . . . ⊔Rk,

where Cg is a smooth curve of genus g and the Ri’s are rational curves.

Moreover, g = 22−r−a
2 and k = r−a

2 , where r = rkNS(X)ι
∗
and a is the

length of NS(X)ι
∗
, i.e., 2a = |discr NS(X)ι

∗
|.

Remark 2.14. In the case Xι = ∅ it follows from [Nik83, Theorem 4.2.2] that
necessarily (r, a, δ) = (10, 10, 0). Moreover, in that case [Nik83, Theorem
4.2.4, Proposition 4.2.5] imply that NS(X)ι

∗
≃ U(2)⊕E8(2) and the group

Aut(X) is infinite. Since Xι = ∅, we have that X/〈ι〉 is an Enriques surface.

Convention 2.15. In what follows, we will assume that X is generic among
the K3 surfaces admitting a non–symplectic involution with a given fixed
locus. This is equivalent to the condition the action of ι∗ is trivial on NS(X).

As observed in [Nik83], the invariants (r, a) allow to recover the topolog-
ical invariants (g, k) of the fixed locus Xι. Viceversa, if the pair (g, k) is
known, a third invariant δ is needed to identify uniquely NS(X)ι

∗
: δ = 0 if

and only if Xι ∼ 0 mod 2 in H2(X,Z), otherwise δ = 1. The picture of all
possible invariant (r, a, δ) is presented in [AN89, Figure 1]. For complete-
ness, we include it in Figure 1.

The following result characterizes the quotient of a K3 surfaces by a non-
symplectic automorphism.

Proposition 2.16. Let X be a projective K3 surface and ϕ be a non-
symplectic automorphism of finite order. Then,

i) the quotient X/〈ϕ〉 is a rational surface or birational to an Enriques
surface;

ii) if ϕ is an involution, then the fixed locus of ϕ is empty if and only if
X/〈ϕ〉 is an Enriques surface.

Proof. See [Huy16, Lemma 4.8] for i). For ii), the “only if” part is proven
in [Zha98, Lemma 1.2]. Suppose that ϕ is an involution. We know that
if the fixed locus is non-empty, then Xϕ = D has codimension one and it
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Figure 1. All possible invariants (r, a, δ).

is a disjoint union of smooth curves. Furthermore, the canonical divisor
of cyclic coverings implies that D ∼ 2KX/〈ϕ〉 and so the quotient is not
an Enriques surface. Suppose that the fixed locus Xϕ is empty. Then,
2π∗KX/〈ϕ〉 ∼ KX ∼ 0, implying that X/〈ϕ〉 is an Enriques surface. �

Remark 2.17. It is a classical fact that K3 surfaces admitting a non-symplectic
automorphism of finite order are projective and the Néron-Severi lattice is
hyperbolic. See [Huy16, Chapter 15, Corollary 1.10] and [Nik79, Theorem
3.1] for instance.

3. Strictly elliptic involutions

Let X be a K3 surface and ι a non-symplectic involution on X. According
to the notation in [AN06, §2.8], it is natural to classify ι into three categories:
ι is of elliptic type if Xι contains a curve of genus g ≥ 2. This is equivalent
to r + a ≤ 18, (r, a, δ) 6= (10, 8, 0). The involution ι is of parabolic type if
Xι contains a genus 1 curve, which is equivalent to r+ a = 20 or (r, a, δ) =
(10, 8, 0). Finally, ι is of hyperbolic type if Xι = ∅ or Xι only contains
rational curves, which is equivalent to r + a = 22 or (r, a, δ) = (10, 10, 0).

In this work, we specifically focus on the case of elliptic type, and in
particular, we consider K3 surfaces that admit a non-symplectic involution
with no rational curves in the fixed locus.

Definition 3.1. Let X be a K3 surface and ι be a non-symplectic involution
on X. We say that ι is of strictly elliptic type if its fixed locus is given by
Xι = Cg, where Cg is a smooth irreducible curve of genus g ≥ 2.

Remark 3.2. Looking at Figure 1, one can observe that the Néron-Severi
groups of the strictly elliptic type K3 surfaces correspond to points on the
line r = a with r ≤ 9 and they all have δ = 1 except for the case r = 2,
where both δ = 0 and δ = 1 are possible. As a consequence of [Nik83],
possibilities for NS(X) are as follows: if r = 2, δ = 0, then NS(X)∼=U(2);
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otherwise if δ = 1 one has

NS(X)∼=











〈2〉, if r = 1

〈2〉 ⊕A1, if r = 2

U(2)⊕A⊕r−2
1 , if r ≥ 3.

Observe that by [AN06, §2.8], the automorphism group of a K3 surface
with a non-symplectic involution of elliptic type is finite.

Remark 3.3. As mentioned in the Introduction, our methods rely on the
correspondence between strictly elliptic K3 surfaces and smooth del Pezzo
surfaces, as established in [AN06]. This correspondence allows us to analyze
the case where the fixed locus corresponds to a single smooth irreducible
curve Cg of genus g ≥ 2. Additionally, prior works [Ogu89, Klo06, CG14,
GS19, GS20] are devoted to describe all (jacobian) elliptic fibrations in Fig-
ure 1 except for the cases (r, a, δ) = (10, 10, 0) and (r, a, δ) = (10, 10, 1). The
former case corresponds precisely to the situation Xι = ∅ (see Remark 2.14)
and thus X/〈ι〉 is an Enriques surface, while the former case arises when the
fixed locus is given by a single smooth elliptic curve E.

It is noteworthy that the case (r, a, δ) = (10, 10, 1) falls beyond our analy-
sis and it should be noted that the nature of the corresponding elliptic fibra-
tions is necessarily different from the strictly elliptic case. More precisely,
in [GS20, §2] the authors consider non-symplectic involutions ι : X → X
satisfying the Convention 2.15 and classify the possible elliptic fibrations
E : X → P1 into two types:

• Type 1. ι maps each fiber of E to itself.
• Type 2. ι maps at least one fiber of E to another fiber of E .

It follows from the proof of [GS20, Proposition 2.5] that strictly elliptic K3
surfaces only admit elliptic fibrations of Type 1.

On the other hand, in the case (r, a, δ) = (10, 10, 1) we have that the
quotient Z = X/〈ι〉 is a smooth rational surface with K2

Z = 0 and −2KZ ∼
E, where Xι ≃ E is an elliptic curve (cf. proof of Proposition 3.4 below).
In particular, it follows from [CD12, Proposition 2.2] that there exist an
irreducible pencil of sextics in P2 with 9 nodes p1, . . . , p9 as base points
such that Z ∼= Blp1,...,p9(P

2), and the elliptic fibration φ|E| : Z → P1 is the
proper transform of this pencil.

Finally, observe that by [CM23, Corollary 3.3], the case (r, a, δ) = (6, 4, 0)
does not admit jacobian elliptic fibrations and therefore it is not considered
in the analysis of [GS20] despite the presence of a rational curve in Xι. On
the other hand, by [Nak07, Table 9], Z = Proj⊕m≥0 H

0(X,OX (mCg))
ι is a

singular del Pezzo surface of Gorenstein index two that can be realized via
a Sarkisov link starting from P(1, 1, 4) or as a hypersurface of degree 5 in
P(1, 1, 1, 4) (see [Nak07, Proposition 7.4, 7.11]).

Proposition 3.4. Let X be a K3 surface admitting an involution of strictly
elliptic type. Suppose that Cg is the smooth irreducible curve of genus 2 ≤
g ≤ 10 fixed by ι.

(1) If δ = 0, then the K3 surface X can be realized as the double cover
of P1 × P1 over a smooth irreducible curve C ∈ |OP1×P1(4, 4)| of
genus 9.
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(2) If δ = 1, then the K3 surface X can be realized as the double cover of
a del Pezzo surface Zd of degree d = g− 1 over a smooth irreducible
curve C belonging to the linear system | − 2KZd

|.

Moreover, in the case δ = 1 the image of C in P2 is a nodal sextic curve
Γd that passes through 9 − d points corresponding to the points where the
blow-up of P2 is done to obtain Zd.

Proof. By Proposition 2.16 and the fact that Xι is of pure codimension
1 (see Proposition 2.13), the quotient X/〈ι〉 is a smooth rational surface.
Furthermore, since the fixed locus of ι is an irreducible curve Cg of genus
g ≥ 2, the quotient X/〈ι〉 is a del Pezzo surface of degree d = K2

X/〈ι〉 = g−1.

Denote by Z = X/〈ι〉 and by C the image under the quotient map of the
curve Cg. We have that C ∈ | − 2KZ |, and by the genus formula, g(C) =
g(Cg) = K2

Z+1 = d+1. According to the classification of strictly involutions
of elliptic type, we know that g is an integer number at most 10, hence the
degree of Zd satisfies 1 ≤ d ≤ 9. Consequently, either Z ≃ P1 × P1 (and
d = 8) or Z ≃ Zd is obtained as the blow-up of P2 at some generic points
p1, . . . , p9−d. In the latter case, let β be the blow-up map and E′

is be the

corresponding exceptional divisors, then C ∈ | − 2KZd
| = |6L− 2

∑9−d
i=1 Ei|,

where L is the pull-back of a line in P2 via β. This implies that C can be
considered as the strict transform of an irreducible curve Γd ⊆ P2 of degree
6 passing with multiplicity two at each point p1, . . . , p9−d. It is worth noting
that curves with these properties can always be found; see e.g. [Ful89,
Chapter 5, Section 5.2, Theorem 1].

Finally, the fact that δ = 0 corresponds precisely to double covers of
P1×P1 follows from Proposition 2.13, Table 1, and the topological condition
[AN06, Formula (38), page 32] imposing that 1

4 [C] is an integral homology
class in H2(X/〈ι〉,Z). �

Remark 3.5. It is worth noticing that the case where Xι consist of a curve of
genus 10 fits in the framework of the previous proposition when considering
d = 9, i.e., the rational surface is Z9 ≃ P2. In this case, as we will see in
Theorem 3.9, there are no elliptic fibrations on X, therefore our analysis
will focus on d ≤ 8.

Following the construction presented in Proposition 3.4, if we take the
double cover of the plane P2 branched at a nodal sextic curve Γd we get a
singular surface Y , with ADE singularities, such that its minimal resolution
X is a K3 surface, and the strict transform of Γd is a smooth curve Cg on
X. So, we have a diagram as below.

Cg ⊂ X Y

C ⊂ Zd P2 ⊃ Γd

1:1 2:1

min. res

2:1

β

Figure 2. Strictly elliptic K3 surfaces and smooth del Pezzo
surfaces as in Proposition 3.4 (2).
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Remark 3.6. It is worth mentioning that in [GS20, §7] the authors consider
a K3 surface X together with a non-symplectic involution ι : X → X as
in Convention 2.15 and such that Xι = Cg ⊔ R1 ⊔ . . . ⊔ Rk consists of a
smooth irreducible curve Cg of genus g ≥ 2 and k ≥ 1 rational curves. In
this setting, some of these K3 surfaces are such that X/〈ι〉 ≃ P2, and it is
observed that in such instances, X can be realized as the double covering
of P2 along a reducible sextic curve. We refer the reader to the Table in
[GS20, §7.1] for further details (see also [GS19, §5] and [CG14, §5.10]).

Lemma 3.7. Let Z be a del Pezzo surface of degree d and f : Z → P1 be
a conic bundle on Z with Fx the fiber over a point x ∈ P1. If E is an
irreducible curve such that E ⊆ Supp(Fx), then E2 ∈ {−1, 0} and g(E) = 0.
Let1 C ∈ | − 2KZ | be a smooth irreducible curve, then

E2 =

{

−1 if E · C = 2,

0 if E · C = 4.

Proof. By the correspondence in Lemma 2.7, we can associate to any conic
bundle f : Z → P1 a conic class, i.e., an effective class [D] ∈ NS(Z) such
that D2 = 0,KZ ·D = −2, and f = φ|D| is corresponding the induced map.
Furthermore, if E is an irreducible component of Supp(Fx), we have that
E ·Fx = E ·D = 0. Suppose that E2 > 0. By the Hodge index theorem, D is
numerically trivial. However, this contradicts KZ ·D = −2. Thus, E2 ≤ 0.

By the genus formula, we have that 2pa(E)−2 = E2+KZ ·E ≤ 0 and thus
2pa(E)−2 < 0, sinceE2 ≤ 0 and−KZ ·E > 0 by Nakai-Moishezon ampleness
criterion. Hence, pa(E) = 0, and thus E ≃ P1. Finally, for a smooth
irreducible curve C ⊆ Z such that −2KZ ∼ C we have that E ·C = 2E2+4,
from which the last statement of the lemma follows thoroughly. �

Remark 3.8. Note that the smooth fibers of any such conic bundle over del
Pezzo surfaces are rational curves intersecting the curve C ∈ |−2KZ | at four
points, taking multiplicities into account. Additionally, the singular fibers
consist of two rational curves with self-intersection −1 that intersect at a
single point and each component intersects C at two points.

We can now state our main theorem concerning the correspondence be-
tween conic bundles on Z and elliptic fibrations on X.

Theorem 3.9. Let (X, ι) be a pair of strictly elliptic type and Z = X/〈ι〉
be the quotient smooth del Pezzo surface as in Proposition 3.4, and let π :
X → Z be the quotient map.

If d = 9, g = 10, the K3 surface X does not admit any elliptic fibration.
If d ≤ 8, there is a correspondence

{

Conic bundles
f : Z → P1

}

∼
−−→

{

Elliptic fibrations
E : X → P1

}

, f 7−→ f ◦ π

Moreover, the fixed curve Xι = C is a bisection of E, i.e., E ·C = 2 for the
general fiber E of E : X → P1.

1The existence of such a curve can be deduced from the Smooth Divisor Theorem (see
[AN06, Theorem 1.5]), or simply from the classification of smooth del Pezzo surfaces.
Indeed, the divisor −2KZd

is very ample for d ≥ 2 and it defines a double cover φ|−2KZ | :

Z → Q for d = 1, where Q ⊆ P
3 is a quadric cone. See [Bea96, Chapter IV] for details.
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Proof. The case Z ≃ P1 × P1 is treated in [Dol73, Proposition 2.4] and
[Rei76, §3], so we will assume that Z ≃ Zd is the blow-up of 9− d points in
P2 in general position (cf. [Rei76, Theorem 3.2] where the case of Z8 ≃ F1

is also considered).
We first observe that when g = 10, the K3 surface X does not admit el-

liptic fibrations. Indeed as observed in Remark 3.2, in this case NS(X)∼=〈2〉,
i.e., it is generated by a class of square 2. Thus there are no classes D 6∼ 0
with D2 = 0 and therefore no elliptic fibrations.

First, let us consider E : X → P1 an arbitrary elliptic fibration. Since
ι is strictly elliptic, we know that ι must map each fiber of E to itself (see
Remark 3.3), and thus E factors through a fibration f : X/〈ι〉 ≃ Zd → P1.
Since Zd is a smooth del Pezzo surface and f has connected fibers, it follows
that f is a KZd

-negative contraction with one-dimensional fibers and thus
is a conic bundle by [And85, Theorem 3.1 (ii)].

Conversely, if we consider a conic bundle f : Zd → P1 and define E :=
f ◦ π : X → P1. Here, we have that π(C) ∈ | − 2KZd

|. In particular, if we
denote by F the general fiber of f : Zd → P1 we have that π(C) · F = 4
and then it follows from the Riemann-Hurwitz formula that E : X → P1

is a elliptic fibration. The induced conic bundle is precisely f : Zd → P1

and thus we get the desired correspondence. Finally, the fact that C is a
bisection of E : X → P1 follows directly from the projection formula. �

X P1

Z

E

π
∃f

Figure 3. Elliptic fibrations on strictly elliptic K3 surfaces
and conic bundles on del Pezzo surfaces.

Example 3.10. Let Zd be a del Pezzo surface of degree d ≤ 8 obtained as
the blow-up of 9 − d points in general position in P2. Fix a conic bundle
f : Zd → P1 and let E : X → P1 be the corresponding elliptic fibration.

Let F be the general fiber of E : X → P1, Γ be the general fiber of
f : Zd → P1 and E ⊆ Zd be a (−1)-curve. By the projection formula

F · π∗(E) = deg(π)(Γ · E) = deg(π) = 2 as long as Γ · E = 1,

and hence these (−1)-curves on Zd induce bisections of E : X → P1. The
condition Γ · E = 1 can be explicitly verified by means of Theorem 2.3
and Proposition 2.9. For instance, following Convention 2.2, in Z4 we can
consider E = 2L− E1 − E2 − E3 − E4 − E5 and we can check that:

• If Γ = L− E1 then E · Γ = 1.
• If Γ = 2L− E1 − E2 − E3 − E4 then E · Γ = 0.

4. Examples and Néron-Severi lattices

We will now present some examples.
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Example 4.1. Let X be the smooth quartic surface given by the equation

{x40+x41+x42+x43+6(x20x
2
1−x21x

2
2+x21x

2
3+x20x

2
2−x20x

2
3+x22x

2
3) = 0} ⊆ P3.

We consider the automorphism

ι : X → X, [x0 : x1 : x2 : x3] 7→ [x0 : x1 : x2 : −x3]

which is a non-symplectic involution on X, and the fixed locus of ι is the
smooth quartic curve C = {x40 +x41+x42+6(x20x

2
1−x21x

2
2+x20x

2
2) = 0} ⊆ P2

of genus g(C) = 3.
The quotient X/〈ι〉 = Z is a smooth rational surface, and by the formula

of the canonical divisor of double coverings (see [BHPVdV04, Chapter V,
§22]) we have that C ∼ −2KZ . Therefore, the bi-anticanonical divisor
−2KZ is ample and K2

Z = 2, i.e., Z ≃ Z2 a del Pezzo surface of degree two.
Conversely, a del Pezzo surface of degree 2 is isomorphic to a double cover
of P2 branched at a smooth quartic curve (see e.g. [Bea96, Chapter IV]).

Note that [CD24, §5.3] gives a correspondence between plane sextic curves
with 7 nodes in general position and smooth planar quartic curves. In
particular, the smooth quartic curve C ⊆ P2 corresponds a sextic curve
Γ ⊆ P2 with 7 nodes in general position. By considering the blow-up of
P2 at the 7 nodes of Γ, followed by taking the double cover ramified at the
strict transform of Γ, we obtain the K3 surface X.

The surface X has Néron–Severi lattice U(2)⊕A⊕6
1 , as outlined in [Rou22,

Sect. 8.4]. It is noteworthy, in accordance with [AOT24, Theo. 8.2], that X
corresponds to Burnside’s conjecture as the most symmetric smooth quartic
surface. Specifically, its group of projective automorphisms is Z4

2 ·S5.

As we observed, K3 surfaces of strictly elliptic type have finite automor-
phism group (see [AN06, §2.8]) and thus they are related with the works of
Roulleau, Artebani and Correa [Rou22, ACDR23].

For instance, if d = 7, the corresponding K3 surface has Picard rank 3
and is obtained as double cover of P2 branched over a sextic curve with two
nodes p1, p2. By [Rou22, Prop. 3.4] the surface admits three (−2)-curves.
Two of them are contracted to p1 and p2, while the image of the third is the
line through the two nodal points.

Similar descriptions and properties regarding the configuration of the
(−2)-curves for 1 ≤ d ≤ 6 are provided in [Rou22, ACDR23]. We have
summarized the references for each case in Table 2.

r d NS(X)
3 7 S1,1,2 ≃ U(2)⊕A1, [Rou22, Sect. 3.4]

4 6 U(2)⊕A⊕2
1 , [ACDR23, Prop. 2.11]

5 5 U(2)⊕A⊕3
1 , [Rou22, Sect. 5.2]

6 4 U(2)⊕A⊕4
1 , [Rou22, Sect. 6.7]

7 3 U(2)⊕A⊕5
1 , [Rou22, Sect. 7.3]

8 2 U(2)⊕A⊕6
1 , [Rou22, Sect. 8.4]

9 1 U(2)⊕A⊕7
1 , [Rou22, Sect. 9.5]

Table 2
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In the case d = 8 (and subsequently r = 2), we distinguish between the
cases δ = 0 and δ = 1, where Z ≃ P1 × P1 and Z ≃ F1 respectively.
In the δ = 0 case, the Néron–Severi lattice NS(X) is generated by the
pullback via π : X → Z of the two fibers of the canonical projections,
and thus NS(X) ≃ U(2). In the δ = 1 case, NS(X) is generated by the
pullback via π : X → Z of the unique (−1)-curve in F1 and the class in
F1 obtained by the pullback of a line in P2 via the contraction F1 → P2,
yielding NS(X) ≃ 〈2〉 ⊕A1 (cf. Remark 3.2).

Example 4.2. Let X be the double cover of P1 ×P1 branched at a smooth
bi-quartic curve C = {f4,4([x, y], [s, t]) = 0}, i.e.,

X := {w2 = f4,4([x, y], [s, t])}.

We will exhibit an elliptic fibration E : X → P1 that admits fibers of types
I0, I1, I2, II and III. Let C be the smooth bi-quartic curve in P1×P1 given
by the equation

C = {x4s4 − 1
2x

3ys3t+ 1
2x

3ys2t2 − x2y2s4 − 1
2x

2y2s3t+ 3
2x

2y2s2t2

− x2y2t4 + 1
2xy

3s2t2 + y4z4 − 2y4s2t2 + y4t4 = 0}.

We consider the elliptic fibration E : X → P1 obtained composing with
the first projection onto P1. In the affine chart t = 1, the fiber over a generic
point [a : b] ∈ P1 is given by

w2 = (a4−a2b2+b4)s4+1
2(−a3b+a2b2)s3+1

2(a
3b+3a2b2+ab3−4b4)s2+(−a2b2+b4).

Using classical Weierstrass’ methods (see e.g. [Mor69, Chapter 10, Theorem
2]) we can see that the generic fiber can be written as w2 = f3(z, a, b), where
f3(z) is a polynomial of degree three in z such that for generic [a : b] ∈ P1

the corresponding curve is irreducible.
If we denote by L[a:b] the line {[a : b]} ×P1, we have the following:

(1) C ∩L[1:0] = {s4 = 0}, so the fiber over [1 : 0] is w2 = s4, of type III.

(2) C ∩L[1:1] = {s4 − s3t = 0}, so the fiber over [1 : 1] is w2 = s3(s− t),
of type II.

(3) C ∩ L[0:1] = {s4 − 2s2t2 + t4 = 0}, so the fiber over [0 : 1] is

w2 = (s− t)2(s+ t)2, of type I2.
(4) C∩L[1:−1] = {s4−s2t2 = 0}, so the fiber over [1 : −1] is w2 = s2(s2 − t2),

of type I1.

As mentioned in the Introduction, the analysis of double covers of P1×P1

branched over curves of bi-degree (4, 4) was undertaken in [Dol73, Rei76],
where the authors already observed that the corresponding K3 surface X
admits an elliptic fibration (see [Dol73, Theorem 4.4] and [Rei76, §3]). This
study builds upon classical works by Enriques and Campedelli.

5. Singular fibers and bisections

Let (X, ι) and π : X → Z = X/〈ι〉 be as in Theorem 3.9. It is a well-known
fact that if there exists a primitive embedding of the lattice U →֒ NS(X),
then the K3 surface X admits a jacobian elliptic fibration (see e.g. [Huy16,
Remark §11, 1.4]). However, according to [CM23, Corollary 3.3], K3 surfaces
of strictly elliptic type do not possess such embeddings, and consequently,
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they do not admit jacobian elliptic fibrations. On the other hand, since
there is an embedding of the lattice U(2) in NS(X), these surfaces admit
bisections. More precisely, one can choose a class L in U(2) with L2 = 0
and assume that L is nef modulo the action of the Weyl group. By [Huy16,
Remark §8, 2.13], X admits an elliptic fibration. Furthermore, since the
divisibility of L is either 1 or 2, the elliptic fibration admits either sections
or bisections. In our specific context, where elliptic fibrations do not admit
sections, we can therefore conclude the existence of bisections.

Proposition 5.1. Let f : Z → P1 be a conic bundle on the smooth del
Pezzo surface Z and let E : X → P1 be the induced elliptic fibration on X.
If C ∈ | − 2KZ | is the branching locus of π : X → Z then:

(1) If F is a smooth fiber of f , then the fibers of E are of the following
types (see Table 3):

• I0 if C meets F in 4 distinct points;
• I1 if C meets F in 2 simple points and a double point;
• I2 if C meets F in two double points;
• II if C meets F in two points: a simple one and a point with
multiplicity 3;

• III if C meets F in a single point with multiplicity 4.
(2) If F = F1 + F2 is a singular fiber of f , let P = F1 ∩ F2. Then the

fibers of E are of the following types (see Table 4):
• I2, if C meets each Fi in two simple points, distinct from P ;
• I3, if C meets F2 in two simple points, and C meets F1 in a
double point, distinct from P ;

• I4, if C meets each Fi in a double point, distinct from P ;
• III, if P ∈ C and C meets each Fi = 2 in two simple points
• IV , if C meets F1 in two simple points, while C meets F2 in P
with multiplicity 2.

I0 [1, 1, 1, 1]

π
π

I1 [2, 1, 1] I2 [2, 2]

π

II [3, 1]

π

III [4]

π

Table 3. Singular fibers of the elliptic fibration induced by
smooth fibers of the conic bundle.

I2 [1, 1], [1, 1]

π

I3 [2], [1, 1]

π

I4 [2], [2]

π

III [1,1], [1, 1]

π

IV [2], [1, 1]

π

Table 4. Singular fibers of the elliptic fibration induced by
singular fibers of the conic bundle.
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Proof. Let F be a smooth fiber of f . By the previous construction, the
branching locus of π : X → Z is a smooth irreducible curve C (in red in
Table 3) and by Remark 3.8, F meets C in 4 points (with multiplicity). We
study each case separately.

If C meets F in 4 distinct point, then the corresponding fiber of E is
a double cover of P1 with 4 ramification points. In Table 3 we show the
possible multiplicities of the points. Then by Riemann-Hurwitz formula the
fiber of E is a smooth curve of genus 1, i.e. a curve of type I0. If C meets F
in 2 simple points and a double point p, the preimage of p is a nodal point
of the fiber, thus the fiber is of type I1. Similarly one obtains a fiber of type
I2 when C ∩F consists of two double points. If C meets F in a triple point
and a simple one, then the fiber of E has a singular point which is a cusp:
the triple point in the double cover gives a singular point of the fiber where
the equation is locally given by y2 = x3, thus a cusp. Similarly, if C meets
F in a single point with multiplicity 4 the induced fiber of E is of type III.

Now let F be a singular fiber of f . According to Remark 3.8, singular
fibers of a conic bundle on Z are union of two (−1)-curves F1 and F2 that
intersect at one point P = F1 ∩F2. Furthermore, the branch curve C of the
2-cover X → Z (in red in Table 4) intersects each rational curve Fi at two
points (with multiplicity). In Table 4 we show the possible multiplicities of
the points. If C meets each Fi in two simple points, distinct from P , this
defines a fiber of type I2 of E , since the preimage of each F1 defines a rational
curve and π−1(P ) consists of two points. If C meets F2 in two simple points
and F1 in a double point, distinct from P , this defines a singular fiber of
E of type I3: the double cover of F1 gives two components of the fiber I3,
while F2 contributes with one component and π−1(P ) consist of two points.
Similarly, if C meets each Fi in a double point, distinct from P , the fiber
is of type I4. The last case to study is when C meets F1 in two simple
points F2 in P with multiplicity 2. In this case, the fiber π−1(F ) has three
components and they all meet in π−1(P ). Three concurrent rational curves
form a fiber of type IV . �

Now we want to classify which types of fibers are compatible in each
case with the classification given in Proposition 2.9. Note that in the case
Z ≃ P1 × P1 all types of singular fibers in Proposition 5.1 (1) can be
realized, as Example 4.2 shows. Now, given a del Pezzo surface Zd (see
Convention 2.2), Theorem 3.9 establishes a correspondence between conic
bundles on Zd and elliptic fibrations on the K3 surface X. Proposition 2.9
then classifies conic bundles on Zd. Given the potential fibers outlined in
Proposition 5.1, our goal is to determine which ones are admissible for each
Zd and to establish their connection with the geometry of the sextic curve
Γd introduced in Proposition 3.4.

Proposition 5.2. Let (X, ι) be a pair of strictly elliptic type and Zd = X/〈ι〉
be the quotient smooth del Pezzo surface as in Proposition 3.4. If d ≤ 5, all
types of singular fibers in Proposition 5.1 are admissible. If d = 6, 7 (resp.
8) then the fiber I4 and IV (resp. I3, I4 and IV ) are not admissible.

In other words, the admissible fibers for the elliptic fibration E : X → P1

are described in the following table
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d Singular fibers
8 I0, I1, I2, II, III
7, 6 I0, I1, I2, I3, II, III
≤ 5 I0, I1, I2, I3, I4, II, III, IV

Table 5. Admissible singular fibers of the elliptic fibration
E : X → P1 induced by a conic bundle f : Zd → P1.

Proof. Let d = 8. By Proposition 2.9, the only conic class on Z8 is D =
L − E1, where E1 is the exceptional divisor of the blow up. In this case
the conic bundle has no singular fibers, thus Γd meets the fiber in the nodal
point and four more points. According to possibilities given in Table 3, one
can have singular fiber of the elliptic fibrations of types I0, I1, I2, II or III.

If d = 7, the curve Γd is a sextic curve with 2 nodes and by Proposition
2.9, canonical classes on Z7 are D = L − Ei, where Ei is the exceptional
divisor over one of the two nodal points p1, p2. We take i = 1 without loss
of generality. If the conic bundle has no singular fibers, then as before the
possible fibers of the elliptic fibration are of types I0, I1, I2, II or III. If
F = F1+F2 reducible, which corresponds to the case when L passes through
the other nodal point p2, we observe that each component F1 and F2 meets
Γd in 2 points. If they are distinct for both F1, F2, one has again a fiber of
type I2, while is one of the two components meets Γd with multiplicity 2, one
obtains a fiber of type I3 (see case [1, 1], [1, 1] and case [2], [1, 1] of Table 4).
Observe that the strict transform always meet one of the two components
in two distinct points (coming from the blow up of the nodal points). Thus
the only cases of Table 4 that appear are [1, 1], [1, 1] and [2], [1, 1]. The case
d = 6 is analogous.

When d = 5 according to Proposition 2.9, one can have the conic class
D = 2L −

∑4
i=1 Ei. In this case we distinguish if conics of the bundle are

irreducible or reducible. The first case will give fibers of type I0, I1, I2, II
and III as in Table 3. On the other hand, in the case of conics reduced as
the union of two lines L1 ∪ L2, one observes that this allows the cases of
Table 4: each line passes through 2 of the 5 nodal points of the sextic Γ5,
thus meeting Γ5 in two more points (with multiplicity). According to the
distribution of these points, one obtain all cases of Table 4.

The remaining cases with d ≤ 4 can be treated in the same way, and thus
admit all types of fibers listed in Proposition 5.1. �

Remark 5.3. The proof of the previous result, along with Table 1, not only
allows for the determination of admissible singular fibers in the induced
elliptic fibration but also the complete configuration of these fibers.
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