
 

Abstract — This paper proposes an unmanned aerial vehicle 
(UAV) aided content management system in communication-
challenged disaster scenarios. Without cellular infrastructure in 
such scenarios, community of stranded users can be provided 
access to situation-critical contents using a hybrid network of static 
and traveling UAVs. A set of relatively static anchor UAVs can 
download content from central servers and provide content access 
to its local users. A set of ferrying UAVs with wider mobility can 
provision content to users by shuffling them across different anchor 
UAVs while visiting different communities of users. The objective 
is to design a content dissemination system that on-the-fly learns 
content caching policies for maximizing content availability to the 
stranded users. This paper proposes a decentralized Top-k Multi-
Armed Bandit Learning model for UAV-caching decision-making 
that takes geo-temporal differences in content popularity and 
heterogeneity in content demands into consideration.  The 
proposed paradigm is able to combine the expected reward 
maximization attribute and a proposed multi-dimensional reward 
structure of Top-k Multi-Armed Bandit, for caching decision at the 
UAVs. This study is done for different user-specified tolerable 
access delay, heterogeneous popularity distributions, and inter-
community geographical characteristics. Functional verification 
and performance evaluation of the proposed caching framework is 
done for a wide range of network size, UAV distribution, and 
content popularity.   
 

Keywords — Multi-Armed Bandit, Disaster, Unmanned Aerial 
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I. INTRODUCTION 
Disasters such as earthquakes, floods, wars, and other 

catastrophic events can have devastating effects on people's 
lives and properties, as well as communication infrastructures. 
In such situations, people may be forced to migrate to areas 
without proper communication infrastructure, leaving them 
without access to important information such as the state of the 
disaster, rescue and relief operations, weather reports, 
rehabilitation efforts, etc. This paper proposes the use of 
Unmanned Aerial Vehicles (UAVs) as an alternative content 
provisioning platform when fixed communication 
infrastructure such as cellular phone towers is unavailable. 
UAVs, however, bring their own limitations in storage capacity, 
flight time, etc., which add new challenges to UAV based 
content storage and dissemination system.  

The paper presents a UAV-aided content caching system that 
uses Multi-armed Bandit Learning to perform optimal caching 
in communication-challenged environments. The system 
employs a multi-dimensional reward structure to encapsulate 
the holistic content request experience of a local learning model 
within a UAV, with the aim of maximizing reward [1] and 
improving content dissemination performance across UAVs. 
The framework focuses on scenarios where disaster/war-
stricken populations are stranded and geographically clustered 
into multiple communities that may not have access to 
surviving cellular base stations. In such scenarios, the request 
patterns at different communities and the tolerable access delay 

(TAD) [2] can be different for different contents based on the 
type and urgency of the requested information. The proposed 
MAB learning solution deploys UAV-based tactical content 
service provisioning that can make caching decisions on the fly 
without prior knowledge of content request pattern.  

The proposed content provisioning system uses a two-tier 
architecture consisting of anchor-UAVs (A-UAVs) and 
ferrying-UAVs (F-UAVs). Each disaster-isolated user 
community is served by an A-UAV with expensive vertical 
connectivity, such as a satellite link, while F-UAVs ferry and 
distribute content across the A-UAVs. The goal is to provide 
high-availability content access to all the communities without 
incurring the cost of excessive vertical link usage by the A-
UAVs. To achieve this, the paper attempts to answer several 
questions, including optimal content caching policies for both 
A-UAVs and F-UAVs, and which content should be transferred 
from A-UAVs to F-UAVs. The questions are addressed with 
the goal of learning optimal caching policies on the fly and 
maximizing content availability across all user communities. 
The learning is explored using a novel application of Top-k 
Multi-Armed Bandit framework. 

Existing work [2-5] on content caching for UAVs often 
considers global popularity of contents without taking geo-
temporal differences (changing with time and location) in 
content popularity and heterogeneity in demand into account. 
The approaches in [6,7] employ function approximation to 
estimate long-term demand heterogeneities, which are sluggish 
in learning. This paper addresses these shortcomings by using a 
Multi-Armed Bandit based learning model that makes learning 
fast and adaptive to demand heterogeneity via information 
sharing among UAVs. Most works [2-7] have proposed the use 
of UAVs to form Ad Hoc networks that can fill communication 
gaps caused by infrastructure destruction, but these approaches 
may not work well when all communication infrastructures are 
destroyed, and a fully functional alternative needs to be formed. 
The proposed system sets out to address these shortcomings by 
using a Top-k Multi-armed Bandit Learning strategy for 
caching decisions at UAVs. The strategy can handle 
heterogeneous user demand patterns and maximize content 
availability to the requesting users.  

The key contributions are as follows. First, a UAV-aided 
content caching and dissemination framework is proposed 
which can learn optional caching policies on the fly using a 
Top-k Multi-armed Bandit Learning. Second, a multi-
dimensional reward structure for the Top-k MAB model is 
proposed based on shared information between the UAVs to 
improve content availability. These rewards take local and 
global context of content popularities into consideration while 
learning optimal caching policies. Third, the interactions 
between learnt caching policies and QoS expectation, namely, 
Tolerable Access Delay, is studied and characterized. Fourth, 
the relation between user demands and learnt caching policies 
are explored for learning model parameter turning. Finally, 
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simulation experiments and analytical models are developed for 
functional verification and performance evaluation of the 
proposed caching and content dissemination framework.  

II. SYSTEM MODEL 
A. UAV Hierarchy 

As shown in Fig. 1, a two-tiered UAV-assisted content 
dissemination system is deployed. Each community is served 
by a dedicated A-UAV that uses a lateral wireless connection 
(i.e., WiFi etc.) to communicate with users in that community. 
The system introduces a set of ferrying UAVs (F-UAVs), which 
are mobile and only have lateral communication links such as 
Wi-Fi. Unlike the A-UAVs, the F-UAVs do not possess vertical 
links. The F-UAVs act as content transfer agents across 
different user communities by selectively transferring content 
across the A-UAVs via their lateral links. 
B. Content Demand and Provisioning Model  

The generation of content requests, content popularity 
distribution and quality of services are outlined below.    
Content Popularity: Research has shown that content request 
patterns from a population often follows a Zipf distribution [4, 
5], where the popularity of a content is proportional to the 
inverse of its rank and is a geometric multiple of the next 
popular content. Popularity of content ‘𝑖’ is given as:  

𝑝!(𝑖) =
"!"#

#

∑ "!$#
#

$∈&
																																					(1)		

The Zipf parameter, 𝛼, determines the distribution's skewness, 
while the total number of contents in the pool is represented by 

the parameter 𝐶. The inter-request time from a user follows the 
popular exponential distribution [10].  
Tolerable Access Delay: For each requested content, the user 
specifies a Tolerable Access Delay (𝑇𝐴𝐷) [2], which serves as 
a quality-of-service parameter and represents the amount of 
time the user can wait before the content is downloaded. 

Content Provisioning: Upon receiving a request from one of 
its community users, the relevant A-UAV first searches its local 
storage for the content. If the content is not found, the A-UAV 
waits for a potential future delivery by a traveling F-UAV. If no 
F-UAV arrives with the requested content within the specified 
TAD, the A-UAV then proceeds to download it through its 
vertical link, which is usually expensive.  

III. CACHING BASED ON CONTENT PRE-LOADING  
AT ANCHOR UAVS 

This section discusses caching policies based on content pre-
loading at A-UAVs that assumes pre-assigned, static, and 
globally known content popularities. After understanding the 
limitations of these caching policies, this paper proposes a 
runtime, dynamic and adaptive Top-k Multi-armed Bandit 
based caching mechanism, which is explained in a later section.  
A. Pre-loading Policies at Anchor UAVs (A-UAVs) 

The Fully Duplicated (FD) mechanism [8] is a naive 
approach that allows A-UAVs to download content from 
vertical links upon request by local users. However, the FD 
mechanism has limitations such as content duplication, high 
vertical link download costs, and suboptimal utilization of UAV 
cache space. Smart Exclusive Caching (SEC) [8] overcomes the 
limitations of the FD mechanism by storing a set number of 

Anchor UAV
Ferrying UAV
F-UAV Trajectory

Information sharing between 
A-UAV and F-UAV

Communication
Infrastructure

Destruction

Satellite Link

x

y

z

w

v

u

t

i

j

Fig. 1.  Coordinated UAV system for content caching and distribution in environments without communication infrastructure 



 

unique contents in all A-UAVs and sharing them among 
communities via F-UAVs. Assuming globally known 
homogeneous content popularity across all user communities, 
the SEC mechanism divides the cache into two segments. 
Segment-1 contains the top 𝜆. 𝐶% popular contents cached in all 
A-UAVs, while Segment-2 contains unique contents (1 −
𝜆). 𝐶%, where 𝜆 is the Storage Segmentation Factor. Total 
contents in the system as per SEC is given as:   

𝐶&'& = 𝜆. 𝐶% +𝑁%. (1 − 𝜆). 𝐶%                  (2) 
Popularity-Based Caching (PBC) [10] is employed when 
different communities have different content preferences. PBC 
divides the cache space of a A-UAV into two segments, 
considering the heterogeneous popularity sequence of the local 
community. Segment-1 caches the most popular contents, 
which can be exclusive to a A-UAV (𝐶() or non-exclusive i.e., 
may be cached across multiple A-UAVs (𝐶)(), while Segment-
2 is the same as SEC. Therefore, by modifying Eq. 2, total 
number of contents in the system can be expressed as:  
𝐶!"! = 𝐶#$ + 𝐶$%&%'( +𝑁). (1 − 𝜆). 𝐶) ≥ 𝜆. 𝐶) +𝑁). (1 − 𝜆). 𝐶) (3) 

Value-Based Caching (VBC) [10] further enhances the caching 
policy by storing top-valued contents in Segment-1 of A-UAV, 
where value of contents comprises of their popularity and 
tolerable access delay. Value of a content ‘𝑖’ be calculated as:  

𝑉(𝑖) = 𝜅𝜐 × *#(,)
.%/(,)

= 𝜅 × .%/'"(
*#(0)

× *#(,)
.%/(,)

            (4) 

In this equation, 𝑝!(𝑖) represents the content's popularity as per 
the Zipf distribution, 𝑇𝐴𝐷(𝑖) is the content's tolerable access 
delay, 𝜅 is a scalar weight that increases as popularity 
decreases, and 𝜐 is a normalization constant. The normalization 
constant is calculated for a given Zipf (popularity) parameter 𝛼 
using the minimum possible 𝑇𝐴𝐷 (𝑇𝐴𝐷1,2 ) and the maximum 
possible popularity, which is 𝑝!(1). The value of 𝑉(𝑖) is 
bounded between [0,1] and increases as 𝑝!(𝑖) increases and 
𝑇𝐴𝐷(𝑖) decreases and can present a holistic quantifiable 
measure for caching decision. 

The caching policy for F-UAVs remains the same for all the 
discussed and forthcoming caching policies for A-UAVs [8-
10].  An F-UAV ferries content from already visited A-UAVs 
to future visiting A-UAVs in its trajectory. The caching policy 
of an A-UAV determines the utility of an F-UAV where every 
A-UAV should maintain sufficient contents in its cache space 
to optimize the F-UAV cache utilization. 
B. Limitations of Cache Pre-loading at A-UAVs 

The caching policies discussed in this section rely on pre-
loading content into A-UAVs, which has certain limitations. 
This approach assumes a priori knowledge of the popularity 
distribution of all the content in the system, which can hinder 
practical feasibility during deployment. Local popularity 
estimation of requested content within individual A-UAVs can 
partially alleviate this issue, but it cannot adjust the crucial 
storage segmentation factor (𝜆) (see section IIIA) for 
maximizing availability across the entire system of A-UAVs 
and their communities. Collaborative global popularity 
estimation can be introduced, but it fails to capture demand 
heterogeneity across different A-UAV communities.   

The limitations listed above can be addressed by employing 
a Top-k Multi-armed Bandit (Top-k MAB) learning-based 
caching mechanism at the A-UAVs, which is explained in the 
following section. This paradigm is able to leverage the 

expected reward maximization attribute of MAB and 
intelligence sharing nature of proposed multi-dimensional 
reward structure for caching decision at the A-UAVs. 

IV. DECENTRALIZED CACHING WITH  
MULTI-ARMED BANDIT 

Once a A-UAV is deployed into a community, its subsequent 
action is to decide which contents to download (via its vertical 
link) and cache such that content availability to the requesting 
users can be maximized. This goal is achieved by employing a 
Top-k Multi-Armed Bandit learning agent in the A-UAV.  
A. Top-k Multi-Armed Bandit Learning  

Multi-Armed Bandit is a classic problem in reinforcement 
learning [1] and decision-making. At each round 𝑡, an agent 
chooses an arm 𝐴3 out of 𝑁 arms, denoted by 𝐴0, 𝐴4, . . . , 𝐴), 
and observes a reward 𝑅3. Each arm 𝑖 has an unknown reward 
distribution with mean 𝜇, and variance 𝜎,4. The agent's goal is 
to maximize the total expected reward 𝑅. over 𝑇 rounds, where 
𝑇 is the total number of rounds (time horizon): 

𝑅. = 𝑚𝑎𝑥	>𝐸[𝑅3]
.

350

																															(5)	

This paper uses a variant of MAB called Top-k Multi-Armed 
Bandit [1, 11]. Here, the agent has to choose 𝑘 arms out of a 
larger set of 𝑁 arms, as opposed to choosing one arm in classical 
MAB, and receives a reward for each arm in the chosen set. The 
goal of the agent is to maximize the total cumulative reward 𝑅. 
obtained over a finite time horizon 𝑇:  

𝑅. = 𝑚𝑎𝑥	>>𝐸[𝑅,,3]
7
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B. Decentralized Caching using Top-k Multi-Armed Bandit 
In the scenario of UAV-caching, there is a Top-k MAB agent in 
each A-UAV. Here, choosing each content for caching 
corresponds to choosing an arm. The ‘k’ of Top-k MAB agent 
corresponds to the caching capacity of A-UAV, i.e., 𝑘 = 𝐶%. 
The agent’s aim is to select ‘𝐶%’ contents out of a larger set of 
‘𝑁’ contents to be cached in an A-UAV such that content 
availability to the users can be maximized.  Here, the UAV-
aided content dissemination system is the learning environment 
where the A-UAVs interact through their actions of choosing 
specific sets of contents to be cached. The feedback from the 
environment for the taken actions are in the form of 
rewards/penalties. Actions are rewarded when cached contents 
are requested by the users and are served to the users within the 
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given tolerable access delay or penalized otherwise. The top 𝐶% 
contents that accumulate most reward from the corresponding 
community and other communities are chosen to be cached at a 
A-UAV. It should be noted that the Top-k MAB agents in the 
A-UAVs are provided with no a priori information about the 
content popularity at the corresponding user communities.  

A learning decision epoch for each Top-k MAB agent is set 
according to the F-UAVs accessibility at the corresponding 
community (i.e., an F-UAV’s visiting frequency). This is 
because the F-UAVs carries the content availability information 
from the communities in its trajectory that is leveraged for 
learning at the A-UAVs’ Top-k MAB agents using 
appropriately designed multi-dimensional rewards. The agent 
learns to cache contents via the multi-dimensional reward 
structure which has three parts: namely local, ferrying, and 
global reward. The first corresponds to the increase in 
availability at an A-UAV’s corresponding community i.e., 
increase in local availability (𝛿8). The second is related to the 
contents that are cached in an A-UAV, and are responsible for 
increase in availability at other communities i.e., ferried content 
availability (𝛿9). A global reward is received when cached 
contents add to increase in average availability across all 
communities. This is called increase in global availability (𝛿:). 
The three types of rewards are given below: 

𝑅*+ = -
1,											𝑓𝑜𝑟	𝛿( > 0	
−1, 𝑓𝑜𝑟	𝛿( < 0																																					(7)	

𝑅*, = -
1,												𝑓𝑜𝑟	𝛿- > 0
−1, 𝑓𝑜𝑟	𝛿- < 0																																				(8)	

𝑅*. = 9
1,												𝑓𝑜𝑟	𝛿/ > 0	
−1, 𝑓𝑜𝑟	𝛿/ < 0 																																			(9)	

In the above equations, 𝑅,;, 𝑅,<, and 𝑅,= are rewards according 
to increase in availability for content ‘𝑖’ cached in an A-UAV.  
 Learning is achieved using a tabular method where a Q-table 
is maintained for all contents in the system. The value 
corresponding to each content is called a Q-value or action-
value [1]. The agent updates the Q-value for a content at every 
learning epoch according to the multi-dimensional rewards in 
Eqns. 7-9 from the interaction with the environment (UAV-
aided content dissemination system) and learns the best actions 
(contents cached). The recursive expression which explains Q-
value update for a content ‘𝑖’ is given as follows: 

𝑄(𝑖) ← 𝑄(𝑖) + 𝛼H𝑟(𝑖) − 𝑄(𝑖)J                   (10) 
Here, 𝑄(𝑖) represents the Q-value of a content ‘𝑖’; 𝑟(𝑖) is the 
reward received by caching content ‘𝑖’; 𝛼 is a hyper-parameter 
which controls the learning rate. The Q-values for all contents 
are initialized with zero to ensure no a priori information for a 
Top-k MAB agent. Also, it ensures equal importance to all 
contents for caching decisions. An epsilon-greedy (𝜖-greedy) 
exploration strategy is implemented. Such exploration strategy 
guarantees that every content gets to be cached in an A-UAV. 
As learning progresses, exploration decays and best contents 
with highest Q-values are exploited with the aim of maximizing 
accumulated reward which improves the caching policy and 
thus increases content availability. 

The proposed algorithm enables Top-k MAB agents in A-
UAVs to learn the caching policy, and the contents cached at 
A-UAVs emulate the cache pre-loading segmentation behavior 
described in Section IIIA. However, the caching policy and 
corresponding content availability may fluctuate due to less 
request for less popular content, leading to weak or unstable 

reward estimates. This results in Q-values that are highly 
sensitive to requests for less popular content and less sensitive 
to requests for popular content. Therefore, changes in Q-values 
of less popular content may lead to intermittent variations in 
caching, particularly in Segment-2 (refer Section IIIA). Also, 
there can be H)7J combination of contents to be sampled by the 
Top-k MAB agent for caching. Due to this the reward 
estimation for each content occurs after large intervals, which 
leads to a weak estimate of reward distribution as 𝑁 increases. 
These oscillations can be controlled by empirically selecting 𝜖 
and its decay rate. To reduce the dependence of caching policy 
on the choice of 𝜖, Upper Confidence Bound (UCB) strategy is 
used [1, 11]. The Top-k MAB agent maintains an upper 
confidence bound on the expected reward of each content, and 
selects the set of 𝐶% contents with highest UCB at each epoch. 

𝑈3(𝑖) = 𝑄3(𝑖) + M
𝛼> log(𝑡)
𝑁3(𝑖)

																																(11)	

Here, 𝑈3(𝑖) is the UCB of content ‘𝑖’ at epoch ‘𝑡’; 𝑄3(𝑖) is the 
updated Q-value at epoch ‘𝑡’; 𝛼> is a hyperparameter that 
controls the degree of exploration; 𝑁3(𝑖) is the number of time 
content ‘𝑖’ has been requested till epoch ‘𝑡’. The first term 
represents the reward estimate, and the second term depicts the 
uncertainty in reward estimate. UCB selects the content that has 
high potential for high reward but hasn’t been requested 
frequently. The promotes exploration without externally 
inducing an exploration parameter such as 𝜖. For this paper, 𝜖-
greedy exploration strategy is applied according to the UCB 
values, as shown in Step 7-16 in Algorithm 1.  

The following pseudo code explains the caching policy at a 
A-UAV with a Top-k MAB agent.  

1. Initialization: 
a. N: Total contents in the system 
b. 𝐶): Caching capacity of an A-UAV 
c. 𝑄: Array of size 𝐶) initialized with 0’s (Q-table). 
d. 𝜖: Exploration rate 
e. 𝛼: Learning rate for Q-table update. 
f. 𝛼0: Degree of exploration (if UCB used) 

2. Load A-UAV’s cache with 𝐶) randomly chosen contents. 
3. while True: 

    \\ Check for learning epoch 
4.     if F-UAV is visiting A-UAV then do 
5.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶)) do 
6.             Get reward 𝑟(𝑖)  \\ according to Eqns. 7-9 
7.             Update 𝑄(𝑖)       \\ 𝑄(𝑖) ← 𝑄(𝑖) + 𝛼[𝑟(𝑖) − 𝑄(𝑖)] 

                                            \\ 𝑄(𝑖) ← 𝑈(𝑖) if UCB employed 
8.         end for 
9.         𝑣𝑎𝑙𝑢𝑒	 = 	𝒄𝒐𝒑𝒚(𝑄) \\ make a copy of Q-table 

        \\ Reload contents (Select arms) 
10.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶)) do 
11.             Generate random number ‘𝑥’ 
12.             if 𝑥 < 𝜖 then do 
13.                 Load 1 randomly chosen content to A-UAV 
14.             else 
15.                 𝑐1'2 = 𝒂𝒓𝒈𝒎𝒂𝒙(𝑣𝑎𝑙𝑢𝑒) 
16.                 Load 𝑐1'2 to A-UAV 
17.                 Set 𝑣𝑎𝑙𝑢𝑒[𝑐1'2] = −𝑖𝑛𝑓 
18.             end if 
19.         end for 
20.     end if 
21.     Check for 𝜖 decay condition. 
22.     if true then do 



 

23.         Update 𝜖 
24.     end if 
25. end while 

Algorithm 1. Caching policy at a A-UAV with Top-k MAB Learning  
This Top-k MAB agent at a A-UAV learns a near optimal 

caching policy within a finite time horizon and approaches the 
best caching policy asymptotically. The cached contents can 
boost content availability at their respective communities as 
well as at other distant communities via F-UAVs. 

V. EXPERIMENTS AND RESULTS  
Experiments are performed to analyze the performance of the 

proposed Top-k MAB learning-based caching mechanism with 
a discrete event simulator. The simulator accomplishes content 
request generation while maintaining an intra-event interval 
according to exponential distribution and following a Zipf 
popularity distribution (refer Eqn. 1). To perform the cache pre-
loading, the mathematical expressions are included in the 
simulator. To capture heterogeneity in content popularity 
sequence at different communities, contents are swapped with 
pre-decided probability [10] and the difference between the 
sequences are determined using Smith-Waterman Distance 
[10]. The experimental parameters for the proposed Top-k 
MAB learning based caching and cache pre-loading policies are 
listed in Table I. The performance evaluation of the proposed 
mechanism is accomplished via the following metrics. 

TABLE I.  DEFAULT VALUES FOR MODEL PARAMETERS 
# Variables Default Value 
1 Total number of contents, 𝐶 1000 
2 Number of A-UAVs, 𝑁! 12 
3 Number of F-UAVs, 𝑁" 3 
4 Cache space in A-UAV, 𝐶! 100 
5 Cache space in F-UAV, 𝐶" 100 
6 Poisson request rate parameter, 𝜇 1 request/sec 
7 Hover time of F-UAV, 𝑇#$%&' 600 seconds 
8 Transition time of F-UAV, 𝑇(')*+,-,$* 300 seconds 
9 Zipf parameter (Popularity), 𝛼 0.7 
10 Ferrying UAV Trajectory Round-robin 

Content Availability (𝑃?@?,8): It is defined as the ratio 
between cache hits and generated requests within a time 
interval. Cache hits are the content provided to the users from 

the contents cached in the UAV-aided caching system (without 
download). Therefore, content availability indirectly indicates 
the content download cost of a systems as well. 

Jaro-Winkler Similarity (𝐽𝑊𝑆): It is a similarity measure that 
is used to compute the similarity between two sequences [12]. 
It is computed by calculating the number of matches, number 
of transpositions requires within the matches and the similarity 
in prefix of both sequences. 𝐽𝑊𝑆 is used to compute the 
similarity between the content sequence from the learnt caching 
policy and content sequence according to cache pre-loading.   

Access Delay (𝐴𝐷): Performance of Top-K MAB model is 
also evaluated based on the access delay which is the end-to-
end delay between the generation of content request and its 
provisioning form the cached contents in the UAVs. This paper 
reports the epoch-wise average access delay to show the 
improvement in caching policy as learning progresses.   
A. Effect of Exploration Strategies on Learnt Caching Policy 

In order to understand the viability of the proposed Top-k 
MAB learning-based caching policy in scenarios with demand 
heterogeneity, two type of content popularity sequence are 
used. Every consecutive community has a different popularity 
sequence. For 𝜖-greedy strategy, initial exploration is 𝜖 = 1 
with decay rate of 0.0025 per epoch. The degree of exploration 
in UCB is set to 𝛼> = 2. Fig. 3a shows the convergence 
behavior of the learnt caching policy with a comparison of 
exploration strategies employed in the Top-k MAB model.   

The convergence behavior is shown in term of content 
availability from the learnt caching policy. The observations 
from Fig. 3(a) are as follows. First, the figure shows that by 
employing Top-k MAB agent at every A-UAV, a near optimal 
caching policy can be learnt. The algorithm is able to leverages 
the multi-dimensional reward structure, as explained in Eqns. 
7-9, to achieve content availability close to the benchmark 
performance (see section II). Second, when the agent uses UCB 
exploration strategy, the content availability settles at a sub-
optimal value. However, during the initial learning epochs the 
content availability increases promptly due to high upper 
confidence value of all contents, which avoids exploitation. 
This is due to low sampling of requests. As learning progresses, 
the sparse request for unpopular contents keeps the upper 

(a)                                                                                                                        (b) 
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confidence value high which maintains consistent exploratory 
behavior. An algorithmically induced 𝜖 value in 𝜖-greedy 
strategy avoids this continuous uncertainty behavior due to 𝜖 
decay. This can be seen from the content availability with 𝜖-
greedy exploration strategy which is better than the 
performance with UCB. Finally, to maintain the initial surge in 
content availability and to limit the unbounded exploratory 
behavior, 𝜖-greedy exploration is applied on the UCB values of 
the content. It can be seen that such hybrid exploration strategy 
helps to boost the content availability closer to the benchmark 
performance by 5%. Similarly, Fig. 3(b) shows the convergence 
behavior of the Top-k MAB learning-based caching agent in 
terms of access delay. This is computed for a 𝑇𝐴𝐷 of 300 
seconds and it is observed that as learning progresses, the access 
delay for requested contents reduce while the content 
availability increases simultaneously. This manifests the 
improvement in learnt caching policy over the learning epochs. 
The best reduction in access delay is observed when 𝜖-greedy 
exploration is applied on the UCB values of the content.  

 
Fig. 4. Change in learnt caching policy of A-UAV with TAD 

B. Impact of Tolerable Access Delay on Learning Performance 
To show the learning capability of the proposed Top-k MAB 

model, experiments are conducted with varying 𝑇𝐴𝐷s ranging 
from 300 to 1200 seconds. The content availability according 
to the learnt caching policy with varying 𝑇𝐴𝐷 is shown in Fig. 

4. The figure demonstrates the behavior of the proposed 
caching mechanism with respect to the benchmark 
performance, computed from the cache pre-loading policy 
discussed in Section II. Following observations can be made 
from Fig. 4. First, the learnt caching policy achieves 
performance closer to the benchmark for all values of 𝑇𝐴𝐷. 
Second, the best possible performance (i.e., the benchmark) 
changes with change in 𝑇𝐴𝐷. The Top-k MAB agents in the A-
UAVs adapts to the user defined 𝑇𝐴𝐷. It can be observed in 
Fig. 4 that the learning performance varies along with 𝑇𝐴𝐷. In 
other words, the role of multi-dimensional reward structure of 
the MAB agent becomes more evident with higher 𝑇𝐴𝐷. 
Especially, the information related to the global availability i.e., 
𝛿9 and 𝛿: (refer Section IVB), are derived from large count of 
content requests. This improves the estimated reward at A-
UAVs thus impacting their caching decision.   
C. Cache Similarity of Learnt Sequence with Best Sequence 

The effect of learning on the cached content sequence is 
demonstrated in Fig. 5. Fig. 5(a) plots Jaro-Winkler Similarity 
(𝐽𝑊𝑆) of cached content sequences for all 12 A-UAVs. The key 
observation are as follows. First, the 𝐽𝑊𝑆 between the best 
caching sequence from cache pre-loading policy (see Section 
II) and the cached content sequences learnt by the Top-k MAB 
agents at A-UAVs converge near 0.9, with a certain variance. 
Physically, this represents higher degree of similarity post 
convergence, where 1 indicates complete similarity and 0 
implies no similarity. Second, the cached contents improve over 
epochs as learning progresses. Lower 𝐽𝑊𝑆 values at initial 
epochs signifies that A-UAVs have no a priori content 
popularity information, local or global. As the MAB agents 
learn, over epochs of generated content requests, the cached 
contents in A-UAVs become more similar to the best caching 
sequence. Third, 𝐽𝑊𝑆 is an indirect representation of the 
storage segmentation factor (𝜆), which is used to decide the 
segment sizes according to cache pre-loading policies. A higher 
𝐽𝑊𝑆 implies that, along with learning the caching policy, the 
Top-k MAB agents learn to emulate the said segmentation 
behavior. Finally, the partial dissimilarity of the cached content 
sequence can be ascribed to the uncertainty associated with the 
Q-values of contents with low popularity. Also, this leads to an 
oscillatory convergence of 𝐽𝑊𝑆 for A-UAVs. This behavior 
manifests in the 𝐽𝑊𝑆 for F-UAVs as well, which is shown in 
Fig. 5(b). Since, F-UAVs ferry contents that are requested less 
frequently, the low popularity of such contents leads to a 
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Fig. 5.  Jaro-Winkler similarity for A-UAVs and F-UAVs 



 

comparatively sluggish improvement of its 𝐽𝑊𝑆 as compared 
to 𝐽𝑊𝑆 improvement of A-UAVs.   

VI. RELATED WORK 
In recent years, a significant amount of research has been 

conducted on UAV caching. Such works can be broadly 
classified into two categories, namely, platform enhancements 
and algorithmic optimization. UAV platform-related 
enhancements, however, are not in line with the objectives of 
this specific paper, which approaches the cache optimization 
problem in an algorithm-centric manner.  

From an algorithmic perspective, authors in [3] show that the 
effective caching capacity of UAVs can be enhanced by 
considering the popularity and size of the content being stored. 
The study in [4] proposes a UAV-enabled small-cell network in 
which data traffic is offloaded from the of small-cell base-
stations (SBSs) to UAVs. The most popular contents are 
proactively cached within the UAVs, and delivered to the user 
directly as needed. [5] did similar work where they attempt to 
reduce the traffic load on ground base-stations via UAV-
caching. The approach in [6] uses a joint caching and UAV 
trajectory optimization using particle swarm optimization by 
modeling each caching strategy as a particle. In a similar joint 
optimization study, [7] uses a reinforcement learning-based 
approach for UAV-caching decision-making where the content 
requests, storage, and availability in the storage buffer are used 
for defining states in a Markov Decision Process.  

While some of these UAV-based caching mechanisms [4, 5] 
are useful for partial infrastructure destruction, they are less 
likely to work well when all communication infrastructures are 
destroyed, and a fully functional alternative is needed. 
Additionally, most of the above mechanisms [3-5] consider 
temporally static global content popularity [5], which misses 
capture the real-world heterogeneity and time-variability of 
content demands in disaster scenarios. The optimization 
mechanisms in [6, 7] use long-term estimation methods which 
fundamentally lack the promptness and adaptability with 
changing network and demand conditions. Explicit attempts for 
effective cache space maximization, and reduction of expensive 
from-server downloads using vertical links are also absent in 
the prior published works on UAV caching.   

To addresses those issues, the Top-k Multi-Armed Bandit 
learning model is developed for UAV-caching decisions that 
take geo-temporal differences in content popularity and 
heterogeneity in demand into consideration. The approach 
employs a multi-dimensional reward structure that improve 
system performance via sharing information between UAVs. 

VII. SUMMARY AND CONCLUSION 
In this paper, UAV-aided content dissemination system is 
proposed which can learn the caching policy on-the-fly without 
a priori content popularity information. Two types of UAVs are 
introduced to revive content provisioning in a disaster/war-
stricken scenario viz. anchor and ferrying UAVs. Cache-
enabled anchor UAVs are stationed at each stranded 
community of users for uninterrupted content provisioning. 
Ferrying UAVs act as content transfer agents across anchor 
UAVs. The evolution of pre-loading-based caching policies are 
discussed which requires a priori information about content 
popularity. A decentralized Top-k Multi-Armed Bandit 
Learning-based caching policy is proposed to ameliorate the 
limitation of cache pre-loading. It learns the caching policy on-

the-fly with the help of a multi-dimensional reward structure 
with encapsulates local and global availability information. 
Future work on this research will include distributed learning 
model sharing approaches to improve content provisioning. 
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