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Abundant phenomenology suggests that strong decays from relatively low-excitation hadrons into other hadrons
proceed by the creation of a light quark-antiquark pair with zero total angular momentum, the so called 3P0 mech-
anism originating from a scalar bilinear. Yet the Quantum Chromodynamics (QCD) interaction is perturbatively
mediated by gluons of spin one, and QCD presents a chirally symmetric Lagrangian. Such scalar decay term must be
spontaneously generated upon breaking chiral symmetry. We attempt to reproduce this with the help of the quark-
gluon vertex in Landau gauge, whose nonperturbative structure has been reasonably elucidated in the last years,
and insertions of a uniform, constant chromoelectric field. This is akin to Schwinger pair production in Quantum
Electrodynamics (QED), and we provide a comparison with its two field-insertions diagram. We find that, the sym-
metry being cylindrical, the adequate quantum numbers to discuss the production are rather 3Σ0, 3Σ1 and 3Π0 as
in diatomic molecules, and we indeed find a sizeable contribution of the third decay mechanism, which may give a
rationale for the 3P0 phenomenology, as long as the momentum of the produced pair is at or below the scale of the
bare or dynamically generated fermion mass. On the other hand, ultrarelativistic fermions are rather ejected with
3Σ1 quantum numbers. In QED, our results suggest that 3Σ0 dominates, whereas the constraint of producing a
color singlet in QCD leads to 3Π0 dominance at sub-GeV momenta.
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I. INTRODUCTION

The production of a fermion-antifermion pair in an intense field, producing a dielectric breakdown of the “vacuum” dates back to
the 1930s [1], with [2] providing a recognised calculation of the pair production rate in quantum field theory. For a recent review
on ultra-strong field QED we refer to [3].
While experimental detection of this phenomenon in Electrodynamics has been elusive, cf. [3] and references therein, the analog
phenomenon in Chromodynamics is run of the mill: the production of valence quark-antiquark pairs in hadron decays (excited
baryon to a baryon-meson pair, or a meson decaying to two mesons) has been extensively studied in experiment and phenomenol-
ogy of the strong interactions.
This asymmetry in the experimental exploration of pair production translates into a like asymmetry of our knowledge of the
circumstances surrounding the produced pair. In this article we focus on the angular momentum quantum numbers of such pair.
The current situation is that not much information is available on spin in the ultra-strong field QED production (see, however,
refs. [4, 5] and [6]) and the Chromodynamics one is treated with phenomenological models, where some level of understanding
has been reached, but without a serious theory background. An exception is the computation of [7], whose basic assertion is that
the angular momentum of the fermion-antifermion pair reflects a preexisting virtual condensate from which they are extracted.
This is a picture with simple physical interpretation, and in line with the traditional 3P0 approach, but we would like to also give
some orientation on the ratio of different spin components for future non-perturbative computations, which might be based on
Poincaré covariant phase space formulations (Wigner formalism, see f.e. [8]), functional methods in continuum quantum field
theory, lattice calculations, and/or a combination thereof.
We here attempt to put a stepping stone between phenomenological and more advanced treatments based on Chromodynamics,
and in doing so, we also extract a first theoretical glimpse at the behavior of the electron-positron angular momentum production
in a uniform field.
Quark-model phenomenology [9–12] would have hadrons split apart in two-body reactions A → B + C by extracting a con-
stituent quark-antiquark pair from the underlying color fields according to the so called 3P0 mechanism [9, 13], that seems to be
in reasonable agreement with strong quarkonium decays. This we briefly recall in section II.
In the notation of [14], the effective interaction Hamiltonian that generates the 3P0 transition (see section VI) is the simplest

H3P0
=

√
3gs

∫
d3xψ̄(x)ψ(x) (1)

where the constant gs has dimensions of energy. In a non-relativistic reduction of the spinors, the pair creation is controlled [15]
by the dimensionless parameter γ = gs/2m withm being the constituent quark mass.
While the model of Eq. (1) is very popular and yields reasonable agreement with decay data, it raises evident theoretical questions.
Quark-antiquark pairs are created in a color singlet, while QCD’s interaction at leading order produces a color octet, and both
singlet and octet configurations are needed, for example, in pNRQCD [16].
Another perhaps not expected property of thisH3P0

is that it is chiral-symmetry breaking (it has the form of a fermion mass term),
as can easily be seen by taken its commutator with the chiral charge,Q5,

[Q5, H3P0
] =

[∫
d3xψ†(x)γ5ψ(x), H3P0

]
̸= 0 . (2)

This is in contrast with the perturbative structure of gauge theories, in which, in the massless fermion limit, all propagators and
vertices are proportional to γµ, and

[
γµ, γ5

]
= 0. Thus, at all orders of perturbation theory, chiral symmetry is respected. There-

fore, the 3P0 vertex must arise from nonperturbative phenomena. Here we attempt to connect this effective Hamiltonian with
the full (non-perturbative) Landau gauge Green’s functions, that are commonly explored with lattice gauge theory and functional
approaches, see, e.g. [17–20] and references therein.
Because it is chiral-symmetry breaking, the effective H3P0

has to arise at a low scale: therefore, it should not be applicable to
decays where the emitted qq̄ have large individual momenta respect to the emitting hadron center of mass (very energetic decays
of highly excited states). This phenomenon would be a manifestation of the insensitivity to chiral symmetry breaking in the higher
spectrum [21]. This is indeed the behavior that we find for the pair creation in this work.
Beyond spectroscopy, the 3P0 effective decay Hamiltonian has found applications, for example, in the hadronization of high-
energy jets [22, 23] where qq̄ pairs are extracted from the vacuum in the last steps of the process when hadrons are fragmenting
and perturbative QCD reasoning might be insufficient. As another example, it has also been recently deployed to model polarized
hyperon production 1.
Studies of the Schwinger mechanism [2] for pair creation in a constant field continue to this day, whether in electrodynamics [3]
or in chromodynamics [24], but it appears that the studies center on the dielectric breakdown (“vacuum decay probability”), and
eventually on phase transitions such as the chiral one. The community is hardly paying attention to the spin and orbital angular
momentum quantum numbers of the electron-positron viz. quark-antiquark pair. Similar comments apply to the Breit-Wheeler
process in laser fields [25] and with propagating transverse photons [26, 27].
Among these aspects, we explore here the transition between the perturbative, chirally-symmetric emission mediated by one gluon,
and the chiral-symmetry breaking regime. We will work with the nonperturbative quark-gluon vertex, so that we will remain at

1 G. Goldstein, S. Liuti and D. Sivers, Communication to the Xth Workshop of the APS topical group on hadron physics, Minneapolis, April 12th-14th 2023.

https://indico.jlab.org/event/667/contributions/12351/
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FIG. 1. Depiction of an OZI-allowed decay by the creation of a valence qq̄ pair via a multilegged transition amplitude.

the level of an octet emission mechanism
∫
d3xψ̄T aΓµψ, but use the skeleton expansion [28, 29] to obtain the color singlet with

one more insertion.
We have organized the balance of the article as follows. Section II reviews some of the standing evidence that suggested to us that
this investigation was worth pursuing, as hadron decays in phenomenologically successful quark models seem to have required
that pair production was controlled by a chiral-symmetry breaking term which is not in the QCD Lagrangian.
In section III we employ a perturbative template inserting a uniform field into a fermion line to ascertain the produced spin of the
pair as function of the fermion’s back to back momenta. This is a much simplified computation but already starts shedding light
into the more complicated QCD production.
Before delving in the fermion structure of Chromodynamics, we devote section IV to discussing the constant chromoelectric field
flux tube joining quarks in hadrons and that locally provides the background homogeneous field equivalent to the electric field in
QED.
Section V is then devoted to the preliminaries needed to discuss quarks themselves: for a skeleton expansion of the production
kernel, we recall the full quark propagator and quark-gluon vertex, parametrized in Euclidean space from work on the Dyson-
Schwinger Equations (DSEs), and an extrapolation to Minkowski space. This extrapolation is by far not numerically stable, but
fortunately the qualitative results reported later in sections VI and VII about the pair production with that simple skeleton kernel
are not dependent on the precise poles of that continuation to Minkowski space. The spin-triplet scalar production with orbital
angular-momentum projection over the field’s direction, Λ = 1, dominates for low momentum; the projection with Λ = 0 is
instead dominant for momenta sufficiently larger than the fermion massm.
The discussion is wrapped up in section VIII.

II. PHENOMENOLOGICAL CONSISTENCY OF THE 3P0 MECHANISM IN HADRONDECAYS

In this section we briefly discuss some of the well-known evidence from hadron decays suggesting that pair production triggering
them contains an important chiral symmetry breaking component.
Okubo-Zweig-Iliuka (OZI)-allowed meson decays proceed by the separation of the two valence quarks that provide the quantum
numbers of an ordinary meson and the creation of an additional valence qq̄ pair that splits among the two daughter mesons, as
reflected in figure 1.
In the figure, the square box with several gluon legs attached represents the creation of a valence qq̄ pair. The angular momentum
of the created pair can be decomposed in the usual spectroscopic Russell-Saunders basis 2S+1LJ . This gives rise to numerous
possible combinations, e.g. 1S0,

1 P1,
3 S1,

3P0 ,
3 P1,

3 P2 . . .

The most general transition amplitude can be expanded in a basis of operators with all those quantum numbers. However, it has
long been known [13, 30] that the 3P0 component is compatible with a breadth of decay data, while the other terms, though they
may be present, fail to predict sizeable amounts of conspicuous meson decays if employed alone.
Consider as a first example the quark-model spins in the vector to two pseudoscalar mesons decay, ρ(↑↑) → π(↑ ↓)π(↑ ↓).
The ρ-meson being dominantly in the ground state 3S1 with the two fermion spins aligned, and the two daughter mesons having
zero spin each, the newly created pair must be produced with |mS | = 1. Consequently, the transition amplitude cannot create
them with S = 0. This prominent decay, with Γ ∼ 150 MeV, can therefore not be mediated by either of the spin singlets 1S0,
1P1, etc.
Likewise, as all three mesons are dominantly s-wave and thus the relative orbital angular momentum between the two pions is
l = 1, we see that the transition amplitude must carry a p-wave, so that it must be of the 3PJ form.
As a second example, consider now the decay of the scalar mesons f0(1370) → ππ and f0(1500) → KK . Now, the final state
mesons are produced in an s-wave. But since the initial-state meson (largely qq̄ [31]) is in a 3P0 configuration, the decay cannot
be caused by any transition amplitude with J ̸= 0.
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TABLE I. List of S = 0 allowed quantum numbers and example mesons that carry them.

L JP (C)

0 0−(+) π, η, K . . .

1 1+(−) h1, b1, . . .

2 2−(+) π2, η2 . . .

3 3+(−) h3, b3, . . .

. . .

The only combination of the six quantum-number combinations proposed for the transition amplitude that can appear in both
examples is precisely the 3P0. Continuing studies along these lines show that in different decays, different transition modes may
be active; but 3P0 is a very common combination that can mediate an important number of transitions.
The converse line of reasoning, trying to find meson decays that are prominent and would exclude the possibility of a transition
matrix element carrying 3P0 quantum numbers, is not easy. That is, there are no good rejection tests of the 3P0 mechanism with
light quarks.
A famous selection rule in this direction is

A(S = 0) ↛ B(S = 0) + C(S = 0) (3)

that tests the “3” part of 3P0, i.e., whether the produced valence pair is in a spin-1 state. The list of possible mesons at hand that,
having S = 0, can be used to reject that triplet state, is given in Table I.
The simplest possible decay would be 0−+ → 0−+ 0−+; but this is forbidden by the global JPC quantum numbers, so it cannot
possibly test any internal mechanisms; this also applies to 1+− decaying to the same final-state mesons. As a second possibility one
could consider 1+− → 1+−0−+; but we only have at hand the ground state h1, b1 mesons at 1170 and 1235 MeV, respectively,
and no excitations thereof; so the would-be left hand side of the decay is unknown. As for open-flavor mesons, the K1’s 1P1 and
3P1 states are mixed with an angle of order of magnitude ∼ 20o [32] and so the test cannot be conducted because none of the two
K1 is a pure S = 0 meson. Further, the 2−+ → 1+− 1+− does not have enough phase-space to proceed, because the mesons
with a quark-model d-wave, namely the π2(1670) and the slightly more massive η2 are not heavy enough to open the phase space
for the decay channel. In conclusion, no direct rejection tests of the 3P0 mechanism can be proposed with the current knowledge
of the light-meson spectrum: there is plenty of room for discovery in the 2 GeV region, at accelerator facilities such as Jefferson
Lab.
Reasonable evidence is available in a different regime: Close and Swanson found the 3P0 mechanism to be compatible, with only
one parameter and within about one standard deviation [11] with a whole 32 modes of heavy-light (D orDs) strong meson decays.
We believe that there is enough phenomenological work justifying a more detailed study from the point of view of recent progress
in Quantum Chromodynamics.
From our results below it will also become apparent that this 3P0 model cannot hold for very excited states in the spectrum: when
the produced qq̄ pair has a momentum much larger than the QCD chiral symmetry breaking mass scale, in addition to SU(3)
symmetry being restored in the decay [33], the spin quantum numbers of the produced qq̄ need to revert to 3S1 (or rather, 3Σ1).

III. SPIN OF EMITTED PAIR IN QUANTUM ELECTRODYNAMICS

ū(p)

Ã0

v(q)

Ã0 ū(p)

Ã0 v(q)

t

q

p

FIG. 2. Minimum A0 field insertions coupling to a fermion pair in Quantum Electrodynamics.

In this section we quickly show, as a perturbative template, the extraction of the fermion-antifermion spin state with pure eγµ
QED vertices and no color.
Tunnelling in a uniform electric field is traditionally called the Schwinger effect [2]. Schwinger’s calculation, a prowess of non-
perturbative physics, yields the pair production rate summed over spins, and a generalization that can extract the angular momen-
tum composition of the pair requires a quite involved numerical effort. E.g., in ref. [5] an adaption of the Dirac-Heisenberg-Wigner
formalism to the Schwinger effect [34] has been used.
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FIG. 3. A resummation of all ladder diagrams with electric field insertions in QED continues reproducing the zero in Eq. (4)
.

Pair production from two photons extracted from a time-dependent transverse field, on the other hand, is a staple of perturbation
theory that constitutes the Breit-Wheeler process. Spin can easily be examined therein, but the computation does not seem to be
easily generalizable to homogeneous, static fields, cf., [35–37] and references therein.
An intermediate-difficulty way of proceeding is to use the Breit-Wheeler perturbative template to investigate the angular momen-
tum quantum numbers, but with the homogeneous electric field insertion instead of the dynamic transverse field. This can then
be extended by resummation of Feynman diagrams such as the rainbow approximation for propagators in QCD, and the ladder
approximation where each rung is a field insertion, in an attempt at getting closer to true non-perturbative physics. This can of
course also later be pursued with numerical methods.
We will find, from the lowest order left diagram of figure 2, that 3Σ0 is dominant (but this is not active in QCD color-singlet
production, which requires a fermion skeleton such as the right diagram of the figure).

A. Simplified computation without transversality condition

The numerator of the two-insertion Feynman production kernel K, reading off the right diagram in figure 2, for a conventionally
inserted electrostatic fieldAµ → A0 that does not extend over large distances (we will lift this restriction shortly in Eq. (7)), is then

ūs(p)γ0(/p+m)γ0vs
′
(−p) = 0 . (4)

(This is a conventional computation where we made use of the Dirac equation on the well-defined momentum spinor for a fermion
of massm, namely (/p−m)us(p) = 0, and orthogonality among spinors .)
One can easily see that two cancelling 3P0 terms are generated in QED (with two field insertions from the A0 component of the
gauge field) by the electron mass contained in the spinors

ūs(p)γ0/pγ
0vs

′
(−p) = 2mp · σss′ (5)

and the second by the explicit mass term from the propagator. The two contributions exactly cancel each other to yield the zero in
Eq. (4). If successive insertions of the field beyond the two of our kernel are then brought in, each propagator entails a numerator
which will contribute a 2Ep scalar factor that does not change the spin counting.
That zero then persists at every order of perturbation theory, and moreover it also survives a ladder resummation of the type
displayed in figure 3 . The relevant computation is here

ūs(p)

(
1− eA0

p2 −m2
γ0(/p+m)

)−1

vs
′
(−p) = ūs(p)

(
1− a/pγ

0 + amγ0
)
b vs

′
(−p) (6)

with a and b constants; the Dirac γ matrix structure between the spinors, upon employing Dirac’s equation on the conjugate
u†p · γ⃗ = u†(m−p0γ0) vanishes once more. (This ladder resummation is not exact for indistinguishable electric field insertions;
a factorn! affects each term if the insertions can be permuted, and the series is no more geometric, nor summable. It could perhaps
be analytically extended via a Borel resummation.)
We now proceed to a constant and uniform electric field that extends over a large distance. When computing the amplitude with
an insertion of such field (that yields the derivative of a delta function in momentum space, see the explanations around Eq. (61)
and (63) below) coupled at the vertex, the relevant amplitude’s numerator contains

Ass′

QED(p) ∝ 2
[ ∂

∂p3
∂

∂q3

(
ūs(p)γ0

/t +m

t2 −m2
γ0vs

′
(q)
)]∣∣∣

t=−q=p
. (7)

The derivatives finally remove the zero in some channels. Explicitly computing Ass′

QED(p), we find that its spin trace still vanishes,∑
s Ass

QED(p) = 0, so that the spin-singlet components of this amplitude are still zero. The spin structure of the amplitude can
then have nonzero terms of the form

A = Aσ⊥ · p⊥ +Bσzpz + Cσ⊥ +Dσz (8)

with A . . .D different functions of mass and energy. This means that spherical symmetry in the produced pair is broken (which
is natural, given the constant electric field pointing in theOZ direction, manifest in Eq. (7) by the ∂/∂p3 and ∂/∂q3 derivatives).
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Thus, the atomic term 2S+1LJ including various total angular momenta is not appropriate, as those are quantum numbers apt for a
spherically symmetric problem, and we should instead think of the molecular term notation, 2S+1Λjz in terms of the components
along theOZ axis, with the spherical symmetry reduced down to cylindrical symmetry.
Because the spin-singlet production vanishes, at least for fermions with opposite momenta, among the four angular momentum
projections analysed below in the more general nonabelian case (Eq. 69), only the spin-triplet ones remain, 3Π and 3Σ, that come
with the relative weights (so thatD is actually zero)

A
3Σ1
QED(|p|) ∝ − π

2|p|E4
p

(
4|p|2Ep − 3m|p|2 + 2m2(Ep −m)

)
−−−→
m→0

− 2π

|p|2
(9)

A
3Σ0
QED(|p|) = 0 (10)

A
3Π0
QED(|p|) ∝ − 8

3|p|E5
p

(
2|p|4 − |p|2m(3Ep − 4m)− 2m3(Ep −m)

)
−−−→
m→0

−16

3

1

|p|2
(11)

where the chiral limit m → 0 has been taken, showing that the ratio of 3Σ1 to 3Π0 is of order 1 with the Σ production slightly
dominant, whereas in the opposite, zero momentum limit, all contributions vanish with the leading order for 3Σ1 and 3Π0 being
a power law, i.e., ∝ |p|3/m5.
If, in the same approximation, we give the production from the one-field insertion on the left diagram of figure 2, we would simply
expel the pair with the quantum numbers of the zeroth component of a four-vector,

Ass′

one-field QED(p) ∝
[ ∂

∂p3

(
ūs(p)γ0vs

′
(q)
)]∣∣∣

q=−p
. (12)

Producing the following spin projected amplitudes:

A
3Σ1

one-field QED(|p|) = 0 (13)

A
3Σ0

one-field QED(|p|) = − 4m

3Ep
− 8

3
(14)

A
3Π0

one-field QED(|p|) = 0 . (15)

B. Incorporating Landau gauge’s transversality condition

The computation presented this far in Eq. (7) and following is a simplification, to avoid the added difficulty of the Landau gauge
transversality condition; We now move on and proceed to the full computation in Landau gauge (which is the one for which we
have most information in the QCD case, and a fixed point of the renormalization group in perturbation theory). To proceed with
the estimate of the spin distribution of back to back leptons with p = −q, we perform the simple following replacement in the
fermion-gauge boson vertex: γµ → γµ − k̂µ /̂k (with kµ being the four-momentum extracted from the field, and a caret denoting
normalization). In this way, reading from Fig. 2, we find the following expression for the two-field-insertion kernel,

Ass′

QED(p) ∝ 2
[ ∂

∂p3
∂

∂q3

(
ūs(p)

(
γ0 −

(p0 − t0)(/p− /t)

(p− t)2

)
/t +m

t2 −m2

(
γ0 −

(q0 + t0)(/q + /t)

(q + t)2

)
vs

′
(q)
)]∣∣∣

t=−q=p

= 2
∂

∂p3
∂

∂q3

[
ūs(p)

(
γ0 −

(/p− /t)

p0

)
/t +m

t2 −m2

(
γ0 −

(/q + /t)

q0

)
vs

′
(q)
]∣∣∣

t=−q=p
. (16)

To pass on to the second line we have noted that each of the two gauge bosons introduces a respective factor Ep or Eq with the
momentum of the outgoing fermion to which they are attached. Basically, this amounts to (p − t)2 = p20 = E2

p and (q + t)2 =

q20 = E2
q . With this choice, the energy transferred through the fermion propagator vanishes, t0 = 0. At least in this kinematic

section this will lead to 3Π0 dominance, as can be seen after once more projecting over angular momentum components,

A
3Σ1
QED(|p|) ∝ −2π|p|

(
Ep −m

E4
p

)
(17)

A
3Σ0
QED(|p|) = 0 (18)

A
3Π0
QED(|p|) ∝

32m|p|
3E4

p

. (19)

The limit |p| → 0 is not problematic. In this low-momentum regime the electron mass scale is dominant and we see that the
chiral-symmetry breaking piece is leading by two orders in the McLaurin expansion around |p| = 0,

A
3Π0
QED

A3Σ0
QED

= O

(
m2

|p|2

)
, (20)
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that is, while more sophisticated computations should follow this up, we believe that there is a reasonable case that the near-
threshold production of an electron-positron pair in an intense homogeneous electric field will see a suppression of 3Σ1 versus
3Π0 quantum numbers.2 The amplitudes (17) and (19), in units of the fermion massm, are depicted in the right plot of Fig. 4.

FIG. 4. Comparison of the spin-triplet orbital-scalar vs. spin-triplet orbital-vector QED pair production in the uniform electric field. Left:
three-dimensional rendering comparing 3Π0 and 3Σ1 production against the electron-positron momentum and the collinear fraction χ that
the first field insertion provides. Right: Bidimensional projection with χ = 0 as function of the fermion pair momentum. In both cases, the
momentum (x-axis) is in units of the fermion mass, that is, m = 1.

In it, we can see that the production with one unit of orbital angular momentum is dominant at momenta up to about twice the
electron mass, respectively, the mass of the produced pair. For higher energies, this channel falls faster, with theΣ1-wave becoming
more important; but because the electric breakdown of the Schwinger effect leads to the formation of initially slow e−e+ pairs
(cf., e.g., [38] and references therein), we can quite firmly predict that back-to-back leptons will appear with 3Π0 spin quantum
numbers more often than with 3Σ1 ones.
Next, we allow for a slightly more general kinematic section, in which the two field insertions contribute differently to the energy
balance of the back-to-back lepton pair, that is, t0 ̸= 0 flows in the fermion propagator of the Feynman diagram in figure 2. For
this purpose we introduce an asymmetry parameter χ, such that one of the field insertions provides a fraction (1 − χ)p0 of the
electron’s energy, and the other field insertion a fraction (1+χ)p0. We then reobtain the relative weight of the angular momentum
components to check for the robustness of the 3Σ1 /

3Π0 suppression at low momenta, by addressing this more general kinematic
section.
The unprojected amplitude is then

Ass′

QED(p) ∝
[ ∂

∂p3
∂

∂q3

(
ūs(p)

(
γ0 −

(p0 − t0)(/p− /t)

(1− χ)2p20

)
/t +m

t2 −m2

(
γ0 −

(q0 + t0)(/q + /t)

(1 + χ)2q20

)
vs

′
(q)
)]∣∣∣t=−q=p

t0=χp0

+ (χ→ −χ) (21)

and the corresponding projected amplitudes become

A
3Σ1
QED(|p|) ∝

2π
(
2χ2 − 1

)
|p| (Ep −m)

(χ2 − 1)
2
E4

p

(22)

A
3Σ0
QED(|p|) = 0 (23)

A
3Π0
QED(|p|) ∝

32
(
1− 2χ2

)
m|p|

3 (χ2 − 1)
2
E4

p

. (24)

In consequence, we see once more that among the sub-leading QED amplitudes, 3Π0 dominates over 3Σ1 at low-momentum, and
remarkably, the resulting ratio among spin components is independent of the χ asymmetry between the two field insertions,

A
3Σ1

QED(|p|)
A3Π0

QED(|p|)
= −3π

(Ep −m)

16m
−−−−→
|p|→0

−3π

32

|p|2

m2
∀χ . (25)

We should finally note the different sign between the Σ and Π waves, that might give rise to interference if measurements could
be carried out at a high-enough momentum so that both are comparable, for electron momenta of order 2m ≃ 1 MeV.
The left panel of figure 4 shows the three-dimensional plot of both nonvanishing amplitudes as a function of the two independent
variables, the modulus of the lepton momentum and the asymmetry among the two field insertions x.

2 This is in agreement with the recently obtained results for the spin-dependent amplitudes in multi-photon pair production [5].
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For completeness, we now note the result with only one field insertion as in the left diagram of figure 2 but with the transversality
condition (Landau gauge) incorporated, that will therefore modify the numerical value of Eq. (13) but not the spin structure. This
is

Ass′

one-field QED(p) ∝
[ ∂

∂p3

(
ūs(p)(γ0 − k̂0 /̂k)vs

′
(q)
)]∣∣∣

q=−p
. (26)

with k2 = (2Ep)
2,

A
3Σ1

one-field QED(|p|) = 0 (27)

A
3Σ0

one-field QED(|p|) =
4
(
2mEp +m2 + 3|p|2

)
3Ep

(28)

A
3Π0

one-field QED(|p|) = 0 . (29)

Thus, we see that the emission with one field insertion corresponds to a wave 3Σ0 with cylindrical symmetry around the axis given
by the electric field, here chosen according the usual convention in the z-direction. This is in contrast with the two-field insertion
case, where the 3Π0 wave dominates at low momenta. The interplay between both in the full non-perturbative Schwinger effect
is difficult to ascertain from our skeleton calculations; but in QCD below, because the one-insertion emission is not possible for
a color-singlet fermion pair, and two insertions are needed, we will be able to stake a tentative claim that the 3Π0 contribution is
possibly dominant for color-singlet qq pairs.

C. Corrections to the QED vertex

In QED, the electron-photon vertex at one-loop takes a triangle-diagram correction, yielding (viz. sect. 6.33 of [39] or sect. 7-1-3
of [40]):

γµ → Γµ = γµF1(k
2) +

i

2m
σµνkνF2(k

2) . (30)

The second term, i.e., the Pauli term, carries a manifest spin-orbit coupling that may couple the field to e−e+ pairs directly in the
3Π0 state, cf. the representation given in Eq. (83) for the generators of the Lorentz boosts σ0i in terms of the spin Pauli matrices.
With respect to the mechanism of figure 2, this vertex correction is suppressed by one power of e at the amplitude level (due to the
three vertices in the triangle diagram instead of two in the Breit-Wheeler one) so we do not add it to the computation and think
of it as a correction, should it not vanish due to other reasons as does the equivalent QCD vertex of Eq. (63) below whose color
factor is zero for a color singlet. In the case here, the static electric field with back-to-back leptons directly yields zero production
(as is expected from such magnetic term).
It is instructive, however, to discuss how the chiral-symmetry breaking nature of this vertex arises. The Pauli form factor can be
expressed as an integral over Feynman parameters,

F2(k
2) = m2αQED

2π

∫ 1

0

dxdydzδ(x+ y + z − 1)
2z(1− z)

m2(1− z)2 − k2xy
, αQED =

e2

4π
, (31)

so that the entire Pauli term of the vertex itself is directly proportional tom, upon accounting for the i/(2m) prefactor, and up to
logarithmic functions of m/k coming from the integral piece. Despite the logarithms, it can be easily verified that the Pauli term
vanishes in the massless limit for all k2 ̸= 0.
The exception is the limit of zero photon virtuality, where the electron anomalous magnetic moment appears (the leptons are on
the mass-shell) F2(0) =

αQED

2π and the m-dependence has apparently dropped out. This is however a very specific kinematic
section relevant for scattering only, as it cannot directly produce a lepton pair, k2 = s ≥ 4m2 being far from zero.
In Wick-rotated Euclidean space, the Pauli form factor can be rewritten employing an implicit transcendental expression [40]

F2(k
2
E) =

αQED

2π

Θ

sinh(Θ)
,

k2E
m2

= 4 sinh2
(
Θ

2

)
, (32)

which, besides making evident that the Pauli form factor is a function of k2E/m2 only, can be used for a straightforward numerical
evaluation.
We can benefit from these well-known formulae because they provide an important check for the phase of the quark-gluon vertex
form factors below in subsection V B. To this end we note that there is an analogue term to the Pauli form factor in the quark-
gluon vertex, perturbatively and non-perturbatively. In our QCD setup, with conventions inherited from earlier Euclidean space
Landau gauge computations, we will have −iγµT en lieu of γµ. (NB: The non-transversality of the usual representation (30) is
irrelevant in this context.) Then, choosing for convenience the 0-component of the four-vector Γµ, i.e., Γ0, the respective term
iσ0ν(kν/(2m))F2 will be replaced by −i(2iσ0νkνg3), with g3 being the corresponding vertex form factor accompanying the
vertex structure ρ03 = /̂k(γ0 − k̂0 /̂k) = k̂iγ

iγ0 = 2iσ0ik̂i therein. A comparison between the expression (32) and the numerical
results for the form factor g3 (the interested reader my peak ahead to figure 9) allows to fix the correct phase for the analytic
continuation back to Minkowski space. This procedure will be described in detail in the paragraph below Eq. (52).
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IV. CONSTANT CHROMOELECTRIC FIELD FLUX-TUBE IN HADRONS

We now proceed to our main goal of this study, the spin and orbital angular momentum nature of the pair-production vertex in
the strong interactions. First, it should be noted that constant, homogeneous, infinite chromoelectric fields are not realized in
nature. The closest one that comes to this idealization is at the flux tube linking two color sources in a hadron. In this section we
discuss this chromoelectric field configuration.
It is known from old that the approximate Regge trajectories on which hadrons sit can be explained by a string-like behavior of
mesons. This behavior is heuristically described via the creation of a chromoelectric flux tube between the two constituent quarks
(see, e.g., [41] and references therein) and is obtainable from Coulomb-gauge variational approaches [42] to QCD. Lattice gauge
theory has also long indicated [43] that this is a physically correct picture, famously exposing a large action density stretching
between two static sources. More sophisticated parametrization of the interquark color potential have been proposed, e.g. in [44].
But to discuss the basic phenomenon, it will suffice to employ the elementary linear one.
Such a field configuration makes the potential rise linearly with the distance between the sources and is the motivation for the well-
known flux tube model [45] of hadrons. Such a linearly rising potential entails a constant, uniform chromoelectric field E = Eẑ
inside a tubular structure.
Since we want to study the creation of dynamical quarks inside one of these flux tubes (a topic of interest from old [46, 47]), we will
couple the quarks to a constant electric field background (see Fig. 5) and study in which spin state they are prone to be created.

FIG. 5. Representation of a meson and its chromoelectric flux tube, the blue
cylinder (of radiusR and lengthL) depicts the region where the electric field
can be approximated as constant. We will study the creation of quark pairs
in this cylindrical region.

In natural units and cylindrical coordinates, the Landau gauge condition ∂µAµ a = 0 for the chromo-electromagnetic potential
Aa

µ(t,x) reads

∂tA
a
0(t,x) = −1

ρ

(
Aa

ρ(t,x) + ∂θA
a
θ(t,x)

)
− ∂ρA

a
ρ(t,x)− ∂zA

a
z(t,x) . (33)

Now we set all color components of the the potential, except one, to zero: Aa(t,x) = 0 for a ̸= 1. This is not unnatural in a
quark-model context where the ends of the tube are charges in the fundamental representation that the tube links, carrying an
adjoint index a. Hence, from now on we omit the color index. Choosing a constant electric field along the z axis of intensity E
yields the field equations 

∂ρA0(t,x) = −∂tAρ(t,x)

∂θA0(t,x) = −ρ∂tAθ(t,x)

∂zA0(t,x) = −∂tAz(t,x)− E

(34)

Next we assume azimuthal independence and that the components of A perpendicular to the meson symmetry axis (the axis
running along the flux-tube, as non-exotic mesons are reasonably well represented by a quark and anti-quark joined by a chro-
moelectric flux tube) are invariant under translations along that axis

Aρ = Aρ(t, ρ, θ)

Aθ = Aθ(t, ρ, θ)

Az = Az(t, z) .

(35)

Using the gauge condition (33) into the field equations (34) and assumingAµ(t,x) areC2 functions we find
∂ttAρ(t, ρ, θ) = ∂ρ

(
1
ρ

(
Aρ(t, ρ, θ) + ∂θAθ(t, ρ, θ)

)
+ ∂ρAρ(t, ρ, θ)

)
∂ttAθ(t, ρ, θ) =

1
ρ∂θ

(
1
ρ

(
Aρ(t, ρ, θ) + ∂θAθ(t, ρ, θ)

)
+ ∂ρAρ(t, ρ, θ)

)
∂ttAz(t, z) = ∂zzAz(t, z) .

(36)

The equations in (36) are nothing but the wave equation for each component of the vector field in Cartesian coordinates in the
variables t and xi. This will help us to construct the desired solutions.
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Let us start by finding the simplest constant-field solution, that can be found easily and will be improved upon shortly. We discard
the dependence on θ (cylindrical symmetry) and, for the moment, ρ (so we are basically obtaining the solution equivalent to a
parallel-plate capacitor in electrodynamics). Choosing a form that provides a representation of the time reversal and parity discrete
symmetries, we obtain the following Abelianized standing waves along theOZ axis,

Aρ(t, ρ, θ) = 0

Aθ(t, ρ, θ) = 0

Az(t, z) = −E L sin t
L cos z

L − Et

A0(t, z) = E L cos t
L sin z

L

(37)

where we defineL as the length of the cylinder where the electric field can be approximated as constant. Notice that this solution
leaves the last expression in Eq. (34) invariant under parity and time reversal.

These solutions can however be gauge transformed as usual

Az → Az + ∂zf A0 → A0 − ∂tf , (38)

as long as f(x) satisfies the wave equation ∂ttf(x) = ∂zzf(x), these are the residual gauge transformations after fixing the gauge.
This means that we may just write, by taking f(t, z) = E L2 sin t

L sin z
L + Etz,


Aρ(t, ρ, θ) = 0

Aθ(t, ρ, θ) = 0

Az(t, z) = 0

A0(t, z) = −Ez

(39)

there is no surprise here as this is the usual result from electrostatics. This should be sufficient for our purposes. More sophisticated
field configurations can be obtained as need arises, as we now exemplify.
For a more realistic flux tube, if so wished, we may look for a potential that contains the electric field (still along OZ) inside a
cylinder of radiusR, where it is almost ρ-independent. A good approximation for this configuration is

Ez =
E

2

(
1− tanh

(
κ
ρ−R

R

))
, (40)

where we introduced the hyperbolic function to soften the Heaviside step function, θ(x), since limκ→∞ tanh(κx) = 2θ(x)− 1
pointwise.
Notice now that the following chromo-electromagnetic potential

Aρ(t, ρ, θ) = 0

Aθ(t, ρ, θ) = 0

Az(t, z, ρ) = −Et
(
1− tanh

(
κρ−R

R

))
/2

A0(t, z) = 0

(41)

fulfills Landau’s gauge condition in Eq. (33) and through the field equations generates the desiredE field configuration, contained
in a cylindrical region. Also, both E and the spatial part A =

∑3
i=1Aiêi change sign under parity, as corresponds to spatial

vectors. Because this configuration is not curl-free, there is an accompanying stationary chromomagnetic B-field, circulating
clockwise as Ba = −θ̂Az,ρ (needed to fulfil ∇× E+ ∂B

∂t = 0). In the limit of large κ (sudden extinction of the E field outside
the cylinder), this is a surface field. We have not employed this more sophisticated field, but it could be useful in extensions of the
work.
Much more realistic models for the transverse profile of the chromoelectric field have been studied in lattice gauge field theory.
Adopting the values from [48] we can roughly assume that the flux tube length equalsL = 0.76 fm and has a radiusR = 0.46 fm
(since we are looking here for a qualitative explanation of the scalar piece in the decay amplitude, the specific values are not
crucial to the analysis). Furthermore we can adopt the rough approximation that the string tension is completely generated by the
chromoelectric field, seen as the energy stored into the flux tube per unit length

σ =
1

2

∫
flux-tube section

E2dA = πR2E2 =⇒ E =

√
2σ

πR2
≃ 0.167 GeV2 , (42)

where we have chosen a typical σ ≃ 0.24 GeV2 [49], and where a meson mass is of orderM ∼ σL+ 2mq .



11

FIG. 6. The electric (blue colored) and magnetic field (gold colored) corresponding to the potentials in Eq. (41) for κ = 1 (left) and κ = 7 (right).
The more intense the fields the bigger the arrowheads of the vectors are.

With this field value we can estimate Schwinger’s [2] tunnelling probability per unit time and volume for producing a fermion pair
in a constant chromoelectric field,

dP

dtdV
=

(gE)2

8π2
e−πm2/(gE) . (43)

With g ∼ 3 so that αs ∼ 1 for light quarks, this is (155MeV)4. Multiplying by the volume of the flux tube as described, one gets
a tunnelling width

Γ =
dP

dt
∼ 0.04(M − 2mq) . (44)

For the ψ(3770) → DD̄ decay this predicts about 27 MeV that reasonably compares with the physical width of 32 MeV. For a
lighter meson such as ρ→ ππ, however, the tunnelling approach of Eq. (43) spectacularly fails, predicting about 7-10 MeV when
the physical width is rather of order 150 MeV. Since we will limit ourselves to study the ratio of the chiral-symmetry breaking and
the chiral-symmetry respecting vertices, these constants are useful only to frame the discussion, but will not affect the result of
the article (the relative weight of the two structures) though they can be useful to assess future work, perhaps on the lattice, that
may be able to address the absolute value of the effective vertex.

V. PRIMITIVE GREEN’S FUNCTIONS IN LANDAU-GAUGE LATTICE QCD AND CONTINUUM FUNCTIONAL APPROACHES

A. The quark propagator and the quark-gluon vertex for space-like momenta

We now proceed to the fermion part of the effective vertex skeleton construction for the strong interactions, in analogy to the
QED discussion of section III.
Two decades of progress in lattice gauge theory and functional approaches (Dyson-Schwinger equations, Exact Renormalization
Group Equations and others) have left us a reasonable, sometimes even quantitatively precise, understanding of the primitive
Green’s functions of Landau gauge Quantum Chromodynamics.
These primitive Green’s functions are the nonperturbative matrix elements of time-ordered field products at the same point that,
if computed to lowest nonvanishing order in perturbation theory, would return one of the pieces of the Landau gauge QCD
Lagrangian; or differently put, they are the resummation of all radiative and nonperturbative corrections to each of those pieces
in the Lagrangian. The gluon and ghost propagators [50–52], and the pure Yang-Mills theory interaction vertices (ghost-gluon,
three gluon and four gluon vertices) [53–59] have all been reported in the literature.
But it is the quark-gluon vertex and the quark propagator that are of highest immediate interest to address the production of
quark-antiquark pairs yielding meson decays. The lattice data for the quark propagator is now exquisite and we replot part of it,
the mass functionM(p2), in Fig. 7.
Chiral-symmetry breaking is manifest as the value ofM is commensurate with the QCD scale rather than with the current quark
mass; and while there are not so many points in the infrared region, one can perceive the change of curvature of the function that
signals a violation of reflection positivity and thus quark confinement [60–62].
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FIG. 7. Lattice data for the quark mass function M(p2E) from [50]. The green line is the continuum parametrization of Eq. (45), normalized so
that M(0) = 300 MeV. In this way, it nicely captures the qualitative behavior of the numeric computation.

We then parametrize the full fermion propagator in Minkowski space as

S(p) =
Zf (p) /p+M(p)

p2 −M2(p)
, Z(p) =

p2 − Zf (0)Λ
2
A

p2 − Λ2
A

, M(p) =M(0)
Λ2
B

Λ2
B − p2

, (45)

with Zf (0) = 0.80, ΛA ≃ 1.7 GeV and ΛB = 0.7 GeV. This captures the overall behavior of the lattice data as well as the many
results obtained by functional methods in a simple formula that allows to make qualitative statements about quark lines.
Since the goal of this article is to address the creation of a qq̄ pair inside the toy chromoelectric flux tube given by the potential
in Eq. (41), we move on to the quark-gluon vertex. Here there is also a trove of lattice work [50, 63, 64] that informs the DSE
computations [65–68]. The latter are useful among other things because they allow a parametrization of the entire vertex, as
necessary, instead of certain kinematic sections, and because they allow consistency tests among the different Green’s functions
reported in different lattice computations.
We will address the production of light quark flavors alone, up, down and perhaps strange, as the heavier ones are closer in scale to
pQCD and spontaneous chiral symmetry breaking should affect them less [69]. This will allow to approximate the value of the qq̄A
vertex, Γ(m2

1,m
2
2) for a quark pair with each having very small massesm1 andm2 respectively, with an analytic continuation of

the lattice computation in Euclidean space ΓE . We will use an original parameterization, with the momentum flow depicted in
Fig. 8.

k

pq

FIG. 8. Quark-gluon vertex and our choice of momentum flow.

With that choice of flow in Fig. 8 we find the transverse part of the vertex, after neglecting the angular dependence, as

Γµ
T (qE , pE ; kE) =

8∑
i=1

gi(p̄
2
E)ρ

µ
i (qE , pE) , (46)

where p̄E is the averaged momentum and ρµi (qE , pE) are all possible Lorentz-invariant vertex components.
Numerical evidence shows that there are five (or, using equivalences between form factors, three) non-negligible contributions
to the vertex [20, 70, 71]. In Euclidean space, represented as their respective Padé approximants for their model functions (with
x = p̄2E/GeV2) [72], these are:

• The tree-level vertex

ρµ1,E = (δµν − k̂µE k̂
ν
E)γ

µ
E ≡ γµT,E with g1(x) = 1 +

1.6673 + 0.2042x

1 + 0.6831x+ 0.0008509x2
; (47)

• The dynamical chiral-symmetry breaking structures

ρµ2,E = iŝµE and ρµ3,E = i/̂kEγ
µ
T,E with g3(x) = −1.45g2(x) =

0.3645x

0.01867 + 0.3530x+ x2
; (48)
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• The chirally symmetric structures

ρµ4,E = /̂kEs
µ
E and ρµ7,E = /̂sE /̂kEγ

µ
T,E with g4(x) = g7(x) =

2.589x

0.8587 + 3.267x+ x2
. (49)

Where the caret over the vectors means they are normalized (k̂E = kµE/
√
k2E ), sµE = (δµν − k̂µE k̂

ν
E)p̄

ν
E and kµ = pµ + qµ. A

different vertex parametrization can be found in, e.g., [73].

B. Transformation to Minkowski space

To be able to employ this knowledge of the Green’s functions in Euclidean space back in the physical Minkowski space we need
the following Wick-rotation rules that define the Euclidean quantities,

γ0E ≡ γ0 , γiE ≡ +iγi = −iγi , kiE ≡ ki = −ki , k0E ≡ ik0 . (50)

We study how the normalized vectors transform by first noticing that
√
k2E =

√
(k0E)

2 + k⃗2E =

√
−(k0)2 + k⃗2 = i

√
k2, hence

k̂0E =
k0E√

(k0E)
2 + k⃗2E

=
ik0

i
√
k2

= k̂0 , k̂iE =
kiE√

(k0E)
2 + k⃗2E

=
−ki

i
√
k2

= ik̂i . (51)

We can then transform the combination

/̂kE = k̂µEγ
µ
E = k̂0Eγ

0 + k̂iEγ
i
E = k̂0γ0 + (ik̂i)(iγi) = k̂0γ0 − k̂iγi = /̂k .

We are then ready to transform the components of the vertex starting with

ρ01,E = iρ01 = γ0E − k̂0E /̂kE = γ0 − k̂0 /̂k ⇒ ρ01 = −i(γ0 − k̂0 /̂k)

ρi1,E = −ρi1 = γiE − k̂iE /̂kE = iγi − ik̂i /̂k ⇒ ρi1 = −i(γi − k̂i /̂k)

=⇒ ρµ1 = −i(γµ − k̂µ /̂k) . (52)

It is possible to show that the transverse part of the averaged momentum sµE is related to its Minkowski-space analogue sµ =

(ηµν − k̂µk̂ν)p̄ν as a usual vector, s0E = is0 and siE = −si. Also, its normalized version, ŝµ obeys an equivalent relation to Eq.
(51).
Gathering all this information (and computing the transformation separately for the time and spatial parts of each vertex term
analogously to Eq. (52)), the dominant contributions to the transverse part of the qqg vertex in Minkowski space come from the
following five terms,

ρµ1 = −i(ηµν − k̂µk̂ν)γν ρµ2 = ŝµ

ρµ3 = i/̂kρµ1 ρµ4 = −i/̂kŝµ ρµ7 = /̂s/̂kρ
µ
1

.

In this discussion we have adopted widely used conventions of Euclidean space field theory and directly continued them into
Minkowski space at the physically relevant point. The reason is to be able to use the computed parametrizations of the Green’s
functions. However, there is a mismatch in conventions that needs to be fixed before proceeding. The full quark-gluon vertex in
Minkowski space needs to be real, since it is part of an effective Hamiltonian, by definition Hermitian. This Hermiticity is not
directly obtained, and some of the gi form factors need to be rephased from their conventional Euclidean space usage. But since
we do not have a Minkowski space calculation at hand, it is not direct to discern what the correct convention is, respectively, how
the correct analytic continuation has to be performed. We have found expedient to fix this phase by matching to perturbation
theory, which can be read off subsection III C (the color factor in QCD is common to all vertex structures, so it does not affect the
rephasing, and a comparison with the known QED Pauli form factor is possible). This fixes the phase of g3 and internal consistency
then shows what the others are. To make every structure real in Minkowski space we then need to rephase g3 → −ig3, g4 → −ig4
and g7 → −ig7 (which are the form factors of the operators carrying a /̂k factor).

Analytic structure for time-like momenta

The return from Euclidean to physical momentum space is not difficult while using explicit expressions in terms of rational func-
tions, Eq. (47), (48) and (49). The concept is understood with the simplest example of such rational functions,

F (P 2
E) ≡

1

P 2
E + C2

=
1

(p0E)
2 + E(p)2 + C2

(53)
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FIG. 9. Evaluation of the absolute values of the vertex model functions gi(x). These form factors have poles at the value x∗
i with x∗

1 ≃ −1.46
(outside the graph and irrelevant for light quark physics), x∗

2,3 ≃ −6.48 × 10−2 and x∗
4,7 ≃ −2.88 × 10−1, seen as the mountainlike

enhancements in the three-dimensional views, and as the asymptotes in the two-dimensional cut taken along the real axis.

which we imagine known on an Euclidean four-momentum argument as shown. The analytical back-continuation p0E → p0 is
not obstructed because of causality, which means that poles in the p0 plane can be chosen in the first and third quadrants, using
the Feynman prescription. The second and fourth quadrants are then free to perform the Wick rotation. (The simple rational
functions used here have no cuts to consider.)
Then, the analytical continuation of F in Eq. (53) takes us to

F (P 2) =
1

(−(p0)2 + E(p)2) + C2
=

1

(−P 2) + C2
. (54)

Thus, to extend the vertex functions (assuming that their rational approximants are qualitatively reasonable), we only need to
work along the realP 2 axis and change the argument of the rational functionF from positive (the Euclidean side) to negative (the
Minkowski side) in the last, two-dimensional plot of Figure 9.
This procedure works because of our explicit model expressions, but is not obvious if one is in possession of just a numerical
table on the Euclidean side; but for short-distance continuations where the excursion into Minkowski space wanders not too far
from that Euclidean side, one does not need sophisticated dispersion relations that swipe the entire complex plane: one should
be able to perform the analytical continuation with only “regional” (a small segment suffices [74]) knowledge of F , employing the
differential Cauchy-Riemann equations, which are quite unstable but local. They serve to show that it is sound to evaluate the
rational function with slightly negative instead of slightly positive argument.
A different issue is to then try to evaluate the systematic uncertainty due to the choice of rational Padé approximant, but that
discussion is an entire project in itself, the interested reader can find a worked-out example in [75].
We wish to evaluate the vertex functions at physical four-momenta and hence we need to check where the pole positions of the
form factors in Eqns. (47), (48, (49), if any, are encountered, in the region near the physical masses of light quarks. To see this we
have prepared Fig. 9. More robust analytic continuations to the whole complex plane of QCD’s correlation functions exist in the
literature, see for example [76, 77].
The figure shows three-dimensional plots of the gi form factors (as real functions of the x = p2E variable extended to the complex
plane) and a two-dimensional cut (for real x).
In the three-dimensional plots, small white circles mark the position of the current quark masses in the Lagrangian, that are
sufficiently near x = 0 to not be affected by the form factors. The constituent masses from the dressed propagator are however
near those poles. The two dimensional cut shows the precise position of those for g3 and g4: they appear near the constituent
quark masses and therefore the relative intensity of the form factors for physical, low-scale quark masses is sensitive to model
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details and future detailed studies are warranted. (The growth of the primitive γµ vertex’s form factor g1 is too slow for any pole
to appear in the momentum region of interest).

TABLE II. Actual numerical value of the gi functions extrapolated to the Minkowski-space side. As the constituent-quark mass value is similar
to the value of the pole positions of the gi, we quote the value of the coefficients at two relevant points on both sides of the pole, corresponding
to constituent quark masses of 250 MeV and 300 MeV. This larger value is more in line with quark model phenomenology, so the first column
marked “beyond pole” should be taken as reference. But it is clear that the precise value of the form factor is sensitive to the quark mass, allowing
only for qualitative statements.

Constituent quark mass xc = −0.09 (beyond pole) Constituent quark mass xc = −0.06 (just before pole)

g1(x) 2.76 2.73

g3(x) = −1.45g2(x) 6.6 −20

g4(x) = g7(x) −0.41 0.23

In consequence, we give in Table II the value of the form factors for two typical values of would-be constituent quark masses,
taken just above and just below those two poles. We see that the chiral-symmetry violating structure has a dominant form factor,
g3, in both cases, although we are not able to pinpoint its precise value without going into uncertain model-dependence. One can
see on the Euclidean side that g3 and g7 (and therefore also g2 and g4) are rapidly varying and thus the appearance of poles on
Minkowski’s side is likely, though not assured.3 Happily, the relative weight of the two spin contributions shown below does not
seem to be very sensitive to details of this extrapolation.

VI. PAIR CREATION INSIDE THE FLUX TUBE

In this section we collect a few intermediate steps concerning the qq spin structure (in pieces that we believe would enter a fuller
calculation, and are representative thereof). In first order of business, we establish contact with the quark model formulation of
the 3P0 formalism. We also directly quote the result for a color octet emission. We leave for the next section VII the treatment of
the minimum skeleton diagram that can emit a color singlet pair.

A. For comparison: Effective Hamiltonian in quark model terms

Let us first establish contact between the Landau gauge DSE and the quark model formalisms, which was the initial intent and
motivation of our investigation. We will slightly modify the treatment of Segovia et al. [14] so that we can match it to the covariant
approach. The transition operator of the 3P0 model, in relativistic notation, is

T3P0
=

√
3gs

∫
d3x

∫
d3k1

(2π)3
√
2Ek1

d3k2

(2π)3
√

2Ek2

e−ix·(k1+k2)
∑
s,s′

ask1

†bs
′†

k2
ūs(k1)v

s′(k2) (55)

which is nothing but the part of the 3P0 Hamiltonian of Eq. (1) that creates a quark-antiquark pair. This is missing informa-
tion about where the energy of the created quark-antiquark pair comes from. In old-fashioned perturbation theory that is not a
problem, since the interaction potential acts as the source of that energy. But in covariant perturbation theory, we need to explic-
itly account for it. A possible method that achieves this is to supply an auxiliary field interpolating between the vacuum and the
chromoelectric flux tube configuration, ⟨E|Φ|0⟩ ≠ 0, so that

H3P0
→

√
3gs

∫
d3xΦ(x)ψ̄(x)ψ(x). (56)

The transition operator can be used to compute the corresponding Feynman amplitude, M, by taking its matrix element

⟨ps, qs′|iT3P0
|E⟩ =

∫
d4x ⟨ps, qs′| − i

√
3gsψ̄(x)ψ(x)|0⟩ ⟨0|Φ(x)|E⟩

= −i
√
3gs

∫
d4xe−ix(p+q−k)ūs(p)vs

′
(q) , (57)

and, after extracting the delta function, we identify

i(2π)4δ(4)(p+ q − k)Mss′
3P0

(p, q) = ⟨ps, qs′|iT3P0
|0⟩ = −i

√
3gs (2π)

4δ(4)(p+ q − k)ūs(p)vs
′
(q) . (58)

3 Higher-order Padé, resp., rational approximations to the form factor g3 indicate that the pole closest to the origin is a very robust feature with a quite stable
pole position whereas the second pole is an artefact of the employed order of the approximation.
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Therefore, the Feynman amplitude M is

Mss′
3P0

(p, q) = −
√
3gs ū

s(p)vs
′
(q) . (59)

It is then direct to show that, defining A = δ(3)({p})M, in the CM frame and putting external particles on shell,

Ass′
3P0

(p) ∝ ūs(p)vs
′
(−p) = 2p · σss′ , (60)

which is of course a purely 3P0 contribution.

B. Setup with QCDGreen’s functions: color octet production in the skeleton expansion

Now that we have a clearer idea of what structures we would need to be reproducing from the point of view of the covariant
Landau gauge Green’s functions, we write down the pair-production amplitude, first in a color octet state from a single vertex
insertion

⟨ps, qs′|iToctet|0⟩ = ⟨ps, qs′| − ig

∫
d4xψ̄i(x)T

a
ijA

a
µ(x)Γ

µψj(x)|0⟩ =

= −ig
∫
d4x

∫
d4k

(2π)4
e−ix(p+q−k)Ãa

0(k)ū
s
i (p)T

a
ijΓ

0(p, q,−k)vs
′

j (q) =

= −igÃa
0(p+ q)ūsi (p)T

a
ijΓ

0(p, q)vs
′

j (q) , (61)

where Ãa
0(k) is the Fourier coefficient ofAa

0(x) (this result is analogue to the textbook QED computation in [39]).
For the constant (chromo)electric field flux tube, approximated as a uniform (chromo)electric field, we have that Ãa

0(p + q) ∝
∂p3

δ(4)(p+ q) (which can be seen by writing the x3 = z in the Coulomb potential as a derivative respect to the third momentum
component before the Fourier transform). The momentum derivative acting on the delta function is passed, upon using Green’s
theorem for integration by parts, to the fermion kernel, so that we obtain,

⟨ps, qs′|iToctet|0⟩ = ⟨ps, qs′| − ig

∫
d4xψ̄i(x)T

a
ijA

a
µ(x)Γ

µψj(x)|0⟩

= −ig
∫
d4xeix(p+q)(−Ex3)ūsi (p)T a

ijΓ
0(p, q)vs

′

j (q) (62)

= gE(2π)4δ(4)(p+ q)

[
∂

∂p3
(
ūsi (p)T

a
ijΓ

0(p, q)vs
′

j (q)
)]

, (63)

where we assumed that we can integrate by parts in p.4
Therefore, the Feynman amplitude now reads, defining A = δ(3)({p})M,

Ass′

octet(p) = −igE
[
∂

∂p3
(
ūsi (p)T

a
ijΓ

0(p, q)vs
′

j (q)
)]

q=−p

. (64)

In comparing this with Eq. (59) we see that, because of the uniform chromoelectric field in theOZ direction, the invariance under
rotations is broken and we have an explicit derivative respect to p3. For the rest, we see that the color-octet production of a
quark-antiquark pair falls-off directly from the Landau-gauge quark-gluon vertex.

FIG. 10. The perturbative octet-channel quark-gluon scattering kernel that gives rise to pair creation is chirally invariant. However, in the
skeleton expansion, both the propagator and the two vertices which appear in its skeleton expansion [81] acquire chiral-symmetry breaking
parts conveniently generated by their respective Dyson-Schwinger equations assisted by lattice data.

4 The appearance of a delta function imposing Ep + Eq = 0 in the amplitudes of eqns. (59) and (63) is a consequence of the assumption that there is no time
dependence in the interacting Hamiltonian. We can understand that this is an approximation, a more realistic model would implement the time dependence on
the flux-tube chromoelectric potential when the flux tube breaks (hence giving the missing excess energy for creating the qq̄ pair from the flux tube). These delta
distributions are irrelevant for our treatment since we will only compare the amplitudes after extracting those distributions. An example comes by arguing, as
would Glendenning and Matsui [78], that in QCD the created pair would quickly cancel the chromoelectric flux tube, a better approximation would be E =
constant → E = E0θ(−t), that is, a step function in which the hadron decay at t = 0 eliminates excess linear field. Then the energy conservation delta rather
becomes a finite distribution sin2(∆Et/2)

(∆Et/2)2
that allows for energy redistribution during the time in which the daughter hadrons fly apart. However, real-time

lattice calculations demonstrate that string-breaking is quite complicated with several sub-processes playing an important role [79, 80] and the corresponding
time dependence will be quite involved. In any case, since we are addressing the relative intensity of the various possible spin-orbital combinations, we will
drop the Dirac energy-conservation-δ distributions and work, preferably, with the Feynman amplitudes M as soon as they can be provided.
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VII. SINGLET PRODUCTION: SKELETON EXPANSIONOF THE QUARK-GLUON SCATTERING KERNEL

The quark-gluon vertex produces a qq pair in a color-octet state only. To examine color-singlet production, we need to extract
two gluons from the background field.
The equivalent of the Breit-Wheeler process depicted in figure 11 is chirally symmetric in perturbation theory. However, pertur-
bation theory can be reorganized in the so called “skeleton expansion” in which all the primitive Green’s functions (those reflecting
a term in the renormalizable QCD Lagrangian) are substituted by the fully interacting ones.
We compute the amplitude

⟨ps, qs′|iTsinglet|0⟩ = ⟨ps, qs′| − g2

2

∫
d4xψ̄i(x)T

a
ijA

a
µ(x)Γ

µψj(x)

∫
d4yψ̄i(y)T

a
ijA

a
ν(y)Γ

νψj(y)|0⟩ =

= −g2
∫
d4xd4y

∫
d4t

(2π)4
Ãa

0(p− t)Ãa
0(q + t)Kss′

ab (p, q, t) , (65)

where the skeleton-expanded kernel equals

K ss′

ab (p, q, t) ≡
[
ūsi (p)T

a
ijΓ

0(p,−t)S(t)T b
jkΓ

0(q, t)vs
′

k (q)
]
+ crossed amplitude , (66)

and S(t) is the dressed fermion propagator.
For the case of a constant, classical electric field insertion, as described in section IV, we get

⟨ps, qs′|iTsinglet|0⟩ = ⟨ps, qs′| − g2

2

∫
d4xψ̄i(x)T

a
ijA

a
µ(x)Γ

µψj(x)

∫
d4yψ̄i(y)T

a
ijA

a
ν(y)Γ

νψj(y)|0⟩ =

= −g2
∫
d4xd4y

∫
d4t

(2π)4
e−i(x−y)teixpeiyq(−Ex3)(−Ey3)Kss′

ab (p, q, t) . (67)

Now we assume that we can integrate by parts in p and q to obtain

⟨ps, qs′|iTsinglet|0⟩ = −(2π)4δ(4)(p+ q)(gE)2
[
∂

∂p3
∂

∂q3
K ss′

ab (p, q, t)

] ∣∣∣
t=−q

. (68)

FIG. 11. The perturbative singlet-channel quark-gluon scattering kernel that gives rise to pair creation, analogous to the Breit-Wheeler process,
is chirally invariant save for the small current quark mass in the fermion propagator. However, in the skeleton expansion, both the propagator
and the two vertices acquire chiral-symmetry breaking parts conveniently generated by their respective Dyson-Schwinger equations assisted by
lattice data.

A. Comparing the Amplitudes

Gathering the results from eqns. (59), (63) and (68) we have the following amplitudes, A({p}) = δ(3)({p})M({p}), for the case
of the homogeneous chromoelectric field of Eq. (39):

3P0 Model Octet channel Singlet channel

Ass′(p) −
√
3gs ū

s(p)vs
′
(−p) −igE

[
∂

∂p3

(
ūs
i (p)T

a
ijΓ

0(p, q)vs
′

j (q)
)] ∣∣∣

q=−p
i(gE)2

[
∂

∂p3
∂

∂q3
K ss′

ab (p, q, t)
] ∣∣∣

t=−q=p

where the evaluations after taking momentum derivatives also evaluate the energy components to their on-shell values.
For the sake of comparison, we will extract some of the different angular momentum contributions by projecting the amplitudes
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Ass′(p) as

A
1S0(|p|) =

∑
s

∫
dΩAss(p) (69)

A
3S1
i (|p|) =

∑
s,t

∫
dΩσst

i Ats(p) (70)

A
3P0(|p|) =

∑
s,t

∫
dΩ p̂ · σstAts(p) (71)

A
1P1
i (|p|) =

∑
s

∫
dΩ p̂i Ass(p) . (72)

Once more, we emphasize that, because of the reduced rotational symmetry in the presence of the homogeneous chromoelectric
field, that only the angular momentum component along the said field is a good quantum number, so that we should relabelS → Σ,
P → Π as in molecular physics.

B. Singlet Channel QCD spin components

For the full DSE parametrization of the QCD vertex in Eqs. (47), (48), (49), the amplitude from Eq. (68) simplifies if we introduce
the following auxiliary quantities with dimensions of squared energy, in which the various dynamical scales of the propagator
parametrization substitute for a mass

E2
AZ ≡ |p|2 + Z0Λ

2
A ; E2

A ≡ |p|2 + Λ2
A ; E2

B ≡ |p|2 + Λ2
B ; E2

p ≡ |p|2 +m2 . (73)

The actual mass here ism =M(0) that we also take as approximately equal toM(M2) in Minkowski space for simplicity of the
following expressions, sinceM(p2) is smooth for small virtualities, and not distinguish them in the following formulae.

In them we also take the symmetric kinematic section χ = 0 (setting the asymmetry variable from subsection III B which dis-
tributes the energy production among the two vertices), that is, both field insertions provide an equal energy Ep. Hence, this is
a simplified kinematic case, which still calls for symbolic computing assistance to reduce it before attaining this compact form).
Nonetheless, remember that in QED we observed that the ratio 3Σ1/

3Π0 of the amplitudes was independent of the asymmetryχ.
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The result becomes

A
3Σ1
QCD(|p|) ∝

−π
E3

p

(
2E2

B |p|4 + Λ4
BE

2
p − |p|6

) E2
B

E2
A

(
g21 2|p|Ep

[
E2

Am(Z0 − 2)Λ2
B + E2

AZ

(
E2

BEp +m|p|2
)
−m|p|2(Z0 − 1)Λ2

B

]
+ g22m|p|Ep

[
E2

A

(
E2

B(Z0 + 1)− |p|2
)
− E2

B |p|2(Z0 − 1)
]

+ g23 2|p|Ep

(
2E2

AΛ
2
Bm+ E2

AZE
2
Bm+ E2

AZE
2
BEp

)
+ g24m|p|Ep

(
E2

AΛ
2
B − E2

AZE
2
B

)
+ g27 2m|p|Ep

(
−E2

AΛ
2
B − 2E2

AZE
2
B

)
+ g1g2 2Ep

[
Λ2
AE

2
B |p|2Z0 +mE2

AΛ
2
B(Ep −m) + E2

B |p|4
]

+ g1g3 4|p|EpE
2
AZE

2
B (m+ Ep)

+ g1g7 2Ep

[
E2

A

(
m|p|2 (m+ 3Ep)− E2

B

((
m2 − |p|2Z0

)
+ 3mEp

))
− E2

B |p|4(Z0 − 1)
]

+ g3g7 2Ep

(
3E2

Am|p|2(Ep +m) + 3E2
AZE

2
B |p|2 − 3E2

AE
2
Bm

2 −mE2
AE

2
BEp

)
+ g4g7 2m|p|Ep

(
E2

AZE
2
B − E2

AE
2
B + E2

A|p|2
)

+ g2g3 2
(
−E2

AΛ
2
Bm(Ep −m)− Λ2

AE
2
B |p|2Z0 − E2

B |p|4
)

+ 2g2g7m|p|Ep

(
E2

A

(
E2

B(Z0 + 1)− |p|2
)
− E2

B |p|2(Z0 − 1)
))

(74)

A
3Π0
QCD(|p|) ∝

−16/3

E2
p

(
−2E2

B |p|4 − Λ4
BE

2
p + |p|6

) E2
B

E2
A

(
g21 m|p|

(
E2

A

(
E2

B(Z0 − 3) + 3|p|2
)
− E2

B |p|2(Z0 − 1)
)

+ g22 m|p|
(
E2

A

(
E2

B(Z0 + 1)− |p|2
)
− E2

B |p|2(Z0 − 1)
)

+ g23 m|p|
(
E2

A

(
E2

B(Z0 + 3)− 3|p|2
)
− E2

B |p|2(Z0 − 1)
)

+ g24 m|p|
(
E2

B |p|2(Z0 − 1)− E2
A

(
E2

B(Z0 − 1) + |p|2
))

− g27 m|p|
(
E2

A

(
3Z0E

2
B + Λ2

B

)
+ 3|p|2E2

B(1− Z0)
)

+ g1g2 2
(
−m2E2

AΛ
2
B + |p|2Λ2

AE
2
BZ0 + |p|4E2

B

)
+ g1g3 2|p|EpE

2
AZE

2
B

− g1g7 4mEpE
2
AΛ

2
B

− g2g3 2mEpE
2
AΛ

2
B

+ g3g7 4
(
−m2E2

AΛ
2
B + |p|2Λ2

AE
2
BZ0 + |p|4E2

B)
)

+ g4g72m|p|
(
Λ2
AE

2
B(Z0 − 1) + |p|2E2

A

))
. (75)

Not all possible structures appear in these equations: for example, the cross product g2g4 seems to be absent, but this is plausibly
a model-dependent feature so we do not make much of it.
While these explicit expressions are complicated to analyze, it is direct to numerically compute and plot the two spin production
mechanisms together to compare their relative intensity as we did above in section III, and the result is exposed in figure 12.
The result of the figure is clear: for values of |p| below the fermion mass scalem, the 3Π0 amplitude dominates independently of
the chosen value of the quark mass. While the full analytical expressions are difficult to interpret, we can enlighten the discussion
by taking two appropriate limits.
In the limitp → 0, we can read off the ratio of the threshold-limit pair production spin amplitudes which, for the two components
of interest, equal

lim
p→0

A
3Σ1
QCD(|p|) = −8π (g1 + g3) g7

m2
(76)

lim
p→0

A
3Π0
QCD(|p|) = −32 (g1 + g3) (g2 + 2g7)

3m2
. (77)

Comparing the two expressions shows the reason for the 3Π0 production threshold dominance in the numerical computations of
figure 12: the presence of the chiral-symmetry breaking structure g2 in Eq. (77) (since g3 contributes in the combination g1 + g3
in both spin amplitudes). Indeed, a glance at Table II above reveals that the chiral-symmetry breaking structures g2, g3 provide
much larger vertex contributions than the symmetric g4, g7 ones, for typical kinematic values. A lattice-gauge theory computation
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FIG. 12. Comparison of the 3Π0 and 3Σ1 angular momentum components in the QCD skeleton approximation here developed, in four kine-
matic sections. The qq pair is produced in its center of mass frame. The 3Π0 vertex is seen to be dominant for small quark momentum (OX
axis, in units of the quark mass) and the 3Σ1 dominates for large momenta. |p| is in units of m, except for the last plot in which arbitrary units
are employed (with the scale ultimately controlled by ΛA, ΛB , etc. from the Schwinger-Dyson obtained parametrization from section V).

would here be very interesting to ascertain the degree of model dependence of this assertion. All we can do to alleviate it at the
present time is to systematically study the dependence with the quark mass on the Minkowski side. There are two poles of the
extrapolated vertex coupling there, which may or may not mean anything depending on the extrapolation used, but the finding,
shown in figure 13 is robust: left or right and at any distance from those two poles, basically everywhere, the 3Π0 amplitude is
dominant at threshold.

FIG. 13. Absolute values (in log scale, and up to factors common to both) of the 3Π0 and 3Σ1 contributions to our computed pair production
kernel at threshold (where p = 0) as function of m2 on the physical Minkowski side. The 3Π0 structure dominates for all plotted values. This
is in spite and independently of the (perhaps artificial) pole of the propagator parametrization (that induces a pole of the amplitudes), when
x∗
2,3 ≃ −6.48× 10−2. Close to x = −0.0418857 both amplitudes almost vanish at the p = 0 threshold.

We also quote the values in the opposite, chiral limit in which |p| >> m, which turn out to be

lim
m→0

A
3Σ1
QCD(|p|) = 2π

E2
AZ

|p|2E2
A

(g1 (g1 + g2 + 2g3 + g7) + g3 (−g2 + g3 + 3g7)) (78)

lim
m→0

A
3Π0
QCD(|p|) =

32

3

E2
AZ

|p|2E2
A

(g1 (g2 + g3) + 2g3g7) . (79)

Here, the 3Σ1 amplitude is dominant. This is as expected: at large momenta, spontaneous chiral symmetry breaking is less impor-
tant.
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VIII. CONCLUSIONS ANDOUTLOOK

In this work we set out to ascertain whether the 3P0 production mechanism for quark-antiquark pairs in hadron decays could
receive support from existing QCD Greens functions studies that have accrued in the decades since the mechanism was first
proposed.
In doing so, we have noted that, because of the chromoelectric field providing a net local axis of reference, the total orbital angular
momentum is not an adequate quantum number for the produced pair. Hence, as in the theory of diatomic molecules, we need to
use its third component, so that 3Π0 is a more appropriate term for this vertex. This we do find to be a significant contribution
in hadron decays but also in electron-positron production in an intense electric field, a very active line of research in which,
surprisingly, spin is not so often addressed.
This reduced symmetry means that the fermion-antifermion relative orbital angular momentum in the 3Π0 decay is parallel (+1)
or antiparallel (-1) to the electric (chromoelectric) field, and can also be 0 in the Σ waves respecting chiral symmetry. This effect is
most intense at low momenta p < me in Electrodynamics or p < M , the scale of the constituent quark mass, in Chromodynamics,
because it is chiral symmetry breaking. At higher momenta, that make the masses negligible, the production reverts to 3Σ1, which
is what one expects from a gauge theory treated with a perturbative formalism.
Other decay modes are also possible and we have given (at a very qualitative level) some idea of their possible relative numerical
importance.
We are far from producing a full computation comparable to Schwinger’s complete evaluation of the spin-averaged emission rate
in QED, but we believe that the skeleton diagrams that we have examined will turn out to be part of any more complete effective
action treatment that may be attempted in the future, as they contain the relevant fermion lines and vertices that should enter in
such computations.
With the material at hand, we do not think it is meaningful to attempt an extraction of the total rates in either spin decay channel,
but find it instructive to report, as we have, the relative weight of the main spin structures: our results support the quark model
lore that the decay mechanism producing quark-antiquark pairs is the 3P0 one, although we qualify this to be the less determined
3Π0.
To summarize, our findings would suggest that in QED, 3Σ0 is the dominant (lowest order) e−e+ emission mechanism, followed
by 3Π0 at threshold, which dominates over 3Σ1; this last one, however, takes over at larger momenta of the emitted pair, p > me.
In QCD, color-singlet qq emission requires at least two field insertions and hence 3Π0 near threshold (but 3Σ1 at large momenta)
is obtained.
This finding lends support to the traditional 3P0 mechanism in the following sense. Since 3Π0 requires mL = 1 =⇒ L ≥ 1,
without restricting total J , the smallest angular momenta (and thus the smallest energy required to overcome centrifugal barriers
and chromomagnetic effects) is theL = 1, J = 0 configuration, or 3P0. To distinguish 3P0 and 3Π0 does not seem possible with
basic meson decays, interpreted as (qq) → (qq)(qq).
To see this, note that for the parent meson, the possible quantum numbers are spin si = 0, 1, internal orbital angular momentum
l, and parity Pi = (−1)l+1. The two daughter mesons in the final state have sf = 0, 1, 2, internal and relative orbital l1, l2, L
and parity (one antiparticle has been produced) Pf = (−1)l1+l2+L+2, meaning that orbital angular momentum has to change by
an odd number of units to preserve parity.
Total angular momentum conservation implies that ∆J = 0, so the changes in spin and orbital angular momentum have to
compensate each other, |∆S| = |∆L|. Because ∆S = 0,±(1, 2), these are the values that ∆L can take. Among them, ∆L = 1
is common to both 3P0 and 3Π0, ∆L = 0 to none, and only ∆L = 2 could distinguish the two mechanisms. But this is an even
change in orbital angular momentum, which parity conservation does not allow. So it looks unpromising to try to distinguish both
mechanisms, and they are for all purposes undistinguishable in ordinary mesons.
One would hope that future work could shed light on the nuanced distinction between these quantum numbers of the produced
pair. Decays of baryon resonances with high spin (Yrast states [21]) or multiquark states might offer possibilities for new tests: but
the flux tube might then be more complicated and not be well approximated by a uniform field.
We hope that this article will inspire more researchers to address the spin quantum numbers of particle-antiparticle pairs produced
in intense fields. Other areas of research where this could be of interest include heavy ion collisions (featuring intense color fields),
neutron stars (where magnetic fields are very intense, which do require separate treatment), etc.

ACKNOWLEDGMENTS

ASB thanks the theoretical physics group at Graz for its hospitality during an extended visit that facilitated this project. Sup-
port by the City of Graz for this visit is gratefully acknowledged. Supported likewise by Spanish MICINN under grant numbers
PID2019- 108655GB-I00/AEI/10.13039/501100011033 and PID2022-137003NB-I00; EU’s 824093 (STRONG2020); and Uni-
versidad Complutense de Madrid under research group 910309 and the IPARCOS institute. ASB acknowledges the support of the
EU’s Next Generation funding, grant number CNS2022-135688.



22

IX. APPENDICES

We list here the conventions that, while necessary for full reproductibility of the work, can be glossed over by most readers.

A. Gamma-matrix and spinor representations

We follow the conventions of Peskin & Schroeder[39], Eq.(3.25) and following:

γ0 =

 0 I2
I2 0

 , γi =

 0 σi

−σi 0

 , γ5 =

−I2 0

0 I2

 . (80)

σ = (I2,σ) and σ̄ = (I2,−σ)

us(p) =

√
p · σξs

√
p · σ̄ξs

 , vs(p) =

 √
p · σξs

−
√
p · σ̄ξs

 (81)

with

ξ+ =

1

0

 , ξ− =

0

1

 (82)

and the spin generators being

σ0i =
i

2

−σi 0

0 σi

 . (83)

B. Color factor for the quark-gluon scattering kernel

The amputated four-legged function carries T a
ijT

b
jk that decomposes in an octet piece (that we do not further considered since it is

subleading in the skeleton expansion to the three-point function already described at length) and a singlet with a constant κδabδik .
This κ is determined by projecting with δab

N2
c−1 obtaining

1

N2
c − 1

T a
ijT

a
jk = κ

1

N2
c − 1

δaaδik . (84)

The right-hand side is just κδik . The left-hand side is straightforward to compute from the closure relation

T a
ijT

a
jk =

1

2
(δikδjj −

1

Nc
δijδjk)

so that κ = 1
2Nc

. We then do not need to multiply our skeleton kernel by this factor since it does not distinguish the different spin
configuration in our computation, it being instead a global factor. It would be necessary if a full model based on the kernel was to
be constructed and checked against data.
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[37] A. Golub, S. Villalba-Chávez, and C. Müller, Phys. Rev. D 105, 116016 (2022), arXiv:2203.14776 [hep-ph].
[38] M. Diez, R. Alkofer, and C. Kohlfürst, Phys. Lett. B 844, 138063 (2023), arXiv:2211.07510 [hep-ph].
[39] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995).
[40] C. Itzykson and J. B. Zuber, Quantum Field Theory, International Series In Pure and Applied Physics (McGraw-Hill, New York, 1980).
[41] R. Alkofer and J. Greensite, J. Phys. G 34, S3 (2007), arXiv:hep-ph/0610365.
[42] P. O. Bowman and A. P. Szczepaniak, Phys. Rev. D 70, 016002 (2004), arXiv:hep-ph/0403075.
[43] G. S. Bali, C. Schlichter, and K. Schilling, Prog. Theor. Phys. Suppl. 131, 645 (1998), arXiv:hep-lat/9802005.
[44] G. C. Nayak, JHEP 03, 001 (2013), arXiv:1201.2666 [hep-ph].
[45] N. Isgur and J. E. Paton, Phys. Lett. B 124, 247 (1983).
[46] A. Casher, H. Neuberger, and S. Nussinov, Phys. Rev. D 20, 179 (1979).
[47] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, Phys. Rept. 97, 31 (1983).
[48] P. Cea, L. Cosmai, and A. Papa, Phys. Rev. D 86, 054501 (2012), arXiv:1208.1362 [hep-lat].
[49] F. Buisseret and C. Semay, Phys. Rev. D 71, 034019 (2005), arXiv:hep-ph/0412361.
[50] O. Oliveira, A. Kızılersu, P. J. Silva, J.-I. Skullerud, A. Sternbeck, and A. G. Williams, Acta Phys. Polon. Supp. 9, 363 (2016), arXiv:1605.09632

[hep-lat].
[51] A. Cucchieri and T. Mendes, Phys. Rev. D 78, 094503 (2008), arXiv:0804.2371 [hep-lat].
[52] A. C. Aguilar and J. Papavassiliou, Phys. Rev. D 77, 125022 (2008), arXiv:0712.0780 [hep-ph].
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