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We numerically study a discretized Vicsek model (DVM) with particles orienting in q possible
orientations in two dimensions. The study investigates the significance of anisotropic orientation
and microscopic interaction on macroscopic behavior. The DVM is an off-lattice flocking model like
the active clock model [ACM; EPL 138, 41001 (2022)] but the dynamical rules of particle alignment
and movement are inspired by the prototypical Vicsek model (VM). The DVM shows qualitatively
similar properties as the ACM for intermediate noise strength where a transition from macrophase
to microphase separation of the coexistence region is observed as q is increased. But for small q
and noise strength, the liquid phase appearing in the ACM at low temperatures is replaced in the
DVM by a configuration of multiple clusters with different polarizations, which does not exhibit any
long-range order. We find that the dynamical rules have a profound influence on the overarching
features of the flocking phase. We further identify the metastability of the ordered liquid phase
subjected to a perturbation.
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I. INTRODUCTION

Active matter systems represent a fascinating class of
materials composed of self-propelled entities that convert
energy into mechanical motion, leading to complex and
often out-of-equilibrium behaviors [1–4]. The emerging
phenomena in active matter systems have gained signif-
icant attention in recent years due to their potential ap-
plications in various physical, biological, and engineering
systems [2, 5, 6]. Active matter exhibits dynamic behav-
iors such as collective motion [2], pattern formation [7, 8],
and even the ability to exhibit controlled transport [9].
These systems encompass a wide range of physical, chem-
ical, and biological entities, from swimming bacteria [10],
mammalian herds [11], fish schools [12, 13], and sterling
flocks to amoeba and bacteria colonies [14], to the co-
operative behavior of cytoskeletal filaments and molec-
ular motors in living cells [9, 15, 16] or in vitro envi-
ronments to synthetic colloidal particles equipped with
motors [17, 18]. To understand and unravel the funda-
mental principles governing active matter systems, new
models [8] have been developed in the last two decades.

The Vicsek model (VM), introduced by Vicsek and col-
laborators in 1995 [19], provides a fundamental frame-
work for studying the collective behavior of particles un-
der aligning interactions. In this model, particles ad-
just their velocities to align with the average velocities
of neighboring particles, leading to the emergence of co-
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herent motion and ordered patterns. VM has played a
crucial role in advancing our understanding of flock dy-
namics [20–23]. At low particle density or high noise, the
particles move in random directions, and no long-range
order is observed. The transition from the gas phase at
high noise and low density to the polar ordered Toner-
Tu phase at low noise and high density, displaying long-
range order (LRO) by a coherent motion of all particles,
is first order [24]. But, in contrast to conventional first-
order phase transition scenarios, the coexistence phase
of the VM can manifest as either multiple bands of par-
ticles moving collectively, a phenomenon known as mi-
crophase separation [23, 25], or a polar-ordered cross sea
phase [26], primarily driven by giant number fluctuations
(GNF) [23].

Nevertheless, it is important to note that the VM
posits a continuous range of possible directions for
the motion of particles. However, when considering
a scenario in which particles are constrained to dis-
crete, equidistant angular orientations within a two-
dimensional plane, such as in the active clock model
(ACM) [27, 28], the VM-inspired dynamical principles
governing particle alignment and movement remain un-
charted territory. In a recent study on the ACM [27], it
was revealed that in large systems, any values of discrete
orientations result in significant changes in phenomenol-
ogy when compared to the VM. These changes include
the loss of long-range correlations, the pinning of global
order, and the transformation of coexistence bands into
a single moving domain. Additionally, another study on
the ACM [28] with different dynamical rules shows that
for a small number of directions, the ACM mirrors the ac-
tive Potts model (APM) [29, 30], exhibiting macrophase
separation of the coexistence region and reorientation
transition of the ordered band from transverse to longi-
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tudinal motion as bias velocity is increased. Conversely,
with more directions, the ACM transitions towards the
VM, displaying microphase separation and transversely
moving bands without the reorientation transition. Re-
markably, the transition in the q → ∞ limit of ACM [28],
known as the active XY model, shares the same univer-
sality class as the VM. Motivated by these findings, in
this paper, we undertake an extensive computational in-
vestigation that examines in detail a q-state discretized
version of the Vicsek model (DVM) where the rules of
particle alignment and movement follow the Vicsek pro-
tocol.

We ask several intriguing questions that persist within
the context of the DVM, e.g., (a) How does discretizing
the directions of particles in the VM, affect the overall
diverse collective dynamics and steady-state phases? (b)
What is the impact of q and system size on the coex-
istence region (micro- or macro-phase separation)? (c)
How do the behavior of the density fluctuations, the di-
rection of the system’s global order, and the behavior of
correlation functions in the liquid phase correspond with
the self-organized patterns in the phase-coexistence re-
gion? (d) What is the nature of the DVM liquid phase
as a function of q? To answer these questions, we study
the DVM in an off-lattice domain, focusing on the three
key factors: the anisotropy and degeneracy parameter q,
noise level η, and system size.

The paper is organized as follows: after introducing
the model in Sec. II, we present our numerical results in
Sec. III. Finally, we summarize and discuss the implica-
tions of our findings in Sec. IV.

II. MODEL

We consider N self-propelled particles within a two-
dimensional off-lattice domain of size Lx × Ly (Lx > Ly

for rectangular domain and Lx = Ly = L for square
domain) with periodic boundary conditions. Akin to the
two-dimensional VM, each point particle i is endowed
with an off-lattice position vector ri = (xi, yi) and moves
with a constant speed v0 in individual directions given
by a unit orientation vector σi = (cos θi, sin θi) with an
orientation angle θi ∈ (0, 2π) where

θi =
2πni

q
, (1)

and ni = {0, 1, 2, · · · , (q−1)} denote discrete orientations
of the particles. q denotes the ground state degeneracy
where each particle can only have discrete orientations al-
lowed by the q value and therefore, the continuous U(1)
symmetry of the VM is replaced by the discrete Zq sym-
metry.

At each discrete time step ∆t = 1, a particle i with
velocity v0 moves a fixed distance v0∆t and interacts with
Ni neighboring particles within a circle of unit radius
around it. The position evolves in the following way:

rt+∆t
i = rti + v0σ

t+∆t
i ∆t , (2)

while the new orientation is determined by a projection
of the updated orientation proposed by the Vicsek rule
onto one of the q allowed directions:

θt+∆t
i = P(θ̄ti + ηξti) , (3)

where P is the projection and θ̄ti is the orientation angle
of a spin-weighted sum

σ̄t
i =

∑
j∈Ni

σt
j , (4)

of orientation vectors of neighboring particles. ξti ∈
[−π, π] is a scalar noise uniformly distributed and un-
correlated for all sites and times. Such noise is often
called white since it has a flat Fourier spectrum. η is the
noise amplitude.

We define the projection onto the allowed directions
probabilistically by

P(θ) =

{
θ1 with probability 1− p ,

θ2 with probability p ,
(5)

where θ1 and θ2 are the two allowed directions which
are closest to θ, such that θ1 = 2πn/q < θ and θ2 =
2π(n+ 1)/q > θ for some n. The probability p ∈ [0, 1] is
given by p = q

2π (θ−θ1), i.e., minimal (0) for θ close to θ1
and maximal (1) for θ close to θ2 (cf. Fig. 1). Note that
then for all particles going into the direction, say, θ1, the
probability to turn stochastically into another direction,
say θ2, is of the order ∼ q

2η, i.e. small for small q and
noise η.

Notice that the dynamical rules governing DVM are
different from the q-state ACM [28]. The q-state active
clock model (ACM) [28] is a natural discretization of the
VM in 2d where particles move in q equidistant angu-
lar directions with an alignment interaction inspired by
the ferromagnetic equilibrium clock model. In the ACM,
the hopping rate of a particle in state θ along any di-
rection ϕ is D(1 − ε) for ϕ ∈ [0, 2π] and Dε for ϕ = θ.
Here ε is the self-propulsion “velocity” which indicates
asymmetric diffusion and D is the diffusion constant.
On the contrary, in the DVM, the hopping probability
of a particle with orientation angle θ along another dis-
crete direction ϕ is zero as the particle always follows
its orientation [see Eq. (2)]. Hence, while the likelihood
of hopping in non-preferred directions remains nonzero
within the ACM (and also depends on the self-propulsion
velocity of the particle), such movement is impossible
within the DVM. It should also be noted that for ε = 0,
the ACM [28] transforms to a (diffusive) Brownian clock
model whereas the v0 = 0 limit makes the DVM purely
passive and the q-state DVM reduces to the equilibrium
q-state clock model. In light of the above discussion, it is
then evident that the transverse fluctuations say in q = 4
ACM, are stronger than the q = 4 DVM. Transverse fluc-
tuations in the ACM mainly originate from the nonzero
hopping probability of a particle along its non-preferred
directions where thermal fluctuation, through the inverse
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(a) (b)

FIG. 1. (Color online) Schematic of the DVM for q = 4.
(a) Four allowed orientations for the particle are 0, π/2, π,
and 3π/2 with θti = 0. The circular neighborhood (of radius
R) of particle i contains neighboring particles to calculate
θt+∆t
i . (b) The new orientation proposed by the Vicsek rule

(blue dotted arrow) will be projected either along θ1 = 0 or
θ2 = π/2 probabilistically.

temperature β, also plays an important role as it controls
the flipping dynamics. However, in the large β limit of
the ACM, similar to the small η limit of the DVM, the
probability that all particles moving in a particular di-
rection will flip their orientation to another direction is
also very small. But, unlike DVM, an ACM particle can
move along a direction different than its orientation an-
gle. This crucial difference in the hopping dynamics, as
we will see, plays an essential role in the steady-state
pattern formation of the DVM at low η and q.

DVM control parameters are the average particle den-
sity ρ0 = N/LxLy, noise strength η, particle velocity
v0 = 0.5 (unless mentioned otherwise), and the mea-
sure of anisotropy q. According to Eq. (1) a large q
signifies weak anisotropy while a small q signifies strong
anisotropy.

We performed numerical simulations of the stochastic
process with parallel updates. The initial configuration
is prepared homogeneously by assigning random orienta-
tions and positions to the particles as defined in Eq. (1)
and Eq. (2), respectively. After the initialization, we let
the system evolve under various control parameters for
teq to reach the steady state followed by measurements
of various quantities until the maximum simulation time
tmax. teq and tmax are functions of system size, η, and q.
In our simulation, the maximum system size considered is
10242 and we have observed that for this square domain,
teq = 105 is sufficient for the system to reach the steady
state irrespective of η and q. So we take teq = 105 as the
steady state time and perform steady state analysis up
to a maximum time tmax = 106.

III. NUMERICAL RESULTS

Collective motion & phase diagram. We present

(a) (b)

(c) (d)

Liquid

Band

Cross sea

gas

FIG. 2. Snapshots on a square domain of size 10242 exhibiting
the four phases of the DVM for q = 9. (a) Polar ordered liquid
phase (η = 0.1). (b) Cross-sea state (η = 0.3). (c) Band state
(η = 0.35). (d) Disordered gas phase (η = 0.5). Dark color
represents high particle density and red arrows indicate the
average direction of motion. Parameters: ρ0 = 2, v0 = 0.5.

the typical non-equilibrium steady-state configurations
of the DVM in Fig. 2 for q = 9 and density ρ0 = 2.
The system exhibits phases of polar ordered liquid (a),
liquid-gas coexistence (b–c), and disordered gas (d) as
noise strength η is increased from 0.1 to 0.5. The phase-
coexistence region is characterized by a low-noise cross-
sea phase (b) and a high-noise band phase (c). The
cross-sea phase has particle density much higher at the
crossing points than anywhere else and has recently been
reported as the fourth phase of the VM [26]. We no-
tice that such patterns assemble spontaneously without
an external drive at certain parameter values. Con-
versely, the band phase is a collection of high-density
bands moving parallelly along a specific direction at a
constant speed. Polar flocks [the homogeneous ordered
liquid phase shown in Fig. 2(a)] can be observed in a large
class of active matter systems and have been considered
robust to fluctuations. But recent studies have argued
that liquid polar flocks are metastable to the presence of
a small obstacle [31] or to the nucleation of an opposite-
phase droplet [32] and triggers counter-propagating dense
clusters leading to the reversal of the liquid flow. In light
of these observations, in the subsequent part of this pa-
per, we will investigate the stability of the DVM liquid
phase. Fig. 2 suggests that the system exists in distinct
phases, which we will characterize next.

The non-equilibrium steady-state behavior of the DVM
is illustrated by representative late-stage snapshots as a
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FIG. 3. η − q phase diagram of the DVM illustrated by snapshots on a 10242 domain at time t = 105. As a function of η and
q, we observe six distinct self-organized patterns: cluster (η = 0.1, q = 4), macrophase (η = 0.3, q = 4), microphase (η = 0.4,
q = 6 → 16), cross-sea (η = 0.3, q = 8 → 10), ordered liquid (η = 0.2, q = 6 → 16), and disordered gas (η = 0.5, q = 4 → 16).
Parameters: ρ0 = 2, v0 = 0.5.

function of noise strength η and anisotropy parameter q
(see Fig. 3). We observe six distinct self-organized pat-
terns in the (q, η) plane which completely describe the
DVM. At low noise and q, we observe a locally ordered
cluster phase. Although each cluster is highly dense and
polar, the system as a whole does not possess any net
polarization (see Appendix A). This cluster phase, which
has not been observed earlier in any flocking models, ap-
pears only for small q and η when the system is strongly
discretized and the impact of fluctuation is insignificant.

The appearance of a cluster phase in the q = 4 DVM
for small (q, η) and high density instead of a polar or-
dered phase similar to the 4-state APM [29, 30] and
ACM [27, 28] can be attributed to the absence of trans-
verse fluctuations through hopping. In DVM, particle
movement is solely controlled by the orientation θ sim-
ilar to the VM [see Eq. (2)]. Therefore, q = 2 DVM
only manifests one-dimensional movement (along the x-
axis) of high-density clusters of self-propelled particles
having orientations θ = 0 and θ = π. We observe that
these clusters never coalesce due to the lack of trans-
verse fluctuations and thus never form a band or polar
liquid phase. Similar observations are made when the

constant transverse diffusion is switched off in the two-
dimensional active Ising model (AIM) [33], although the
one-dimensional AIM [34] exhibits a flocking state con-
sisting of a single dense ordered aggregate. Unsurpris-
ingly, analogous to q = 2 and q = 4, for small η, we
observe a cluster phase also for the q = 3 DVM. We do
not observe any band formation similar to q = 4 even
when noise is increased. For larger noise strengths, clus-
ter size reduces, and the system exhibits a disordered
gas phase. For fixed noise, an increase in density only
increases the cluster size without changing the system
morphology. This signifies that diffusion along the non-
preferred hopping directions plays a crucial role in form-
ing large liquid domains. For APM and ACM at large β
and small q and DVM with small η and q, the probability
of transverse flipping is very small since fluctuations are
weak. However, the nonzero finite hopping rates along
the unbiased directions facilitate the formation of large
liquid domains in the APM and ACM; whereas the ab-
sence of unbiased hopping gives rise to a cluster phase
in the DVM. Thus, in principle, the interplay of q and
η determines the fate of the cluster phase. If q is small
but fluctuation is large, the rigid cluster phase can relax
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and form a large ordered domain (see the snapshot for
q = 6 and η = 0.2). On the contrary, if η is small but
q is large, the weak anisotropy helps the cluster phase
merge into a large ordered domain (see the snapshot for
q = 10 and η = 0.1). This also explains why the cluster
size increases with q for a fixed η (see the snapshots for
η = 0.1).

Beyond the cluster phase, for η = 0.2, we observe the
emergence of the polar ordered liquid phase (q ⩾ 6). For
intermediate noise strength (η = 0.3 − 0.4), a transition
is observed from macrophase separation (q = 4, a single
liquid band moving through the gaseous background) to
microphase separation (multiple bands moving parallelly
or in a cross-sea pattern through the gas phase) in the
coexistence region where the number of bands increases
with q. This is a consequence of having more particle ori-
entations allowed through q. The cross-sea phase, where
interactions become more intense due to the character-
istics of the band structure, appears between the polar
liquid phase and the parallel band state [35] for a fixed
q. This phase is not simply a superposition of waves of
inclined bands, but an independent self-organized com-
plex pattern with an inherently selected crossing angle.
It is worth noting that a single cross-sea pattern typi-
cally involves the crossing of at least two bands, where
the crossing angle is approximately ∼ π/4 [26]. We have
observed that this crossing angle remains consistent re-
gardless of q. For a fixed η = 0.3, as q is increased from
q = 7 to q = 16, we observe that the self-organized pat-
terns change from bands (q = 7) to cross-sea pattern
(q = 8, 9, 10) followed by a polar liquid phase (q = 16).
For the same values of the control parameters, the VM
(q → ∞) exhibits features similar to the q = 16 DVM
where the phase point on the (η, ρ0) diagram almost lies
on the liquid binodal [23]. This happens because the
anisotropy becomes weaker with q and, for q ⩾ 16, the
characteristic of the system becomes similar to the VM.
The VM does exhibit a cross-sea phase but at a different
parameter regime [26]. For a large noise, e.g., η = 0.5,
we observe a disordered gas phase irrespective of q.

Since the origin of different phases in the DVM depends
on the spatial anisotropy, in Appendix B, we show that
the cluster phase is ubiquitous for small (q, η) and present
a cluster size analysis of the q = 4 DVM for varying
noise. For finite system size, we found that the steady-
state DVM exhibits bistability of the cross-sea phase and
the band phase a within a range of the noise amplitude
which results in a hysteresis (See Appendix C). In Ap-
pendix C, we further discussed the stability of the cross-
sea phase. See also Appendix D and Appendix E for more
discussions on the DVM phases with spatial anisotropy
(rectangular domain).

Based on the above discussion, we can quantify the
DVM phase diagram. We observe four different phases
in Fig. 3 [26]: the ordered phase, the cross-sea phase,
the band phase, and the disordered gas phase. It is,
however, challenging to define the phase boundaries by
visual inspection.

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5

FIG. 4. (Color online) The structural order parameter ⟨C2⟩
versus the noise amplitude η for several values of q. The
dotted curves between two successive points are approximated
using spline interpolation. Parameters: L = 1024, v0 = 0.5,
and ρ0 = 2.

Previously, phase-separated density profiles were used
to identify binodals that delimit the gas and liquid
phases from the co-existence region [23]. Yet, this tech-
nique can not differentiate between the distinct self-
organized patterns we observe in the coexistence region
(i.e. macrophase separation, microphase separation, and
cross-sea) of the DVM. One might also want to distin-
guish different structures in terms of the global polar or-
der parameter or the global magnetization defined as:

m = |m| = 1

N

∣∣∣∣∣∑
i

σi

∣∣∣∣∣ . (6)

The polar order parameter can be used to study the tran-
sition between the disorder gas phase and the band states
but can not differentiate between the band and the cross-
sea states [26]. The Binder cumulant constructed from
this order parameter shows only the transition between
the disordered phase and the band state [26]. The polar
order parameter m is also insensitive around the cross-sea
state. Thus, for precise quantification of different phases
and their boundaries, we compute the structural order
parameter C2 [26, 35, 36] as follows:

C2 = N2

∫
G2(r1, r2)dr1dr2Θ(R− |r1|)Θ(R− |r2|)

=

(
N

L2

)2 ∫
R2

[g(|r1 − r2|)− 1]

×Θ(R− |r1|)Θ(R− |r2|)dr1dr2 , (7)
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where G2(r1, r2) = P2(r1, r2)−P1(r1)P2(r2) for one- and
two-particle probability density functions P1 and P2, Θ is
the Heaviside step function, and R is the distance around
an arbitrary fixed point in space. For macroscopically
isotropic systems, G2 can be expressed in terms of the
pair correlation function g(r) which physically signifies
the probability of finding a particle at a distance r rel-
ative to that of a given reference particle and provides
a statistical description of the local packing and particle
density of the system. It has been shown [26, 36] that
C2 performs better than m in capturing the structural
change and the Binder cumulant of C2 is also more effi-
cient in distinguishing different features than the Binder
cumulant of the order parameter m. In practice, to
compute C2, we take all pairs of particles, draw cir-
cles of radius R around them, and calculate the over-
lap area of the two circles. The overlap area is given by
Aoverlap = 2R2 cos−1

(
d
2R

)
− d

2

√
4R2 − d2 [36], where d is

the distance between the centers of the circles.
The dependence of the time-averaged structural order

parameter ⟨C2⟩ with respect to η for different q is shown
in Fig. 4. The value of ⟨C2⟩ is the lowest for disorder gas
and becomes maximum when particles are clustered. For
the band phase, ⟨C2⟩ values for macrophase separation
are larger than the microphase separation and cross-sea
phase. Between microphase separation and the cross-sea
phase, ⟨C2⟩cross > ⟨C2⟩micro. Although a change in ⟨C2⟩
is not very significant in these two phases, it is still a bet-
ter candidate for distinguishing the cross-sea from the
microphase separation than the traditional polar order
parameter. In Fig. 5, we plot the η− q phase diagram by
computing ⟨C2⟩ for the six different phases where in the
coexistence region, ⟨C2⟩macro > ⟨C2⟩cross > ⟨C2⟩micro.
This phase diagram complements Fig. 3, which has been
constructed using the density field and depicts the na-
ture of phase separation in the DVM as a function of q.
The phase diagram of Fig. 5 has been constructed on a
large square domain of dimension 10242. For this system
size, one can expect that the finite size effect is relatively
small and Fig. 5 will remain qualitatively the same in
the thermodynamic limit. As discussed in Appendix C,
the DVM might show the bistability of two different co-
existence states at the steady state for a particular noise
amplitude. However, we believe the system will evolve to
a definite steady-state phase at the thermodynamic limit
(L → ∞).

Now, the nature of the coexistence region for any finite,
large q has been a subject of discussion in the context of
q-state ACM [27, 28]. It was argued in Ref. [27] that
spatial anisotropy plays a crucial role in determining the
macro/microphase separation of the coexistence region in
the ACM and one should observe a macrophase separa-
tion of the coexistence region for a finite q beyond a char-
acteristic length scale which diverges for large q. ACM
with a different set of dynamical rules than Ref. [27] was
studied in Ref. [28] where the flocking transition in the
ACM was argued to be equivalent to the VM at large
q. The q-state DVM is governed by a completely differ-

0.1

0.2

0.3

0.4

0.5

4 6 8 10 12 14 16

6012 15 18 21 2724

Gas

Microphase
Cross sea

Liquid

Cluster

Macrophase

FIG. 5. (Color online) η − q phase diagram of the DVM by
computing ⟨C2⟩. The colorbar represents the range of ⟨C2⟩
values for different phases. Colorbar represents the range of
⟨C2⟩ values for different phases. ⟨C2⟩gas: 12 → 15, ⟨C2⟩liquid:
15 → 18, ⟨C2⟩microphase: 18 → 21, ⟨C2⟩cross−sea: 21 → 24,
⟨C2⟩macrophase: 24 → 27, ⟨C2⟩cluster: 27 → 60. Parameters:
L = 1024, v0 = 0.5, and ρ0 = 2.

ent set of microscopic rules than both the models of the
ACM [27, 28] and we will therefore investigate next the
impact of microscopic rules on the DVM steady-state as a
function of q. We plan to do this through the analysis of
number fluctuations, the pinning-unpinning property of
the system’s global order, and the structure factor man-
ifesting the correlation of polarization.

Number fluctuations.—It is known that fluctu-
ations play an essential role in selecting the phase-
separated patterns in flocking models. In the AIM [33],
the density fluctuation ∆n2 = ⟨n2⟩ − ⟨n⟩2 (where n is
the number of particles in a box of size < L) in the liq-
uid phase was found to be normal (∆n2 = n) and the
AIM coexistence region shows a macrophase separation
with a single liquid domain moving on a gaseous back-
ground. In the VM [23], on the contrary, giant density
fluctuations (∆n2 = n1.6) are observed which break large
liquid domains and prevent the bands from coarsening
further. This results in a microphase-separated coexis-
tence region. Giant density fluctuations of the homoge-
neous ordered phase have also been evaluated in other
flocking models [24, 37–42]. In the q-state ACM [27, 28],
which can be thought of as a bridge between the discrete
AIM and the continuous VM, density fluctuations show a
transition from normal to giant fluctuation as q increases
and can be explained as a transition from AIM physics to
VM physics. As the DVM also exhibits a transition from
macrophase to microphase (and cross-sea) separation of
the coexistence region as q increases, it is thus useful to
investigate the density fluctuation in the DVM.

We show the number fluctuations ∆n2 versus average
particle number ⟨n⟩ in Fig. 6, computed in the ordered
liquid phase of the DVM for various q. n(ℓ) is the number
of particles in boxes of different sizes ℓ included in a 3002

domain (with ℓ ⩽ 150), with ⟨n⟩ = ρ0ℓ
2. As shown in Ta-
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q 4 5 6 7 8 9 10 16
ξ 1.22 1.28 1.41 1.48 1.67 1.64 1.64 1.64

TABLE I. (Color online) Number fluctuation exponents ξ for
several values of q, reported from Fig. 6. The typical error on
the fluctuation exponents is 0.03.

ble I, the number fluctuation behaves like ⟨n⟩ξ with the
fluctuation exponent ξ increasing with q, from ξ ≃ 1.22
for q = 4 to ξ ≃ 1.64 for large q. This transition from
normal fluctuations for small q to giant fluctuations for
larger q was also observed in the ACM [27, 28] although
ξ for q = 4 and 5 are moderately larger in the DVM
than the ACM. The increase in density fluctuations with
q can be attributed to the fact that, for large q, parti-
cles have more rotational degrees of freedom due to the
weak anisotropy and therefore more directional freedom
to propel. The existence of giant number fluctuations
(GNF) and its connection with microphase separation in
the VM was hypothesized in Ref. [23]. It was argued that
GNF (ξ ≃ 1.6) breaks bulk liquid domains and produces
a smectic-like microphase separation in the coexistence
regime whereas the system stabilizes in the bulk phase
when the density fluctuations are normal (ξ ≃ 1) [33].
Using the same logic for ACM [28], it was argued that
GNF is responsible for microphase separation in the co-
existence regime for q ⩾ 8, although a direct relation
between the existence of GNF in the ordered phase and
the microphase separation in the coexistence phase is still
ambiguous. Nonetheless, if we compare ξ in Table I and
the snapshots in Fig. 3, we observe a correspondence
between the fluctuation exponent and the pattern for-
mation in the coexistence region of DVM. For q < 8,
although the difference in ξ(q) is small, the exponents
change continuously with varying q, similar to the active
clock model [28].

One should also consider the finite size effect on the
fluctuation exponents as discussed in Ref. [28]. In Fig. 6,
the data can be fitted to two different power-law regimes
(the extracted exponents depend on the interval along the
x-axis to which the fits are restricted): (a) ξ tabulated in
Table I in the interval [103, 5 × 104] and (b) a smaller ξ
in the interval [5×104, 105]. Around the second interval,
the plot shows a “saturation” because ξ must decrease
with increasing ⟨n⟩ due to the finite-size cut-off at ⟨n⟩ =
N = ρ0L

2, where ∆n2 vanishes.
Pinned property of the order parameter.—The

global order parameter defined in Eq. (6) quantifies the
overall ordering of the particles in the system. In the
ACM [27], at finite size, the direction of the global polar
order Φ ≡ arg⟨m⟩ exhibits distinct behaviors in the liq-
uid phase depending on the value of q: it displays AIM-
like properties (pinned along an angle) for small q and
VM-like behavior (unpinned over time) for large q. How-
ever, for a particular q, an unpinning to pinning tran-
sition is observed as the system size is increased which
indicates the sensitivity of the ACM [27] steady-states
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FIG. 6. (Color online) Number fluctuations ∆n2 = ⟨n2⟩−⟨n⟩2
versus average particle number ⟨n⟩ for several q values in a
3002 domain. Parameters: η = 0.3, v0 = 0.5, and ρ0 = 6.

on system size and a possible transition from micro to
macro phase separation of the coexistence region beyond
a length scale. We therefore are interested in analyzing
this property for the DVM.

In Fig. 7(a), we show the time evolution of Φ(t) in the
DVM liquid phase for varying q. Similarly to the observa-
tion made in the ACM [27], Φ(t) begins wandering slowly
with q and becomes an unpinned variable of t for large
q. In other words, for weak anisotropy, the global order-
ing does not remain constrained to a specific orientation.
While, for small q, Φ(t) remains pinned and tends to ex-
hibit a stable global ordering. Microscopically, this refers
to a picture in which, at large q, a proportional number
of degrees of freedom allows the particles to choose be-
tween adjacent directions facilitated by fluctuation, while
it is not the obvious choice for particles in small q that
require a significantly larger jump to switch directions.
Translating this to the global polar order parameter and
comparing Fig. 7(a) with Fig. 6 we propose that GNF
corresponds to the unpinned behavior of Φ(t). Likewise,
the unpinning nature of the direction of the global polar
order is a characteristic of microphase separation.

In addition to q, the finite system size also affects the
evolution of Φ(t) (as was also shown in Ref.[27]), which
is shown in Fig. 7(b) for q = 9. Similar to the ACM [27],
we observe a transition from unpinned behavior to pinned
behavior in Φ(t) as the system size increases. In larger
systems with polar order, a particle interacts with more
particles in the neighborhood and correlates over longer
distances. Higher connectivity promotes stronger align-
ment and cooperative motion among the particles. As
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FIG. 7. (Color online) (a) Time series of the orientation of
global polar order Φ in the liquid phase showing a transition
from unpinned to pinned as q increases (η = 0.3, ρ0 = 6,
v0 = 0.5, and L = 200). (b) Φ shows an unpinning to pinning
transition as a function of system size L for q = 9 (η = 0.3,
v0 = 0.5 and ρ0 = 6).

a result, the direction of the global order becomes more
pronounced and persistent in larger systems, leading to
the pinned state. Fig. 7(b) further indicates that if Φ(t) is
pinned for L = 300, it must also be pinned for L = 1024.
This is inconsistent with the microphase separation and
the cross-sea patterns observed in the coexistence region
of the q = 9 DVM (Fig. 3). Evidently, the correlation
proposed earlier between the pinned property of the sys-
tem’s ordered liquid phase and the system morphology
observed in the coexistence region (macro/micro/cross-
sea) is not conclusive in the DVM (see Appendix F for
more details).

Structure factor.—To understand the system’s be-
havior for different q, investigation of the magnetization
correlation function which analyzes how the particle’s ori-
entations are correlated as a function of q is a good mea-
sure. In the ACM [27], it was observed that the structure
factor (Fourier transform of the orientation correlation
function) converges to finite values at large wavelengths
beyond a crossover length scale. This length scale is a
function of q which signifies the crucial impact of the
system size on anisotropy.

To explore the correlation among particle polariza-
tions, we consider the transverse magnetization structure
factor S⊥(k) = ⟨m⊥(k)m⊥(−k)⟩ [27] against wavelength
k and plot it in Fig. 8. The structure factor has been
calculated in the liquid phase on a 3002 domain for (a)
various q values (the same behavior is observed for the
structure factor of the density field) and (b) for a fixed
q = 9 but for various system sizes. The results pre-
sented in Fig. 8(a) show that for small q, the structure
factor S(k) converges to finite values as the wave vector
k → 0. This convergence indicates an AIM-like behavior
or a macrophase separation of the coexistence region [27].
However, one can notice that this convergence is achieved
only beyond certain length scales and these length scales
are functions of q. The structure factor captures the cor-
relations between particle orientations and therefore the
magnitude of ordering at different length scales. A sat-
uration of S(k) for small q when k approaches zero thus
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FIG. 8. (Color online) Structure factor S⊥(k) vs k = (k∥, 0)
in the ordered liquid phase for (a) several q values (L = 300)
and (b) varying system size (q = 9). Parameters: η = 0.3,
ρ0 = 6, and v0 = 0.5.

signifies a strongly correlated liquid domain whereas for
large q, due to weak anisotropy or more allowed orien-
tations for ordering, particles inside the liquid domain
are not as strongly correlated as for small q. Fig. 8(b)
shows S(k) for several system sizes and manifests that
with larger system sizes (L ≥ 300), S(k) tends to con-
verge to a finite value when k → 0. Our earlier argument
that stronger interactions between particles (with larger
L) promote robust ordering also applies here. Comparing
Fig. 8 with Fig. 7, we conclude that the pinning behavior
(unpinning behavior) of Φ(t) and the saturation of S(k)
(algebraic scaling of S(k)) compliment each other and
convey the same physics.

It was argued in Ref. [27] considering the pinning prop-
erties of the order parameter and behavior of the struc-
ture factor in the liquid phase that for large q ACM,
VM behavior (microphase separation) will be observed
only up to large finite sizes. But the asymptotic large
length scale behavior will be AIM-like (macrophase sepa-
ration) where the length scale diverges with q as exp(q2).
Ref. [27] also showed that in the phase coexistence re-
gion of the ACM, a microphase to macrophase transition
occurs when the linear system size increases along the
transverse direction at fixed q, which we do not observe
(in the DVM, multiple bands do not merge to a single
band when Ly is increased for a fixed Lx). We observe
a similar behavior of Φ(t) and S(k) as Ref. [27] but can
not draw a conclusive correspondence between the large
length-scale liquid phase behavior of Φ(t) and S(k) to
the phase-coexistence behavior of the DVM as shown in
Fig. 3.

In Fig. 3, the snapshots on a large square domain
(without any spatial anisotropy) show the existence of a
microphase separation and cross-sea patterns (for which
one needs at least two bands) of the phase-coexistence re-
gion for large q values. The number fluctuation plotted in
Fig. 6 corroborates this observation by exhibiting GNF
for those large q values. The large length scale asymp-
totic behavior (for large q) of the direction of global order
Φ(t) (Fig. 7) and the structure factor S(k) (Fig. 8) in the
ordered liquid phase respectively shows a pinned behav-
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FIG. 9. (Color online) Order parameter distributions of the
q = 9 DVM for the liquid phase. Parameters: η = 0.3, v0 =
0.5 and ρ0 = 6. Ring-like distributions for smaller system
sizes (L = 50 and L = 100) in (a) and (b) change to distinct
isolated spots for larger system sizes (L = 200 and L = 300)
in (c) and (d), which correspond to the ordered liquid phase’s
q-fold degeneracy.

ior and saturation for k∥ = 0 which as argued in Ref. [27]
signifies an AIM phenomenology. However, our numeri-
cal investigation of the DVM does not show a cross-over
from micro- to macrophase separation for higher q values
as observed in the ACM [27] although matches with the
observation of another model of ACM [28] with different
dynamical rules. Therefore, we argue that the impact
of dynamical rules governing flipping and hopping in a
flocking model has a significant influence over the sys-
tem dynamics.

Order parameter distribution.—In Vicsek-like
models, where particles are active and move with a con-
stant velocity, the ordered state exhibits a true long-
range order (LRO) in two dimensions because of a spon-
taneous symmetry breaking due to the out-of-equilibrium
nature of the models. In Fig. 9, we show the time- and
ensemble-averaged distribution of the order parameter
m = (mx,my) for increasing system sizes, where mx =
1
N

∑N
i=1 cos θi and my = 1

N

∑N
i=1 sin θi. In Fig. 9(a) and

Fig. 9(b), ring-like distributions (unpinned orientations)
are the characteristic of the quasi long–range ordered
(QLRO) phase. However, this occurs due to the finite-
size effect and is similar to the impact of finite-size on
Φ(t) and S(k). We recover the LRO for larger system
sizes (L = 200 and L = 300) where the distributions
display nine distinct isolated spots (pinned orientations)
that correspond to the 9-fold degeneracy of the ordered
liquid phase, each spot having equal probability. One
can expect that the finite size effect will be much weaker

for L = 1024 and the spread of the distribution in the
LRO phase around the allowed ordering angles will also
be more precise.

The DVM for large q exhibits a QLRO phase when
v0 = 0 (see Appendix G). We argue that DVM with im-
mobile particles reduces to the two-dimensional q-state
clock model (with a quenched bond-disorder as only par-
ticles within a fixed distance interact) which approaches
the XY model for large q with vanishing LRO regime [43].
For v0 > 0 and a fixed L, as flocking directions increase
with q, we again observe ring-like distributions for large
q (see Appendix G) but beyond a length scale which is
proportional to q, the order parameter distributions for
large q show q isolated spots characteristic of the LRO
phase. This is similar to the unpinned to the pinned tran-
sition of Φ(t) and convergence of S(k) to a finite value at
k → 0 for large q values as the system size is increased.
In the VM (q → ∞), even for a large L, the order pa-
rameter distribution shows a ring-like structure because
of the continuous symmetry.

Stability of the ordered liquid phase.— As dis-
cussed in the context of Fig. 2, here we present a brief
analysis of the stability of the DVM ordered liquid phase
by inserting a small high-density counter-propagating liq-
uid droplet. Initially, the average direction of the parti-
cles in the polar liquid phase is aligned along the direction
Φliq = π, and the average particle orientation of the liq-
uid droplet is Φd = 0. The radius of the droplet is rd
and density is ρd0 and it is inserted in an ordered phase
of density ρ0 (ρd0 ≫ ρ0). We take several q values and
calculate the probability (Prev) that the droplet grows
against the main order and reverses the ordered phase
as a function of η, rd, and ρd0. The simulation proto-
col follows Ref. [32], where the initial configuration is
prepared by particles with θ = π and we let the sys-
tem evolve up to a certain time t to reach the steady
state. The system retains the average global polarization
in the direction θ = π. Then, a circular region of radius
rd centered at (L/2, L/2) is selected and an additional
∆N = (ρd0 − ρ0)πr

2
d number of particles are added to

make a high-density circular droplet. Finally, the orien-
tation of all the particles within the droplet is changed
to θ = 0.

In Fig. 10, we study the fate of polar flocks in q = 6
and 16-state DVM by introducing a small high-density
counter-propagating droplet against the initial polar or-
dered liquid phase of the main flow and observe the sub-
sequent time evolution. One should note here that the
perturbation through the droplet is very small i.e. the
ratio of droplet diameter to the linear length of the sim-
ulation box is ∼ 10−2 (rd = 5, L = 1024). We ob-
serve, similar to Ref. [31], that the droplet grows with
time leaving behind a dilute region (t = 102) and adds
more and more particles as it moves along forming a
principal dense, curved band (followed by several other
curved bands) that invades the whole system ballistically
(t = 103 and t = 104). In the final stage, this principal
curved band connects itself over the system boundaries
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(a)

(b)

FIG. 10. (Color online) Time evolution snapshots of the orientation field showing the reversal of the initial ordered liquid phase
in (a) q = 6 and (b) q = 16-state DVM following the introduction of a tiny counter-propagating high-density droplet (motion
of direction is denoted by black arrows, t = 1) of radius rd = 5 and density ρd0 = 10ρ0. Colorbar represents particle orientation
field. Parameters: L = 1024, η = 0.4, v0 = 1 and ρ0 = 2.

and widens until a steady state liquid phase of a different
Φliq emerges (at t = 105), signifying the metastability of
the DVM liquid phase. The time-evolution is similar for
both small and large q, which signifies that both discrete
and continuous-symmetry flocks are metastable.

The growth pattern of the DVM droplet is similar to
the VM [31] but distinct from the AIM [32]. In the DVM,
after its introduction, the droplet front interacts with the
liquid particles outside and creates a curved band of par-
ticles having several different orientations (impact of q).
In this process, the droplet seizes to exist and it is this
high-density curved band that destroys the initial flow.
In AIM [32], the droplet grows along the direction trans-
verse to the propagation (due to the constant transverse
diffusion) creating a comet-like trail of disordered parti-
cles that can not be observed in the DVM.

Fig. 11 quantifies Prev, the probability of reversing the
main flow upon the introduction of a given droplet, for
several control parameters. For each set of control pa-
rameters, we have taken 20 independent realizations to
calculate Prev. Akin to Ref. [31], we observe that the
noise strength η has a strong influence on the reversal
dynamics and Prev increases from 0 to 1 as η is increased
[Fig. 11(a)]. This is because for small η, the ordered
phase is very stable, and thus, the counter-propagating
dense bands find it difficult to reverse its flow. For large
η, fluctuations are stronger, and therefore, the probabil-
ity of reversal increases. Fig. 11(a) also exhibits that the
transitional value of η (Prev = 1

2 ) above which a droplet
triggers a reversal is a decreasing function of rd although
there is a critical η (η ∼ 0.35), below which no droplet can
trigger a reversal irrespective of its density. The rd − ρd0
phase diagram in Fig. 11(b) has been constructed by cal-
culating Prev for several (rd, ρ

d
0). Unsurprisingly, large
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FIG. 11. (Color online) (a) Reversal probability Prev versus
noise η for q = 16 and two different droplet radius rd = 5 and
10. (b) rd−ρd0/ρ0 phase diagram for η = 0.45 and q = 16. The
colorbar represents reversal probability Prev. (c) Prev versus
q for various noise, rd = 5. Parameters: L = 400, ρd0 = 10ρ0
(a & c), v0 = 1 and ρ0 = 2.

rd combined with large ρd0 are shown to facilitate the
reversal of the initial liquid phase. The droplet-induced
reversal of the liquid flow is found independent of q where
Prev is found to behave similarly for each q under certain
values of η [Fig. 11(c)].

In addition, a study of the metastability of the DVM
liquid phase on rectangular geometry (Lx = 800, Ly =
100), produces a similar outcome. One can also consider
droplet movement in other directions than opposite to the
global flow, e.g. transversely propagating droplets with
Φd = π/2 for q = 8 or Φd = 2π/3 for q = 6 and perform
a similar analysis to check whether the liquid phase is
susceptible to droplets irrespective of their propagation
direction.



11

IV. DISCUSSION

Our study motivated by the active clock model [27, 28],
considers a true q-state discrete version of the Vic-
sek model where q defines the strength of orientation
anisotropy. At small q, the system is highly anisotropic,
which, however, vanishes in the limit q → ∞ when we
recover the Vicsek model. The DVM shows qualitatively
similar features as the ACM [28] for intermediate noise
strength η where a transition from macrophase to mi-
crophase separation is observed in the coexistence region
as q increases. But for small q and η, the liquid phase
appearing in the ACM at low temperatures is replaced
in the DVM by a cluster phase. The cluster phase con-
sists of multiple clusters with different polarization (see
Fig. 12) which does not exhibit a long-range order. The
clusters grow and merge with increasing q leading to a
homogeneous ordered phase at large q. For small q, a
long-range ordered phase can be achieved by increasing
the noise strength. At low noise and small q, the flipping
probability is very small, and in addition, transverse fluc-
tuations through hopping are also absent. The combined
influence of these factors results in clusters failing to grow
continuously at small η and q, preventing the system from
reaching a homogeneous liquid state. Therefore, the po-
lar ordered phase which is ubiquitous in discretized flock-
ing models (such as the AIM, APM, and the small q limit
of the ACM) for small noise has been replaced by a clus-
ter phase in the DVM and is a consequence of the strong
anisotropy through q. The DVM recovers the ordered
phase for small noise at the large q limit, which signifies
the DVM to be in the same class as the VM (q → ∞
DVM).

The self-organized patterns in the coexistence region
of the discretized VM indicate a transition from AIM-
like patterns to VM-like patterns as anisotropy becomes
weaker. This observation is corroborated by the giant
density fluctuations for large q. However, the large length
scale behavior of the direction of global order Φ(t), the
structure factor S(k), and the order parameter distribu-
tion in the liquid phase do not correspond with the phase-
coexistence patterns of the large q DVM. The DVM with-
out any spatial anisotropy and at large length scales
shows a transition from a macrophase-separated coex-
istence region to a coexistence region having microphase
or cross-sea pattern with increasing q. This is similar to
the observation made in the q-state active clock model
[28] which also approaches the VM at the large q limit.

We also find that the DVM liquid phase is susceptible
to perturbation applied through a counter-propagating
droplet. The liquid phase reorients and propagates along
the direction of the droplet. The reversal dynamics is sig-
nificantly impacted by the noise strength η [31] but re-
mains independent of q. The stability of the high-density
flocking ordered phase at low noise is still an open prob-
lem and will be addressed in a subsequent study [44].

As a final remark, we add that the rotational flexibility
of the particles and microscopic details of the dynamical

(

(

FIG. 12. (Color online) Steady-state snapshots (b-c) and (e-f)
from two different initial conditions: (a) random disordered
and (d) polar ordered. (b, e) η = 0.1 and (c, f) η = 0.2. The
colorbar represents particle orientations. Parameters: q = 4,
L = 300, v0 = 0.5, and ρ0 = 6.

rules can significantly impact the macroscopic properties
of the ordered phase. It would be interesting to compare
the model predictions of the DVM with suitable exper-
iments where anisotropy in the particle orientation may
be controlled by a finite number of motility directions.
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Appendix A: Dependency of the cluster phase on
the initial condition

Snapshots in Fig. 12(b-c) and Fig. 12(e-f) illustrate the
steady state behavior of the q = 4 DVM starting from
two different initial conditions: (a) random disordered
and (d) polar ordered. In the top panel, the system ex-
hibits cluster phase for q = 4 for both values of η when
starting from an unbiased random configuration. The
initial coarsening process forms clusters, but they do not
merge to create a single large ordered domain due to
the absence of transverse fluctuations as discussed in the
context of Fig. 3. In the bottom panel, this observation
changes for the lowest noise strength when starting from
a polar-ordered initial configuration. For η = 0.1, the
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FIG. 13. (Color online) Probability distribution P (S) of
cluster size S for different noise level. Parameters: q = 4,
Lx = 800, Ly = 100, ρ0 = 2, and v0 = 0.5.

steady state remains in an ordered liquid phase (simi-
lar to the steady state behavior of the 4-state APM or
ACM at low temperature) signifying that the fluctuation
is weak to alter the broken symmetry phase into a cluster
phase. However, with an increase in the noise (η = 0.2),
the steady-state cluster phase appears again. This also
suggests that for DVM with weak anisotropy and fluctu-
ations, the cluster phase is the non-equilibrium steady-
state and the well-known small η or large β ordered liquid
phase can only be achieved by taking a strongly polar-
ized ordered initial condition. It is worth noting that the
number of clusters in (c) is higher than in (b) due to more
relaxation via the noise. A further increase of the noise
will lead to a single large ordered domain as shown in the
phase diagram of Fig. 18.

Appendix B: Cluster size analysis for q = 4

The cluster size analysis for q = 4 is shown in Fig. 13
for a rectangular domain of size 800 × 100. We use a
box-counting method to find a cluster which is described
below:

If Lx and Ly are the linear sizes of a rectangular do-
main, Lx × Ly is the total number of boxes we consider.
For a box i, ni is the number of particles in that box and
ci is the cluster label of the box. If the box does not con-
tain any particles ci = 0 i.e. it is not part of any cluster.
Then we use the Depth-first search (DFS) algorithm to
find the connected boxes that are not void of particles
and label them as a single cluster. For each cluster label
cj , we calculate the size of the cluster Sci as following:

Sci =

LxLy∑
j=1

δci,cj × nj , (B1)

where δci,cj is the Kronecker delta function that equals 1
if ci = cj , and 0 otherwise. Then we calculate the cluster

size probability distribution denoted as P (S):

P (S) =
Number of clusters with size S

Total number of clusters
. (B2)

Fig. 13 illustrates that for small noise, the probability
of larger cluster formation is high. This is because re-
duced fluctuation in the system facilitates the formation
of high-density clusters. However, with noise (η = 0.3),
the cluster phase vanishes and the q = 4 DVM exhibits
a macrophase separation, resulting in a decrease in the
probability of obtaining large clusters. At large noise
(η ⩾ 0.4), the system becomes disordered, leading to
a lesser probability of formation of large clusters. We
would also like to mention that for a fixed noise, P (S) ver-
sus S for various orientations (θ = 0, π/2, π, 3π/2) shows
almost identical distributions signifying no preference in
orientation in the cluster formation.

Appendix C: Stability of the DVM steady-state
phases

In this section, we analyze the stability of the dif-
ferent DVM steady-state phases. Figure 14 (a) illus-
trates the stability of the cross-sea phase where we ask
if one starts with a band state in the cross-sea regime,
will the system evolve to a cross-sea pattern? The fig-
ure shows that the system initially configured in a high-
density single band (visualized as a vertical stripe of
aligned particles), evolves into a cross-sea phase after a
long time (t = 131072). A similar observation is made
with microphase-separated initial bands in Fig. 14 (b),
suggesting that the steady-state phases of the DVM are
independent of the initial configurations. However, as
observed in Ref. [35] for the VM, in the DVM also,
phase boundaries between the two neighboring phases,
the cross-sea phase and the microphase, are not always
distinct. For a finite system size, bistability between
these two neighboring phases can be observed, as shown
in Fig. 15. At low noise (η = 0.1), the system exhibits
a homogeneous high-density ordered phase, where parti-
cles move mainly in a uniform direction. With a small
increase of the noise (η = 0.2), the cross-sea phase starts
to appear, and at high noise amplitude (η = 0.45), the
system transitions to a disordered phase, where particles
show random orientations. Interestingly, in the interme-
diate noise amplitudes (∼ η = 0.28 − 0.35), the system
exhibits bistability where both cross-sea and microphase
features can be found depending upon the initial condi-
tions. In the VM, bistability was observed between the
ordered phase and cross-sea phase and also between the
microphase and disordered phase [35]. This bistability
arises due to the fluctuation at relatively higher noise am-
plitudes and finite system size. We therefore expect the
system to evolve to a specific stable steady-state phase for
a particular noise amplitude at the thermodynamic limit
(L → ∞). The bistability between the cross-sea phase
and the microphase as a function of noise amplitude is
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FIG. 14. Stability of the cross-sea phase. (a-b) Starting from a high-density macrophase and microphase-separated coexistence
band, the system finally exhibits the cross-sea phase at a large time respectively. Parameters: L = 1024, q = 9, η = 0.3,
ρ0 = 0.63, v0 = 1.

further demonstrated by a hysteresis loop in Fig. 16. The
hysteresis loop is obtained by plotting ϕcs as a function
of noise η keeping the density (ρ0) and particle velocity
(v0) constant. Where ϕcs is either 1 or 0, correspond-
ing to cross-sea and microphase, respectively. In the low
noise limit, we evolve an initially disordered configuration
into a steady state coexistence phase by slowly varying
the noise amplitude by (∆η = 0.02). The cross-sea phase
demonstrated by ϕcs = 1 starts ∼ η = 0.2 and is retained
up to a large noise (red curve). At ∼ η = 0.35, the cross-
sea switches to the microphase and remains steady for
up to ∼ η = 0.4. While reducing the noise from this high
value (blue curve), the microphase bands (ϕcs = 0) sus-
tain for a wide range of η stretching significantly below
the cross-sea to microphase transition point (∼ η = 0.35).
Finally, the microphase switches back to the cross-sea
phase around (∼ η = 0.28). As shown in Fig. 16, both
the transitions (at small and large η) between these two
phases appear to be discontinuous.

Appendix D: Impact of spatial anisotropy:
steady-states for rectangular domain

In Fig. 17, we investigate how spatial anisotropy in-
fluences the non-equilibrium steady-state behavior of the
DVM if we switch from a square domain to a rectangular
domain by analyzing late-stage representative snapshots
as a function of noise strength (η) and discretization pa-
rameter (q). When noise is low and q is small, we ob-
serve the emergence of a locally ordered cluster phase
similar to our finding for the square domain. However,
when q is small and fluctuations are pronounced, those
cluster phases relax and transform into a larger, orga-
nized domain (see the snapshot for q = 4 and η = 0.3)
akin to the Fig. 3. Conversely, when η is small and q is
large, weak anisotropy facilitates the merger of the clus-
ter phase into a larger, well-organized domain (see the

snapshot for q ⩾ 8 and η = 0.1) which is observed at
q = 10 in the absence of spatial anisotropy (see Fig. 3).
An increase in the fluctuation for small q might exhibit
multiple bands but those are connected by the periodic
boundary conditions and should be considered a single
band (see the snapshot for q = 5 and η = 0.2, 0.3). How-
ever, no cross-sea phase is observed with the rectangular
geometry, which is seen in Ref [26] probably due to larger
particle velocity (v0 = 1). An increase in anisotropy q
also increases the no. of bands in the coexistence region
at intermediate noise (η = 0.4) because with q, the den-
sity fluctuation increases along with the magnetization
fluctuation which prompts the breaking of large domains.

Appendix E: (η − ρ0) phase diagram of the DVM

In Fig. 18, we plot the noise-density (η− ρ0) phase di-
agrams computed on a rectangular domain of 800× 100
for various q. The clustering phase is very prominent
for small q values (q = 4, 5) and exists for high densi-
ties. As q is increased, the conventional ordered liquid
phase appears at high densities and for q ⩾ 8, the clus-
ter phase disappears and we notice the emergence of the
typical η − ρ0 diagram observed for Vicsek-like systems
[Fig. 18(d)]. These Vicsek-like phases are characterized
by a more global alignment of the particles, leading to
coherent motion and the absence of distinct clusters or
bands. In this regime, the behavior of the system is pre-
dominantly governed by the alignment interactions be-
tween the particles rather than the specific value of q. It
shows clear boundaries between different phases based on
varying values of q and η. At small q and intermediate
densities, a macrophase separation similar to AIM is ob-
served. However, as q exceeds a threshold (e.g., q ⩾ 8),
the system transitions to a Vicsek-like phase separation
in the coexistence region.
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FIG. 15. Steady-state snapshots of the DVM (q = 9) at different noise amplitudes. (a-b) Ordered phase at η = 0.1 and 0.2;
(c-d) Bistable phase at η = 0.3 and η = 0.35 [(i) cross-sea phase, and (ii) microphase]; (e) microphase at η = 0.4 [(i) fully
developed microphase, and (ii) partial microphase]; (f) disordered phase at η = 0.45. System size L = 1024. Parameters:
ρ0 = 0.63, v0 = 1.
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FIG. 16. (Color online) Hysteresis loop in the q = 9 DVM
between the cross-sea phase and microphase-separated band
phase where ϕcs denotes the presence of a cross-sea phase
(ϕcs = 1). System size L = 1024. Parameters: ρ0 = 0.63,
v0 = 1.

Appendix F: Direction of global order in the
coexistence region

Here, we analyze the pinned property of the system
in the coexistence region and directly compare the out-
come with the steady-state snapshots. In Fig. 19, the
time series of the orientation of global order Φ is shown
for fixed L = 512 and various q [Fig. 19(a)] and for fixed
q = 9 and several L [Fig. 19(b)]. When the system size is

fixed, we observe pinning to unpinning transition with q
whereas for fixed q, the reverse transition happens as the
system size increases. Both observations are similar to
the observations made regarding the time evolution of Φ
in the DVM polar ordered phase [Fig. 7]. The snapshots
shown in Fig. 19(c–d) without any spatial anisotropy ex-
hibit a coexistence region with multiple bands signify-
ing a microphase-separated region. Comparing the snap-
shots with the time evolution of Φ we notice that both
the unpinning behavior of the DVM for q = 16 and the
pinning behavior for q = 9 shows flocking with multiple
parallelly moving bands.

Appendix G: Nature of the DVM ordered phase

In Fig. 20, we show the order parameter (m) distri-
bution on the (mx,my) plane for v0 = 0. At this limit,
particles can no longer move but modify their orienta-
tion according to Eq. (3) and the q-state DVM reduces to
the two-dimensional q-state clock model which shows two
distinct phase transitions, one from disordered to QLRO
phase at a higher temperature and the other from QLRO
to LRO phase at a lower temperature for q ⩾ 5 [43]. At
large q, the LRO phase gradually starts to vanish, and
for the two-dimensional XY model (q → ∞), only one
phase transition occurs (Kosterlitz-Thouless phase tran-
sition) from the disordered phase to the QLRO phase.
As shown in Fig. 20, at the zero activity limit, the or-
der parameter distribution shows q distinct isolated spots
(signifying LRO) for small q but as q increases (q ⩾ 7),
ring-like distributions characteristic of the QLRO phase
appears. These ring-like distributions become more pro-
nounced as the system size is increased for large q. In
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FIG. 17. η−q phase diagram of the DVM illustrated by snapshots on a rectangular domain (Lx = 800, Ly = 100). Parameters:
ρ0 = 2, v0 = 0.5. As a function of η and q, we observe five distinct self-organized patterns: cluster (η = 0.1, q = 4), macrophase
separation (η = 0.3, q = 4), microphase separation (η = 0.4, q = 7 → 16), ordered liquid (η = 0.2, q = 7 → 16), and disordered
gas (η = 0.5, q = 4 → 16).
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FIG. 18. (Color online) Phase diagrams on η− ρ0 plane com-
puted on a rectangular domain of 800× 100 for various q. A
macrophase separation similar to AIM in (a) and (b) trans-
forms to a Vicsek-like phase separation (microphase) in the
coexistence region in (c) and (d) at intermediate densities.
v0 = 0.5.

contrast, for v0 > 0 (see Fig. 21), the order parame-
ter distribution exhibits LRO through isolated points of
phase ordering as activity facilitates the broken symme-
try phase. For q > 7, a comprehensible LRO phase is
observed at a large length scale limit as shown in Fig. 9.

To understand better the nature of ordering of the
DVM liquid phase, we show the order parameter ⟨m⟩
against increasing system size L for several q in Fig. 22.
The data presented are averaged over time and several
initial configurations. We note that, ⟨m⟩ remains inde-

pendent of the system size L (actually, m scales with L
as m ∼ L−λ, decays much slower than a power law) for
all q for v0 = 0.5 [Fig. 22(a)] signifying LRO. As a result,
the liquid phase of the constant-speed DVM is LRO and
the direction of the order parameter exhibits a pinned
behavior. For v0 = 0, shown in Fig. 22(b), however, ⟨m⟩
(a) (b) 2π

3π/2

π

π/2

0
0

0
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π
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FIG. 19. (Color online) Time evolution of the direction of
global order Φ in the coexistence region for (a) L = 512 and
various q and (b) q = 9 and several values of L. (c–d) Snap-
shots showing multiple bands moving parallelly constituting a
microphase-separated coexistence region for q = 9 and q = 16,
respectively. System size L = 512. Parameters: η = 0.3,
ρ0 = 1.5, v0 = 0.5.

is expected to algebraically decay to zero for L → ∞ and
this effect is more pronounced for larger q because, for
large q, the v0 = 0 DVM approaches the two-dimensional
XY model where the low-temperature phase is QLRO.
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