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We consider a superconductor-barrier-superconductor configuration built with Rarita-Schwinger-
Weyl semimetal, which features four bands crossing at a single nodal point. Assuming a homoge-
neous s-wave pairing in each superconducting region, and the barrier region created by applying a
voltage of magnitude V0 across a piece of normal state semimetal, we apply the BdG formalism to
compute the discrete energy spectrum ε of the subgap Andreev bound states in the short-barrier
regime. In contrast with the two-band semimetals studied earlier, we find upto four pairs of localized
states (rather than one pair for two-band semimetals) in the thin-barrier limit, and each value of
ε has a complicated dependence on the phase difference φ12 via cosine and sine functions, which
cannot be determined analytically. These are artifacts of multi-band nodes hosting quasiparticles
of pseudospin values greater than 1/2. Using the bound state energies, we compute the Josephson
current across the junction configuration.
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I. INTRODUCTION

A large number of gapless topological phases has been discovered in recent years which are characterized by the Brillouin
zone (BZ) harbouring pairs of points where two or more bands cross [1, 2]. Often such systems have a nontrivial topology
in the momentum space, exhibiting nonzero Chern numbers about each band-crossing point. The associated materials are
called semimetals due to the existence of the gapless nodal points where the density of states goes to zero. The simplest
and the most well-known three-dimensional (3d) example is the Weyl semimetal (WSM) [3, 4], which exhibits an isotropic
linear-in-momentum dispersion in the vicinity of two bands crossing at a point. A simple generalization of the WSM is a
multiband semimetal with isotropic linear dispersions, whose low-energy effective Hamiltonian can be expressed as ∼ k ·S,
where S represents the three-component vector consisting of the matrices for a particular value of pseudospin, with the
nomenclature “pseudospin” being used to unambiguously differentiate it from the actual (relativistic) spin. These are the
higher-pseudospin-semimetals (i.e., with pseudospin value greater than 1/2), thus, constitute natural generalizations of the
WSM Hamiltonian ∼ k ·σ, on account of the number of bands being higher than two.1 Examples of multiband semimetals
include the pseudospin-1 Maxwell fermions [5–8] (with threefold band-crossings) and the pseudospin-3/2 Rarita-Schwinger-
Weyl (RSW) semimetals [6–13] (with fourfold band-crossings).
In the branch of high-energy physics, the Rarita-Schwinger (RS) equation describes the field equation for elementary

(relativistic) particles with a spin value of 3/2. Although they are postulated to exist in models based on supergravity
[14], they do not appear in the standard model, and none has been detected experimentally either. On the other hand, in
condensed matter systems, an analogue of these relativistic spin-3/2 fermions exists in the form of quasiparticles carrying
pseudospin-3/2 [6–11, 13], which of course are non-relativistic. In an effective Hamiltonian of the form shown in Eq. (1),
the four bands show linear-in-momentum dispersions fixed to the values ±3 |k|/2 and ±|k|/2 [cf. Eq. (3)]. It has been
argued that the large topological charges, found in various materials like CoSi [15], RhSi [16], AlPt [17], and PdBiSe [18],
represent the features of an RSW semimetal.

1 Here we have used the usual convention that σ represents the vector of the three Pauli matrices, implying that the WSM hosts pseudospin-1/2
quasiparticles.
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(a) (b)

FIG. 1. Schematics of the (a) S-B-S junction set-up; (b) isotropic energy dispersions of an RSW semimetal, plotted against the
kx-ky/ky-kz/kz-kx plane, featuring conical dispersions with two distinct values of the magnitude of the slope [viz. Es

3/2(k) = s 3 |k|/2
and Es

1/2(k) = s |k|/2, with s = ± ].

One way to understand the consequences of the existence of nonzero pseudospin quasiparticles is to study the Josephson
effect in set-ups consisting of junctions between the normal (abbreviated by “N”) and the superconducting (abbreviated by
“S”) states of various semimetals. The superconductivity is induced via proximity-effect by placing a conventional s-wave
superconductor atop the corresponding region [19]. Examples of relevant configurations include N-S [20–25], S-N-S [26, 27],
and S-B-S (where “B” indicates a potential barrier in the N region, which can be created by applying a gate voltage V0
across the normal state region) [28–31] junctions. These studies have considered both 2d [20, 22, 28] and 3d [23–25, 30, 31]
semimetals. Although the pseudospin-1 semimetal has three bands crossing at a point, it has a flat (i.e., nondispersive)
band which does not participate in transport. Hence, we extend the earlier studies (involving pseudospin-1/2 semimetals)
by considering an S-B-S set-up, as shown in Fig. 1(a), constructed out of RSW semimetals, with the superconducting
region exhibiting spin-singlet s-wave pairing [10]. We focus on the short-barrier regime, such that the barrier thickness L
is taken to be L ≪ ξ, where ξ is the superconducting coherence length (i.e., the subgap excitations decay over a length
scale ∼ ξ inside the superconductor).

Let the strength of the superconducting order parameter be given by ∆ = ∆0 e
i φ and let ε represent the energy of the

emergent eigenstates. We get a set of discrete states for |ε| < ∆0, also known as the subgap excitations. For |ε| > ∆0, the
states form a continuum. Due to the fact that four bands cross at a single node of an RSW semimetal, it is expected to
exhibit features which are distinct from the systems studied so far in the existing literature. In particular, for two-band
semimetals, it has been shown [26, 28, 30] that the energy of the Andreev bound states (ABSs) in the thin-barrier-limit

is given by ε = ±∆0

√
1− TN sin2 (φ12/2). Here, φ12 is the difference of the superconducting phases on the two sides

of the barrier region, and TN is the transmission coefficient in an analogous set-up with the superconducting regions
replaced by the normal state of the semimetal. This result follows from the fact that the solution for η ≡ cos(2 ε/∆0) is
obtained from a linear equation (i.e., a first-order polynomial equation in η), whose η-independent coefficient contains a
term proportional to cosφ12. However, this result will not hold true for an RSW semimetal, where we get more than two
pairs of ABSs with energies of the form ±|ε|. This results from the fact that the solution for the RSW case involves a
complex-valued quartic equation in the variable ηR ≡ exp(2 i ε/∆0), with both cosφ12 and sinφ12 (and their products)
appearing in the various coefficients of the polynomial.

We consider the propagation of quasiparticles and quasiholes in a slab of square cross-section, with a side-length W ,
where W is assumed to be large enough to impose periodic boundary conditions along these transverse directions. The
propagation direction of the quasiparticles/quasiholes is taken to be parallel/antiparallel to the z-axis. We compute the
energies of the ABSs in the thin-barrier-limit, which is the limit when the strength of the potential barrier V0 → ∞ and
L→ 0, with χ ≡ V0 L held fixed at a finite value. In the short-barrier regime, the dominant contribution to the Josephson
current comes from the subgap states (i.e., the bound states populating the discrete Andreev energy levels) [26, 32, 33],
because the contributions from the excited states in the continuum (with the magnitude of the energy ε exceeding ∆0)
are smaller by a factor of L/ξ and, hence, are negligible in this limit.

The paper is organized as follows. In Sec. II, we describe the low-energy effective Hamiltonian of the RSW in its
normal state, and show its eigenvalues and eigenfunctions. In Sec. III, the S-B-S junction set-up is explained and the
Bogoliubov–de Gennes (BdG) Hamiltonian is constructed. The expressions for the electron-like and hole-like wavefunctions
are also elucidated there. This is followed by Sec. IV, where the methodology employed to obtain the ABS spectrum is
explained and some representative values are illustrated in various parameter regimes. We also numerically find the
Josephson current from these bound states. Finally, we end with a summary and outlook in Sec. V.
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II. RSW SEMIMETAL

Using symmetry analysis, it has been shown that various crystal structures, belonging to the eight space groups 207-214,
host fourfold topological degeneracies about the Γ, R, and/or H points [1]. On linearizing the k · p Hamiltonian about
such a nodal point, we arrive at the effective continuum Hamiltonian, in the low-energy limit, captured by

HRSW(k) = v k · J . (1)

Here, v denotes the magnitude of the group velocity of the quasiparticles and S = J. Henceforth, we will set v = 1 for
the sake of simplicity. The system hosts pseudospin-3/2 RSW quasiparticles, which is reflected by the fact that the three
components of J form the spin-3/2 representation of the SO(3) group. A standard representation of J is given by

Jx =


0

√
3
2 0 0√

3
2 0 1 0

0 1 0
√
3
2

0 0
√
3
2 0

 , Jy =


0 −

√
3 i

2 0 0√
3 i
2 0 −i 0

0 i 0 −
√
3 i

2

0 0
√
3 i
2 0

 , Jz =
1

2

 3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 . (2)

The energy eigenvalues take the forms:

Es
3/2(k) = s

3 |k|
2

and Es
1/2(k) = s

|k|
2
, where s = ± , (3)

demonstrating four linearly dispersing bands crossing at a point [cf. Fig. 1(b)]. Here the “+” and “−” signs, as usual,
refer to the conduction and valence bands, respectively. The corresponding orthonormal eigenvectors are given by

Ψs
3/2(k) =

1

N s
3/2

[
s k

(
k2x + k2y + 4 k2z

)
+ kz

(
3 k2x + 3k2y + 4 k2z

)
(kx + i ky)

3

√
3
[
2 kz (s k + kz) + k2x + k2y

]
(kx + i ky)

2

√
3 (s k + kz)

kx + i ky
1

]T

(
for energy Es

3/2

)
and Ψs

1/2(k) =
1

N s
1/2

[
− (s k + kz) (kx − i ky)

(kx + i ky)2
2 kz (s k + kz)− k2x − k2y√

3 (kx + i ky)
2

s k + 3 kz√
3 (kx + i ky)

1

]T (
for energy Es

1/2

)
, (4)

where k =
√
k2x + k2y + k2z , and 1/N s

3/2 and 1/N s
1/2 denote the corresponding normalization factors. If the Fermi energy

cuts the bands at energy E, then for propagation along the z-direction, the corresponding plane waves will have the factors

ei sgn(E) k(3/2)
z z and ei sgn(E) k(1/2)

z z, such that k
(3/2)
z =

√(
E
3/2

)2

− k2x − k2y and k
(1/2)
z =

√(
E
3/2

)2

− k2x − k2y .

III. S-B-S JUNCTION

The main influence of the presence of pseudospin-3/2 quasiparticles is the existence of four bands, giving rise to four
independent wavefunctions for the normal-phase Hamiltonian. The first task is to determine what kind of Cooper pairing
can arise in such a four-band system, with each band featuring an isotropic linear-in-momentum dispersion. This issue
has been addressed in Ref. [10], which requires some symmetry analysis. The author demonstrates that the s-wave
superconducting state, represented by the order parameter

∆sc = ⟨ψ† Γψ∗⟩, (5)

where ψ is the four-component quasiparticle spinor, opens a Majorana mass gap for the fermions and is the leading
superconducting instability. The explicit form of Γ is shown in Eq. (6) presented below.
In order to get the S-B-S configuration [cf. Fig. 1(a)], we model the superconducting pair potential as [10]

∆(z) =


∆0 e

i φ1 Γ for z ≤ 0

0 for 0 < z < L

∆0 e
i φ2 Γ for z ≥ L

, Γ = i

(
Jy Jz + Jz Jy√

3

)(
Jx Jy + Jy Jx√

3

)
, (6)

representing Cooper pairing in the s-wave channel. Due to the presence of the barrier region, we need to consider the
potential energy

V (z) =

{
0 for z ≤ 0 and z ≥ L

V0 for 0 < z < L
. (7)
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The resulting BdG Hamiltonian is given by

H =
1

2

∑
k

Ψ†
kHBdG(k)Ψk, Ψk =

[
c1(k) c2(k) c3(k) c4(k) c†1(−k) c†2(−k) c†3(−k) c†4(−k)

]T
,

HBdG(k) =

[
HRSW(k)− EF + V (z) ∆(z)

∆†(z) EF − V (z)−HT
RSW(−k)

]
, (8)

where the subscripts {1, 2, 3, 4} on the fermionic operators represent the four distinct band indices. Here we demarcate the
left superconducting region as “region I”, the middle barrier region as “region II”, and the right superconducting region
as “region III”. The electron-like and the hole-like BdG quasiparticles are obtained from the eigenvalue equation

HBdG(k → −i∇r)ψk(r) = εψk(r) , (9)

where r = (x, y, z) is the position vector. If ψN (k) is an eigenfunction of HRSW(k) (with the superconducting phase
factor of φ), then the electron-like and hole-like eigenfunctions of HBdG(k) are given by the expressions [34]

ψe(k) =
[
ψN (k) (ε−Ω) e−i φ

∆0
Γ · ψN (k)

]
and ψh(k) =

[
ψN (k) (ε+Ω) e−i φ

∆0
Γ · ψN (k)

]
, (10)

respectively, where

Ω = i
√
∆2

0 − ε2 . (11)

Let us define

β = arccos(ε/∆0) , (12)

which will be useful in the expressions that follow. Using Eqs. (4) and (10), let us now elucidate the form of the
eigenfunction

Ψ(r, k⊥) = ψI(r, k⊥)Θ(−z) + ψII(r, k⊥)Θ(z)Θ(L− z) + ψIII(r, k⊥)Θ(z − L) ,

expressed in a piecewise manner for the three regions, where we set the the Fermi energy at EF for the corresponding
normal states (i.e., for ∆0 = 0) in the regions I and III. We assume the energy-scale hierarchies V0 ≫ EF ≫ ∆0 and
(V0−EF ) ≫ EF .

2 Since the propagation direction is along the z-axis, the translation symmetry is broken in that direction,
whereas the transverse momentum components kx and ky are conserved across the S-B and B-S junctions. We denote the

magnitude of the transverse component as k⊥ =
√
k2x + k2y, and the azimuthal angle ϕ = arctan(ky/kx).

1. In the right superconductor region, the wavefunction localizing at the interface is described by a linear combination
of the following form (see chapter 5 of Ref. [35]):

ψIII(r, k⊥) = a32r ψ
er
3/2(r, θ

r
32) + a12r ψ

er
1/2(r, θ

r
12) + b32r ψ

hr
3/2(r, θ̃

r
32) + b12r ψ

hr
1/2(r, θ̃

r
12) , (13)

where

ψer
3/2(r, θ

r
32) =

ei{kx x+ ky y+ k(3/2),el
z (z−L)} e−i ϕ 12×2⊗Jz

√
2

×
[
eiβ cos3(

θr32
2 )√

3

eiβ sin θr
32 cos

(
θr32
2

)
2

eiβ sin
(

θr32
2

)
sin θr

32

2

eiβ sin3(
θr32
2 )√

3

−i e−i φ2 sin3(
θr32
2 )√

3

i e−i φ2 sin
(

θr32
2

)
sin θr

32

2

−i e−i φ2 sin θr
32 cos

(
θr32
2

)
2

i e−i φ2 cos3(
θr32
2 )√

3

]T
,

sin θr32 ≃ 3 k⊥/2

EF
, k(3/2),erz ≃ k

(3/2)
mod + i κ1 , k

(3/2)
mod ≃

√(
EF

3/2

)2

− k2⊥ , κ1 =
EF ∆0 sinβ

(3/2)2 k
(3/2)
mod

, tan θr32 ≃ k⊥

k
(3/2)
mod

,

(14)

2 The condition ∆0 ≪ EF ensures that the mean-field approximation, applicable for using the BdG formalism, is valid. The second condition
(V0 − EF ) ≫ EF arises because we are focussing on the short-barrier regime.
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ψer
1/2(r, θ

r
12) =

ei{kx x+ ky y+ k(1/2),el
z (z−L)} e−i ϕ 12×2⊗Jz

√
2

×
[−

√
3 eiβ sin θr

12 cos
(

θr12
2

)
2

eiβ cos
(

θr12
2

)
(3 cos θr

12−1)

2

eiβ sin
(

θr12
2

)
(3 cos θr

12+1)

2

√
3 eiβ sin

(
θr12
2

)
sin θr

12

2

−i
√
3 e−iφ2 sin

(
θr12
2

)
sin θr

12

2

i e−iφ2 sin
(

θr12
2

)
(3 cos θr

12+1)

2

i e−iφ2 cos
(

θr12
2

)
(1−3 cos θr

12)

2

−i
√
3 e−iφ2 sin θr

12 cos
(

θr12
2

)
2

]T
,

sin θr12 ≃ k⊥/2

EF
, k(1/2),erz ≃ k

(1/2)
mod + i κ2 , k

(1/2)
mod ≃

√(
EF

1/2

)2

− k2⊥ , κ2 =
EF ∆0 sinβ

(1/2)2 k
(1/2)
mod

, tan θr12 ≃ k⊥

k
(1/2)
mod

,

(15)

ψhr
3/2(r, θ̃

r
32) =

ei{kx x+ ky y+ k(3/2),hl
z (z−L)} e−i ϕ 12×2⊗Jz

√
2

×
[
eiφ2 cos3(

θ̃r32
2 )√

3

eiφ2 sin θr
32 cos

(
θ̃r32
2

)
2

eiφ2 sin

(
θ̃r32
2

)
sin θr

32

2

eiφ2 sin3(
θ̃r32
2 )√

3

−i eiβ sin3(
θ̃r32
2 )√

3

i eiβ sin

(
θ̃r32
2

)
sin θ̃r

32

2

−i eiβ sin θ̃r
32 cos

(
θ̃r32
2

)
2

i eiβ cos3(
θ̃r32
2 )√

3

]T
,

sin θ̃r32 ≃ 3 k⊥/2

EF
, k(3/2),hrz ≃ −k(3/2)mod + i κ1 , tan θ̃r32 ≃ k⊥

−k(3/2)mod

, (16)

ψhr
1/2(r, θ̃

r
12) =

ei{kx x+ ky y+ k(1/2),hl
z (z−L)} e−i ϕ 12×2⊗Jz

√
2

×
[−

√
3 eiφ2 sin θ̃r

12 cos

(
θ̃r12
2

)
2

eiφ2 cos

(
θ̃r12
2

)
(3 cos θ̃r

12−1)
2

eiφ2 sin

(
θ̃r12
2

)
(3 cos θ̃r

12+1)
2

√
3 eiφ2 sin

(
θ̃r12
2

)
sin θ̃r

12

2

−i
√
3 eiβ sin

(
θ̃r12
2

)
sin θ̃r

12

2

i eiβ sin

(
θ̃r12
2

)
(3 cos θ̃r

12+1)
2

i eiβ cos

(
θ̃r12
2

)
(1−3 cos θ̃r

12)
2

−i
√
3 eiβ sin θ̃r

12 cos

(
θ̃r12
2

)
2

]T
,

sin θ̃r12 ≃ k⊥/2

EF
, k(1/2),hrz ≃ −k(1/2)mod + i κ2 , tan θ̃r12 ≃ k⊥

−k(1/2)mod

. (17)

The expressions above represent right-moving electron-like and hole-like wavefunctions (using the nomenclature
from Sec. S2 of Ref. [25]). The expressions for the various angles and the z-components of the momenta, shown
above, are valid in the limit ∆0 ≪ EF , which we have assumed to hold true. Clearly, in this regime, we find that
θ̃r32 ≃ π−θr32 and θ̃r12 ≃ π−θr12. The fact that the “right-moving” wavefunctions are the admissible ones in this region
follows because, when we solve for bound-state-problems in quantum mechanics (for example, a Schrödinger particle
tunneling through a Dirac delta potential barrier), we get both exponentially decaying and increasing wavefunctions
— but to get physically admissible solutions, we retain only the decaying ones.

2. In the normal state region, we will have a linear combination of the following form:

ψII(r, k⊥) = a32 ψ
e+
3/2(r, θ32n) + b32 ψ

e−
3/2(r, θ32n) + a12 ψ

e+
1/2(r, θ12n) + b12 ψ

e−
1/2(r, θ12n)

+ c32 ψ
h+
3/2(r, θ̃32n) + d32 ψ

h−
3/2(r, θ̃32n) + c12 ψ

h+
1/2(r, θ̃12n) + d12 ψ

h−
1/2(r, θ̃12n) , (18)

where

ψe+
3/2(r, θ32n) = ei(kx x+ ky y+ k(3/2),e

z z) f1(θ32n),

f1(θ32n) = e−i ϕ 12×2⊗Jz

[
− sin3( θ32n2 )

√
3 sin( θ32n

2 ) sin θ32n

2 −
√
3 sin θ32n cos( θ32n

2 )
2 cos3( θ32n2 ) 0 0 0 0

]T
,

ψe−
3/2(r, θ32n) = ei(kx x+ ky y− k(3/2),e

z z) f1(π − θ32n) ,

k(3/2),ez = −

√(
V0 − EF − ε

3/2

)2

− k2⊥, cos θ32n =
k
(3/2),e
z

2 (ε+ EF − V0)/3
, sin θ32n =

k⊥
2 (ε+ EF − V0)/3

, (19)
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(a) (b)

(c) (d)

FIG. 2. Behaviour of |ε| against k⊥ [subfigures (a) and (b)] and φ12 [subfigures (c) and (d)], for some representative values of the
remaining parameters (shown in the plotlabels).

ψe+
1/2(r, θ12n) = ei(kx x+ ky y+ k(1/2),e

z z) f2(θ12n) ,

f2(θ12n) = e−i ϕ 12×2⊗Jz

[√
3 sin( θ12n

2 ) sin θ12n

2

− sin( θ12n
2 )(3 cos θ12n+1)

2

cos( θ12n
2 )(3 cos θ12n−1)

2

√
3 sin θ12n cos( θ12n

2 )
2 0 0 0 0

]T
,

ψe−
1/2(r, θ12n) = ei(kx x+ ky y− k(1/2),e

z z) f2(π − θ12n) ,

k(1/2),ez = −

√(
V0 − EF − ε

1/2

)2

− k2⊥, cos θ32n =
k
(1/2),e
z

2 (ε+ EF − V0)
, sin θ32n =

k⊥
2 (ε+ EF − V0)

, (20)

ψh+
3/2(r, θ̃32n) = ei(kx x+ ky y+ k(3/2),h

z z) f3(θ̃32n) ,

f3(θ̃32n) = e−i ϕ 12×2⊗Jz

[
0 0 0 0 cos3( θ̃32n2 )

√
3 sin θ̃32n cos

(
θ̃32n

2

)
2

√
3 sin

(
θ̃32n

2

)
sin θ̃32n

2 sin3( θ̃32n2 )

]T
,

ψh−
3/2(r, θ̃32n) = ei(kx x+ ky y− k(3/2),h

z z) f3(π − θ̃32n) ,

k(3/2),hz =

√(
V0 − EF + ε

3/2

)2

− k2⊥, cos θ̃32n =
k
(3/2),h
z

2 (ε− EF + V0)/3
, sin θ̃32n =

k⊥
2 (ε− EF + V0)/3

, (21)
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(a) (b)

FIG. 3. Behaviour of |ε| against k⊥ [subfigure (a)] and φ12 [subfigure (b)] for graphene/Weyl-semimetal, using the expressions of
Refs. [28, 30]. We have set EF = 1 and L = 0.01 for all the curves, and the remaining parameters are shown in the plotlegends.

ψh+
1/2(r, θ̃12n) = ei(kx x+ ky y+ k(1/2),h

z z) f4(θ̃12n) ,

f4(θ̃12n) = e−i ϕ 12×2⊗Jz

[
0 0 0 0

−
√
3 sin θ̃12n cos

(
θ̃12n

2

)
2

cos
(

θ̃12n
2

)
(3 cos θ̃12n−1)

2

sin
(

θ̃12n
2

)
(3 cos θ̃12n+1)

2

√
3 sin

(
θ̃12n

2

)
sin θ̃12n

2

]T
,

ψh−
1/2(r, θ̃12n) = ei(kx x+ ky y− k(1/2),h

z z) f4(π − θ̃12n) ,

k(1/2),hz =

√(
V0 − EF + ε

1/2

)2

− k2⊥, cos θ̃12n =
k
(1/2),h
z

2 (ε− EF + V0)
, sin θ̃12n =

k⊥
2 (ε− EF + V0)

. (22)

3. In the left superconductor region, we will have a linear combination of the following form:

ψI(r, k⊥) = a32l ψ
el
3/2(r, θ

r
32) + a12l ψ

el
1/2(r, θ

r
12) + b32l ψ

hl
3/2(r, θ̃

r
32) + b12l ψ

hl
1/2(r, θ̃

r
12) , (23)

where {
ψel
3/2(r, θ

r
32), ψ

el
1/2(r, θ

r
32), ψ

hl
3/2(r, θ̃

r
32), ψ

hl
1/2(r, θ̃

r
32)

}
=

{
ψer
3/2(r, π − θr32), ψ

er
1/2(r, π − θr12), ψ

hr
3/2(r, π − θ̃r32), ψ

hr
1/2(r, π − θ̃r12)

} ∣∣∣
φ2→φ1, (z−L)→z

. (24)

This amounts to flipping the signs of
{
k
(3/2),er
z , k

(1/2),er
z , k

(3/2),hr
z , k

(1/2),hr
z

}
, which is because we need to consider

here the left-moving electron-like and hole-like wavefunctions [35]. The “left-moving” wavefunctions are physically
admissible in this region, because they are the ones which decay exponentially.

Since the final results depend on the phase difference φ12 = φ2 − φ1, for simplification of the notations, we can set
φ1 = 0 and φ2 = φ12, without any loss of generality. Imposing the continuity of the wavefunction Ψ at the junctions
located at z = 0 and z = L, we get the following conditions:

ψI(x, y, 0, k⊥) = ψII(x, y, 0, k⊥) and ψII(x, y, L, k⊥) = ψIII(x, y, L, k⊥) . (25)

From the eight components of the wavefunction, we get 2 × 8 = 16 linear homogeneous equations in the 16 variables
(a32l, a12l, b32l, b12l, a32, a12, b32, b12, c32, c12, d32, d12, a32r, a12r, b32r, b12r), which constitute the 16 unknown coeffi-
cients of the piecewise-defined wavefunction. In these resulting equations, while the overall z-independent factors of
ei(kx x+ ky y) totally cancel out, the phase factors introduced by the action of e−i ϕ 12×2⊗Jz also cancel out component by
component. Let M be the 16 × 16 matrix constructed from the coefficients of the 16 variables. The consistency of the
equations is ensured by the condition detM = 0. From this equation, we can determine the energy eigenvalues of the
subgap ABSs, which are localized near the junctions with localization lengths ∼ κ−1

1 and ∼ κ−1
2 from the barrier, because

they decay exponentially as we move away from the junction location into the superconducting region.

IV. RESULTS

To simplify the calculations, instead of trying to compute the determinant of a 16× 16 matrix, we adopt the following
strategy to obtain the solutions for ε in the thin-barrier limit. Although this limit is equivalent to a Dirac delta potential,
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(a) (b)

FIG. 4. (a) Energy ε of the four pairs of Andreev bound states against the k⊥-φ12 plane, for V0 = 50, L = 0.01, and EF = 1. (b)

The behaviour of the total Josephson current (∝ Ĩ) in arbitrary units, as a function of φ12, obtained at kB T = 0.005∆0, for two
sets of parameter values as shown in the plotlegends.

due to the fact that we do not have any constraint on the derivatives of the wavefunction across the junctions (due to
the nature of the RSW Hamiltonian, which is linear in the position space derivatives, when written in the position space
representation), the standard delta-function-potential approximation [33, 36, 37] for thin barriers cannot be taken from
the start [28]. Instead, we need to start with Eq. (25), and impose the appropriate limits in the expressions appearing in
the equations obtained from the boundary conditions. Next, in region II, we employ the approximations

k(3/2),ez L→ −2

3
χ , k(1/2),ez L→ −2χ , k(3/2),hz L→ 2

3
χ , and k(1/2),hz L→ 2χ , (26)

in the exponential factors representing plane waves propagating along the z-direction. Furthermore, the ε-dependence

disappears from the angles, since −θ32n ≃ θ̃32n ≃ arcsin
(

V0−EF

3 k⊥/2

)
and −θ12n ≃ θ̃12n ≃ arcsin

(
V0−EF

k⊥/2

)
.

Plugging in the above approximations, we solve for (a32, a12, b32, b12) and (c32, c12, d32, d12), using the first four and the
last four components of the matrix equation ψI(x, y, 0) = ψII(x, y, 0), respectively, in terms of the remaining 8 variables.
This is because, in region II, the last(first) four entries/components of each electron(hole) wavefunction are zero. The
resulting expressions are used to eliminate the normal state coefficients in the matrix equation ψII(x, y, L) = ψIII(x, y, L),

and we end up with an 8×8 matrix M̃ involving 8 independent variables. The values of ε can now be obtained by demanding
detM̃ = 0 for consistency. Even after adopting these simplifying steps, in the end, we have to deal with a quartic equation
in the variable ηR ≡ exp(2 i β), with lengthy coefficients accompanying various powers of ηR. Consequently, a simple
analytic expression for ε cannot be obtained, unlike semimetals having two bands [28, 30].
As detailed above, we can determine the values of ε only by finding the roots of the polynomials numerically, which

are of quadratic order in sin(2β) and cos(2β). Looking for real solutions from the real and imaginary components of the
resulting complex-valued equation, we get upto four distinct values of |ε|, for a given set of parameter values. This is
because we have two real equations of quartic order in cos(2β) and sin(2β), whereas for each of the two-band models
studied earlier, only a linear-order equation in cos(2β) had to be solved (which gave rise to only one pair of ABSs). The
energies of the subgap states appear as the pair ±|ε| for each value of |ε|. In Fig. 2, we show their behaviour as functions
of k⊥ (with a fixed value of φ12) and φ12 (with a fixed value of k⊥), for some representative values of V0, L, and EF . The
bound state energies are periodic in φ12 (with period 2π) and are symmetric about the line φ12 = π. Fig. 4(a) illustrates
the variation of the four pairs of ε-values against the k⊥-φ12 plane and, hence, shows the dependence of ε on both these
variables in a combined way.
In order to compare the bound-state energies with those found for two-band systems in Refs. [28, 30], we use their

explicit expressions (cf. Eq. (20) of Ref. [28] and Eq. (13) of Ref. [30]) to plot |ε| against k⊥ [subfigure (a)] and φ12

[subfigure (b)] in Fig. 3. The values for the graphene and Weyl semimetal cases are identical, which is not surprising,
because both harbour pseudospin-1/2 quasiparticles with isotropic linear-in-momentum dispersions.
The Josephson current density across the two junctions, at a temperature T , is given by [26, 33]

IJ(φ12) = −2 e

ℏ
W 2

(2π)2

8∑
n=1

∫
dkx dky

∂εn
∂φ12

f(εn) , (27)

where εn labels the energy values of the eight ABSs, and f(λ) = 1/
(
1 + e

λ
kB T

)
is the Fermi-Dirac distribution function.
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Fig. 4(b) shows the behaviour of IJ as a function of φ12, scaled by appropriate numbers/variables (this scaled quantity

being denoted as Ĩ), for two sets of parameters.

V. SUMMARY AND OUTLOOK

In this paper, we have considered an S-B-S sandwich configuration built with Rarita-Schwinger-Weyl semimetal, with
the aim to determine the spectrum of ABSs in the thin-barrier limit. We have assumed a weak and homogeneous s-
wave pairing in each superconducting region, which can be created via proximity effect [19] by placing a superconducting
electrode near it. The barrier region can be implemented by applying a voltage of magnitude V0 across a piece of semimetal
in its normal state. By using the appropriate BdG Hamiltonian, we have determined the wavefunction, which localizes
at the boundaries, in a piecewise continuous manner. Enforcing consistency of the equations obtained from matching the
boundary conditions, we need to find the roots of the complex-valued polynomial in e2 i β , resulting from the vanishing of
the relevant determinant. The solutions give the discrete energy spectrum ε of the subgap Andreev states. Due to the
higher order of the polynomial to be solved, one cannot find a closed-form analytical expression. Hence, we have solved
for the admissible roots of the equation numerically, and have shown the results for some representative parameter values.
As anticipated, in contrast with the two-band semimetals studied extensively so far, there exist multiple localized states
(rather than two for two-band semimetals) in the thin-barrier limit. Furthermore, unlike the two-band semimetals, each
value of ε has a complicated dependence on the phase difference φ12, which cannot be determined analytically. We have
also derived the behaviour of the Josephson current, determined by the ABSs, and have illustrated it via a representative
plot.
In future, it will be worthwhile to study a generalization of the isotropic version of the RSW semimetal studied here,

where the full rotational symmetry of RSW is broken to the Oh symmetry [7, 12], with the dispersion featuring anisotropic
velocity parameters. An S-B-S junction set-up with such an anisotropic system is expected to show a richer structure
of the ABSs, albeit with the need to solving more complicated equations. Another avenue to explore is to introduce a
tilt in the band dispersion [31] and investigate the resulting ABSs. Yet another interesting set-up is to consider scenarios
where the dispersion is rotated about the z-axis across the junction(s), as considered in Refs. [13, 38]. Lastly, RSW S-B-S
junctions for higher angular momentum channels (e.g., d-wave symmetric pairing channel [11]) and for FFLO pairings
[29, 31] are left for future investigations.
In our follow-up work [37], we have computed the energies of the ABSs emerging in 2d semi-Dirac semimetals (which

feature a hybrid of linear and quadratic dispersions along the two mutually perpendicular momentum-axes), by considering
the propagation of the quasiparticles/quasiholes along the quadratic-dispersion direction. Such hybrid dispersions appear
in the low-energy spectra of a tight-binding model on (1) the honeycomb lattice in a magnetic field (resulting in the
so-called Hofstadter spectrum), and (2) a square-lattice with three bands of spinless fermions.
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