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Mixture Data for Training Cannot Ensure
Out-of-distribution Generalization

Songming Zhang, Yuxiao Luo, Qizhou Wang, Haoang Chi,
Xiaofeng Chen, Bo Han, Junbin Gao, and Jinyan Li

Abstract—Deep neural networks often face generalization
problems to handle out-of-distribution (OOD) data, and there
remains a notable theoretical gap between the contributing
factors and their respective impacts. Literature evidence from
in-distribution data has suggested that generalization error
can shrink if the size of mixture data for training increases.
However, when it comes to OOD samples, this conventional
understanding does not hold anymore—Increasing the size of
training data does not always lead to a reduction in the test
generalization error. In fact, diverse trends of the errors have
been found across various shifting scenarios including those
decreasing trends under a power-law pattern, initial declines
followed by increases, or continuous stable patterns. Previous
work has approached OOD data qualitatively, treating them
merely as samples unseen during training, which are hard to
explain the complicated non-monotonic trends. In this work,
we quantitatively redefine OOD data as those situated outside
the convex hull of mixed training data and establish novel
generalization error bounds to comprehend the counterintuitive
observations better. The new error bound provides a tighter
upper bound for data residing within the convex hull compared
to previous studies and is relatively relaxed for OOD data due
to consideration of additional distributional differences. Our
proof of the new risk bound agrees that the efficacy of well-
trained models can be guaranteed for unseen data within the
convex hull; More interestingly, but for OOD data beyond this
coverage, the generalization cannot be ensured, which aligns
with our observations. Furthermore, we attempted various OOD
techniques (including data augmentation, pre-training, algorithm
power, etc.) to underscore that our results not only explain
insightful observations in recent OOD generalization work, such
as the significance of diverse data and the sensitivity to unseen
shifts of existing algorithms, but it also inspires a novel and
effective data selection strategy.

Index Terms—Out-of-distribution, Deep neural network, Gen-
eralization risk.

I. INTRODUCTION

REAL-WORLD data are often sourced from diverse do-
mains, where each source is characterized by a different

distribution shift, and unknown shifts are hidden in their test
distributions (see Fig. 1) [1, 2]. While deep neural networks
(DNNs) demonstrate proficiency with in-domain data, they

Corresponding author: Jinyan Li.
The work was done at Shenzhen Institute of Advanced Technology, Chinese

Academy of Sciences. S. Zhang and X. Chen are with Department of
Mathematics, Chongqing Jiaotong University, China (sm.zhang1@siat.ac.cn).
Q. Wang and B. Han are with Hong Kong Baptist University. H. Chi is
with National University of Defense Technology. J. Gao is with Discipline
of Business Analytics, The University of Sydney Business School, The
University of Sydney, Australia (junbin.gao@sydney.edu.au). Y. Luo and J.
Li are with Shenzhen Institute of Advanced Technology, Chinese Academy
of Sciences (jinyan.li@siat.ac.cn)

have difficulties in gaining generalization on unknown data
shifts. Most out-of-distribution (OOD) generalization methods
typically assume their model’s capability to extrapolate across
every unseen shift and have been working on algorithm
improvements such as regularization [3], robust optimiza-
tion [4], and adjustments in model architecture [5]. Despite
these efforts, theoretical analysis of the key factors influencing
unseen data and their impacts on model performance is still
lacking. Previous empirical evidence such as neural scaling
law [6, 7] suggests that all generalization errors follow the
same decreasing trend as a power of training set size. Thus,
it means that the addition of training data can effectively
minimize generalization errors even for unknown distributions.

However, it appears that the scaling law conclusion may not
hold true in practice, potentially leading to counterintuitive
outcomes. In fact, the OOD generalization error can have
a diverse range of scenarios, including decreases under a
power-law pattern, initial decreases followed by increases,
or remaining stable. We thus propose that not all general-
ization errors in unseen target environments will decrease
when training data size increases. As the generalization error
decreases, the model’s accuracy improves, indicating better
generalization capability on OOD data. In other words, we
conjecture that simply increasing the volume of training data
may not necessarily enhance generalization to OOD data. To
our knowledge, no theoretical or empirical methods in the
literature have addressed this phenomenon.

To formally understand such problems, this paper first
presents empirical evidence for non-decreasing error trends
under various experimental settings on the MNIST, CIFAR-10,
PACS, and DomainNet datasets. The results are then used to
illustrate that with the expansion of the training size, the gener-
alization error decreases when the test shift is relatively minor,
mirroring the performance observed under in-distribution (ID)
data. Yet, when the degree of shift becomes substantial, the
generalization error may not decrease monotonically. Previous
works often indiscriminately categorized data unseen during
training as OOD data without acknowledging the underlying
causes of the non-monotonic patterns that may contain. This
motivates us to revisit fundamental OOD generalization set-
ups to elucidate such non-decreasing trends.

We propose a novel theoretical framework within the con-
text of OOD generalization. Given a set of training environ-
ments, we first argue that OOD data can be redefined as a
type of data lying outside the convex hull of source domains.
Based on this new definition, we prove new bounds for OOD
generalization errors. Our revised generalization bound estab-
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Fig. 1. A schematic diagram of a multi-domain sample in practice which consists of source and target domains. Suppose we can only have access to
Painting and Photo, the model exhibits different generalization abilities at different OOD domains Cartoon and Sketch according to the distance to
the mixture of training data. We draw a counterintuitive conclusion that the efficacy of well-trained models cannot be guaranteed for OOD data beyond the
convex hull of training mixture, which is consistent with our experimental observations in Section II.

lishes a tighter upper bound for data within the convex hull,
while being relatively relaxed for OOD data when considering
additional distributional divergences. Further analysis of this
new bound yields some theoretical insights into the influence
of shift degree and data size on generalization error, and
even on model capacity. By effectively distinguishing between
ID and OOD cases in the unseen data, we demonstrate that
model performance can be guaranteed for unseen yet ID data
with extrapolation across training environments. However, our
results collectively highlight that being trivially trained on
data mixtures cannot guarantee the OOD generalization
ability of the models, i.e., the model cannot infinitely improve
its OOD generalization ability by increasing training data
size. Thus, achieving comparable performance on OOD data
remains a formidable challenge for the model.

With our new theoretical framework in place, the ensuing
question pertains to enhancing its predictive efficacy in scenar-
ios devoid of prior target knowledge and providing coherent
explanations. First, we employ widely used techniques to
assess model adaptability, including data augmentation, pre-
training, and algorithms. Drawing from our new theoretical
findings, the efficacy of these invaluable tools can be eluci-
dated by their ability to expand the coverage of the training
mixture and its associated convex hull. Pre-training enables the
model to acquire broader and more generalized representations
from pre-trained datasets, while data augmentation facilitates
an increase in the diversity of representations by expanding the
size of training data. In contrast, hyperparameter optimization
yields poor results since it solely modifies the training hy-
perparameters without providing more insight regarding the
OOD samples. Moreover, it is important to note that existing
algorithms are also sensitive to unseen test shifts.

We also note that this work distinguishes itself not just
by offering theoretical understandings for error scenarios on
DNNs and common techniques used for OOD generalization,
but also by presenting novel insights for algorithm design.
Specifically, inspired by the analysis of data diversity in

our new definition, we proceed to evaluate a novel data
selection algorithm that relies only on training data. By se-
lectively choosing samples with substantial differences alone,
the coverage of the training mixture can be effectively ex-
panded, consequently broadening representations learned by
the models. Remarkably, this algorithm surpasses the baseline,
particularly in the case of large training size, whether chosen
randomly or using reinforcement learning techniques. As our
focus is on data preprocessing without the requirement of
environmental labels, this allows for a smooth combination
with other OOD generalization methods to improve further
the model’s capability to handle unseen shifts.

Overall, we have made three significant contributions in this
study:

1) Contrary to the widely held “more data, better perfor-
mance” paradigm, we draw a counterintuitive picture:
simply increasing training data cannot ensure model
performance especially when distribution shifts occur in
test data. Our empirical conclusion stems from the com-
plicated non-decreasing trends of OOD generalization
errors.

2) We proposed a novel definition for OOD data and
proved new error bounds for OOD generalization. Our
further analysis of this new bound revealed the main
factors with their influence leading to non-decreasing
tendency and provided strong support for our empirical
conclusions.

3) We explored and validated popular techniques such as
data augmentation, pre-training, and algorithm tricks,
demonstrating that our new theoretical results not only
explain their effectiveness but also guide a novel data
selection method for superior performance.

II. GENERALIZATION ERROR OF PATTERNS OBSERVED
FROM OOD SCENARIOS

To thoroughly assess the model’s generalization ability,
especially its performance in the presence of distribution shifts,
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Table I. Summary of network architectures used in the experiments.
We select different architectures for different tasks to better observe OOD generalization error patterns.

EXPERIMENT NETWORK(S) #CLASSES IMAGE SIZE BATCH SIZE

ROTATED CIFAR-10 WRN-10-2 2 (3, 32, 32) 128
BLURRED CIFAR-10 WRN-10-2 2 (3, 32, 32) 128
SPLIT-CIFAR10 SMALLCONV, WRN-10-2 2 (3, 32, 32) 128
ROTATED MNIST SMALLCONV 10 (1, 28, 28) 128
PACS WRN-16-4 4 (3, 64, 64) 16
DOMAINNET WRN-16-4 40 (3, 64, 64) 16
CINIC-10 WRN-10-2 10 (3, 32, 32) 128

we examine generalization patterns from different scenarios of
OOD data. OOD generalization refers to the model’s capacity
to perform well on those test data containing a distribution
distinct from those occurring in the training data [8]. Tradi-
tionally, it has been intuitively assumed that as the training size
increases, the model’s generalization performance improves
and the generalization error decreases accordingly, which
was also verified experimentally by neural scaling law [6].
However, this assumption needs to be verified by specific
experiments to ensure whether it is still applicable to OOD
data.

A. Experimental Settings for OOD Evaluation

To systematically evaluate the model’s ability to generalize
on OOD samples, we designed a series of experiments. Our
objective through these experiments is to reveal the relation-
ship between model’s OOD capability and distribution shift
and to explore whether and why the model can maintain
its performance under unknown shifts. The summary of the
datasets, network architectures, and training details used in
the experiments are presented as follows.

1) Datasets containing OOD distributions: The OOD sub-
tasks follow the setting outlined by De Silva et al. [9] and are
constructed from the images available at CIFAR-10, CINIC-
10, and several datasets at DomainBed [10] such as Rotated
MINST [11], PACS [12] and DomainNet [13]. Two types of
settings are attempted to examine the impact of training data
size on OOD data.

OOD data arising due to correlation shift. We investigate
how correlation shift affects a classification task from a
transformed version of the same distribution. We consider the
following scenarios for this purpose.

1) Rotated CIFAR-10: 0◦ and 60◦-rotated images as train-
ing distribution, and θ◦1-rotated images (30◦ − 150◦) as
unseen target. This scenario tests how rotation changes
the appearance of natural images.

2) Blurred CIFAR-10: 0 and 3-blurred images as training
distribution and σ1-blurred images with a range of
blurring levels from 2 to 20 as the unseen target. This
scenario tests how blur changes the clarity of natural
images. Here, “blur” refers to adding a corresponding
degree of Gaussian blur to the original images.

3) Rotated MNIST: 0◦ and 30◦-rotated digits as training
distribution, and θ◦1-rotated digits (15◦− 60◦) as unseen
target. This scenario tests how rotation changes the
appearance of handwritten digits.

OOD data caused by diversity shift. We also study
how diversity drifts affect a classification task using data
samples from source distributions and OOD samples from a
different distribution. Diversity shift is a change in diversity or
variability of the data distribution between training data and
OOD data [14]. We consider the following scenarios for this
purpose.

1) CINIC-10: The construction of the dataset motivates
us to consider two sub-tasks from CINIC-10: (1) Dis-
tribution from CIFAR images to ImageNet, and (2)
Distribution from ImageNet images to CIFAR. This
scenario tests how well a model can recognize images
from another data distribution.

2) Split-CIFAR10: We use two of the five binary classi-
fication tasks from Split-CIFAR10 as training data and
another as the unseen task. This scenario tests how well
a model can distinguish between different categories of
natural images.

3) PACS: We use two of the four-way-classification from
four domains (Photo, Art Painting, Cartoon and Sketch)
and images from one of the other unused domains as the
unseen task. This scenario tests how well a model can
generalize to different styles and depictions of images.

4) DomainNet: Same settings as PACS, we use a 40-way
classification from 6 domains in DomainNet (clipart,
infograph, painting, quickdraw, real, and
sketch). This scenario tests how well a model can
adapt to different domains of images with varying levels
of complexity and diversity

2) Details for Training: For each random seed, we ran-
domly select samples of different sizes n0 and n1 from the
source distribution, making their total number as N = n0+n1.
Next, we select OOD samples of a fixed size M from the un-
seen target distribution. For Rotated MNIST, Rotated CIFAR-
10, and Blurred CIFAR-10, the unseen distribution refers to
never appearing at the rotated or blurred level. For PACS and
DomainNet, images are down-sampled to (3, 64, 64) during
the training.

3) Neural Architectures: In our experiments, we utilize
three different network architectures: (a) a small convolutional
network with 0.12M parameters (SmallConv), (b) a wide
residual network of depth 10 and a widening factor 2 (WRN-
10-2), and (c) a larger wide residual network of depth 16 and
widening factor 4 (WRN-16-4) [15]. SmallConv consists of
3 convolution layers with a kernel size of 3 and 80 filters,
interweaved with max-pooling, ReLU, batch-norm layers, and
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Fig. 2. The lower the OOD generalization error, the better the model is at handling unseen targets. Error bars indicate 95% confidence intervals (10 runs). (a)
Different angles θ1 as unseen samples obtained by rotating images in OOD sub-task T2 (Bird vs. Cat) in CIFAR-10, with 0◦ and 60◦ as training samples,
M = 400. For small θ1, increasing training data size improves the OOD generalization ability of the model. However, beyond a certain value of ∆1, the
error with large rotation has a non-monotonic trend, which means overfitting on unseen rotation. (b) 2−20 level of Gaussian blur are unseen samples, and the
training blur levels are at 0 and 3, M = 400. The model is resilient to unobserved blur, yet for extreme levels of blur, non-monotonic scenarios are evident,
indicating that the model is misaligned with data due to noise. (c) Generalization error of two separate networks, WRN-10-2 and SmallConv, concerning a
given unseen task. Our plots involve 3 different task pairs from Split-CIFAR10 and exhibit the generalization error as a function of the number of training
samples. All 3 pairs demonstrated a non-decreasing trend in OOD generalization for both network models. (d) Generalization error of two separate datasets
in CINIC-10, consisting of CIFAR-10 and ImageNet subsuet. We set one as the training environment and the other as OOD. While the purple curve shows
higher error due to distribution shift, we did not observe any non-monotonic trend when testing on the unseen samples. Even when transferring between
different datasets, the degree of distribution shift is still the main factor.

a fully-connected classifier layer.
Table I provides a summary of the network architectures

used. All networks are trained using stochastic gradient de-
scent with Nesterov’s momentum and cosine-annealed learning
rate scheduler. The training hyperparameters include a learning
rate of 0.01 and a weight-decay of 10−5.

B. Generalization error scenarios for deep learning bench-
mark datasets

Not all generalization errors decrease due to corre-
lation shift. The shift in correlation refers to the change
in the statistical correlations between the source and unseen
target distribution [14]. Five binary classification sub-tasks use
CIFAR-10 to explore the generalization scenario of unseen
data. Our research focuses on a CIFAR-10 sub-task T2 (Bird
vs. Cat), where we use rotated images with 0◦ and 60◦ as
training environment. Also, we use the rotated images with
fixed angles from 30◦ − 150◦ as OOD samples. We also
investigate the OOD effect of applying Gaussian blur with
different levels to sub-task T2 from the same distribution. Our
results in Fig. 2(a)-(b) both show a monotonically decreasing
trend within the generalization error for the low-level shift,
i.e., small rotation, and low blur. However, for a high-level
shift, it is a non-monotonical function of training sample
size on the target domain. Despite enlarged training data,
the generalization error remains relatively high. This can be
explained in terms of overfitting training data: the model learns
specific patterns and noise of the training data (such as rotation
or blur) but fails to capture the underlying representations
of the data. This compromises the model’s robustness to
variations in distribution and its generalization to new data.

Not always a decreasing trend can occur when OOD
samples are drawn from a different distribution. OOD data
may arise due to categories evolving with new appearances
over time or drifting in underlying concepts (for instance,
an airplane in 2024 with a new shape or even images of
drones) [16]. Split CIFAR-10 with 5 binary sub-tasks is used
to study the generalization scenario of unseen data, such as
frog vs. horse and ship vs. truck. We consider sub-task
combinations (Ti, Tj) as the training domain and evaluate the
trend of error on Tk. As the sample size grows, see Fig. 2c, the
generalization error shrinks slightly or even does not show a
falling trend, either in WRN-10-2 or SmallConv. Interestingly,
WRN-10-2 initially outperforms SmallConv but it is overtaken
by the latter as the number of samples increases.

Non-decreasing trend also occurs for OOD benchmark
datasets. The different trends of generalization error motivate
us to further investigate three popular datasets in the OOD
works [14, 17]. First, we examine Rotated MNIST benchmark
when the OOD samples are represented by θ-rotated digit
images in MNIST, while 0◦ and 30◦as training angles. We
observe a decreasing trend in Fig. 3 (left), but the error lower
bound keeps rising and the slope keeps getting smaller as
the testing angle increases. This shows that even in real-
world datasets, model generalization is also vulnerable to
unknown shifts. Thus, we explore the PACS [12] and Do-
mainNet [13] dataset from DomainBed benchmark [10]. The
dataset contains subsets of different domains, two of which
we selected as training domains and the other as an unseen
target domain. When training samples consist of sketched
and painted images, the generalization error on the clipart
domain falls exponentially (i.e., S/A → C in Fig. 3 (Middle)).
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Fig. 3. Different error trends in OOD generalization error on three DomainBed benchmarks. Left: Rotated MNIST (10 classes, M = 2, 000, SmallConv),
Middle: PACS (4 classes, 4 domains {A, C, P, S}, M = 25, WRN-16-4), Right: DomainNet (40 classes, 6 domains {paint, sketch, real, graph, clipart,
draw}, M = 25, WRN-16-4). Error bars indicate 95% confidence intervals (10 runs for Rotated MNIST and PACS, 3 runs for DomainNet). As the number of
training samples increases, the various distances between distributions and how they are combined lead to different decreasing trends in OOD generalization
error.

Fig. 4. From two benchmark datasets, we plot their OOD generalization
error (y-axis) as a function of the OOD sample sizes per class (M ) (x-axis),
namely Left: a classification task from Rotated CIFAR-10, where the OOD
rotation is θ1 = 30◦ and 135◦. Right: a classification task from DomainNet
with OOD environment of graph and clipart respectively. We calculate
the OOD generalization error over 10 runs and 3 seeds for the two datasets
respectively. We found a decrease at lower M across all the pairs, and the
average error is stable with a decreasing variance for larger values of M .
Error bars indicate 95% confidence intervals.

Moreover, an interesting observation is that the generalization
error tested on the graphical images drops only slightly and
remains consistently high when learned from parts of drawings
and sketches. Similar trends are also observed in DomainNet,
which is a comparable benchmark to PACS; See Fig. 3 (Right).

Generalization error decreases in power law despite
shifts in dataset distributions. We take CINIC-10 as an ex-
ample of distribution shifts between different datasets. CINIC-
10 is a dataset consisting of images selected from CIFAR-10
and down-sampled from ImageNet. We train a network on one
subset of CINIC-10, use another subset as OOD samples, and
test on it. Fig. 2d shows that all situations exhibit a consistently

decreasing trend, signifying that the OOD generalization error
declines with an increase in the number of samples from the
training dataset. Consequently, all models can perform well
on another dataset without prior knowledge. The reason for
this intriguing phenomenon is that although the datasets are
separate (CIFAR-10 vs. ImageNet), the data distributions may
not be significantly different.

No effect of OOD sample size on generalization error.
Unlike the above experiments where the number of training
samples is fixed, we here investigate the impact of OOD
samples on generalization error with two representative train-
ing environments in OOD datasets (30◦ and 150◦ as OOD
in Rotated CIFAR-10, graph and clipart as OOD in
DomainNet). As depicted in Fig. 4, the generalization error
declines with fewer target samples, however, as the number
of OOD samples increases, the generalization error stays
flat and is related to the degree of distribution shift. Thus,
OOD generalization error is not associated with the number
of samples in the unseen target domain, but rather with the
training domains and the degree of shift in the target domain.

Discussion. Even restricted to OOD benchmark datasets,
different scenarios of generalization errors can be observed.
We have observed that the models can perform well on the
interpolated distribution of training mixtures, that is, the error
decreases as the sample size increases. DNNs are highly non-
convex, which makes it difficult to find the global optima,
but they can generalize well on interpolated distributions. The
intuitive reason is that DNN performs well on the original
distribution and as a continuous function, DNN with locally
optimal values at the boundary of the original distributions
may generalize equally well on the interpolated distributions.
Meanwhile, if the two distributions are similar enough, a well-
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trained DNN is also likely to perform well on the interpolated
distributions because it has learned the common features
between their original distributions. When the unseen shift
occurs, there is not always a downward trend. Models that
perform well on the interpolated distribution fail when the
test distribution is shifted significantly. In other words, the
error may not decrease as the volume of training data grows.
In the next section, we revisit the OOD generalization prob-
lem and seek theoretical explanations for the non-descending
phenomenon.

III. REVISIT OOD GENERALIZATION PROBLEM

We first review those definitions and theories related to the
OOD generalization problem.

A. Formulation of the OOD generalization problem

Consider a set of NE environments (domains) E = {ei}NE
i=1.

Let Es and Et be source and target environments collected
from E , respectively. That is, Es ⊂ E and Et ⊂ E . For
each source environment e ∈ Es, there exists a training
dataset (Xe, Y e) = {(xe

i , y
e
i )}

Ne
i=1 collected from each training

environment. We use xe and ye to denote the generic sample
and the label variables with respect to the environment e,
respectively. Furthermore, denote the overall training dataset
as Ds = {(Xe, Y e) : e ∈ Es}.

We only have access to Es during training, and the target en-
vironments are unseen during training and relatively different
from the training one. Moreover, we assume that there exists
a ground-truth label process h satisfying h(xe) = ye. Then,
in an OOD generalization, we would like to find a proper
hypothesis function f that minimizes the worst empirical risk
among all the training environments Ds,

argmin
f

sup
e∈Es

Re[ℓ(h(xe), f(xe)], (1)

where Re denotes the “empirical” risk calculated over the loss
ℓ measuring the difference between the ground truth and the
function f for any sample (xe, ye) in the training environ-
ments. In this paper, we just consider a binary classification
where the label ye is 0 or 1.

We then specify a set of assumptions about the data-
generating environmental process and consider the OOD gen-
eralization error of interest. The described multi-environment
model is general enough to cover both the i.i.d. case (E
contains a single environment) and the OOD setup (≥ 2
environments are allowed) but also supports several other
cases. The difference among the environments is measured
by H-divergence as well as for domain adaption case [18].

dH[e′, e′′] = 2 sup
f∈H

|Prx∼e′ [I(f)]− Prx∼e′′ [I(f)], (2)

where H = {f : X 7→ {0, 1}} is a hypothesis class on X and
I(f) = {x : f(x) = 1}, i.e., all the inputs x ∈ X that are
classified as class 1 by the hypothesis f .

In the context of OOD generalization, the test distribution is
inaccessible, necessitating certain assumptions about the test
environment to enable generalization.

We address this issue in the results below and introduce
generalization guarantees for a specific test environment with
data mixture of training distributions. Let the training envi-
ronments Es contain NS training environments, denoted as
Es = {eis}

NS
i=1. The convex hull Con(Es) of Es is defined as

the set of pooled environments given by

Con(Es) = {ê | ê =
NS∑
i=1

αie
i
s, αi ∈ ∆|NS |−1}, (3)

where ∆|NS |−1 is the (|NS |−1)-th dimensional simplex. The
following lemma shows that for any pair of environments such
that e′, e′′ ∈ Con(Es), the H-divergence between e′ and e′′ is
upper-bounded by the largest H-divergence measured between
the elements of S.

Lemma III.1 (Paraphrase from [19]). Suppose dH
[
ei, ej

]
≤

ϵ,∀i, j ∈ [NS ], then the following inequality holds for the
H-divergence between any pair of environments e′, e′′ ∈
Con(Es):

dH [e′, e′′] ≤ ϵ. (4)

It is suggestive that the H-divergence between any two
environments in Con(Es) (i.e., the maximum pairwise H-
divergence) can be used to measure the difference from the
target environment and can affect OOD generalization ability
of the model.

One generally refers to all unseen data as OOD data in
literature work, provided such data is not available during
training [8, 20]. The classic OOD data is defined as follows

Definition III.1 (Out-of-distribution data (General)). Let Es
and Et be the sets of source and target environments, re-
spectively, and let Y = [0, 1]. Suppose we have a set of n
source environments, Es = {e1s, e2s, . . . , eNS

s }. Let et ∈ E be
an unseen target environment, such that for any data in et,
the following conditions hold

et /∈ {e1s, e2s, . . . , eNS
s }, (5)

then the data in et is said as out-of-distribution data.

B. Redefinition for OOD data

It has been typically assumed in the literature that any test
environment that does not appear in the training environments
is considered OOD data. However, our findings suggest that
OOD data exhibit heterogeneous generalization scenarios de-
spite never having been encountered during training. We now
use Lemma III.1 to redefine whether the unseen data is OOD.
Formally,

Definition III.2 (Out-of-distribution data (Refined)). Let Es
and Et be the sets of source and target environments, respec-
tively, and Y be the output space. Suppose that we have a set of
n source environments, Es = {e1s, e2s, . . . , eNS

s } and that there
exists a real number ϵ > 0 such that dH̃[ei, ej ] ≤ ϵ, ∀ei, ej ∈
Con(Es). Let et ∈ E be an unseen target environment such
that, for any data in et, the following conditions hold:

dH̃(et, ê) > ϵ, ∀ê ∈ Con(Es), (6)
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then the data in et is said as out-of-distribution data, where
ê :=

∑NS

i=1 αie
i
s, where ê ∈ Con(Es),

∑NS

i=1 αi = 1 is the
convex combination of training environments, and αi ≥ 0 for
all i.

Remark III.1. We discuss ϵ in this definition, noting that
the mixture of training environments, Con(Es), can affect
generalization to the target distribution. Threshold estimates
are typically derived by assessing the model’s performance on
a mixture of training data, which reflects the model’s ability on
a specific distribution. However, unknown shifts can influence
these estimates and are not directly measurable in practice.
It is important to indicate that the data mixture in training
may not cover all samples in the unseen target environment.
Consequently, a model trained solely on this mixture may not
be insufficient for generalizing to the target environment.

Remark III.2 (An intuitive explanation of OOD data defini-
tion). The conventional intuitive way to understand OOD data
is to treat it as inaccessible and not included in the training
distribution. However, the various scenarios of generalization
errors prompt us to introduce “convex hull” empirically, which
helps define OOD data and the expected generalization. A
classifier works via decision boundaries, which learns from the
set of all mixtures obtained from given training distributions,
i.e., convex hull. The distance between the target distribution
and the decision boundary is a determinant of the classifier’s
performance. In the process of OOD generalization, unlike
domain adaptation settings, no data from the test distribution
can be observed. Furthermore, not all test samples are located
outside the convex hull constructed by the training set, as
defined above. For example, in Fig. 1, the model learning from
Painting and Photo predicts better in Cartoon than
Sketch due to Cartoon is closer to the training mixture.

Next, we present the error bounds in the following theorem.

Theorem III.1 (Upper-bounding the risk on unseen data). Let
Es be the set of training environments and let Y = [0, 1] For
any unseen environment et ∈ Et and any hypothesis f ∈ H,
the risk Rt(f) can be bounded in the following ways:

(i) If et ∈ Con(Es), data in et is considered as ID, then

Rt(f) ≤
∑NS

i=1
αiR

i
s(f) + 2ϵ+

min{Eê∥hs′ − ht∥,Eet∥ht − hs′∥},
(7)

(ii) If et /∈ Con(Es), data in et is considered as OOD, then

Rt(f) ≤
∑NS

i=1
αiR

i
s(f) + δ + ϵ+

min{Eê∥hs′ − ht∥,Eet∥ht − hs′∥}.
(8)

where ϵ is the highest pairwise H̃-divergence measured be-
tween pairs of environments within Con(Es) under H̃ =
{sign(|f(x) − f ′(x)| − t) | f, f ′ ∈ H, 0 ≤ t ≤ 1},
δ := minαi

dH̃[et,
∑NS

i=1 αie
i
s] with minimizer αi be the

distance of et from convex hull Con(Es), ê :=
∑NS

i=1 αie
i
s is

the “projection” of et onto convex hull Con(Es) with αi ≥ 0
for all i, hs′(x) =

∑NS

i=1 αiheis
(x) is the labeling function for

any x ∈ Supp(ê) derived from Con(Es) with weights αi, and
ht is the ground-truth labeling function for et.

Proof. Let the source environment and target environments
be Es and Et, respectively. The risk Rt(h) can be bounded
by Zhao et al. [21] for single-source and single-target domain
adaptation cases as follows:

Rt(f) ≤ Rs(f) + dH̃[es, et]+

min{Ees∥hs − ht∥,Eet∥ht − hs∥}.
(9)

where H̃ = {sign(|f(x)−f ′(x)|− t) | f, f ′ ∈ H, 0 ≤ t ≤ 1}.
To design a generalized constraint for the risk of any unseen
domain based on quantities associated with the distribution
seen during training, we need to start by rewriting Equation (9)
and considering et and its “projection” onto the convex hull of
ê ∈ Con(Es) = {ês|ês =

∑NS

i=1 αie
i
s,
∑NS

i=1 αi = 1, αi ≥ 0}.
For that, we introduce the labeling function hs′(x) =∑NS

i=1 αiheis
(x) which is an ensemble of the respective label-

ing functions and each weighted by the responding mixture
coefficients from Con(Es). Rt(f) can thus be bounded as

Rt(f) ≤Rê(f) + dH̃[ê, et]+

min{Eê∥hs′ − ht∥,Eet∥ht − hs′∥}.
(10)

Similarly to Lemma III.1 for the case where H = H̃, e′ = et
and e′′ = ê, it follows that

Rt(f) ≤
∑NS

i=1
αiR

i
s(f) +

∑NS

i=1
αidH̃[eis, et]+

min{Eê∥hs′ − ht∥,Eet∥ht − hs′∥}.
(11)

Using the triangle inequality for the H̃-divergence along
with Lemma III.1, we can bound the H̃-divergence between
et and any source environment eis, dH̃[eis, et], according to our
new Definition III.2.

If et ∈ Con(Es), the data in an environment et is defined
as in-distribution data, which means even et has never been
seen at training, it is still located in the convex hull of training
mixture. According to Lemma III.1 for case I where e′ = et
and e′′ = ê, and case II where e′ = eis and e′′ = ê, the
following inequality holds for the H-divergence between any
pair of environments e′, e′′ ∈ Con(Es).

dH̃[eis, et] ≤ dH̃[eis, ê] + dH̃[ê, et]

≤ ϵ+ ϵ = 2ϵ.
(12)

And if et /∈ Con(Es), the data in an environment et is
defined as out-of-distribution data, and we have

dH̃[eis, et] ≤ dH̃[eis, ê] + dH̃[ê, et]

≤ ϵ+ δ,
(13)

where δ := minαi
dH̃[et,

∑NS

i=1 αie
i
s] with minimizer αi be

the distance of et from convex hull Con(Es). Thus, we get an
upper-bounded dH̃[eis, et] based on our new definition.

Finally we rewrite the bound on Rt(f): if et ∈ Con(Es),
the data in an environment et is defined as in-distribution data

Rt(f) ≤
∑NS

i=1
αiR

i
s(f) + 2ϵ+

min{Eê∥hs′ − ht∥,Eet∥ht − hs′∥}.
(14)

And if et /∈ Con(Es), the data in an environment et is defined
as out-of-distribution data

Rt(f) ≤
∑NS

i=1
αiR

i
s(f) + δ + ϵ+

min{Eê∥hs′ − ht∥,Eet∥ht − hs′∥}.
(15)
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Remark III.3 (Intuitive interpretation of Theorem III.1).
Compared with the upper bound proposed by Albuquerque
et al. [19], our theorem derives different upper bounds for
unseen data in different cases based on the new definition.
For unseen data within the convex hull of training mixture,
the upper bound is tighter because et is assumed to be close
enough to the training mixture. The upper bound is more
relaxed for OOD data in et because additional differences
between the target environment and the source environment
need to be taken into account (denoted by δ). Such boundaries
explain why data mixture in training cannot guarantee models’
OOD capability. The intuitive interpretation of this theorem
can also be verified in Fig. 1. Different risk bounds on unseen
data mean that in some cases, the performance of the model
may be affected by different bounds even if a large amount
of training data is provided, especially if the multi-domain
data collected in the real world has different data quality,
task difficulty, and distribution gap. This all means that even
with more training samples, the OOD generalization ability of
the model may be limited. In other words, the model will not
improve indefinitely even if more training data is added.

Remark III.4 (The importance of diverse data). We further
highlight that the introduced results also provide insights into
the value of obtaining diverse datasets for generalization to
OOD samples in practice. More diverse the environments
where the dataset occurs during training, it is more likely
that the unseen distribution falls within the convex hull of the
training environments. That is, even though the dataset has
never been seen before, it may still belong to ID data. Specif-
ically, the diversity of training samples can help the model
learn more robust and general feature representations that
are critical for identifying and processing new, unseen data
distributions. Thus, as well as the dataset size, the diversity of
training samples is also crucial for better generalization.

Remark III.5 (Widely used OOD techniques). We next dis-
cuss widely used OOD techniques based on the introduced
framework in order to demonstrate the verification of our
theory and interesting observations in related algorithms. Such
techniques are crucial for enhancing the robustness and OOD
generalization of DNNs, including data augmentation, pre-
training, and hyperparameter optimization. We then define a
novel selection algorithm that relies only on training data.
While the risk of utilizing the training mixture can be min-
imized, it is able to measure the value of data and adapt
the learning scope dynamically. It is worth noting that our
empirical result is that the proposed algorithm can achieve
success even when no information is known about the target
environment.

IV. CAN WE BREAK OOD LIMITATION TO IMPROVE
MODEL’S CAPABILITY?

Can we make OOD samples as generalizable as possible, so
that we can improve the generalization ability of the models
and we can provide reasonable explanations when we do not
have any prior knowledge about the target distribution?

Fig. 5. For 0◦ and 60◦ as source samples, and 135◦ and 30◦ as OOD samples
in Rotated CIFAR-10 sub-task T2 respectively, we investigate the effect of
hyper-parameter tuning. We record the best set of hyper-parameters with a
validation set and test it on an unseen target. It can still be observed that the
same error trend in our previous results since manipulating the training set is
irrelevant for the test set, and the distribution distance is the main influencing
factor.

A. Observation for widely used OOD methods

When given unknown samples that are never seen during
training, the number of available options to alleviate the
degradation caused by OOD samples is limited. Thus we need
to use some popular techniques to process unseen data to make
them as “close” as possible to the data mixture in training,
such as hyperparameter optimization, data augmentation, pre-
training, and other DomainBed algorithms.

Effect of hyperparameter optimization. The first tech-
nique we aim to question is whether the best-performing model
trained on the training set can effectively reduce the general-
ization error on an unseen distribution. Similarly as by Kumar
et al. [22], we employ an easy two-step strategy of linear
probing and then full fine-tuning (50-50 epochs). It can be
observed in Fig. 5 that relying on hyperparameter optimization
alone is not sufficient to improve model performance in the
case of handling OOD samples. This implies that the optimal
performance of a model on training or validation data does
not guarantee its success on unseen samples. The reason for
this is that it adjusts primarily for the nature of training data,
but does not offer enough insight regarding the OOD samples.

Effect of data augmentation. To evaluate whether augmen-
tation works, we use two different rotations as unseen tasks
for WRN-10-2 on Rotated CIFAR-10, i.e., 135◦ and 30◦ as
OOD tasks. The results in Fig. 6 (medium color) show that the
effectiveness of data augmentation increases as the amount of
data increases. Initially, for a small dataset, augmentation may
have a negative effect. However, as the size of training data
grows, augmentation helps break the bias (digit vs. rotation)
in the training data. Augmentation overcomes the overfitting
phenomenon for semantic noise, especially on 135◦ as an
OOD task. Its effectiveness stems from the ability to introduce
diversity into the training data patterns. Data augmentation
helps create augmented samples that better represent real-
world variations and challenges. This enables the model to
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Fig. 6. For 0◦ and 60◦ as training samples, and 135◦(Upper) and
30◦(Bottom) as OOD samples in Rotated CIFAR-10 sub-task T2 respectively,
we train a WRN-10-2 model with target samples M = 400, under the follow-
ing settings: (1) Vanilla, that is, without any popular techniques (darkest color),
(2) Data augmentation with random copping, flips and padding (medium
color), and (3) Pre-training followed by fine-tuning (lightest color). WRN-
10-2 is pre-trained on ImageNet images from CINIC-10 (100 epochs and
0.01 learning rate followed De Silva et al. [9]). For smaller N , augmentation
worsens the OOD generalization error but shows improvement with increasing
samples, not disturbed by rotation. After pre-training, WRN-10-2 initially has
a dramatic drop in error but still rises for unseen samples, especially on 135◦.
Error bars indicate 95% confidence intervals (10 runs).

learn more robust and generalizable features, improving its
performance during tests on OOD samples.

Effect of pre-training. We repeat the same target tasks
for pre-training on Rotated CIFAR-10. As shown in Fig. 6
(lightest color), even with a limited sample size, pre-training
demonstrated a more robust improvement. And as the sample
size increases, the improvement of pre-training becomes more
minor, but still better than the baseline. We can conclude that
pre-training is a useful tool for improving the ability to unseen
distributions. Pre-training on large and diverse datasets can
enhance the model’s ability to learn a broad and generalized set
of representations, which can subsequently improve its perfor-
mance on OOD samples. However, its effectiveness depends
on how well they can transfer the learned representations to
target tasks. The quality of the representations must have been
tested carefully based on target tasks.

Fig. 7. Five of the six domains ({0◦, 15◦, 30◦, 45◦, 60◦, 75◦}) in Rotated
MNIST are used as training sets and the rest as an unseen task. We validate
the performance data of 10 algorithms in DomainBed on unseen rotations.
The higher the OOD generalization accuracy, the better the algorithm in
DomainBed is at handling unseen targets. It can be observed that all algorithms
perform poorly for 0◦ and 75◦, demonstrating sensitivity to unseen shifts.

The sensitivity of distribution distance in DomainBed al-
gorithms. We can see the performance of different algorithms
on the rotated MNIST dataset in Fig. 7. Most algorithms (like
ERM and DIVA [23]) perform well at rotations of 15◦ − 60◦,
but mediocre at 0◦ and 75◦. This trend verifies that different
algorithms are equally sensitive to changes in data distribution.
That is, they perform well in the environment within the data
mixture but perform poorly in the environment with distant
distribution. Besides, the performance of some algorithms
fluctuates greatly from different angles. For example, MMD-
AAE [24] and BestSources [25] perform well at lower angles,
but their performance degrades more after 45◦. This may
be due to the different feature extraction processes of the
algorithms, resulting in generalization failure at 45◦. The per-
formance of existing algorithms is sensitive to the distribution
distance, which can help us understand the generalization
ability of different algorithms in OOD settings.

B. Selection of the training samples

Recent work suggests that a careful selection of the most
valuable samples can prevent models from focusing too much
on the noise in training, thereby having a potential reduction
of the overfitting risk [26, 27]. However, data selection for
the OOD generalization problem meets a train-test mismatch
challenge, since it is impossible to anticipate the distribution
of target data that the model will encounter in the future.

1) Diversity learning for OOD generalization: Diversity
is a desirable dimension in OOD generalization problems.
We can explore dynamically adjusting weight and diversity
centered on the training data, so that information from the
source can be “partially adapted” to the target. For example,
style diversity in the dog data, since each style (picture,
sketch, painting, etc.) is different. Our empirical result
suggests that diversity ensures the expansion of the convex hull
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Fig. 8. Block diagram of Selecting the training samples A set of training
domain samples serves as training input. (1) RL-guided selection: Learns
from training samples (with shared parameters between batches), updates
with diversity-related rewards, and returns selection vectors (corresponding
to a multinomial distribution). (2) Random selection: Randomly output select
vectors to a batch of training samples. The OOD predictor is trained only on
training samples with selection vectors, using gradient descent optimization.

and contains more unseen samples as ID. To increase training
diversity, we can use random weighting, since it can help to
increase the amount of domain-agnostic information available
and promote the robustness of neural networks. Although ran-
dom selection can capture some of the information in training
domains, it depends on the distance between domains and
cannot correspond to each training domain sample one-to-one,
and therefore cannot be updated using traditional stochastic
gradient descent. Fortunately, well-established solutions from
the field of reinforcement learning (RL) are readily available
to update the selection sampler and weight each sample
individually to the selection criteria [27, 28].

2) Framework Details: We demonstrate that our selection
performance in two OOD tasks: (1) 0◦ and 60◦ as training
environments and 135◦ as OOD samples in Rotated CIFAR-
10; (2) clipart and sketch as training environments
and painting as OOD samples in PACS. We formalize
the components of the sample selection in OOD training set
optimization as shown in Fig. 8, including a training dataset
Ds with size n, a predictor f for OOD generalization and
an encoder fen as a feature extractor. We first shuffle and
randomly partition Ds into mini-batches, and then perform the
data selection process. (i) As for random selection, we provide
a random vector for each mini-batch selection. (ii) As for RL-
guided selection, we adopt REINFORCE [29] algorithm to
train a selector F for the optimization of OOD generalization.
Our goal is to learn an optimal policy π to maximize the
diversity of selected subsets from each mini-batch.

The process of RL-guided Selection is: First, the encoder
fen transforms a batch of data Bt into its representation vector
vt(vt = fen(Bt)) at each step t. Secondly, the policy π outputs
the batch of state st, so that each vt is associated with a
probability of diversity representing how likely it is going
to be selected. The selected subset B̂t is then obtained by
ranking their probability. Thirdly, the selector F as well as
encoder fen are finetuned by the selected subset B̂t. The F is
updated with REINFORCE algorithm and the reward function
R. No target knowledge is required, and the reward is only
measured via max divergence of source samples. We define
the divergence Diver(B) as the total of all distances between

Algorithm 1: RL-guided data selection
Input: Training set Ds, Predictor f (including encoder fen),

Epoch M , Reward function R, learning rate α,
Discount factor γ

Output: selected set, fine-tuned predictor f , policy π, data
selector F

1 Initialize selection policy π and data selector F ;
2 foreach episode m do
3 Shuffle and randomly partition Ds into mini-batched

with same size N :
Ds = {Bt}Tt=1 = {B1, B2, . . . , BT } ;

4 Initialize an empty list for episode history Γ;
5 foreach Bt ∈ Ds do
6 vt = fen(Bt);
7 Obtain state st;
8 Obtain action at by sampling based on π(st) ;
9 Obtain the selected set B̂t by ranking at;

10 Fine-tune predictor f with B̂t;
11 Calculate reward rt = R(B̂t,F) with Equation (16);
12 Store (st, at, rt) to episode history Γ;
13 end
14 foreach (st, at, rt) ∈ Γ do
15 Update policy weight and selector weights with

REINFORCE algorithm with R, α, and γ.
16 end
17 Clear episode history Γ;
18 end
19 return f , π, and F

any pairs (vi, vj) within the batch B:

Diver(B) =
∑

d(vi, vj), (vi, vj) ∈ B (16)

where d(·, ·) is the distance function. Maximizing the dis-
persion of samples can effectively increase the coverage of
learned representations of well-trained models, leading to a
more diverse content for the target environment. See Algo-
rithm 1 for more details. The expansion of convex hull allows
models to learn more diverse types of features and patterns.

3) Results and discussion: We first provide the training
reward on PACS in Fig. 9b. We can observe that the proposed
algorithm gradually reaches a convergence point at approx-
imately 40 episodes, which exhibits a faster convergence
speed. If the training size is large (e.g., 150), the reward first
increases and then decreases until it flattens out. Additionally,
the variance of average reward changes during the increase in
training size. It can be concluded that by designing diversity
as the reward function, the neural network can learn more
diverse examples Moreover, in the same tasks presented in
Section II-B, no noticeable trends were indicating a decrease
in performance. However, a significant reduction in error can
be observed in Fig. 9a following the selection process.

Weighted objectives were once believed to be ineffective for
over-parameterized models, including DNN [30] due to zero-
valued optimization results (i.e., the model fits the training
dataset perfectly, resulting in zero loss). However, our ex-
periments demonstrate the opposite: our method outperforms
the vanilla in the case of large training samples, whether
random or elaborated weighted. This is perhaps because cross-
entropy loss is hard to reach 0 due to multi-distribution
distance. Simultaneously, the selection of samples exhibiting
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(a) Generalization error on Rotated CIFAR-10 and PACS (b) Training reward on PACS
Fig. 9. The selecting results for OOD training. (a) Generalization error on the target distribution for Rotated CIFAR-10 (left) and PACS (right) using weighted
subset. Here, we present three settings on OOD tasks: Vanilla, With Random, and With RL-guided weighted objective. All settings only get information
from the training environment. For a small number of samples, the error of the latter two is high, but as the sample size grows, they can effectively lower the
OOD generalization error. The effect of OOD data arising due to intra-class nuisances (Rotated CIFAR-10) is more sensitive to random weights since there
is no semantic-level shift and more correlation-level. Unlike in CIFAR-10 tasks, we observe that in PACS, OOD generalization error falls significantly due to
semantic-level shift. In other words, if we use a weighted training subset, then we always obtain some benefit on OOD samples, whether random or guided.
(b) Training reward on PACS of RL-guided selection method. Reward on all training sizes converge to the optimal reward associated with PACS dataset.
Error bars indicate 95% confidence intervals (10 runs).

the largest dissimilarities between distributions has the po-
tential to broaden the coverage of the convex hull in the
training domains. This expansion ultimately leads to improved
performance outcomes.

By utilizing weighted objectives, we effectively prioritize
and emphasize samples that significantly contribute to the
overall learning process. This approach allows the model to
focus on the most informative and challenging parts of the
training mixture, thereby enhancing its capacity to generalize
to new, unseen shifts. Furthermore, our selection method
operates independently of the necessity for environment labels
(i.e., identification of sample domains), making it more flexible
and applicable in a broader range of scenarios. It can be
seamlessly integrated with other OOD generalization tech-
niques, such as domain generalization or data augmentation,
to further enhance the model’s ability to generalize to new
environments.

V. RELATED WORK

OOD generalization. Theoretical achievements in machine
learning has been made all under the assumption of indepen-
dent and identical distributions (i.i.d. assumption). However,
in many real-world scenarios, it is difficult for the i.i.d.
assumption to be satisfied, especially in the areas such as
medical care [31]. Consequently, the ability to generalize
under distribution shift gains more importance. Early OOD
studies mainly follow the distribution alignment by learning
domain invariant representations via kernel methods [32], or
invariant risk minimization [3], or disentangle learning [33].
Research on generalizing to OOD data has been extensively
investigated in previous literature, mainly focusing on data
augmentation [34] or style transfer [35]. Increasing data quan-
tity and diversity from various domains enhances the model’s
capability to handle unseen or novel data. Zhang et al. [36]

introduced Mixup, which generates new training examples by
linearly interpolating between pairs of original samples. Zhou
et al. [37] further extended this idea by Mixstyle, a method that
leverages domain knowledge to generate augmented samples.
Other OOD methods on the level also employ cross-gradient
training [38] and Fourier transform [39].

Different from all the methods mentioned above, our work
starts with the definition of OOD data and its empirical
phenomenon and revisits the generalization problem from a
theoretical perspective. It is worth noting that the difference
between us and De Silva et al. [9] is that the latter focuses
on the effects of adding a few OOD data to the training data,
while we focus on the effects of generalizing to unseen target
tasks.

Data selection. Data selection is a critical component of the
neural network learning process, with various important pieces
of work [40]. Careful selection of relevant and representative
data is to guarantee that the data used for training accurately
captures the patterns and relationships that the network is sup-
posed to learn. Several recent studies have explored different
metrics for quantifying individual differences between data
points, such as EL2N scores [27] and forgetting scores [41].
There are also influential works on data selection that con-
tribute to OOD and large pre-trained models. Zhu et al. [42]
introduced a framework of cross-table pre-training of tabular
transformers on datasets from various domains. Shao et al. [43]
leveraged manually created examples to guide large language
models in generating more effective instances automatically
and select effective ones to promote better inference.

While these methods can improve the training data quality,
our method leverages existing data with reinforcement learning
in source domains for modeling to maximize diversity. Discus-
sions concerning the convex hull and OOD data selection have
also been prevalent in literature [14, 44]. For instance, Krueger
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et al. [45] aim to optimize the worst-case performance of the
convex hull of training mixture. Our work distinguishes itself
by focusing on error scenarios resulting from distribution shifts
on DNN and highlighting the importance of data diversity.
Additionally, we provide novel insights for algorithm design.

VI. CONCLUSION

This work examined the phenomenon of non-decreasing
generalization error when the models are trained on data
mixture of source environments and the evaluation is con-
ducted on unseen target samples. Through empirical analysis
on benchmark datasets with DNN, we introduced a novel
theorem framework within the context of OOD generaliza-
tion to explain the non-decreasing trends. Furthermore, we
demonstrated the effectiveness of the proposed theoretical
framework in the interpretation of the existing methods by
evaluating existing techniques such as data augmentation and
pre-training. We also employ a novel data selection algorithm
only that is sufficient to deliver superior performance over the
baseline methods.
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