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The robustness of quantum memory against physical noises is measured by two methods: the exact and ap-
proximate quantum error correction (QEC) conditions for error recoverability, and the decoder-dependent error
threshold which assesses if the logical error rate diminishes with system size. Here we unravel their relations
and propose a unified framework to extract an intrinsic error threshold from the approximate QEC condition,
which could upper bound other decoder-dependent error thresholds. Our proof establishes that relative entropy,
effectively measuring deviations from exact QEC conditions, serves as the order parameter delineating the tran-
sition from asymptotic recoverability to unrecoverability. Consequently, we establish a unified framework for
determining the error threshold across both exact and approximate QEC codes, addressing errors originating
from noise channels as well as those from code space imperfections. This result sharpens our comprehension of
error thresholds across diverse QEC codes and error models.

Introduction. Quantum Error Correction (QEC) is cru-
cial for fault-tolerant quantum computation [1–6], protecting
quantum information from decoherence and noise. At its core
lies the QEC condition, i.e. Knill-Laflamme condition [7], es-
sential for precisely recovering quantum information from er-
ror channels. Despite its theoretical importance, perfect error
correction in practice faces challenges due to various physical
noises in real-world systems [8–18]. This is where the er-
ror threshold theorem [5, 19–31] becomes relevant, suggest-
ing that if error rates are maintained below a certain critical
threshold, the impact of logical errors can be substantially mit-
igated, a key to realizing reliable quantum computation.

A fundamental conflict exists between the precise QEC
condition, aimed at exact recoverability for particular QEC
code designs, and the more generalized, asymptotic perspec-
tive of the error threshold theorem [5, 19–31]. Many realis-
tic noise models [5, 20–23, 26–29, 32–34] often fail to sat-
isfy QEC condition, highlighting an intrinsic nonzero logical
error rate in finite systems. This discrepancy has led to the
adoption of error thresholds. Here we focus on the quantum
memory threshold describing the robustness of quantum in-
formation under an active correction process. In fact, within
the notion of mixed state phase transition, Fan and others
[35] investigated a specific example of toric code with single-
qubit Pauli noise, and found that the optimal error threshold
is implicated in the information of encoding and noise chan-
nel without the knowledge of decoder algorithm. Relevant
works on mixed state topological order can be found in Refs.
[36–39].Therefore, a critical question arises: How can we
reconcile the code-specific QEC condition with the decoder-
dependent perspective of error thresholds in advancing prac-
tical QEC strategies against diverse noise types in quantum
memory?

To resolve the discrepancy, we make use of the Approxi-
mate QEC (AQEC) condition [40–46]. Given a quantum code

with encoding map E Suffering from physical noise channel
N (ρ) =

∑
uEuρE

†
u, it satisfies:

PE†
uEvP = λuvP + PBuvP. (1)

Here P is the projection onto the code subspace, λuv is a con-
stant satisfying λuv = λ∗vu, Buv operator term captures the
deviation from exact QEC correction and can be viewed as
logical error. If this logical error is sufficiently small, the re-
covery can be deemed high-precision, thereby enabling effec-
tive AQEC. In particular, an exact recovery channel R exists
s.t. R ◦N ◦ E = I, if and only if Buv = 0 [7].

Using the framework of AQEC, we establish a direct con-
nection between the intrinsic characteristics of a quantum
code and practical error thresholds, demonstrating that the
error threshold is determined by the AQEC relative entropy.
This framework unifies the notion of error threshold for com-
mon QEC codes (for example stabilizer codes) as well as
AQEC codes, which can only approximately preserve quan-
tum information against local perturbations [47–51]. Remark-
ably, this method can assist us in characterizing the intrin-
sic properties of a code including AQEC codes even without
an easily analyzable decoder. We also examine two exam-
ples, the ordinary qudit stabilizer codes [52] under stochastic
noises, and an imperfectly prepared toric code [53–55] that is
unstable under local noises.

AQEC relative entropy. We conjecture that exploring the
asymptotic behaviors of AQEC conditions with increasing
code size, denoted as n, is crucial for fully grasping error
thresholds. Based on this assumption, we examine a series
of QEC codes, {Cn}∞n , and their respective noise channels,
{Nn}∞n . The dimension of the code space, K, is dependent
on the specific code; for instance, K = 4 in toric codes [5]
and logK = Θ(n) for good LDPC codes [56–58]. In each
instance of Cn and Nn, Equation (1) is fulfilled. Typically,
Buv is nonzero for finite n. The hypothesis is that for systems
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below the threshold, Buv diminishes as n → ∞, whereas it
remains significant for systems above the threshold, even as
n→ ∞.

The subtlety arises in quantifying the magnitude of Buv .
Within the chosen basis {|q⟩}q of the code subspace, simply
examining the matrix element ⟨q1|Buv |q2⟩ is insufficient to
ascertain the threshold. Considering a surface code affected
by single-qubit Pauli errors [5], λuv exhibits a scaling of
O
(
(1− p)

n
2

)
, whereas ⟨q1|Buv |q2⟩ demonstrates a scaling

of O
(
p

δ
2 (1− p)

n−δ
2

)
, with δ ≈ √

n. In the limit of n→ ∞,
this is negligible for p < 1/2. However, the actual threshold,
identified using a maximum likelihood decoder (MLD), is ap-
proximately pc ∼ 0.11, indicating that matrix elements alone
are inadequate for pinpointing the criticality in QEC systems.

We utilize an entropic measure for a more precise threshold
estimation. The parameters λuv and operators Buv are re-
formulated in matrix form, pertinent to error configurations
uv and code words q1q2, as Λuv,q1q2 = λuvδq1q2/K and
Buv,q1q2 = ⟨q1|Buv |q2⟩ /K. Here, K represents the code
space dimension. To ensure tr(Λ + B) = 1, we introduce a
factor of 1

K , with both Λ and B being Hermitian [41]. Fur-
thermore, we can always assume trC(B) = 0, where trC(∗)
is the trace over code subspace, since the trace-nonzero part
can always be absorbed into the definition of Λ. Besides, both
Λ+B and Λ are positive semi-defined [59]. The AQEC rela-
tive entropy is defined as

S(Λ +B||Λ) = tr {(Λ +B) [log(Λ +B)− log Λ]} , (2)

which can be proved that (see Supplemental Information (SI)
[59])

0 ≤ S(Λ +B||Λ) ≤ 2 logK. (3)

It measures the magnitude of B relative to Λ, and intrinsically
captures the logical error rate. Notice that in a finite system,
the lower bound in Eq. (3) is saturated equality if and only
if B = 0 [60]. In other words, the exact QEC condition is
equivalent to S(Λ + B||Λ) = 0. As S(Λ + B||Λ) is usually
nonzero, the asymptotic behavior as n→ ∞ becomes crucial.

With the help of AQEC relative entropy, we define the in-
trinsic error threshold as follows. If the AQEC relative en-
tropy vanishes in the thermodynamic limit limn→∞ S(Λ +
B||Λ) = 0, we say that the QEC system is below the intrin-
sic error threshold. Otherwise, the QEC system is above the
intrinsic error threshold. This intrinsic threshold demarcates
different behaviors of AQEC relative entropy at large n, inde-
pendent of decoder choice.

Asymptotic recoverability. Bény and Oreshkov [41] uti-
lized worst-case entanglement fidelity to measure the devia-
tion of AQEC from QEC condition, limited to a fixed code
size. Our work examines the impact of AQEC relative entropy
on recovery channels for large code sizes in the asymptotic
limit.

Theorem 1. Given a family of {Cn}∞n with noise channels
{Nn}∞n , consider the large size limit n→ ∞,

(1) Below the intrinsic error threshold, i.e. limn→∞ S(Λ +
B||Λ) = 0, there exists a family of recovery map {Rn}n,
such that the entanglement fidelity of the whole QEC pro-
cess satisfies

lim
n→∞

Fe(R ◦N ◦ E) = 1. (4)

(2) Above the intrinsic error threshold, i.e. S(Λ+B||Λ) does
not converge to 0, if K = O(1), then the entanglement
fidelity Fe(R ◦N ◦ E) cannot converges to 1 for an arbi-
trary family of recovery map {Rn}n.

(3) LetK be a parameter that diverges with n, such thatK =
ω(1). If s(Λ + B||Λ) ≡ S(Λ + B||Λ)/ logK does not
converge to 0, the entanglement fidelity Fe(R ◦N ◦ E)
cannot converges to 1 for an arbitrary family of recovery
map {Rn}n.

Remark. The original concept of entanglement fidelity [61–
63], as reviewed in SI [59], necessitates specifying an
initial state. In our case, the initial state is the maxi-
mally mixed logical state IK/K, making Fe(R ◦N ◦ E) =
Fe(IK/K,R ◦N ◦ E) indicative of the QEC success in an
average sense. Considering the limit limn→∞ Fe(R ◦N ◦ E)
helps determine if noise is asymptotically recovered. The the-
orem’s proof, found in SI [59], hinges on two finite n inequal-
ities: a recovery channel R exists (not necessarily optimal)
fulfilling

1 ≥ Fe(R ◦N ◦ E) ≥ 1−
√

2S(Λ +B||Λ), (5)

and for any R,

0 ≤ S(Λ +B||Λ) ≤ 2h(1− Fe(R ◦N ◦ E)), (6)

where h(x) = −x log x − (1 − x) log(1 − x) + x log(K2 −
1). Eqs. (5) and (6) follows from the inequalities in Refs.
[40, 63, 64] by relating AQEC relative entropy to coherent in-
formation. The proof is completed by aggregating all n and
considering the n→ ∞ limit. Notably, withK diverging with
n, Eq.(6) above implies 1 − Fe(R ◦N ◦ E) = Ω(1/ logK)
above threshold, due to h(x)’s K-dependency. Therefore, the
“logical qubit number” k ∝ logK can be used as the de-
nominator to evaluate the density of AQEC relative entropy,
s(Λ + B||Λ) = S(Λ + B||Λ)/ logK, aiding in assessing the
failure of asymptotic recoverability.

Till now, our discussion has not specified a decoder, which
is essentially a method for constructing a recovery channel,
denoted as Rde. Considering an error threshold under this de-
coder. In scenarios with finite K, achieving limn→∞ Fe = 1
is impossible when above the intrinsic threshold. Below this
threshold, although some recovery channel R may achieve
perfect entanglement fidelity, Rde may not be equally effec-
tive. Thus, the intrinsic error threshold sets an upper bound on
decoding thresholds. With K diverging, the density of AQEC
relative entropy s(Λ+B||Λ) serves as a metric to upper bound
decoding thresholds.
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The two phases of the QEC system have just been dis-
cussed. However, the critical examination of an intrinsic
threshold, or a phase transition, remains. Subsequent sections
address this through specific examples using our framework.

Stabilizer codes. We first consider qudit stabilizer codes
[4, 52, 65] within the phase space formalism [65], where T (v),
v ∈ V = Z2n

d denotes the Heisenberg-Weyl operators, specif-
ically for prime local dimensions d, for convenience. A sta-
bilizer group T (M) is associated with an isotropic subspace
M ⊂ V (See to SI [59] for detailed definitions). Such a stabi-
lizer code C has k = n − dimM logical qudits and the code
space dimension K = dk. We assume that the data qudits
suffer from stochastic weyl errors,

N (ρ0) =
∑

η∈V
Pr(η)T (η)ρ0T (η)

†. (7)

MLD [5, 31], the optimal decoder for this QEC system, se-
lects recovery operators by assessing the combined likelihood
of errors that produce the same syndrome. Notice that each er-
ror configuration η is uniquely decomposed as η = s+ l+m,
where m ∈ M, s ∈ S represents a particular syndrome
configuration and l ∈ L denotes logical classes. An error
equivalent class is specified by syndrome s and logical class
l, and its probability is Pr(s, l) =

∑
m∈M Pr(s + l + m).

We denote the corresponding random variables as S and L.
Given a syndrome s, the MLD chooses recovery operator
T (s+l) with the largest conditional probability Pr(l|s). With-
out losing generality, we redefine the representative config-
uration of syndrome s such that Pr(l = 0|s) maximizes
the likelihood. A standard approach to the MLD threshold
problem is mapping the error class probability to a statisti-
cal mechanical (SM) partition function Pr(s, l) = Z(η) with
quenched disorder η [31], generalizing previous SM map-
ping constructions [5, 21, 23, 27, 28]. The order parameter
∆(η, l) = − log(Z(η + l)/Z(η)), i.e. the free energy cost of
logical classes, relates the SM phase transition to the MLD
threshold. See detailed review in SI [59].

A key result of ours for stabilizer codes is the following
relation.

Lemma 2. For a qudit stabilizer code in prime d and a
stochastic Weyl noise channel, the AQEC relative entropy,
probability of logical classes and order parameter of the SM
model are related by

S(Λ +B||Λ) = H(L|S)

=
∑

η∈V
Pr(η) log

{∑

l∈L
exp [−∆(η, l)]

}
,

(8)

where H(L|S) = −∑s,l Pr(s, l) log Pr(l|s) is the Shannon
conditional entropy of logical class l given syndrome s, and
the last quantity is a generalized version of the homological
difference [28].

Remark. We applied replica method in the derivation of Eq.
(8). The rigorousness is guaranteed by Carlson’s theorem [66–

68]. We calculate the AQEC relative entropy through the limit

S(Λ +B||Λ) = lim
R→1

1

R− 1
log

tr((Λ +B)R)

tr(ΛR)
. (9)

The r.h.s. is evaluated by fixing R as integers R > 1,

tr(ΛR) =
1

dk(R−1)

∑

η∈V
Pr(η)Z(η)R−1,

tr((Λ +B)R) =
1

dk(R−1)

∑

η∈V
Pr(η)

[∑

l∈L
Z(η + l)

]R−1

,

(10)
and then taking the R → 1 limit after analytical continuation.
A detailed proof is in SI [59]. Note that the generalized homo-
logical difference serves as a better-behaved order parameter
compared to the simple disorder averaged ∆(η, l) [59].

Notice that the r.h.s. of Eq. (10) are the replica partition
functions [69] of the quenched disordered SM model Z(η)
(inserted with domain wall configurations l in the second line).
It suggests that the SM mapping can be derived from the in-
trinsic properties of the code and noise, following the spirit
of Fan and others’ example [35]. We also remark that our re-
sult is not a simple generalization, since their original intrinsic
SM model cannot be generally applied to qudit systems due to
potentially complex Boltzmann weights. For stabilizer codes
and Weyl noises, the validity of SM mapping crucially relies
on the Gottesman-Knill theorem [60, 65]. The code states and
noises both acquire phase space descriptions, thus the error
threshold problem can be mapped to probability distributions
(Boltzmann weights) on the classical phase space. Therefore,
tr(ΛR) (or Z(η)) is a more suitable choice for the partition
function to circumvent complex weights.

Considering Eq.(8), the first equality introduces the con-
ditional entropy H(L|S), which measures the uncertainty in
MLD when deducing the logical class l from the syndrome s.
This suggests a link between the intrinsic and MLD thresh-
olds. Given that the MLD threshold is typically evaluated
by the asymptotic behavior of the success probability Pr(l =
0) = 1 [28, 31], we can establish a corresponding relation.

Theorem 3. For a family of qudit stabilizer codes in prime
d and stochastic Weyl noise channels, in the large size limit
n→ ∞,

(1) below the intrinsic error threshold, i.e. limn→∞ S(Λ +
B||Λ) = 0, the success probability of MLD converges to
1,

lim
n→∞

Pr(l = 0) = 1. (11)

(2) if the logical qudit number is finite k = O(1), then
limn→∞ Pr(l = 0) = 1 implies the QEC system is below
the intrinsic error threshold limn→∞ S(Λ +B||Λ) = 0.

(3) if k diverges with n, k = ω(1), then limn→∞ Pr(l =
0) = 1 implies the density of AQEC relative entropy s(Λ+
B||Λ) ≡ S(Λ +B||Λ)/k converges to 0.
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Remark. The above theorem is proved in SI [59]. Basically, it
follows from the inequality

− log Pr(l = 0) ≤ S(Λ +B||Λ) ≤ h(1− Pr(l = 0)), (12)

where h(x) is the same as in Eq.(6). The first two propositions
in Thm. 3 suggests that the intrinsic threshold is exactly the
same as the MLD threshold for those codes with finite logical
qudits, if the decodable region is defined by limn→∞ Pr(l =
0) = 1. For k → ∞, we similarly can only conclude 1 −
Pr(l = 0) = Ω(1/k) when above the intrinsic threshold.

The intrinsic threshold of QEC systems, as indicated by the
second equality of Eq.(8), is contingent on the phase transition
of the corresponding SM model. Notable instances encom-
pass qubit or qudit toric code [5, 35], color code [21, 23, 27],
qubit or qudit hypergraph-product code [28, 70, 71] and Hy-
perbolic surface code [26, 70, 71] under single-qubit Pauli
noise, toric code under locally correlated Pauli noise [31].
Now, let us assume geometric locality for both stabilizer gen-
erators and the error channel.

In the ordered phase, nontrivial logical operators must span
at least the code distance δ, incurring a free energy cost pro-
portional to δ. This leads to the AQEC relative entropy scaling
as S(Λ + B ∥ Λ) ∼ e−δ/ξ, where ξ denotes the correlation
length related to the error rate. As the code distance increases
with n, the relative entropy decreases.

In the disordered phase, some logical classes l maintain a
finite free energy cost, preventing S(Λ + B||Λ) from reach-
ing zero. For example, if ∆(η, l) ∼ 0 for all l, then
S(Λ + B||Λ) ∼ 2k log d. Intuitively, when above the thresh-
old, AQEC relative entropy characterizes how many logical
qudits suffer from logical errors.

At a critical error threshold, the divergence of ξ implies a
power-law behavior S(Λ + B||Λ) ∼ 1/δ2h. For instance, in
the random bond Ising model, which describes the toric code
and single qubit errors, the dual relationship between an open-
ended wall (disorder operator) and spin-spin correlation ex-
hibits a power-law length dependence. This can be extended
to a closed domain wall l, leading to e−∆ ∼ 1/δ2h, where h
is the Ising spin’s scaling dimension.

State preparation threshold. In the preceding section, we
addressed the relationship between the AQEC condition aris-
ing solely from noise channel N and the threshold. Yet, in-
evitable imperfections in the fundamental encoding channel E
result in AQEC codes. We now illustrate how our formalism
encompasses imperfect encoding or state preparation.

We consider toric code [5, 6] with single-qubit bit-flip error
and assume that the logical states are prepared through mea-
suring the plaquette stabilizers Bp =

∏
e∈∂p Ze on a prod-

uct state (e labels data qubit). An ancilla qubit should be
brought to entangle with four data qubits and measured in or-
der to perform Bp measurement, but coherent noises on the
entanglement gates might result in a positive operator-valued
measurement (POVM) rather than a projective measurement.
We apply the imperfect preparation model considered in Refs.

[53–55] (also see SI [59]) with the following logical basis

|++⟩L ∝
∏

p

exp

[
1

2
βBp

]
|+⟩⊗n

, |−+⟩L = Zl1 |++⟩L ,

|+−⟩L = Zl2 |++⟩L , |−−⟩L = Zl1Zl2 |++⟩L .
(13)

Here Zl1 , Zl2 stands for Z logical operators. β is the error
parameter and β → +∞ recovers projective measurement.
Unlike the perfect preparation case, Buv,q1q2 is now nonzero
even for certain local noises likeE†

uEv ∼ √
pXe and scales as

O
(
p

1
2 e−2β

)
for large enough β and small enough p, which is

not suppressed by code distance [59]. It suggest that as long as
β is finite, Buv,q1q2 is always comparable to Λuv,q1q2 and pre-
vents S(Λ+B||Λ) from approaching 0 in the thermodynamic
limit.

We can still try to find an SM interpretation. In general,
this is not always valid beyond stabilizer code states and Weyl
errors due to the violation of Gottesman-Knill theorem, but
luckily it works for the current simple model Eq.(13). We
write tr

(
(Λ +B)R

)
as a partition function

tr
(
(Λ +B)R

)
∝
∑

{η(α)
e }

exp[−H({η(α)e })],

H({η(α)e }) = −
R∑

α=1

[
h
∑

e

η(α)e

+
1

2
log coshβ

∑

p

U (α)
p U (α+1)

p

+ log

(
1 + (tanhβ)n/2

∏

p

δ
U

(α)
p ,U

(α+1)
p

)]
,

(14)
Where h = 1

2 log
1−p
p and U

(α)
p =

∏
e∈∂p η

(α)
e . The SM

d.o.f. η
(α)
e = ±1 is defined on each data qubit e and each

replica copy α = 1, · · · , R (we identify R + 1 = 1). {η(α)e }
correspond to the error configurations u, v in Eq. (1), thus the
above partition function captures fluctuations of errors. The
Rényi AQEC relative entropy is expressed as

S(R)(Λ +B||Λ) = 1

R− 1
log

tr((Λ +B)R)

tr(ΛR)

=
1

1−R
log

〈∏

α,l

1 +
∏

e∈l η
(α)
e η

(α+1)
e

2

〉
,

(15)
where l = l1, l2 labels the set of data qubits in Z logical op-
erator Zl1 , Zl2 and the ⟨∗⟩ here is the SM ensemble average.
The r.h.s. compares fluctuations of logical errors with trivial
errors. The R→ 1 phase transition point probed by the above
quantity is the intrinsic threshold.

When β → +∞ the model (14) reduces to Eq. (10), or
more concretely replica random bond Ising model [5, 69]
with domain wall inserted. When β → 0 and keeping
h finite, we obtain a trivial paramagnetic spin model and
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limn→∞ S(R)(Λ+B||Λ) = 2 log 2. We then focus on the case
when both state preparation and Pauli error rates are small
but nonzero 0 < e−β , p ≪ 1 and perturbatively calculate
S(R)(Λ +B||Λ) up to the first non-vanishing order [59],

S(R)(Λ +B||Λ) ∼
√
n/2

1− 1/R
exp (−2h− 4β) . (16)

Although there is a subtlety that the R → 1 and n → ∞
limits are not compatible with the perturbative expansion, it
nonetheless suggests that the imperfect code cannot suppress
S(R)(Λ+B||Λ) to 0 and lead to a phase transition at 1/β = 0
for any R > 1. In the n → ∞ limit where the third term of
the Hamiltonian (14) is negligible, S(R)(Λ + B||Λ) is mono-
tonically increasing with 1/β following from Griffiths-Kelly-
Sherman inequality [70, 72, 73]. The divergent coefficient

√
n

in Eq. (16) indicates a sudden jump at e−4β → 0. Then we
extrapolate to R → 1 and conclude that the intrinsic thresh-
old is at e−4β = 0 or β → +∞. In other words, the pa-
rameter region below the intrinsic threshold is 1/β = 0 and
p < pc ∼ 0.11. Our theoretical framework correctly con-
veys the insight that information encoded in imperfectly pre-
pared toric code (13) subjected to single-qubit Pauli errors is
irrecoverable, regardless of the decoding strategy employed.
This is also compatible with our previous result in Ref. [55],
where we assumed a specific noisy decoding procedure.

Discussion. Note that the last example confirmed that our
framework could be applied on general AQEC codes, which
possess nonzero Buv,q1q2 for local error operators E†

uEv . Al-
though the intrinsic threshold in this example vanishes due to
the non-vanishing Buv,q1q2 in the n → ∞ limit, it may re-
main finite for certain AQEC codes with Buv,q1q2 suppressed
by size (potentially e.g. topological ordered states [47], ap-
proximate LDPC code [48], ETH and Heisenberg chain codes
[49]). Our framework also holds potential for application to
codes and noises that are beyond Gottesman-Knill theorem
and are intrinsically quantum. Future endeavors could include
detailed examinations of threshold existence in broader con-
texts using this framework.
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Supplemental Information for “Extracting Error Thresholds through the Framework
of Approximate Quantum Error Correction Condition”

In this supplementary information,we provide details on

• Sec. SI: Relation with coherent information and entanglement fidelity, including the proof of Lemma 0 and
Theorem 1.

• Sec. SII: Application on qudit stabilizer codes, including subsection SIIA Definition of stabilizer codes, subsec-
tion SII B Proof of Lemma 2, and subsection SIIC Maximum likelihood decoder and proof of Theorem 3.

• Sec. SIII: Imperfect measurement prepared toric code

SI. RELATION WITH COHERENT INFORMATION AND ENTANGLEMENT FIDELITY

𝑈𝒩

𝐴 𝑄 𝐸

ℇ
Ψ"#

𝜌"#
ℛ

FIG. S1. The circuit that underlies the definition of coherent information and entanglement entropy. Here E is the encoding
channel, R is the recovery channel, UN comes from purifying noise channel.

Suppose that we have a state ρ0 storing logical information and we encode it in the code subspace C. Q labels the
physical system of the code. We introduce a reference system A and purify it as |ΨAQ⟩. The dimension of Hilbert
space of A is the code subspace dimension K. The system Q suffers from noise channel N (ρ) =

∑
uEuρE

†
u, we also

purify it by introducing an environment E as in Fig. S1. The post-error pure state reads

|Ψ′
AQE⟩ =

∑

u

Eu |ΨAQ⟩ ⊗ |u⟩E , (S1)

such that ρAQ =
∑

uEu |ΨAQ⟩ ⟨ΨAQ|E†
u after tracing out E. The coherent information is defined as

Ic(ρ0,N ◦ E) = S(ρQ)− S(ρAQ), (S2)

where S(ρ) = − tr ρ log ρ is the von Neumann entropy and ρQ = trA ρAQ. It satisfies

−S(ρA) ≤ Ic(ρ0,N ◦ E) ≤ S(ρA), (S3)

and characterizes how much entanglement between A and Q is preserved under the noise channel. Assume that we
apply a recovery R on Q, The entanglement fidelity [1–3] is defined as

Fe(ρ0,R ◦N ◦ E) = ⟨ΨAQ|R(ρAQ) |ΨAQ⟩ , (S4)

which quantifies how much quantum information is protected after the entire QEC process. The Nielsen-Schumacher
condition for exact recoveryR ◦N ◦ E = I is Ic(ρ0,N ◦ E) = S(ρA), which is equivalent to the KL condition. Actually,
it is sufficient to choose ρ0 as the maximumly mixed state IK/K to probe exact recovery. In the following sections,
we set ρ0 = IK/K such that the quantities (S2) and (S4) can be viewed as ’averaged’ over all logical states, instead
of taking a maximization or minimization as in Ref. [4]. Now the state |ΨAQ⟩ can be expressed as

|ΨAQ⟩ =
1√
K

∑

q

|q⟩A ⊗ |q⟩C , (S5)



S2

where |q⟩C ’s are the logical code words in the logical space and |q⟩A’s are the corresponding ancilla states. Similarly,

ρ0Q ≡ trA |ΨAQ⟩ ⟨ΨAQ| =
1

K
|q⟩C ⟨q|C =

1

K
P, (S6)

where P is the projection on to the code subspace C. We abbreviate that Ic = Ic(IK/K,N ◦ E) and Fe(R ◦N ◦ E) =
Fe(IK/K,R ◦N ◦ E).

Lemma 0. For a QEC code C under a noise channel N , the AQEC relative entropy is related to the coherent
information through:

S(Λ +B||Λ) = −Ic + logK. (S7)

Proof. Since |Ψ′
AQE⟩ is a pure state, the coherent information has an alternative form

Ic = S(ρAE)− S(ρE), (S8)

where

ρE = trAQ |Ψ′
AQE⟩ ⟨Ψ′

AQE |
=
∑

uv

trAQ

(
Eu |ΨAQ⟩ ⟨ΨAQ|E†

v

)
|u⟩E ⟨v|E

=
1

K

∑

uv

trQ
(
EuPE

†
v

)
|u⟩E ⟨v|E

=
1

K

∑

uv

trQ
(
PE†

vEuP
)
|u⟩E ⟨v|E

=
1

K

∑

uv

trQ (λvuP + PBvuP ) |u⟩E ⟨v|E

=
∑

uv

λvu |u⟩E ⟨v|E .

(S9)

Notice that we have used trC(Bvu) = 0. Similarly,

ρAE = trQ |Ψ′
AQE⟩ ⟨Ψ′

AQE |
=
∑

uv

trQ
(
Eu |ΨAQ⟩ ⟨ΨAQ|E†

v

)
|u⟩E ⟨v|E

=
1

K

∑

uv,q1q2

trQ
(
Eu |q1⟩C ⟨q2|C E†

v

)
|u⟩E ⟨v|E ⊗ |q1⟩A ⟨q2|A

=
1

K

∑

uv,q1q2

⟨q2|C E†
vEu |q1⟩C |u⟩E ⟨v|E ⊗ |q1⟩A ⟨q2|A

=
∑

uv

(Λvu,q2q1 +Bvu,q2q1) |u⟩E ⟨v|E ⊗ |q1⟩A ⟨q2|A .

(S10)

Since ρA = IK/K, we obtain the relation between the gKL condition and the error correction circuit Fig. S1,

Λ = (ρE ⊗ ρA)
T , Λ +B = ρTAE . (S11)

The density matrix nature of the Λ and Λ + B matrices tells us that they are both positive semi-defined Λ ≥ 0,
Λ +B ≥ 0 and trace-one tr(Λ) = 1, tr(Λ +B) = 1. Thus the AQEC relative entropy is expressed as

S(Λ +B||Λ) = tr {(Λ +B) [log(Λ +B)− log Λ]}
= tr(Λ +B) log(Λ +B)− tr Λ log Λ

= −S(ρAE) + S(ρA) + S(ρE)

= −Ic + logK,

(S12)



S3

where we again used trC(B) = 0.

Note that the AQEC relative entropy takes value from

0 ≤ S(Λ +B||Λ) ≤ 2 logK, (S13)

following Eq. (S3).

Theorem 1. Given a family of {Cn}∞n with noise channels {Nn}∞n , consider the large size limit n→ ∞,

(1) Below the intrinsic error threshold, i.e. limn→∞ S(Λ + B||Λ) = 0, there exists a family of recovery map {Rn}n,
such that the entanglement fidelity of the whole QEC process satisfies

lim
n→∞

Fe(R ◦N ◦ E) = 1. (S14)

(2) Above the intrinsic error threshold, i.e. S(Λ +B||Λ) does not converge to 0, if K = O(1), then the entanglement
fidelity Fe(R ◦N ◦ E) cannot converges to 1 for an arbitrary family of recovery map {Rn}n.

(3) Let K be a parameter that diverges with n, such that K = ω(1). If s(Λ + B||Λ) ≡ S(Λ + B||Λ)/ logK does not
converge to 0, the entanglement fidelity Fe(R ◦N ◦ E) cannot converges to 1 for an arbitrary family of recovery
map {Rn}n.

Proof. Given coherent information Ic, there exist a recovery channel R such that [5]

1 ≥ Fe(R ◦N ◦ E) ≥ 1−
√

2(−Ic + logK), (S15)

and for an arbitrary quantum channel R we have [3]

0 ≤ −Ic + logK ≤ 2h(1− Fe(R ◦N ◦ E)), (S16)

where h(x) = −x log x− (1− x) log(1− x) + x log(K2 − 1). Now for a family of QEC code labeled by system size n
and has a limit n → ∞, the above two statements hold for all n, that is there exists a family of recovery channels
{Rn}n such that

0 ≤ r(Rn ◦ Nn ◦ En) ≤
√

2S(Λn +Bn||Λn), (S17)

while for every possible family of recovery channels {Rn}n,

0 ≤ S(Λn +Bn||Λn) ≤ h(r(Rn ◦ Nn ◦ En)), (S18)

where we have used Lemma 0. Here the subscripts label the system size, and we define infidelity r(Rn ◦ Nn ◦ En) =
1− Fe(Rn ◦ Nn ◦ En). Below the intrinsic threshold limn→∞ S(Λn + Bn||Λn) = 0, Eq. (S17) tells us limn→∞ r(Rn ◦
Nn ◦ En) = 0. Above the threshold where limn→∞ S(Λn + Bn||Λn) > 0 or diverges, limn→∞ r(Rn ◦ Nn ◦ En) must
also > 0 or diverges for the finite K case, otherwise Eq. (S18) leads to conflict. For the case Kn depend on n and
Kn → ∞ as n → ∞. if the infidelity r(Rn ◦ Nn ◦ En) → 1, we conclude that the density of AQEC relative entropy
s(Λ +B||Λ) = 1

logKn
S(Λ +B||Λ) converges to zero rather than S(Λ +B||Λ) itself.

Notice that when Kn → ∞, following from Eq. (S13) the AQEC relative entropy might also approach infinity, but
the infidelity is always bounded,

0 ≤ r(Rn ◦ Nn ◦ En) ≤ 1. (S19)

For large n, h(r(Rn ◦Nn ◦ En)) → 4r(Rn ◦Nn ◦ En) logKn and we can only conclude r(Rn ◦Nn ◦ En) = Ω(1/ logKn)
from Eq. (S18) if S(Λn + Bn||Λn) does not approach zero. Only if S(Λn + Bn||Λn) → 2c logKn and 0 < c ≤ 1 is a
finite constant can we get a lower bounded infidelity r(Rn ◦ Nn ◦ En) ≥ c/2 > 0.
We point out that there could be other quantities that measure the magnitude of B, for example using entanglement

fidelity [4], operator norm [6, 7] or trace distance [8]. We might alternatively extract the intrinsic error threshold from
the asymptotic behavior of these measures. To capture the intrinsic threshold, we postulate that the quantity should
be nonlinear with respect to Λ and B. We choose AQEC relative entropy since it is more tractable analytically.
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SII. APPLICATION ON QUDIT STABILIZER CODES

In this section, we review qudit stabilizer codes and derive the results on stabilizer codes.

A. Definition of Stabilizer Codes

For a n qudit system with local Hilbert space dimension d ≥ 2, the Heisenberg-Weyl operator is defined as [9]:

T (v) = T (vp, vq) = ω− 1
2 v

T
p vqZvpXvq . (S20)

Here both vp and vq are n dimensional Zd valued vectors, and v = (vp, vq) ∈ Z2n
d . ω = ei2π/d is a phase factor. Note

that all arithmetic is done modulo d. X and Z can be viewed as a generalized version of Pauli operators, which are
defined as

X |q⟩ = |q + 1⟩ , Z |q⟩ = ωq |q⟩ . (S21)

Zvp and Xvq denotes the Weyl strings acting on n qudits

Zvp =
n⊗

i=1

Zvpi , Xvq =
n⊗

i=1

Xvqi . (S22)

All such T (v) generates the discrete Heisenberg-Weyl group. In general, v can be interpreted as a point in the classical
phase space V = Z2n

d . Specifically, vq is the coordinate vector and vp is the momentum vector. The action of T (v)
leads to a translation in both the coordinate and momentum space, so it is also called the ”Displacement operator”.
The basic algebraic relation of Weyl operators is

T (v)T (u) = ω
1
2 [v,u]T (v + u). (S23)

Here [v, u] = vTΩu is the symplectic inner product on V, where

Ω =

(
0n×n In×n

−In×n 0n×n

)
. (S24)

We can see that T defines a projective representation of V on the Hilbert space.
Within the phase space formalism, let us define stabilizer codes. Given a subspace M of V, M is called isotropic

if and only if

[m1,m2] = 0, ∀m1,m2 ∈ M. (S25)

If M is isotropic, then all corresponding Weyl operators commute with each other, [T (m1), T(m2)] = 0. In that case,
T is an isomorphism between M and an abelian subgroup of the discrete Heisenberg-Weyl group, which is called
stabilizer group stabilizer group. Actually, the elements in stabilizer group can be redefined with some phase factor,
but we will not keep track of the phases here since they are irrelevant in our discussion.
Given an isotropic subspace M, the corresponding stabilizer group is defined as T (M), which is the image of

mapping M onto the operator space. The associated stabilizer code subspace C is defined as the maximal subspace
of the Hilbert space which satisfies

T (m) |ψ⟩ = |ψ⟩ , ∀m ∈ M, ∀ |ψ⟩ ∈ C. (S26)

The cardinal of M has to be less than dn such that the eigenspace C has degeneracy. In fact, the dimension of C
(denoted as K) must satisfy K = dn/|M| [10]. We specify M by giving a basis {m1, · · · ,mr}. This basis is mapped
to a set of generators {T (m1), · · · , T (mr)} of stabilizer group by T .
Here a remark should be made about the local dimension d. If d is a prime number d = 2, 3, 5, · · · , then Zd is a

field and V is a true vector space. Thus most of the results in the qubit case can be naturally generalized to prime
dimensions. But if d is nonprime, V is mathematically a Z module, and subtleties arise in the algebraic structure
[9, 10]. For example, consider a single qudit with d = 4. While X stabilizes a unique state (|0⟩+ |1⟩+ |2⟩+ |3⟩)/

√
4,

there are two states stabilized byX2, (|0⟩+|2⟩)/
√
2 and (|1⟩+|3⟩)/

√
2. In other words, X2 has degenerate eigenvectors.
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Then we must take another operator like Z2 into account to define a unique stabilizer state (|0⟩+ |2⟩)/
√
2. Generally

in prime dimensions, M will be a vector space with dimension r = logd |M|, spanned by the basis {m1, · · · ,mr}.
Therefore the dimension of the code subspace will be K = dn−r = dk, which leads to an [[n, k]] code. But in nonprime
dimensions, one might need r ≥ n− k generators to construct an [[n, k]] code. Conversely given r generators, the size
of M might be less than dr, which leads to K ≥ dn−r. In general, K cannot be written in the form dk.

Now we want to find the logical operators within the Heisenberg-Weyl group. Notice that any logical operator must
commute with all the stabilizers so that they do not affect the error syndrome. We define the symplectic complement
of M as [9]

M⊥ = {v ∈ V|[m, v] = 0, ∀m ∈ M}. (S27)

The suitable logical Weyl operators must be in M⊥. Since the operators in M act trivially on the code subspace,
the space of logical Weyl operators will be chosen as L = M⊥/M. For each equivalent class [l] ∈ L, we choose a
representative element l and define the corresponding logical operator as [l] 7→ T (l). Since the size of M⊥ satisfies
|M⊥| = d2n/|M| = dn+k [9], we have |L| = K2. The code distance δ is defined as the minimal weight of a nontrivial
logical operator T (l), l ∈ M⊥ −M, while ’weight’ means the number of data qudits that T (l) nontrivially acts on.

From now on we consider only [[n, k, δ]] code in prime local dimensions d for simplicity. It follows that V is a 2n
dimensional Zd vector space, and M, M⊥ are respectively its r = n − k and n + k dimensional subspace. L is a
quotient vector space with dimension 2k. We abbreviate the logical class [l] as its representative element l without
leading to misunderstanding.

B. Proof of Lemma 2

Lemma 2. For a qudit stabilizer code in prime d and a stochastic Weyl noise channel, the AQEC relative entropy,
probability of logical classes and order parameter of the SM model are related by

S(Λ +B||Λ) = H(L|S) =
∑

η∈V
Pr(η) log

{∑

l∈L
exp [−∆(η, l)]

}
, (S28)

where H(L|S) = −∑s,l Pr(s, l) log Pr(l|s) is the Shannon conditional entropy of logical class l given syndrome s, and

the last quantity is a generalized version of the homological difference [11].

Proof. First, we evaluate the expression for the matrices Λ and Λ +B. Consider the stochastic Weyl error

N (ρ) =
∑

u∈V
Pr(u)T (u)ρT (u)†, (S29)

where Pr(u) is a probabilistic distribution on V, 0 ≤ Pr(u) ≤ 1,
∑

u∈V Pr(u) = 1. Now P is the projection onto the

stabilizer code subspace C and the Kraus operator of stochastic Weyl error channel reads Eu =
√

Pr(u)T (u). Then
we have

PE†
uEvP =

1

d2r

∑

m,m′∈M

√
Pr(u) Pr(v)T (m)T (u)†T (v)T (m′)

=
1

d2r

∑

m,m′∈M

√
Pr(u) Pr(v)ω− 1

2 [u,v]ω[m,v−u]T (v − u)T (m+m′)

=
1

dr

∑

m′′∈M

√
Pr(u) Pr(v)ω− 1

2 [u,v]δM⊥(v − u)T (v − u)T (m′′)

=
√

Pr(u) Pr(v)ω− 1
2 [u,v]δM⊥(v − u)T (v − u)P

=
√

Pr(u) Pr(v)ω− 1
2 [u,v]δM(v − u)P

+
√

Pr(u) Pr(v)ω− 1
2 [u,v]δM⊥−M(v − u)PT (v − u)P.

(S30)
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In the third line we have used Lemma 9 in Ref. [9]

1

|M|
∑

m∈M
ω[v,m] = δM⊥(v) =

{
1 v ∈ M⊥

0 else.
(S31)

Here δM⊥−M(v − u) = 1 only when v − u ∈ M⊥ but /∈ M. When v − u ∈ M the Weyl operator T (v − u) is just
a stabilizer and absorbed into P , which leads to the λuv term. When v − u ∈ M⊥ but /∈ M, T (v − u) is a logical
operator which causes logical error, hence it corresponds to the Buv term. Therefore,

λuv =
√

Pr(u) Pr(v)ω− 1
2 [u,v]δM(v − u),

Buv =
√

Pr(u) Pr(v)ω− 1
2 [u,v]δM⊥−M(v − u)T (v − u).

(S32)

We will show that Buv is suppressed in the ordered phase in an average sense.

In order to calculate the AQEC relative entropy, we apply the replica method. Owing to trC(B) = 0, we have

S(Λ +B||Λ) = tr(Λ +B) log(Λ +B)− tr Λ log Λ = S(Λ)− S(Λ +B), (S33)

which is the difference between the two von Neumann entropies S(Λ) and S(Λ + B). We extend both of them to
Rényi entropies,

S(R)(Λ +B||Λ) = S(R)(Λ)− S(R)(Λ +B)

S(R)(ρ) =
1

1−R
log tr(ρR),

(S34)

which is holomorphic in R ∈ C for ReR ≥ 1 [12]. The von Neumann entropy can be extracted from the Rényi entropy
through the R→ 1 limit,

S(ρ) = lim
R→1

S(R)(ρ) = S(1)(ρ) = − d

dR
tr(ρR)

∣∣∣∣
R→1

. (S35)

Now we compute the Rényi entropies for integer R > 1, then carefully perform analytic continuation and take the
R→ 1 limit limR→1 S

(R)(Λ +B||Λ) = S(Λ +B||Λ). We first compute tr(ΛR),

tr(ΛR) =
1

dk(R−1)




R∏

α=1

∑

η(α)∈V




R∏

α=1

λη(α)η(α+1)

=
1

dk(R−1)




R∏

α=1

∑

η(α)∈V




R∏

α=1

√
Pr(η(α)) Pr(η(α+1))ω− 1

2 [η
(α),η(α+1)]δM(η(α+1) − η(α))

=
1

dk(R−1)


∑

η∈V

R−1∏

α=1

∑

m(α)∈M


Pr(η)

R−1∏

α=1

Pr(η +m(α))
R∏

α=1

ω− 1
2 [η+m(α),η+m(α+1)]

=
1

dk(R−1)


∑

η∈V

R−1∏

α=1

∑

m(α)∈M


Pr(η)

R−1∏

α=1

Pr(η +m(α))
R∏

α=1

ω− 1
2 [η,m

(α+1)]+ 1
2 [η,m

(α)]

=
1

dk(R−1)


∑

η∈V

R−1∏

α=1

∑

m(α)∈M


Pr(η)

R−1∏

α=1

Pr(η +m(α))

=
1

dk(R−1)

∑

η∈V
Pr(η)

[ ∑

m∈M
Pr(η +m)

]R−1

.

(S36)

Here α denotes the replica index and we identify R+ 1 = 1. η(α) is the error configuration for the copy α. Similarly
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we compute tr((Λ +B)R),

tr((Λ +B)R) =
1

dkR




R∏

α=1

∑

η(α)∈V




R∏

α=1

√
Pr(η(α)) Pr(η(α+1))ω− 1

2 [η
(α),η(α+1)]δM⊥(η(α+1) − η(α)) trC

(
R∏

α=1

T (η(α+1) − η(α))

)

=
1

dkR


∑

η∈V

R−1∏

α=1

∑

m(α)∈M

∑

l(α)∈L


Pr(η)

R−1∏

α=1

Pr(η +m(α) + l(α))
R∏

α=1

ω− 1
2 [η+m(α)+l(α),η+m(α+1)+l(α+1)]

× trC

(
R∏

α=1

T (m(α+1) + l(α+1) −m(α) − l(α))

)

=
1

dkR


∑

η∈V

R−1∏

α=1

∑

m(α)∈M

∑

l(α)∈L


Pr(η)

R−1∏

α=1

Pr(η +m(α) + l(α))
R∏

α=1

ω− 1
2 [l

(α),l(α+1)]

× trC

(
R∏

α=1

T (m(α+1) + l(α+1) −m(α) − l(α))

)
.

(S37)
Here trC(∗) =

∑
q ⟨q|C ∗ |q⟩C denotes the trace over the code subspace. Now we evaluate the trC term. Using

the fact stabilizers are symplectic orthogonal to logical operators [m, l] = 0 and acts trivially on the logical states
T (m) |q⟩C = |q⟩C , we obtain

trC

(
R∏

α=1

T (m(α+1) + l(α+1) −m(α) − l(α))

)
= trC

(
R∏

α=1

T (l(α+1) − l(α))

)
. (S38)

Then use the algebraic relation Eq. (S23), we have

trC

(
R∏

α=1

T (l(α+1) − l(α))

)
= ω

1
2

∑R
α=2[l

(α)−l(1),l(α+1)−l(α)] trC

(
T

(
R∑

α=1

(l(α+1) − l(α))

))

= dkω
1
2

∑R
α=1[l

(α),l(α+1)].

(S39)

Therefore we obtain

tr((Λ +B)R) =
1

dk(R−1)


∑

η∈V

R−1∏

α=1

∑

m(α)∈M

∑

l(α)∈L


Pr(η)

R−1∏

α=1

Pr(η +m(α) + l(α))

=
1

dk(R−1)

∑

η∈V
Pr(η)

[ ∑

m∈M

∑

l∈L
Pr(η +m+ l)

]R−1

.

(S40)

The Equations (S36) and (S40) now only hold for integer R ≥ 1 (the case R = 1 is trivial). We extend these
equalities to ReR ≥ 1 by applying Carlson’s theorem [12–14]. Specifically, for Eq. (S36), the last expression can be
analytically continued to a holomorphic function on ReR ≥ 1,

f(R) =
1

dk(R−1)

∑

η∈V
Pr(η)

[ ∑

m∈M
Pr(η +m)

]R−1

. (S41)

For ReR ≥ 1, since Pr(η) is a probability distribution, we have 0 ≤∑m∈M Pr(η +m) ≤ 1 and thus

∣∣∣∣∣∣

[ ∑

m∈M
Pr(η +m)

]R−1
∣∣∣∣∣∣
≤ 1. (S42)
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It follows that
∣∣∣∣∣∣
∑

η∈V
Pr(η)

[ ∑

m∈M
Pr(η +m)

]R−1
∣∣∣∣∣∣
≤
∑

η∈V
Pr(η)

∣∣∣∣∣∣

[ ∑

m∈M
Pr(η +m)

]R−1
∣∣∣∣∣∣
≤ 1. (S43)

So the norm of f(R) is bounded,

|f(R)| ≤ |d−k(R−1)| ≤ 1, (S44)

for constants d ≥ 2 and k ≥ 0. For the l.h.s., we already know that tr(ΛR) is bounded in absolute value by 1 for
ReR ≥ 1, | tr(ΛR)| ≤ 1. So | tr(ΛR)− f(R)| is bounded by 2. The difference tr(ΛR)− f(R) satisfies the requirements
of Carlson’s theorem [15], thus we conclude that tr(ΛR) = f(R) for ReR ≥ 1. A similar argument can be applied to
Eq. (S40) such that it also holds for ReR ≥ 1.
The AQEC relative entropy is then obtained by taking the derivative at R = 1,

S(Λ +B||Λ) = d

dR
tr((Λ +B)R)

∣∣∣∣
R→1

− d

dR
tr(ΛR)

∣∣∣∣
R→1

=
d

dR

∑

η∈V
Pr(η)

[ ∑

m∈M

∑

l∈L
Pr(η +m+ l)

]R−1
∣∣∣∣∣∣
R→1

− d

dR

∑

η∈V
Pr(η)

[ ∑

m∈M
Pr(η +m)

]R−1
∣∣∣∣∣∣
R→1

=
∑

η∈V
Pr(η) log

∑
m∈M

∑
l∈L Pr(η +m+ l)∑

m∈M Pr(η +m)
.

(S45)

The connection to the Shannon conditional entropy of MLD and generalized homological difference follows straight-
forwardly from the discussions in the subsequent sections.

C. Maximum likelihood decoder

For an arbitrary Weyl error configuration η ∈ V, it can be decomposed into the for η = s + l + m, where s ∈
S = V/M⊥ is the representative error configuration of a particular syndrome, m ∈ M and l ∈ L. Note that
V/M⊥ ∼= (V/M)/L and dimS = n − k. Since dimS + dimL + dimM = dimV, the decomposition is unique. The
choice of the representative element of s ∈ S and l ∈ L can be arbitrary. Each sydrome s contains dk logical classes l
while each logical class contains dn−k stabilizers m. Since stabilziers acts trivially on code subspace, we only concern
about the probability of logical classes when deciding the recovery operator. We define the joint probability of two
random variables syndrome S and logical class L as

Pr(s, l) =
∑

m∈M
Pr(s+ l +m). (S46)

In the process of maximum likelihood decoding [16], each syndrome s appears with probability Pr(s) =
∑

l inL Pr(s, l).
After measuring The charge of stabilizer generators i log T (ma), a = 1, · · · , r, we faithfully obtain the information of
syndrome since dimS = dimM. Then what we need to do is choosing recovery operator according to the syndrome
s. The maximum likelihood decoder (MLD) make the choice up to stabilizers and assign the logical class with the
largest conditional probability

Pr(l|s) = Pr(s, l)/Pr(s) (S47)

to the required recovery operator T (s + l). Without losing generality, we re-choose the representative elements of
s ∈ S in the r.h.s. of Eq. (S46) such that Pr(l|s) is maximized by l = 0. The success rate of MLD is commonly
measured by the probability of l = 0 logical class,

Pr(l) =
∑

s∈S
Pr(s, l), (S48)

Pr(MLD success) = Pr(l = 0). (S49)
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We also concern about another measure, which is the Shannon entropy of L conditioned on S,

H(L|S) = −
∑

s∈S

∑

l∈L
Pr(s, l) log Pr(l|s) =

∑

s∈S
Pr(s)H(L|S = s), (S50)

where H(L|S = s) is the Shannon entropy when syndrome s is specified,

H(L|S = s) = −
∑

l∈L
Pr(l|s) log Pr(l|s). (S51)

H(L|S) measures the uncertainty of the decoder’s choice.
Now we apply the above definitions to Eq. (S45) and find that

S(Λ +B||Λ) =
∑

η∈V
Pr(η) log

∑
m∈M

∑
l∈L Pr(η +m+ l)∑

m∈M Pr(η +m)

=
∑

s∈S

∑

l′∈L

∑

m′∈M
Pr(s+ l′ +m′) log

∑
m∈M

∑
l∈L Pr(s+ l′ +m′ +m+ l)∑

m∈M Pr(s+ l′ +m′ +m)

=
∑

s∈S

∑

l′∈L

∑

m′∈M
Pr(s+ l′ +m′) log

Pr(s)

Pr(s, l′)

= −
∑

s∈S

∑

l′∈L
Pr(s, l′) log Pr(l′|s)

= H(L|S),

(S52)

i.e. the AQEC relative entropy is equal to the Shannon conditional entropy of the decoding process.

Theorem 3. For a family of qudit stabilizer codes in prime d and stochastic Weyl noise channels, in the large size
limit n→ ∞,

(1) below the intrinsic error threshold, i.e. limn→∞ S(Λ +B||Λ) = 0, the success probability of MLD converges to 1,

lim
n→∞

Pr(l = 0) = 1. (S53)

(2) if the logical qudit number is finite k = O(1), then limn→∞ Pr(l = 0) = 1 implies the QEC system is below the
intrinsic error threshold limn→∞ S(Λ +B||Λ) = 0.

(3) if k diverges with n, k = ω(1), then limn→∞ Pr(l = 0) = 1 implies the density of AQEC relative entropy
s(Λ +B||Λ) ≡ S(Λ +B||Λ)/k converges to 0.

Proof. Assume limn→∞ S(Λ +B||Λ) = 0, the first proposition follows from the concavity of logarithmic function,

1 ≥ Pr(l = 0) =
∑

s∈S
Pr(s) Pr(l = 0|s) ≥ exp

[∑

s∈S
Pr(s) log Pr(l = 0|s)

]

= exp

[∑

s∈S

∑

l∈L
Pr(s, l) log Pr(0|s)

]
≥ exp

[∑

s∈S

∑

l∈L
Pr(s, l) log Pr(l|s)

]
= exp [−H(L|S)] .

(S54)

Note that we have used Pr(0|s) ≥ Pr(l|s), ∀l ∈ L. So limn→∞ Pr(l = 0) = 1.
The second and third propositions follow that conditioning reduces entropy,

0 ≤ H(L|S) ≤ H(L), (S55)

where H(L) = −∑l∈L Pr(l) log Pr(l). Fixing the success probability Pr(l = 0), the Shannon entropy H(L) is
maximized when the remaining logical classes are uniformly distributed,

0 ≤ H(L|S) ≤ H(L) ≤ −Pr(l = 0) log Pr(l = 0)− (K2 − 1)
1− Pr(l = 0)

K2 − 1
log

1− Pr(l = 0)

K2 − 1
= h(1− Pr(l = 0)).

(S56)
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The above inequality is called the classical Fano’s inequality [17]. For finite k = logK/ log d, Pr(l = 0) → 1 implies
limn→∞ S(Λ +B||Λ) = limn→∞H(L|S) = 0. For k → ∞, Pr(l = 0) → 1 in turn implies limn→∞ s(Λ +B||Λ) = 0.

D. Statistical Mechanical Mapping

We then reveal the relation between Eq. (S45) to statistical mechanical (SM) mapping proposed in Ref. [16]. They
write the probability of error equivalent classes [η] ∈ V/M into classical partition functions,

Z(η) = Pr([η]) = Pr(s, l) =
∑

m∈M
Pr(η +m) =

∑

c∈Zr
d

exp (−Hη(c)) ,

Hη(c) = − log Pr(η +Mc), c ∈ Zr
d,

(S57)

were M = (m1, · · · ,mr) is the n× r matrix where each column is a basis vector of M, c ∈ Zr
d serves as the SM d.o.f.

and η inherits a quenched disorder configuration from error probability Pr(η). For example, for single-qudit noise
channels N = ⊗n

i=1Ni where Ni(ρ0) =
∑

ηi∈Z2
d
pi(ηi)T (ηi)ρ0T (ηi)

†, the Hamiltonian Hη has a more explicit form

Hη(c) = −
n∑

i=1

∑

vi∈Z2
d

Ji(vi)ω
[vi,ηi+Mic],

Ji(vi) =
1

d2

∑

ui∈Z2
d

ω−[vi,ui] log pi(ui),

(S58)

Where Mi is the i-th row of M . Or suppose that the noises are locally correlated and factored into the form

Pr(η) =
∏

R

pR(ηR), (S59)

where R labels possibly overlapped regions on the lattice and ηR is the restriction of η on the subsystem R. In this
case the SM model becomes

Hη(c) = −
∑

R

∑

vR∈Z2
d

JR(vR)ω
[vR,ηR+MRc],

JR(vR) =
1

d2|R|
∑

uR∈Z2
d

ω−[vR,uR] log pR(uR),
(S60)

whereMR is now a |R|×r matrix constituted by the i ∈ R rows ofM . Suppose that the error rate of N can be tuned,
then the error threshold of MLD is identified with the order-disorder phase transition of the SM model. The order
parameter of such a phase transition can be chosen as the average free energy cost of a nontrivial logical operator
l ̸= 0,

∆l =
∑

η∈V
Pr(η)∆(η, l), ∆(η, l) = − log

Z(η + l)

Z(η)
, (S61)

with ∆(η, l) the free energy cost under a particular disorder configuration η. It diverges below the decoding threshold
and in most cases finite above the decoding threshold. Notice that for l = 0, ∆(η, l) is trivially 0.
Now we substitute (S57) into (S36) and (S40) and find that

tr(ΛR) =
1

dk(R−1)

∑

η∈V
Pr(η)Z(η)R−1, (S62)

tr((Λ +B)R) =
1

dk(R−1)

∑

η∈V
Pr(η)

[∑

l∈L
Z(η + l)

]R−1

. (S63)

The r.h.s. of Eq. (S62) is the classical replica partition function of the disorder SM model. In classical spin glass
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FIG. S2. (a) Toric code defined on 2D periodic lattice. Physical qubits stay on the edges of the lattice. The two kinds of
stabilizers are Av defined on each vertex and Bp defined on each plaquette as shown in the figure. The logical Pauli Z operators
Zl1 and Zl2 are product of Z’s along non-contractible loops. Correspondingly the logical Pauli X operators Xl∗1 and Xl∗2 are
defined as X’s along non-contractible loops on the dual lattice. (b) A circuit model of Bp0 measurement circuit.

theories, in order to compute the disorder averaged free energy F = −∑η Pr(η) logZ(η) in an accessible way, one
often averages the R-th power of partition function first and then take the R→ 1 limit after analytical continuation,

F = lim
R→1

1−∑η Pr(η)Z(η)
R−1

R− 1
. (S64)

The replica partition function is defined as Z(R−1) =
∑

η Pr(η)Z(η)
R−1. The r.h.s. of Eq. (S63) can also be viewed

as the replica partition function with additional SM d.o.f. labeled by logical classes l.
Similarly, the AQEC relative entropy Eq. (S45) can be expressed as

S(Λ +B||Λ) =
∑

η∈V
Pr(η) log

∑
l∈L Z(η + l)

Z(η)
=
∑

η∈V
Pr(η) log

{∑

l∈L
exp [−∆(η, l)]

}
. (S65)

This expression measures the free energy difference between the SM models with or without including the logical class
d.o.f. l, and is a generalized version of homological difference defined in [11].
Now assume we are dealing with a qubit LDPC code with K = 2k and infinitely many logical qubits k → ∞.

Intuitively, AQEC relative entropy characterizes how many logical qudits suffer from logical errors. Suppose that
∆(η, l) ∼ 0 for all l, we have a divergent S(Λ + B||Λ) ∼ 2k log 2 and 1 − Fe ≥ 1/2, 1 − Pr(l = 0) ≥ 1/2 from Eq.
(S14) and (S56). But if ∆(η, l) ∼ 0 only for a finite number of logical classes l and otherwise ∆(η, l) → +∞, we get
S(Λ+B||Λ) ∼ c log 2 where c is the number of failed logical qudits. So despite there being an incompatibility between
AQEC relative entropy and fidelity or probability measures in Thm. 1 and Thm. 3 above the threshold, the AQEC
relative entropy can still be a proper measure, while it is stronger in determining the recoverable region.

SIII. IMPERFECT MEASUREMENT PREPARED TORIC CODE

Now we consider the case of toric code on a 2D periodic lattice. The data qubits are located at edges e, and the
stabilizer generators are

Av =
∏

e|v∈∂e

Xe, Bp =
∏

e∈∂p

Ze, (S66)

as in Fig. S2 (a). Normally the initial code states are prepared by measuring the stabilizer generators on a product
state and projecting it onto the +1 subspace, for example,

|++⟩L =
∏

p

I +Bp

2
|+⟩⊗n

. (S67)

However, the measurement procedure might suffer from imperfection in reality. We need to entangle the data qubits
with an ancilla qubit and then measure the ancilla in order to perform a four-qubit measurement, but the entanglement
gate might acquire coherent error, leading to general positive operator-valued measurement (POVM) rather than
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projective measurement. We consider the following model for imperfect measurement [18–20] as in Fig. S2 (b),

1. prepare the ancilla qubit in |+⟩ state for each plaquette p;

2. apply a joint time evolution involving each ancilla and its four neighboring data qubits exp[−itZp ⊗Bp] where
Zp is the Pauli Z acting on ancilla at p and we assume 0 ≤ t ≤ π/4;

3. perform projective measurement on ancilla in Y basis.

The resulting measurement operator on data qubits is no longer a projection operator but instead

M{sp} =
1

(
√
2 coshβ)

n
2
exp

[
1

2
β
∑

p

spBp

]
, (S68)

up to an irrelevant phase factor. Here sp = ± denotes the binary outcomes for every plaquette p and tanhβ/2 = tan t.
The projective measurement is recovered when t → π/4 or β → +∞. We therefore assume the imperfect code
subspace is spanned by (fixing the position of logical operators)

|++⟩L =
M{sp=+} |+⟩⊗n

√
⟨+|⊗n

M†
{sp=+}M{sp=+} |+⟩⊗n

∝ exp

[
1

2
βBp

]
|+⟩⊗n

,

|−+⟩L = Zl1 |++⟩L , |+−⟩L = Zl2 |++⟩L , |−−⟩L = Zl1Zl2 |++⟩L .
(S69)

It is able to verify that the above four states are orthogonal to each other. This model is a rather simplified one which
is easier to study analytically, but it can capture the fundamental influence of imperfect stabilizer measurement on
QEC. In Ref. [18, 19] it is shown that these states lose long-range entanglement or topological order, and in Ref.
[20] we showed that it is undecodable under single-qubit Pauli X noises through a common multi-round syndrome
measurement protocol. Here we analyze this model using AQEC condition and AQEC relative entropy to extract an
optimal threshold.

We assume a single-qubit Pauli X noise channel,

N (ρ) =
∏

e

Ne(ρ), Ne(ρ) = (1− p)ρ+ pXeρXe. (S70)

The corresponding Kraus operator takes the form

Ec∗ =
√

Pr(c∗)Xc∗ =
√
p|c∗|(1− p)n−|c∗|Xc∗ , (S71)

where we view Pauli X error strings as cochain on the lattice [21], and Xc∗ =
∏

e∈c∗ Xe. In order to compute the
AQEC relative entropy, we need to know about the quantity

⟨q1|LXc∗ |q2⟩L , q1, q2 = ++,+−,−+,−− . (S72)
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Here we show the derivation. When Xc∗ is open-ended ∂∗c∗ ̸= 0, the action of Xc∗ on the post-measurement state is:

Xc∗ |++⟩L =
Xc∗M+

⊗
e |+⟩e√

⟨+|⊗n
M†

+M+ |+⟩⊗n

=

(
1√

2 cosh β

)n/2
√

⟨+|⊗n
M†

+M+ |+⟩⊗n
exp


1
2
β


 ∑

p/∈∂∗c∗

Bp −
∑

p∈∂∗c∗

Bp




Xc∗

⊗

e

|+⟩e

=

(
1√

2 cosh β

)n/2
√

⟨+|⊗n
M†

+M+ |+⟩⊗n
exp


1
2
β


 ∑

p/∈∂∗c∗

Bp −
∑

p∈∂∗c∗

Bp




⊗

e

|+⟩e

=
1√

⟨+|⊗n
M†

+M+ |+⟩⊗n
exp


−β

∑

p∈∂∗c∗

Bp


M+

⊗

e

|+⟩e

= exp


−β

∑

p∈∂∗c∗

Bp


 |++⟩L .

(S73)

It changes the sign of Bp operators that belong to the endpoints of c∗, ∂∗c∗, and we rewrite its action as an operator

exp
[
−β∑p∈∂∗c∗ Bp

]
considering the fact that Bp commute with each other. Notice that when ∂∗c∗ = 0, Xc∗ factories

in to Av stabilizers and X logical operators and trivially Xc∗ |++⟩L = |++⟩L. The expectation value of Xc∗ can be
computed through:

⟨++|LXc∗ |++⟩L = ⟨++|L exp


−β

∑

p∈∂∗c∗

Bp


 |++⟩L

=
1

Z+

∑

{σe=±}
exp


β

∑

p/∈∂∗c∗

Up


 =

2n/2+1

Z+

∑

{Up=±}

1 +
∏

p Up

2
exp


β

∑

p/∈∂∗c∗

Up




=
2n/2

Z+


 ∏

p/∈∂∗c∗

∑

Up

exp [βUp]
∏

p∈∂∗c∗

∑

Up

1


+

2n/2

Z+


 ∏

p/∈∂∗c∗

∑

Up

Up exp [βUp]
∏

p∈∂∗c∗

∑

Up

Up




=
2n/2

Z+
(2n/2(coshβ)n/2−|∂∗c∗|)

=
1

(coshβ)|∂∗c∗|
1

1 + (tanhβ)n/2
,

(S74)

when ∂∗c∗ ̸= 0. Here we have expanded the post-measurement state under computational (Pauli Z) basis,

exp

[
1

2
βBp

]
|+⟩⊗n

=
1

2n/2

∑

{σe=±}
exp

[
1

2
βUp

]
|{σe}⟩ (S75)

σe is the eigenvalue of Ze, Up =
∏

e∈∂p σe is the eigenvalue of Bp and Z+ =
∑

{σe} exp [βUp] is the partition function

of of Z2 gauge theory. As for other matrix elements,

⟨q1|LXc∗ |q2⟩L = ⟨++|L Zq1Xc∗Zq2 |++⟩L = χ(Xc∗ , Zq2) ⟨++|L Zq1+q2 exp


−β

∑

p∈∂∗c∗

Bp


 |++⟩L , (S76)

where Zq denotes the logical Z operator that send |++⟩L to |q⟩L, for example Z−− = Zl1Zl2 , χ(Xc∗ , Zq2) = ±1 is the
constant commutation factor between Xc∗ and Zq2 . In the above expression, the off-diagonal terms q1 ̸= q2 vanishes
since then Zq1+q2 changes since under 1-form symmetry operation Xl∗1 or Xl∗2 . The diagonal value follows directly
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from Eq. (S74) with an additional factor of the commutator,

⟨q1|LXc∗ |q2⟩L =
1

(coshβ)|∂∗c∗|
1 + (tanhβ)n/2δ(∂∗c∗ = 0)

1 + (tanhβ)n/2
χ(Xc∗ , Zq2)δq1,q2 . (S77)

Therefore, we obtain the matrix element of Λ +B,

(Λ +B)c∗1c∗2 ,q1q2 =
√

Pr(c∗1) Pr(c
∗
2) ⟨q1|LXc∗1Xc∗2 |q2⟩L

=
1

4

√
Pr(c∗1) Pr(c

∗
2)

1 + (tanhβ)n/2δ(∂∗c∗1 + ∂∗c∗2 = 0)

(coshβ)|∂∗c∗1+∂∗c∗2 |[1 + (tanhβ)n/2]
χ(Xc∗1+c∗2 , Zq2)δq1,q2

(S78)

We assign a logical X operation l∗(c∗) to each c∗, such that [Xl∗(c∗), Zq] = [Xc∗ , Zq], ∀q. l∗(c∗) represents the logical
class of c∗. The Eq. (S78) is equivalent to

(Λ +B)c∗1c∗2 ,q1q2 =
1

4

√
Pr(c∗1) Pr(c

∗
2)

1 + (tanhβ)n/2δ(∂∗c∗1 + ∂∗c∗2 = 0)

(coshβ)|∂∗c∗1+∂∗c∗2 |[1 + (tanhβ)n/2]
⟨q1|Xl∗(c∗1)

Xl∗(c∗2)
|q2⟩ δq1,q2 . (S79)

The matrix elements of Λ does not depend on the code work q, thus

Λc∗1c
∗
2 ,q1q2

=
1

4

√
Pr(c∗1) Pr(c

∗
2)

1 + (tanhβ)n/2δ(∂∗c∗1 + ∂∗c∗2 = 0)

(coshβ)|∂∗c∗1+∂∗c∗2 |[1 + (tanhβ)n/2]
δl∗(c∗1),l∗(c∗2)δq1,q2 . (S80)

We compute AQEC relative entropy through the replica method. To do so we need to introduce a replica index
α = 1, · · · , R ∈ ZR to the error chain c∗(α). We alternatively represent the error configuration c∗(α) with Z2 spin

variables {η(α)e = ±1} assigned with each edge e and replica copy α. η
(α)
e = −1 suggests e ∈ c∗(α) and η

(α)
e = 1

otherwise. The coboundary of c∗(α), ∂∗c∗(α),is marked by U
(α)
p =

∏
e∈∂p η

(α)
e , while U

(α)
p = −1 means p ∈ ∂∗c∗(α).

Written in the spin variables, we have

Pr(c∗(α)) =
exp

(
h
∑

e η
(α)
e

)

(2 coshh)n
, h =

1

2
log

1− p

p
,

|∂∗c∗(α) + ∂∗c∗(α+1)| =
n/2−∑p U

(α)
p U

(α+1)
p

2
,

δ(∂∗c∗(α) + ∂∗c∗(α+1) = 0) = δ
U

(α)
p ,U

(α+1)
p

.

(S81)

Using the above substitutions, we have

tr
(
(Λ +B)R

)
=

1

4R−1

(
R∏

α=1

∑

c∗(α)

)(
R∏

α=1

Pr(c∗(α))

)
R∏

α=1

1 + (tanhβ)n/2δ(∂∗c∗(α) + ∂∗c∗(α+1) = 0)

(coshβ)|∂∗c∗(α)+∂∗c∗(α+1)|[1 + (tanhβ)n/2]

=
1

4R−1(2 coshh)nR(coshβ)nR/4(1 + (tanhβ)n/2)R

×
∑

{η(α)
e }

exp

{
R∑

α=1

[
h
∑

e

η(α)e +
1

2
log coshβ

∑

p

U (α)
p U (α+1)

p + log

(
1 + (tanhβ)n/2

∏

p

δ
U

(α)
p ,U

(α+1)
p

)]}
.

(S82)

This is a classical partition function Z(β, h) =
∑

{η(α)
e } exp[−H({η(α)e })] for the Hamiltonian

H({η(α)e }) = −
R∑

α=1

[
h
∑

e

η(α)e +
1

2
(log coshβ)

∑

p

U (α)
p U (α+1)

p + log

(
1 + (tanhβ)n/2

∏

p

δ
U

(α)
p ,U

(α+1)
p

)]
. (S83)

In computing tr(ΛR), we need to insert
∏

α δl∗(c∗(α)),l∗(c∗(α+1)) in the partition function. It forces the error configuration
of each replica copy to be in the same logical class, in other words they have the same commutation relation with the
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Z logical operators. We notice that

R∏

α=1

δl∗(c∗(α)),l∗(c∗(α+1)) =

R∏

α=1

∏

l∈{l1,l2}

1 +
∏

e∈l η
(α)
e η

(α+1)
e

2
, (S84)

where l = l1, l2 labels the set of data qubits in Z logical operator Zl1 , Zl2 . The Rényi version of AQEC relative entropy
can be represented by the classical expectation value of the above expression,

S(R)(Λ +B||Λ) = 1

R− 1
log

tr((Λ +B)R)

tr(ΛR)
=

1

1−R
log

〈∏

α,l

1 +
∏

e∈l η
(α)
e η

(α+1)
e

2

〉
, (S85)

where we have used trC(B) = 0. The SM model Eq. (S83) captures the fluctuation of error configurations {η(α)e }.
The decodable order corresponds to that all spins are aligned up, eta

(α)
e = +. The first term tends to point the spins

up, while the second and third terms tend to pin the endpoints of the error chains on different replica copies together
at the same plaquette. Large temperatures or small Interaction parameters β, h introduce disorder to the SM system.

We now discuss the property of Eq. (S85). We first analyze the low-temperature limit. Taking the β → +∞ limit
and keeps h finite, the partition function becomes

Z(β, h) ∝
∑

{η(α)
e }

(∏

α,p

δ
U

(α)
p ,U

(α+1)
p

)
exp

[
h
∑

α,e

η(α)e

]
, (S86)

with the constraint that all endpoints of the replica copies are exactly at the same plaquettes. Following the same
spirit in deriving Eq. (S40), ∂∗c∗(α) = ∂∗c∗(α+1) for all α suggests that we can rewrite c∗(α) = c∗(R) + b∗(α) + l∗(α)

where b∗(α) is a coboundary (contractible loops) and l∗(α) is a cohomological class (non-contractible loops or logical

class). We can further rewrite the summation of coboundaries as summations of spin variables on vertices σ
(α)
v by

viewing b∗(α) as domain walls. Sign difference of σ spins at two ends of a edges
∏

v∈∂e σ
(α)
v = −1 corresponds to

{η(α)e } = −1. We also denote ηl
∗(α)

e = −1 when e ∈ l∗(α) and ηl
∗(α)

e = +1 otherwise. Thus

Z(β, h) ∝
∑

{η(R)
e }

∑

{σ(α)
v }

∑

{l∗(α)}
exp

[
h
∑

e

η(R)
e + h

R−1∑

α=1

∑

e

η(R)
e ηl

∗(α)

e

∏

v∈∂e

σ(α)
v

]
, (S87)

and self-consistently arrive at the replica partition function of the random bond Ising model (RBIM) [22, 23] with
additional fluctuation of non-contractible domain walls. When computing tr

(
ΛR
)
, the non-contractible fluctuations

are forbidden and we obtain

tr
(
ΛR
)
∝
∑

{η(R)
e }

∑

{σ(α)
v }

exp

[
h
∑

e

η(R)
e + h

R−1∑

α=1

∑

e

η(R)
e

∏

v∈∂e

σ(α)
v

]
∝
∑

{η(R)
e }

Pr({η(R)
e })ZRBIM ({η(R)

e })R−1, (S88)

It means that at the axis T = 1/β = 0, the intrinsic threshold is located at pth ≃ 0.11 [23]. Note that the phase
transition point might be different for different R [24] and the correct value of threshold is obtained by taking the

R → 1 limit. When h → +∞ and fixing β, all η spins are forced to point up {η(α)e } = +1, and the AQEC relative
entropy is trivially 0.

Then we analyze the high-temperature limit. Take β → 0, the SM model becomes a trivial paramagnetic model,

Z(β, h) =
∑

{η(α)
e }

exp

[
h
∑

α,e

η(α)e

]
= 2n coshn h, (S89)

Assume the lattice is square with linear size L =
√
n/2, which is also the weight of logical operators. Through a
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straightforward calculation of the expectation value in Eq. (S85) with the above paramagnetic model, we get

S(R)(Λ +B||Λ) =



(
1 + tanhL h

2

)R

+

(
1− tanhL h

2

)R


2

. (S90)

Take the thermodynamic limit n→ ∞ and the replica limit R→ 1, we have

lim
R→1

lim
n→∞

S(R)(Λ +B||Λ) = 2 log 2. (S91)

The reason why it does not saturate the upper bound 4 log 2 is that we only considered Pauli X noises and ignored
Pauli Z noises. In the h→ 0 limit with finite β, the Hamiltonian has the form

H({η(α)e }) = −
R∑

α=1

[
1

2
(log coshβ)

∑

p

U (α)
p U (α+1)

p + log

(
1 + (tanhβ)n/2

∏

p

δ
U

(α)
p ,U

(α+1)
p

)]
. (S92)

Ignoring the last term, the model is basically a union of one-dimensional Ising models of the U
(α)
p = ±1 variables

along the replica direction. Since the 1-D Ising models are disordered at finite temperatures, we anticipate that they
lead to undecodable phase.

We then consider the monotonicity of S(R)(Λ + B||Λ) varying interaction parameters h, β. For a finite β ≥ 0,
the third term of Eq. (S83) is exponentially suppressed and negligible in the thermodynamic limit n → ∞, and we
approximate the Hamiltonian by

H({η(α)e }) = −
R∑

α=1

[
h
∑

e

η(α)e + J
∑

p

U (α)
p U (α+1)

p

]
, J =

1

2
log coshβ (S93)

For a ferromagnetic spin model J ≥ 0, the Griffiths-Kelly-Sherman (GKS) inequalities holds [25–27],

⟨ΓA⟩ ≥ 0, ⟨ΓAΓB⟩ ≥ ⟨ΓA⟩ ⟨ΓB⟩ , (S94)

where A, B denotes sets containing pairs of edge and replica copy, (e, α), and ΓA, ΓB is the product of corresponding
spin variables,

ΓX =
∏

(e,α)∈X
η(α)e , X = A,B. (S95)

In particular, we have

d

dJ
⟨ΓA⟩ =

∑

p

{〈
ΓAU

(α)
p U (α+1)

p

〉
− ⟨ΓA⟩

〈
U (α)
p U (α+1)

p

〉}
≥ 0,

d

dh
⟨ΓA⟩ =

∑

e

{〈
ΓAη

(α)
e

〉
− ⟨ΓA⟩

〈
η(α)e

〉}
≥ 0,

(S96)

Notice that the expectation value in Eq. (S85) can be expanded into summation of terms like ΓA for different sets of
spin variables A, so we conclude that

d

dJ

〈∏

α,l

1 +
∏

e∈l η
(α)
e η

(α+1)
e

2

〉
≥ 0,

d

dh

〈∏

α,l

1 +
∏

e∈l η
(α)
e η

(α+1)
e

2

〉
≥ 0. (S97)

In the thermodynamic limit, the AQEC relative entropy should be monotonically increasing with β and h following
the above discussions,

d

dβ
S(R)(Λ +B||Λ)

∣∣∣∣
n→∞

≥ 0,
d

dh
S(R)(Λ +B||Λ)

∣∣∣∣
n→∞

≥ 0. (S98)

Note that S(R)(Λ + B||Λ) might be discontinuous at the phase transition point in the n → ∞ limit, and we keep in



S17

𝑒!"#

𝑝𝑝!"
# → 𝑝!" ∼ 0.11

Unable to recover, 	𝑆 𝛬 + 𝐵 𝛬 finite
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𝑆 𝛬 + 𝐵 𝛬 → 0

Stochastic 
error rate

Imperfect 
preparation 
rate

FIG. S3. The phase diagram. The undecodable phase stays at any finite preparation and Pauli error rates, as well as the region
e−4β = 0 and p > pth. Notice that the RBIM phase transition point will be different for different replica R, and pth is obtained
in R → 1.

mind that the above inequality includes the case that the derivative behaves like a delta function.

Now in order to study the properties of AQEC relative entropy at low but finite temperatures, we assume e−β ∼
e−h ≪ 1 and expand Eq. (S85) to the first non-vanishing order. Recall that the quantity

∏
α,l

1+
∏

e∈l η
(α)
e η(α+1)

e

2
measures the difference of logical classes of the replica copies. It is 1 when all copies have the same logical class and
0 when there is a difference. In low temperature, the ground state is that all spins stay in +1, and the lowest order

excitation is a single spin flip η
(α)
e = −1 which costs energy 2h + 8J + 2 log(1 + tanhn/2 β). There are nR possible

configurations of such excitation, so the partition function reads

Z(β, h) ≃ 1 + nR exp[−2h− 8J − 2 log(1 + tanhn/2 β)] ≃ 1 + 4nRe−2h−4β , (S99)

normalized by the ground state Boltzmann weight. Now we insert
∏

α,l

1+
∏

e∈l η
(α)
e η(α+1)

e

2 in the summation, and it

yields 0 When the flipped spin η
(α)
e = −1 is located on Z logical operators l1, l2. There are 2LR such configurations,

thus

∑

{η(α)
e }

∏

α,l

1 +
∏

e∈l η
(α)
e η

(α+1)
e

2
exp[−H] ≃ 1+(nR−2LR) exp[−2h−8J−2 log(1+tanhn/2 β)] ≃ 1+(4n−8L)Re−2h−4β ,

(S100)
So the expectation value is

〈∏

α,l

1 +
∏

e∈l η
(α)
e η

(α+1)
e

2

〉
≃ 1 + (4n− 8L)Re−2h−4β

1 + 4nRe−2h−4β
≃ 1− 8LRe−2h−4β . (S101)

Substitute in Eq. (S85), we can approximate the Rényi AQEC relative entropy by

S(R)(Λ +B||Λ) ≃ 8LR

R− 1
e−2h−4β . (S102)

This expression indicates a sudden jump at the zero error rate point. Keep e−h small but finite, we have

d

de−4β
S(R)(Λ +B||Λ)

∣∣∣∣
e−4β→0+

=
8LR

R− 1
e−2h. (S103)

It diverges in the thermodynamic limit,

lim
n→∞

d

de−4β
S(R)(Λ +B||Λ)

∣∣∣∣
e−4β→0+

→ +∞. (S104)

Similarly keep e−β small but finite, we have

d

de−2h
S(R)(Λ +B||Λ)

∣∣∣∣
e−2h→0+

=
8LR

R− 1
e−4β ,

d

de−2h
S(R)(Λ +B||Λ) lim

n→∞

∣∣∣∣
e−2h→0+

→ +∞. (S105)

So we conclude that the phase diagram has the form in Fig. S3 for any R > 1 as well as R→ 1. The system stays in
undecodable phase as long as the preparation and Pauli error rates are both finite. The intuition for this phenomenon
is gained from the SM model. When the preparation is perfect β → +∞, then endpoints of different replica copies
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are pinned together and it is hard to create logical difference between replica copies,
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[4] C. Bény and O. Oreshkov, General Conditions for Approximate Quantum Error Correction and Near-Optimal Recovery

Channels, Physical Review Letters 104, 120501 (2010).
[5] B. Schumacher and M. D. Westmoreland, Approximate quantum error correction (2001), arXiv:quant-ph/0112106.
[6] H. K. Ng and P. Mandayam, Simple approach to approximate quantum error correction based on the transpose channel,

Phys. Rev. A 81, 062342 (2010).
[7] P. Mandayam and H. K. Ng, Towards a unified framework for approximate quantum error correction, Phys. Rev. A 86,

012335 (2012).
[8] D.-S. Wang, G. Zhu, C. Okay, and R. Laflamme, Quasi-exact quantum computation, Physical Review Research 2, 033116

(2020).
[9] D. Gross, Hudson’s theorem for finite-dimensional quantum systems, Journal of Mathematical Physics 47, 122107 (2006).

[10] V. Gheorghiu, Standard form of qudit stabilizer groups, Physics Letters A 378, 505 (2014).
[11] A. A. Kovalev, S. Prabhakar, I. Dumer, and L. P. Pryadko, Numerical and analytical bounds on threshold error rates for

hypergraph-product codes, Physical Review A 97, 062320 (2018), arxiv:1804.01950 [quant-ph].
[12] E. Witten, Open strings on the Rindler horizon, Journal of High Energy Physics 2019, 126 (2019).
[13] R. P. Boas, Entire functions, 3rd ed., Mathematics in science and engineering No. 5 (Acad. Pr, New York, NY, 1973).
[14] E. D’Hoker, X. Dong, and C.-H. Wu, An alternative method for extracting the von Neumann entropy from Rényi entropies,
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