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Abstract

We analyze the time-dependent free energy functionals of the semiclassical one-
dimensional Bose-Hubbard chain. We first review the weakly chaotic dynamics
and the consequent early-time anomalous diffusion in the system. The anomalous
diffusion is robust, appears with strictly quantized coefficients, and persists even
for very long chains (more than hundred sites), crossing over to normal diffusion at
late times. We identify fast (phase) and slow (number) variables and thus consider
annealed and quenched partition functions, corresponding to fixing the number
variables or integrating over them, respectively. We observe the leading quantum
effects in the annealed free energy, whereas the quenched energy is undefined in
the thermodynamic limit, signaling the absence of thermodynamic equilibrium in
the quenched regime. But already the leading correction away from the quenched
regime reproduces the annealed partition function exactly. This encapsulates the
fact that in both slow- and fast-chaos regime both the anomalous and the normal
diffusion can be seen (though at different times).

Keywords: Bose-Hubbard model, Quantum chaos, Anomalous transport,
Thermodynamic formalism, Quenched disorder
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1 Introduction

The vast and interesting phenomenology of cold atom systems [1], the universal behav-
ior of theoretical models such as the SYK model [2–4], and novel indicators of quantum
dynamics such as OTOC [5–8] and Krylov complexity [9–12] have led to resurgent
interest in quantum chaos. The Bose-Hubbard model is an example of a cold-atom sys-
tem which is nonintegrable and exhibits quantum chaos [13–19]. A convenient property
of this model is also that it has a classical limit [20, 21], facilitating the comparisons of
classical and quantum dynamics. A natural question in this context is how (and if at
all) the chaotic dynamics leads to thermalization and hydrodynamics (normal trans-
port). Few detailed studies on this matter exist for the Bose-Hubbard model, which
motivates our study.

More specifically, our goal is to understand the interplay between chaos, the
transport which we have previously found to be strongly anomalous [19], and the
thermodynamic functions of the system. Anomalous transport is expected in weakly
chaotic systems [22, 23], however in our case it has strictly integer exponents 2m and
4m, where m is a non-negative integer. This is surprising as the anomalous exponents
are usually fractional [23]. We have found that anomalous diffusion holds even for
enormous chains, with L > 100 sites. This is also surprising as we expect the relative
measure of stable regions in phase space to diminish to zero in the L→ ∞ limit, lead-
ing to strong chaos and normal diffusion. This set of issues is also of relevance for the
studies of chaos control in quantum many-body systems [24], and for a broader under-
standing of hyperchaotic systems [25], as our system also displays hyperchaos [19]. The
former issue (chaos control) is also important for possible realization of Bose-Hubbard
chains in quantum computing [26, 27].

In this work we look at weak chaos and anomalous transport from the thermody-
namic point of view: we calculate the partition function and free energy of the system.
Since the dynamics exhibits timescale separation into fast and slow variables, it is nat-
ural to consider two possible definitions of the partition function: integrate over both
fast and slow variables (annealed partition function) or solely over the fast variables,
fixing the slow ones (quenched partition function). With some hindsight, we can say
that the two approaches correspond to different epochs in the evolution of the system:
early-time anomalous diffusion versus long-time normal diffusion regime. Neverthe-
less, the complete picture is still evasive, as we can only evaluate the free energies at
leading order, in a very crude approximation.

2 The model

We consider a one-dimensional Bose-Hubbard chain with L sites, whose Hamiltonian
is given by:

HBH =

L∑
j=1

[
−J

(
b†jbj+1 + bjb

†
j+1

)
+
UBH

2
nj (nj − 1)− µnj

]
, (1)
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where J is the hopping parameter, UBH is the on-site Coulomb repulsion, b†j , bj are
bosonic creation and annihilation operators, nj is the occupation number of the site
j and µ is the chemical potential. We do not impose periodic boundary conditions, so
b†j , bj ≡ 0 for j = 0, L+ 1.

We are interested in the semiclassical regime, i.e. when the number of particles
N =

∑
j nj goes to infinity while the number of sites L stays fixed. The semiclas-

sical Hamiltonian is obtained by introducing new variables: (b†j , bj) 7→ (ψ∗
j , ψj) ≡

(b†j , bj)/
√
N [19–21]. The commutator of new variables vanishes as 1/N and the Hamil-

tonian becomes classical, with rescaled Coulomb repulsion parameter U ≡ NUBH and
the number-conservation constraint

∑
j |ψj |2 = 1. Finally, we introduce the number-

phase variables (Ij , ϕj). In the integrable limit J → 0 the Hamiltonian will only depend
on Ij so the number-phase variables become action-angle variables: the actions are
integrals of motion and the angles have periodic dynamics. In the general, chaotic
case, strictly speaking there are no action-angle variables, although in the literature
one still often keeps the same terminology so that the ”actions” are really the quasi-
integrals of motion which evolve slowly whilst the ”angles” change rapidly and play
the role of ”fast” variables that we can average over. We will nevertheless mostly
use the number-phase terminology in order to remain precise. In these variables the
Hamiltonian reads:

H =

L∑
j=1

(
U

2
I2j − µIj

)
− 2J

L−1∑
j=1

√
IjIj+1 cos (ϕj − ϕj+1) , (2)

Since Ij are the occupation numbers for each site, they satisfy the constraint
∑

j Ij = 1.
From Eq. (2) we arrive at the equations of motion:

ϕ̇j = −µ+ UIj − J

(√
Ij−1

Ij
cos (ϕj − ϕj−1) +

√
Ij+1

Ij
cos (ϕj − ϕj+1)

)
(3)

İj = 2J
(√

IjIj−1 sin (ϕj−1 − ϕj) +
√
IjIj+1 sin (ϕj+1 − ϕj)

)
. (4)

Equations of motions are nonlinear as they have to be in a nonintegrable system.1 In
special cases J = 0 and U = 0 the system becomes integrable. In general, low/high
U/J ratio corresponds to tight/weak binding regime, leading to the superfluid and
Mott insulator regimes respectively [20, 28, 29].2

1Of course, (non)linearity of the equations of motion is in general a matter of specific generalized coordi-
nates and momenta used. Integrable systems can also have nonlinear equations of motion for some choices
of canonical variables. But the Bose-Hubbard model is known to be nonintegrable as it exhibits chaos,
which we also find when computing the Lyapunov exponents. Consequently, its (exact) equations of motion
cannot be linearized by any well-behaving canonical transformation.

2Since the model is one-dimensional there are no phase transitions but we can speak of two regimes
separated by a crossover.
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3 Chaos and transport

Exploring the semiclassical dynamics of the system it is appropriate to first calculate
the Lyapunov exponents in order to characterize chaos. In [19] we have observed that
the sites with a large initial occupation number in general have largest Lyapunov
exponents which do not change significantly with the growth of U ; initially empty sites
have the lowest Lyapunov exponents (Figs. 4 and 5 in [19]). To further corroborate
this we have also computed the Lyapunov exponent for varying µ/J and U/J (Figs.
3, 4 and 5 in [19]), and found that, for strongly chaotic sites, the strength of chaos
is almost independent of the system parameters. Initially filled sites show uniformly
strong chaos, which suggests that chaos is driven by initial conditions (Fig. 3 in [19]).

We now move to the central result of our work so far. We consider a population
of orbits in phase space with initial conditions distributed, e.g. as a Gaussian peaked
at the point (In(0), ϕn(0)). For strongly chaotic systems we expect to find diffusion in
the space of numbers (”actions”) [22, 30]. We inspect it by calculating:

σ2(In(t)) = ⟨I2n(t)⟩ − ⟨In(t)⟩2 (5)

for the observed population of orbits. We observe strong superdiffusion, that is σ2 ∼ tζ

where ζ > 1. The only instances where this strongly anomalous diffusion is absent
are the initially filled sites, which show no diffusion at all, i.e. they have ζ = 0. The
coefficients are completely independent of the parameters of the system (µ/J , U/J).
They are thus a characteristic of the model and depend solely on the geometry of the
initial conditions.

In general the anomalous exponent is 4m, with m a positive integer which equals
the distance of the given site from the nearest initially filled site. This also means that
initially filled sites have the exponent ζ = 0 (as for a filled site the distance from the
nearest filled site is zero). This is observed for almost all initial conditions, and for
all ranges of parameters. In special cases, when the initial conditions are sufficiently
complicated and many sites are initially partially filled with similar fillings, we also
observe exponents equal to 2m with the same meaning for m as before. In Fig. 1 we
show the typical case, when the exponents equal 4m.
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Fig. 1 Individual orbits Ii(t) (left) and the log-log plot of the second central moment (variance)
of the occupation numbers (right) for an ensemble of orbits in the chain of length L = 10, with
U/J = 0.375, µ/J = 0.25. Initially the filled sites are n = 3, 8. The exponents take values 0, 4 or 8,
determined by the distance from the nearest initially occupied site. Black dashed lines are analytic
plots ⟨∆I2n⟩ ∝ t4m. The legend (far right) relates the site numbers to line colors.

The origin of anomalous coefficients is very hard to understand [23, 31], but accord-
ing to Zaslavsky [32] we can give a crude explanation, at least for the case ζ = 4m. For
this case, we can use the non-resonant perturbation theory where the perturbed Hamil-
tonian has the form of a pendulum Hamiltonian [19]. It turns out that the period of
oscillations of the pendulum is proportional to the square root of the number variable:
T ∼

√
Ij . Rescaling these quantities by some factors λT and λI , we find that the sys-

tem stays invariant if λ2T = λI . Extending this to m sites one derives: λ2mT = λI . From
the Renormalization Group of kinetics formalism [22, 23, 32], the diffusion coefficients
are given as:

ζm =
2 log λI
log λT

= 4m, (6)

just like in the numerics.
While anomalous transport is typically demonstrated by the spread of the distri-

bution, i.e. the second moment, as we did in Fig. 1, we can also study the first moment
and its exponent ξ, given by ⟨I⟩ ∼ tξ. In Fig. 2 we plot the mean of the distribu-
tion on the logarithmic scale, and again find anomalous behavior with the exponent
consistent with the hypothesis ξ = max(0, 2m− 2), where again m is the distance to
the nearest filled site. Notice that this in general means that the second moment does
not scale as the square of the first moment. This is not surprising as the ensemble
averaging and the square root usually do not commute. It confirms the robustness of
anomalous transport in the Bose-Hubbard model.
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Fig. 2 The log-log plot of the first moment (mean) of the occupation numbers for an ensemble of
orbits for two configurations with U/J = 0.375, µ/J = 0.25. In the left panel we study the chain of
length L = 10 with sites n = 3, 8 initially filled; in the right panel we study the chain with L = 50
where the sites n = 20, 25, 29 are initially filled. The exponents take values 2m − 2 where m is the
distance from the nearest initially filled site (if 2m − 2 is not positive, then the exponent is simply
zero). Black dashed lines are analytic plots ⟨In⟩ ∝ t2m−2; for the L = 50 chain we only plot a few
lines with lowest exponents both in order not to cram the figure too much and also because the curves
corresponding to very low occupation numbers can hardly be trusted because of numerical errors.
The legend (far right) relates the site numbers to line colors in the left panel; in the right panel we
use the same colors for site numbers modulo 10, i.e. each color stands for five different sites.

Finally, everything we have said so far of anomalous transport remains true up to
some (large) time t0. Indeed we would expect that at some point the system approaches
some form of thermal equilibrium, even if the time to reach it can be very large. This
is indeed observed in our numerical calculations. In Fig. 11 (in [19]) we can follow how
anomalous diffusion becomes normal, with ζ = 1, for sufficiently large times.

3.1 Two-dimensional generalization

We will now show that the same general conclusions, in particular the 4m series of
exponents, remain valid also for a two-dimensional Bose-Hubbard model. We have no
ambitions to go for a detailed analysis of the two-dimensional case which is known to
behave very differently from the one-dimensional chain, e.g. in the sense that it has a
sharp phase transition. For now we just want to demonstrate that the general behavior
is not specifically tied to one-dimensional physics. Fig. 3 makes the point: the same
general law applies,
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Fig. 3 Log-log plot of the second central moment (variance) of the number variables for an ensemble
of orbits on a 10× 10 square lattice, with U/J = 50, µ/J = 0. Initially filled sites are (2, 3) and (7, 4)
(left) and (2, 3) and (3, 3) (right), and the color legend enumerates the sites 1 thru 10 in each row,
i.e. the colors repeat 10 times in the whole 10×10 model. The black dashed lines delineate the power
laws t4m, with m = 0, 1, 2, 4.

4 Thermodynamics

We have mentioned that at long times the system reaches the normal diffusion regime.
We are still not sure about the meaning of the anomalous regime: is it a pre-thermalized
regime or a regime which captures long-distance correlations and thus is not hydrody-
namic. In order to shed some light on this, we calculate the partition functions of the
system. The catch is that in principle we need to compute them as a function of time,
i.e. for the evolving values of the variables – this is necessary because our system is
strongly out-of-equilibrium. Instead of integrating over all possible exact trajectories
which is a hopeless task we will use two drastic approximations. Of course, it would
be preferable to apply the usual formalism of non-equilibrium thermodynamics but
for now we just want to have some indication of what is happening in the simplest
possible approach.

The are now two possible limits: annealed and quenched. Annealed partition func-
tion is obtained when treating all the variables equally, that is, we integrate over the
whole phase space, both numbers and phases. But since the phases are fast-winding
variables and the numbers change slowly, it also make sense to consider the quenched
approximation where we freeze the numbers at their initial values and then integrate
the logarithm of the partition function for the phases to arrive at the quenched free
energy.

4.1 Annealed partition function

By definition, the partition function is given as:

Za =

∫
dI⃗dϕ⃗ exp

(
2βJ

L−1∑
j=1

√
IjIj+1 cos(ϕj − ϕj+1)−

βU

2

∑
j

I2j + βµ
∑
j

Ij

)
, (7)
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where dI⃗dϕ⃗ indicates integration over all variables and β is the inverse temperature.
We first perform the integration over the phases:

Za = (2π)L
∫
dI⃗ exp

(
βµ
∑
j

Ij −
βU

2

∑
j

I2j

) L−1∏
j=1

I0
(
2βJ

√
IjIj+1

)
, (8)

where I0 is the modified Bessel function of zeroth order. This result follows from the
known integral: ∫ 2π

0

dϕ1 exp (cos (ϕ1 − ϕ2)) = 2πI0(1). (9)

Exact integration over the numbers Ij in (8) can only be done in the U → ∞ limit,
representing the Bessel functions as a power series. The result is given by:

Za = (2π)L exp

(
βµ2L

2U

)( 1

2βU

)L
2

∞∑
k1,k2,...,kL−1=0

(2βJ2U−1)K∏L−1
j=1 (kj !)

2

L−1∏
i=0

Γ
(ki + ki+1 + 1

2

)
.

(10)

In the above we have denoted K ≡
∑L−1

i=1 ki, k0 ≡ 0, kL ≡ 0. This is essentially
an expansion in βJ2/U , therefore although the annealed approximation would be
expected to work only in the superfluid regime where the numbers evolve faster than
in the Mott regime (though still slower than the phases), in fact we can also write a
controlled expansion which remains valid into the Mott regime too. In this regime it
makes sense to only keep the zeroth and first term in the above expansion:

Za = (2π)L exp

(
βµ2L

2U

)(
π

2βU

)L
2 −1(

π

2βU
+ (L− 1)

J2

U2

)
. (11)

From the above relation we can directly obtain the thermodynamic energy and the
heat capacity:

Ea =
L

2

(
T − µ2

U

)
, Ca =

L

2
. (12)

Therefore, in the annealed regime the system behaves thermodynamically as an ideal
gas – the expressions (12) are just the consequence of the equipartition theorem,
with the twist that the degrees of freedom are not enumerated by particles but by
sites (each site contributes exactly 1

2 to the internal energy). In this case the normal
diffusion regime (which we observe at very late times) is naturally expected. For later
comparison to the quenched case, we also give the free energy in the annealed regime
(also at the first order in the expansion (10)):

Fa = − 1

β

[
L log 2π +

βµ2L

U
+
L

2
log

(
π

2βU

)
+

2(L− 1)J2β

πU

]
. (13)

4.2 Quenched free energy

For the quenched calculation we only integrate over the phases, calculate the logarithm
of the outcome (i.e., the free energy) and then average it over the number variables,
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arriving at the following integral:

Fq = − 1

β

∫
dI⃗ log

[
(2π)

L
L∏

j=1

∞∑
k=0

(β2J2)k(IjIj+1)
k

(k!)2
exp

(
βµIj −

βUI2j
2

)]
. (14)

This integral can be computed exactly, even when N does not go to infinity. This is
done by introducing the hyperspherical coordinates. We present only the final result:

Fq = − 1

βL!

[
L log 2π +

βµL

L+ 1
− βUL

(L+ 1)(L+ 2)
+

+ L!(L− 1)

∞∑
n=1

(−1)n+1

n

∞∑
k1,...kn=1

(β2J2)Kn∏n
j=1(kj !)

2

Γ2(Kn + 1)

Γ(2Kn + L+ 1)

]
. (15)

Above we define Kn ≡
∑n

i=1 ki (for K as previously defined in (10) we thus have
K = KL). For some intuitive insight we only take the first term in this expansion, i.e.
the term with n = 1, k1 = 1:3

Fq = − 1

βL!

[
L log 2π +

β2J2(L− 1)

(L+ 1)(L+ 2)
+

βµL

L+ 1
− βUL

(L+ 1)(L+ 2)

]
. (16)

From here we derive the internal energy and heat capacity:

Eq =
U − µL− 2βJ2

L!L
, Cq ∼ β2J2

L!L
. (17)

We see a few surprising things in this analysis. First, there is the factor of L! in the
quenched quantities which appears from the integration over the L-dimensional sphere
(which does not happen in the annealed case). Because of this the strict thermody-
namic limit L→ ∞ predicts zero free energy, i.e. the breakdown of thermodynamics.
This basically means that in the quenched regime there is no thermal equilibrium.

Assuming that the above results make some sense for finite L, we note that the heat
capacity now decreases with temperature as 1/T 2, which is unexpectedly consistent
with the results of [33], obtained without assuming the semiclassical approximation.
Therefore, the quenching of the slow variables essentially mimics the influence of quan-
tum corrections. This can be understood as a manifestation of the truncated Wigner
approximation (TWA) [20, 29, 34, 35] where classical equations of motion, averaged
over the initial conditions, reproduce the leading quantum (Bogolyubov) behavior.

To conclude, the thermodynamic analysis teach us the following:

1. The annealed (number and phase) partition function behaves as an ideal gas, sug-
gesting that individual orbits undergo random walk and hence normal diffusion.
This holds in any dimension and for any parameter regime.

3The radius of convergence of equation (15) is quite difficult to analyze, as the last term in the sum behaves
as a product of Bessel I0 functions suppressed by a polynomial with a leading term being proportional to

KL+1/2
n . We expect it to diverge for a wide range of the βJ parameter. When βJ ≪ 1, we have a controlled

approximation leading to results in equations (16) and (17).
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2. The quenched (number only) partition function is ill-defined in the thermody-
namic limit, suggesting a lack of thermodynamic equilibrium on timescales short
compared to the number (action) evolution. The result at finite particle number
reproduces the leading quantum contribution to heat capacity, in analogy with the
fact that averaging classical orbits over some initial distribution reproduces the
leading quantum behavior as in TWA.

5 Path integral approach

Since both annealed and quenched free energies capture only special limits, it is useful
to try interpolating between them. In principle this requires the full path integral for-
malism, but of course this is impossible to do in practice (except as a costly numerical
computation). We will just include the leading (quadratic) correction to the quenched
regime, reducing the dynamics to linearized oscillations around the equilibrium points.

It will turn out that taking into account even small linearized oscillations of the
number variables already bridges the gap between the annealed and the quenched
regime. The Lagrangian of the system is given by Legendre transformation of the
Hamiltonian:

L = −H +
∑
i

ϕ̇iIi =
∑
i

[
2J
√
IiIi+1 cos(ϕi − ϕi+1)−

U

2
I2i + µIi

]
+

+
∑
i

[
−µIi + UI2i − J

√
IiIi+1 cos(ϕi − ϕi+1)− J

√
IiIi−1 cos(ϕi − ϕi−1)

]
=

=
U

2

∑
i

I2i . (18)

The last equality follows from relabeling of the summation index i 7→ i + 1 and the
fact that cosine is an even function. The resulting Lagrangian is formally given by the
sum of ”kinetic energies” of non-interacting point particles of mass 1/U . One might
be baffled that this Lagrangian does not contain any angles except for those from the
beginning and end of the chain. But this is a consequence of the constrained nature
of the system: the constraint of number conservation

∑
i Ii = 1 upon resolving (i.e.

writing for example IL = 1 −
∑L−1

i=1 Ii) mixes all numbers with the phase ϕL, which
in turn mixes with ϕL−1 and so on. Moreover, the Lagrangian only depends on the
Coulomb repulsion U , and not on µ, so we have a non-interacting Lagrangian with a
single scale.4 This also holds for the rectangular and cubic lattice. Now we find the
Euclidean action and the partition function (where we do not explicitly write out the
normalization N ):

S0 =
U

2

∫ t2

t1

dt
∑
j

Ij(t)
2, Z(β) = N

∫
D[q⃗] exp(−S0), (19)

4Of course, the canonical transformations from the original variables to (Ij , ϕj) depend on both U and
µ hence the system in fact depends on all the parameters as it has to be.
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where q are the variables describing the dynamics of the system around some equi-
librium point (below we define q⃗ in detail). The first approximation for the number
Ii is Ii = const. Therefore we can define the positions x(Ii) so that ẍ(Ii) = 0. The
path integral is now calculated by perturbing the classical trajectory by some η⃗. It
can easily be shown that

S0[xcl(Ii) + ηi] = S0[xcl(Ii)] + S0[ηi]. (20)

Substituting qi(t) = xcl (Ii (t)) + ηi(t) the integral becomes:

Z(β) = N
∫

D[η⃗] exp

(
−
∑
i

S0i

)
= N

∏
i

∫
dηi(t) exp(−S0i) = N

∏
i

Zi. (21)

In the first approximation the result is:

Z(β) = N
(

V 2
L

2πβU

)L/2

= N
(

2π

βU

)L/2

= Z(0)
a . (22)

The outcome (and the thermodynamics) is the same as for the annealed partition
function! However, the starting assumptions and thus the interpretation are not the
same:

1. The annealed partition function is obtained by integrating the statistical weights
with the full nonlinear Hamiltonian over the whole phase space, essentially assuming
that both the numbers and the phases are ergodic and explore the whole phase
space during their evolution, for any U .

2. On the other hand, in the path integral calculation we introduce just the leading,
linear correction to the opposite, quenched regime as we model the evolution of
the numbers by linear oscillations around fixed positions – and we have a formally
noninteracting Lagrangian. Of course, the interactions are hidden in the constraints
between the variables.

Therefore, there is a tradeoff: ergodic/annealed dynamics for the full interacting sys-
tem captures the same thermodynamic regime as the near-quenched dynamics but in
the linearized approximation.

We would not expect that the annealed approximation for the thermodynamics
coincides already with the leading correction to the quenched linear approximation.
But this result encapsulates the puzzling behavior of transport from section 3: even
in the strongly chaotic regime the early-time transport behaves strongly anomalously,
i.e. shows strong correlations and is strongly non-Markovian. And likewise, even in
the weakly chaotic regime we eventually reach the normal diffusive regime at very
late times for many initial conditions. Here we have expressed the question sharply in
thermodynamic terms and hope to answer it in the future.
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5.1 Mean kinetic energy

In order to gain some more intuition for the thermodynamic behavior we derive the
dispersion relation for the mean kinetic energy ϵ̄. In other words we calculate the
second moment of the angular velocity ϕ̇l, which dominates the kinetic energy over İl
which tends to be smaller. The calculation is straightforward:

⟨ϕ̇2l ⟩ =
1

Za

∫
dI⃗dϕ⃗ϕ̇l

2
exp

(
2βJ

L−1∑
j=1

√
IjIj+1 cos(ϕj −ϕj+1)−

βU

2

∑
j

I2j +βµ
∑
j

Ij

)
.

(23)
When the number of sites is large we arrive at:

ϵ̄ =
1

2U
⟨ϕ̇2l ⟩ =

µ2

2U
− µ

2U
v̄ +

T

2
, (24)

where v̄ is the average velocity of ideal gas at temperature T . Although the partition
function formally corresponds to the ideal gas, the dispersion relation is modified,
due to the implicit interactions/constraints involved in the definition of phase-number
(action-angle) variables.

6 Discussion and conclusions

The key result of our work on chaos in the Bose-Hubbard model are the integer
superdiffusion coefficients, which are present at least until some late time. This regime
is strongly non-ergodic and is expected to be closer to the quenched regime for the
thermodynamics. The fact that in this regime the free energy is not even defined (i.e.,
finite) except for very high temperatures is not surprising: it merely indicates that the
system is very far from equilibrium and does not have a meaningful thermodynamics
description, except when thermal averaging becomes strong enough to overcome the
non-ergodicity from regular islands. The possibility to reach the annealed regime from
the minimally perturbed quenched regime suggests that one should be able to find
that a unified approach describing both the anomalous and normal regime.

The normal diffusion regime is a priori easier to understand. The system equi-
librates and, according to our annealed free energy, it is effectively described as a
diffusing ideal gas, with some minimal modification.

One question for further work is if we always reach the normal diffusion regime, or
there are quasi-invariant structures which always preclude normal diffusion in some
cases? Another task is to include quantum corrections, which will likely reveal new
physics.

Finally, it is crucial to know to what extent our specific conclusions depend on
the details of the Bose-Hubbard Hamiltonian. The same general dynamical picture
– that of mixed phase space with both regular and chaotic components, when the
number of degrees of freedom is not too large – was found for example in the Dicke
model [36, 37]. Even deep in the quantum regime and in the presence of dissipation,
a similar spectrum of behaviors from regular to chaotic, with strong dependence on
initial conditions, was found [18, 38, 39]. What has not been done is to explore what

12



happens when the number of degrees of freedom is of order a few dozen or even a few
hundred, which we have checked explicitly in this work and [19]. Therefore, we can
wonder if the same kind of anomalous transport exists in Dicke and other models. At
least in the semiclassical limit this is not difficult to check and we plan to address this
issue.
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