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Abstract. We consider the homogeneous five-vertex model on a rectangle
domain of the square lattice with so-called scalar-product boundary conditions.
Peculiarity of these boundary conditions is that the configurations of the model
are in an one-to-one correspondence with the 3D Young diagrams limited by
a box of a given size. We address the thermodynamics of the model using a
connection of the partition function with the τ -function of the sixth Painlevé
equation. We compute an expansion of the logarithm of the partition function
to the order of a constant in the size of the system. We find that the geometry
of the domain is crucial for phase transition phenomena. Two cases need to be
considered separately: one is where the region has an asymptotically square
shape and the second one is where it is of an arbitrary rectangle, but not square,
shape. In the first case there are three regimes, which can be attributed to
dominance in the configurations of a ferroelectric order, disorder, and anti-
ferroelectric order. In the second case the third regime is absent.
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3. Asymptotic expansions at the singular points 17
3.1. Expansion as x → ∞ 17
3.2. Expansion as x → 0 20
3.3. Expansion as x → 1 23
4. Thermodynamic limit in the symmetric case 26
4.1. Preliminaries 26
4.2. Construction of the leading term 29
4.3. Sub-leading corrections 32
5. Thermodynamic limit in the non-symmetric case 39
5.1. Preliminaries 39
5.2. Construction of the leading term 41
5.3. Sub-leading corrections 45
6. Conclusion 48
Acknowledgements 50
References 50

1

ar
X

iv
:2

31
2.

17
56

5v
2 

 [
m

at
h-

ph
] 

 8
 M

ay
 2

02
4



1. Introduction

The five-vertex model had originally emerged for modeling of crystal growth
and evaporation in two dimensions [1–3]. For periodic boundary conditions its
thermodynamic properties, including the phase diagram, have been completely un-
derstood by Bethe ansatz methods [4, 5]. As the same time, it is known that the
six-vertex model (and hence the five-vertex model as its descendant) is sensitive to
boundary conditions. A paradigmatic example here is the six-vertex model with
domain wall boundary conditions [6–8].

As for the five-vertex model, interesting boundary conditions are such that the
configurations of the model appear to be in a one-to-one correspondence with the
3D Young diagrams limited by a box of a given size (or, “boxed” plane partitions).
These boundary conditions are special fixed boundary conditions imposed to a
finite-size domain of the square lattice of a rectangular shape. They can be seen
as a generalization of domain wall boundary conditions and called “scalar-product”
boundary conditions, as they arise when scalar products off-shell Bethe states are
interpreted as partition functions of related vertex models [9–11].

Recently, a notable progress had been achieved in understanding scaling prop-
erties of the five-vertex model in a rather general setup by variational methods,
with the focus on phase separation and limit shape phenomena [12–15]. On the
other hand, for the case of scalar-product boundary conditions an important prob-
lem consists in constructing expansions of the partition function in the limit of large
system size. In the free-fermion case, equivalent to the dimer model on a hexagonal
domain (boxed 3D Young diagrams), a solution of this problem has been provided
in [16].

In the present paper, we consider the five-vertex model with scalar-product
boundary conditions and derive an expansion for the logarithm of the partition
function for large lattice sizes. We obtain explicitly terms to the order of a con-
stant, including the logarithmic terms. In [17], we have derived various determinant
formulas for the partition function of the five-vertex model with scalar-product
boundary conditions and showed that one of these representations coincides with
the τ -function of the sixth Painlevé equation. To derive the asymptotic expansion,
we apply here the method originally proposed in [18] which is based on use of the
sixth Painlevé equation in its σ-form [19, 20]. Similarly to [18], we deal with an
asymptotic expansion of the σ-function where the coefficients are large while the
argument is a finite parameter.

It has to be mentioned that to address the problem of finding asymptotic
expansions for solutions of Painlevé equations one can use methods such as the
isomonodromy deformation techniques [21, 22] or the asymptotic analysis of the
corresponding Riemann-Hilbert problem [23]. Somewhat equivalently, one can con-
struct asymptotic expansions by relating the τ -function with a random matrix
model [24] and formulating the Riemann-Hilbert problem for the orthogonal poly-
nomials associated to the weight measure [25]. Specifically, for the present problem
the matrix model appearing on this route has a discrete measure, the corresponding
polynomials have been studied in [26]. The method of [18] which we exploit here
can be seen as an alternative to these approaches, and it relies on the theory of
asymptotic expansions for solutions of ordinary differential equations [27].
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w1 w2 = 0 w3 w4 w5 w6

Figure 1. The six vertices of the six-vertex model in terms of ar-
rows (first row) or lines (second row), and their Boltzmann weights
in the five-vertex model (third row)

Our main result is collected in two theorems about the thermodynamic limit
expansion for the logarithm of certain polynomial completely determining the par-
tition function. We find that this expansion significantly depends on an asymptotic
form of the domain, namely, whether the region has an asymptotically square shape,
or the region has an arbitrary rectangle, but not square, shape. In the former case
there are three regimes, which can be attributed to a ferroelectric order, disorder,
and anti-ferroelectric order. In the latter case the third regime is absent. We also
illustrate that this extra phase transition between the disorder and anti-ferroelectric
order for the square-shaped domain can be seen as a “merger transition” discussed
recently in [28].

1.1. The model. The five-vertex model is defined on a square lattice in terms
of arrows placed on edges or, equivalently, in terms of lines “flowing” through the
lattice. The standard convention [29,30] between the arrow and line pictures is that
if an arrow points down or left, then this edge contains a line, otherwise the edge
is empty. In the six-vertex model the admissible vertices are only those which have
equal number of incoming and outgoing arrows, see Fig. 1. The five-vertex model
can be obtained by requiring that only those vertices are admitted which contain
non-intersecting lines, that is, the vertex of the second type is excluded.

In this paper we consider the model on a lattice obtained by intersection of L
vertical and M horizontal lines (the M × L lattice). The boundary conditions are
the following: the N first (last) arrows at the bottom (top) boundary point down,
and the remaining arrows point up or right, see Fig. 2.

An interesting property of these boundary conditions is that there exists an one-
to-one correspondence between the configurations of the five-vertex model with the
3D Young diagrams, which fit into (L − N) × N × (M − N) box, see Fig. 3. In
this correspondence, the lines of the vertex model are gradient lines; there also
exists the one-to-one correspondence between vertices and flat fragments of images
of 3D Young diagrams (see Fig. 3, right). In a rather general setup the boundary
conditions defined above are related to the scalar products of off-shell Bethe states
and their generalizations [9–11, 17]. For this reason we refer to them as scalar-
product boundary conditions.

The partition function is defined as

Z =
∑

C

∏
i=1,3,...,6

w
li(C)
i (1.1)
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Figure 2. The boundary conditions (a) and one of the possible
configurations (b).

where the sum is taken over all admissible configurations C and li(C) denotes the
number of vertices of the ith type in the configuration C. Note that in all configura-
tions the number of vertices of the first type is fixed, l1(C) = (L − N)(M − N), the
vertices of the third and fourth types appear in pairs, l3(C)−l4(C) = N(M +N −L),
and the number of vertices of the fifth type is equal to the number of vertices of
the sixth type, l5(C) = l6(C).

A standard way to parametrize the Boltzmann weights (see, e.g., [17]) is the
following:

w1 = α√
x

x − 1
∆ , w3 =

√
x

α
, w4 = α

√
x, w5 = w6 = 1. (1.2)

Here, x ∈ (1, ∞) for ∆ > 0, and x ∈ (0, 1) for ∆ < 0. The parameter ∆ can be
defined independently of the parameterization as follows:

∆ = w3w4 − w5w6

w1w3
. (1.3)

The case ∆ = 0 can be approached in the limit x → 1; this is the free-fermion
point of the model (for further details, see Sect. 2.1). The parameter α is real and
positive, it has the meaning of an external field.

The partition function Z = Z(x; ∆, α) has the structure

Z = E Z̃. (1.4)

Here, E = E(x; ∆, α) is a factor giving the weight of the configuration corresponding
to the “empty” 3D Young diagram,

E =
(

x − 1
∆

)(L−N)(M−N)(
α√
x

)M(L−2N)
xN(L−N−1).
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Figure 3. The five-vertex model configuration of Fig. 2b as a
3D Young diagram (left) and mapping of the five vertices to flat
fragments of images of 3D Young diagrams (right).

The quantity Z̃ = Z̃(x) is independent of ∆ and α, and it has the form

Z̃ =
(

M

N

)
PN,M,L

(
x−1) . (1.5)

Here,
(

M
N

)
is the binomial coefficient and PN,M,L

(
x−1) is a polynomial of its variable

satisfying the normalization condition
PN,M,L (0) = 1.

The degree of PN,M,L

(
x−1) is equal to the difference between the maximum and

minimum number of pairs of vertices of the fifth and sixth types,
deg PN,M,L = N min(M − N, L − N − 1). (1.6)

A highly nontrivial and remarkable property of this polynomial is that all its coef-
ficients are symmetric under exchange L ↔ M + 1, i.e.,

PN,M,L

(
x−1) = PN,L−1,M+1

(
x−1) . (1.7)

Though there seems no simple explanation of this property from the definition of
the model, it is transparent in explicit expressions (see, e.g., representation (2.6)
below) discussed in the text.

The polynomial PN,M,L

(
x−1) can be seen as a generating function which counts

configurations with a fixed number of turns of ‘solid’ lines (vertices of the fifth
and sixth types). Indeed, due to the combinatorial restrictions (i.e., the fixed
numbers ℓ1(C) and ℓ3(C) − ℓ4(C)), one can take weights, instead of (1.2), equal to
w1 = w3 = w4 = 1 and w5 = w6 = 1/

√
x. These are the weights which have been

considered in [12] (where 1/
√

x has been denoted by r).

1.2. Main result. The aim of this paper is to study the thermodynamic limit
of the model, i.e., the limit where the size of the domain tends to infinity with its ge-
ometry being fixed. To treat the general case one can introduce two “macroscopic”
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parameters p, q ∈ [0, ∞), which will describe the side lengths of the rectangle-
shaped domain in the scale of N . Specifically, for the reasons explained below, we
define them as follows:

pN = M − N + 1
2 , qN = L − N − 1

2 . (1.8)

We are interested in the limit N, M, L → ∞ with p and q being fixed. The main
thermodynamic quantity of interest is the free energy per site F = F (x; ∆, α),
defined as

F = − lim
N,M,L→∞

log Z

ML
.

It can be given in the form

F = − f2(x)
(p + 1)(q + 1) − pq

(p + 1)(q + 1) log x − 1
∆ +

(
1
2 − 1

(p + 1)(q + 1)

)
log x

− q − 1
q + 1 log α. (1.9)

The function f2(x) describes the leading large N behavior of the nontrivial factor
in (1.5),

f2(x) = lim
N,M,L→∞

log PN,M,L(x−1)
N2 .

Our main results concern the function f2(x) and all the sub-leading corrections for
log PN,M,L(x−1) up to O(1) in the limit N, M, L → ∞. We often call it below
simply “large N limit”, assuming that L and M are connected to N via (1.8).

To treat the special case where the domain has an asymptotic square shape, we
find it convenient to use a “macroscopic” parameter r ∈ [0, ∞) and a “microscopic”
parameter ϵ = 0, ±1, ±2, . . ., defined as follows:

rN = M + L

2 − N, ϵ = M − L + 1. (1.10)

In view of the symmetry (1.7), the parameter ϵ appears below only via its absolute
value, |ϵ|. It describes a microscopic deformation from the “perfect” square shape
which is in our problem corresponds to the relation M − L + 1 = 0. Our results for
the square-shaped domain are obtained under the assumption that the parameter
ϵ is fixed in the large N limit, i.e., that ϵ is of O(1).

More broadly, the square-shaped domain asymptotically can be obtained under
the assumption that M/L → 1 with ϵ slowly increasing1. As it follows from our
results, ϵ can be taken to be of o(N) (see Remark 1.3 below). This agrees with
the fact that in (1.10) both M and L are of the order N and the rectangle-shaped
domain would correspond to ϵ to be of the order N as well.

In what follows we shall often call the square domain case simply as “symmetric
case” and sometimes refer to it as “the case p = q”, in view of (1.8). Clearly, in
this case the free energy is just given by (1.9) with p = q =: r.

Our main finding about the thermodynamics of the model is that it depends
strongly on whether the domain takes asymptotically a square or rectangular (but
not square) shape. If p = q, then the model exhibits three different phases depend-
ing on the value of x. If p ̸= q, then only two phases exist. All the transitions
between the phases are of the third order, that are characterized by discontinuities

1We thank the anonymous referee for pointing this possibility to our attention.
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of f ′′′
2 (x) with continuous first- and second-order derivatives at these points. We

summarize the main result in two theorems.
The first theorem concerns the case of a square-shaped domain.

Theorem 1.1. If M, L, N → ∞, such that r = (M + L − 2N)/2N and ϵ =
M − L + 1 are kept fixed, there exist three asymptotic regimes which are separated
by the critical values x = x−1

c and x = xc, where

xc = (2r + 1)2, r ∈ (0, ∞).

If x ∈ [xc, ∞), then

log PN,M,L

(
x−1) = N2f I

2(x) + Nf I
1(x) + f I

0(x) + O
(
N−1) ,

where

f I
2(x) = r2 log x

x − 1 ,

f I
1(x) = (2r + 1) log

√
xc(x − 1) +

√
x − xc(

1 + √
xc
)√

x
− log

√
x − 1 +

√
x − xc

2
√

x
,

f I
0(x) = 1

4 log x

x − xc
− ϵ2

4 log x

x − 1 .

If x ∈ [x−1
c , xc], then

log PN,M,L

(
x−1) = N2f II

2 (x) + Nf II
1 (x) + 5

12 log N + f II
0 (x) + O

(
N−1) ,

where

f II
2 (x) = (2r + 1) log 1 +

√
x

1 + √
xc

−
(

r + 1
4

)
log x

xc
+ r2 log xc

xc − 1 ,

f II
1 (x) = log 2

√
x

√
xc + 1 + r log

√
xc − 1

√
xc + 1 ,

f II
0 (x) = 1

8 log
(√xc −

√
x)3√

x

(√xcx − 1) − 1
12 log

(√
xc
(
xc − 1

))
+ ϵ2

2 log
√

xcx − 1√
xc − 1

√
x

+ ζ ′(−1) + log
√

2π.

If x ∈ [0, x−1
c ], then

log PN,M,L

(
x−1) = N2f III

2 (x) + Nf III
1 (x) + 1 − ϵ2

2 log N + f III
0 (x) + O

(
N−1) ,

where

f III
2 (x) = r2 log 1

1 − x
− r log x,

f III
1 (x) = |ϵ|(2r + 1) log

√
xc

√
1 − x +

√
1 − xcx√

xc − 1
− |ϵ| log

√
1 − x +

√
1 − xcx√

xc − 1
√

x

+ log 2
√

x
√

xc + 1 + r log
√

xc − 1
√

xc + 1 ,

f III
0 (x) = 1

4 log(1 − x) − ϵ2

4 log(1 − xcx) + (1 − |ϵ|) log
√

2π + log G(1 + |ϵ|).
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In these expressions, ζ(z) and G(z) stand for the Riemann zeta-function and the
Barnes G-function, respectively; ζ ′(−1) = −0.165142... and G(1) = G(2) = G(3) =
1, G(n + 2) = 1!2! · · · n!.

In what follows we refer to the three intervals of values of x, namely, [xc, ∞),
[x−1

c , xc], and [0, x−1
c ] as Regimes I, II, and III, respectively. We have three remarks

concerning the result formulated in Thm. 1.1.

Remark 1.1. From (1.10) it follows that M = (r + 1)N + ϵ−1
2 and hence

log
(

M

N

)
= N

(
(r + 1) log(r + 1) − r log r

)
− 1

2 log N

− log
√

2π − ϵ

2 log r

r + 1 + O
(
N−1) ,

that implies that the partition function Z̃ defined in (1.5) in each Regime i, i =
I, II, III, has the form

log Z̃ = N2F i
2 + NF i

1 + κi log N + F i
0 + O(N−1),

where

F i
2 = f i

2(x),

F i
1 = f i

1(x) − log 2
√

xc + 1 − r log
√

xc − 1
√

xc + 1 ,

F i
0 = f i

0(x) − log
√

2π − ϵ

2 log
√

xc − 1
√

xc + 1 ,

and
κI = −1

2 , κII = − 1
12 , κIII = −ϵ2

2 .

Remark 1.2. In the Regime III at ϵ = 0, it can be shown that

log Z̃ = N2f III
2 (x) + N log

√
x + 1

4 log(1 − x) + O
(
N−∞) , (1.11)

where the symbol O(N−∞) denote terms decaying faster than any integer power of
1/N .

We will explain the origin of (1.11) after the proof of Thm. 1.1 in Sect. 4. The
terms which we have denoted by O(N−∞) are in fact exponentially small and they
can also be treated by the method of [18].

Remark 1.3. In the expressions in Thm. 1.1 the parameter ϵ can be replaced
by some quantity of magnitude of o(N) without altering the leading term behavior
governed by the function f2 in all the three regimes. This implies that the picture
with two phase transitions obtained for the square-shaped domain is also valid in
the large N limit such that M/L → 1 with M − L allowed to be of o(N).

The second theorem concerns the case of a rectangular, but not square, domain.

Theorem 1.2. In the case p ̸= q there exist two asymptotic regimes which are
separated by the critical value

xc =
(√

(p + 1)(q + 1) + √
pq
)2

.
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If x ∈ [xc, ∞), then

log PN,M,L

(
x−1) = N2f I

2(x) + Nf I
1(x) + f I

0(x) + O
(
N−1) ,

where

f I
2(x) = pq log x

x − 1 ,

f I
1(x) = 2p + 1

2 log
(2p + 1)x − p − q − 1 +

√
s(x)

2(p + 1)
√

x(x − 1)

+ 2q + 1
2 log

(2q + 1)x − p − q − 1 +
√

s(x)
2(q + 1)

√
x(x − 1)

− 1
2 log

x − 2pq − p − q − 1 +
√

s(x)
2x

,

f I
0(x) = 1

4 log x(x − 1)
s(x) ,

and
s(x) = x2 − 2(2pq + p + q + 1)x + (p + q + 1)2, s(xc) = 0.

If x ∈ [0, xc], then

log PN,M,L

(
x−1) = N2f II

2 (x) + Nf II
1 (x) + 5

12 log N + f II
0 (x) + O

(
N−1) ,

where

f II
2 (x) = − (p + q)2

2 log y − (p − q)2 + 2p + 2q + 1
2 log(y + 1) − p log(y + p − q)

− q log(y + q − p) + p(p + 1) log
(
(2p + 1)y + p − q

)
+ q(q + 1) log

(
(2p + 1)y + q − p

)
+ (p + q + 1) log(y + p + q + 2)

− 1
2

{
(p + 1)2 log 2(p + 1) + (q + 1)2 log 2(q + 1) + p2 log 2p + q2 log 2q

}
f II

1 (x) = log
√

x − 1
2

{
(p + 1) log(p + 1) + (q + 1) log(q + 1) − p log p − q log q

}
,

f II
0 (x) = 1

8

{
log y + log(y + 1) − 2 log

(
(2p + 1)y + p − q

)
− 2 log

(
(2q + 1)y + q − p

)
+ 3 log

(
y2 − 2(2pq + p + q)y + (p − q)2)

+ 1
3 log

(
(2p + 1)(2q + 1)y3 − (p − q)2 [3y2 + 3y − (p + q + 1)2 + 1

] )}
− 1

24 log
(
16p(p + 1)q(q + 1)

)
+ ζ ′(−1) + log

√
2π.

The function y = y(x) is the root of the quartic equation

x = (y + 1)2(y − p + q)(y + p − q)(
(2p + 1)y + p − q

)(
(2q + 1)y + q − p

) , (1.12)

which takes the values y ∈ [|p−q|, yc] for x ∈ [0, xc], where, moreover, y(0) = |p−q|
and

yc ≡ y(xc) =
(√

p(q + 1) +
√

q(p + 1)
)2

= xc − 1.
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In what follows in the non-symmetric case we will refer the intervals [xc, ∞)
and [0, xc] of values of the variable x as Regime I and Regime II, respectively. Note
that there is no Regime III here.

Remark 1.4. In the case q = p =: r the parametrization x = x(y) defined by
(1.12) becomes

x = (y + 1)2

(2r + 1)2 , x : [0, yc] 7→
[
(2r + 1)−2, (2r + 1)2] ,

and the functions f II
2 (x) and f II

1 (x) defined in Thm. 1.1 are recovered. The function
f II

0 (x) of Thm. 1.1 is recovered at ϵ = 0; the ϵ2-term of this function is recovered
by setting q = r + ϵ/2N and p = r − ϵ/2N in the function f II

2 (x) and re-expanding
it in 1/N .

The purpose of the remaining part of the paper is to give proofs of Thms. 1.1
and 1.2. In brief, we apply the method of paper [18] to the results of paper [17].
We use the parameterization related to a rational elliptic curve proposed in [31] to
obtain the assertion of Thm. 1.2 for Regime II. Along the proofs, we have found that
the sub-leading corrections can be treated in a simplified way, in a comparison to
the original approach of [18], by splitting the σ-form of the sixth Painlevé equation
on two factors.

We start with exposing the main ingredients of our analysis, namely, determi-
nant representations for the polynomial PN,M,L(x−1) and its connection with the
sixth Painlevé equation in Sect. 2. In Sect. 3 we obtain expansions of PN,M,L(x−1)
at the singular points of the sixth Painlevé equation for finite values of N, M, L.
In Sect. 4 we show how to construct the leading order term of the asymptotic ex-
pansion in the large N limit and how to treat the sub-leading corrections in the
symmetric case. In Sect. 5 we consider the solution of the same problem in the
non-symmetric case. In Conclusion (Sect. 6) we briefly discuss our results and il-
lustrate a connection with the so-called “merger transition” in the square-shaped
domain case.

2. Exact results for the partition function

Here, we collect known results about the partition function of the five-vertex
model with scalar-product boundary conditions, which we use below in our proofs
of Thms. 1.1 and 1.2.

2.1. Basic properties of the model. We begin with commenting each fac-
tor in formulas (1.4) and (1.5) describing the partition function Z. These formulas
follow from the relations satisfied by the numbers li(C), discussed after (1.1). In
turn, the indicated relations can also be easily understood using the outlined con-
nection of model with the 3D Young diagrams (see Fig. 3).

The first relation l1(C) = (M − N) × (L − N) gives the number of elemen-
tary squares that obviously is conserved for the plane partitions. The factor
E = E(x; ∆, α) in (1.4) is the Boltzmann weight of the configuration corresponding
to the “empty” partition. The binomial coefficient in (1.5) corresponds to the de-
generacy of this weight as there are exactly

(
M
N

)
configurations with N horizontal

lines at M rows, see Fig. 4. These configurations describe ferroelectrically ordered
states. Since the number of the weights w1 is fixed, from (1.2) it follows that this
is a typical form of configurations for sufficiently large values of x.
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Figure 4. One of the
(

M
N

)
ferroelectric ground states, M = 9,

N = 3.

Moderate values of x correspond to a situation where vertices with turn paths
(vertices of types 5 and 6) are mixed with those having straight paths (vertices of
types 3 and 4). These are disordered states. This is an interesting regime because
it can be characterized be appearance of nontrivial limit shapes.

An important example of such a situation is the case x = 1 which corresponds
to the free fermion point of the model. Recall that in the general six-vertex model
the free-fermion condition is w1w2+w3w4 = w5w6 which is for the five-vertex model
implies ∆ = 0, where ∆ is defined in (1.3). In the five-vertex it corresponds to the
weights

w1 = λ, w3 = α, w4 = α−1, w5 = w6 = 1,

where λ is some parameter, λ > 0. This model can be obtained (recall that x ≶ 1
for ∆ ≶ 0) upon setting x = exp(λ∆) and taking the limit ∆ → 0 in (1.2). The
correspondence with the boxed plane partitions means that the partition function
Z = Z(x; ∆, α) at all weights equal to 1 has the following value:

lim
∆→0

Z(e∆; ∆, 1) = PL(L − N, N, M − N). (2.1)

Here, PL(a, b, c) is the number of the boxed plane partitions in a box of the size
a × b × c. It is well-known to be given by the famous MacMahon triple-product
formula

PL(a, b, c) =
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1
i + j + k − 2 .

We use below a less symmetric but more practical single-product expression

PL(a, b, c) =
a−1∏
j=0

(b + c + j)!j!
(b + j)!(c + j)! . (2.2)

Analogous expressions can be obtained by permuting cyclically a, b, c. Formulas
(1.5) and (2.1) imply that

PN,M,L(1) =
(

M

N

)−1
PL(L − N, N, M − N).

Using (2.2) one can check relation (1.7) at x = 1.
11



Figure 5. The anti-ferroelectric ground state, M = L − 1 = 8.

As x is small, configurations with maximally possible number of the vertices
of types 5 and 6 should dominate. However, such a dominance may be affected
by relations between the geometric parameters of the domain. Indeed, for M and
L such that M = L − 1 and arbitrary N there exists an anti-ferroelectric ground
state, which can be characterized by the presence of a rectangle region inside of the
domain containing only vertices of types 5 and 6, see Fig. 5. For arbitrary values
of M and L there exists no particular state dominating over the other states; there
are many states which can contribute equally well into the partition function. This
simple observation hints at the fact that in the thermodynamic limit the partition
function may demonstrate a different behavior in the case of a generic rectangular,
but not square, domain, in comparison with the case of the domain having a perfect
square shape.

In this relation it is useful to outline some detail on the meaning of the limit
x → 0. It is closely related to another special case of the five-vertex model, which is
known as the four-vertex model [32,33]. In this model w4 = 0 that can be achieved
by setting x = α2u2 in (1.2), where u is a new parameter, and taking the limit
α → 0 [17]. Recalling that ∆ < 0, the nonzero weights are then

w1 = 1
(−∆)u, w3 = u, w5 = w6 = 1.

As it follows from (1.4) and (1.6), the partition function Z = Z(x; ∆, α) is nonzero
only if L ⩽ M + 1. It is known (see, e.g., [34]) that for all the four weights equal
to 1, it can be expressed in terms of the number of boxed plane partitions:

lim
α→0

Z(α2; −1, α) = PL(N, M − L + 1, L − N).

This gives the leading term of the polynomial PN,M,L(x−1) in the case L ⩽ M + 1,

lim
x→0

xN(L−N−1)PN,M,L(x−1) =
(

M

N

)−1
PL(N, M − L + 1, L − N).

As we show in the next section, it is also possible to obtain a similar formula for
the leading term when L > M + 1 (see Prop. 3.2).

2.2. Hankel determinant representations. In what follows we need to
use two statements about representations for the partition function in terms of
determinants.

12



As it has been shown in [17], the partition function Z can be written in terms
of Hankel determinants of (L − N) × (L − N) or N × N matrices. This result,
rephrased for the polynomial PN,M,L(x−1), reads as follows.

Theorem 2.1. The polynomial PN,M,L(x−1) can be given in terms of the (L −
N) × (L − N) Hankel determinant,

PN,M,L(x−1) = (−1)
(L−N)(L−N−1)

2

L−N−1∏
j=0

M !(M + j)!
(M − N)!(M + L − N − 1)!(N + j)!

× 1
(x − 1)(L−N)(M−N)x

(L+N)(L−N−1)
2

× det
1⩽i,j⩽L−N

[
(x∂x)i+j−2(x − 1)M+L−2N−1

× 2F1

(
−N, L − N − 1

−M

∣∣∣∣x)], (2.3)

or in terms of the N × N determinant,

PN,M,L(x−1) =
N−1∏
j=0

(L + M − 2N)!
(L − N + j)!(M − N + j)!

× (x − 1)N(M+L−N)

xN(L−1)− N(N+1)
2

det
1⩽i,j⩽N

[
(x∂x)i+j−2 1

(x − 1)M+L−2N+1

× 2F1

(
−L + N + 1, −L + N

−L − M + 2N

∣∣∣∣1 − x

)]
. (2.4)

Note that because of the relation (x∂x)xa = xa(x∂x + a), the Hankel determi-
nants which appear here, possess the property

det
1⩽i,j⩽N

[
(x∂x)i+j−2xaf(x)

]
= xaN det

1⩽i,j⩽N

[
(x∂x)i+j−2f(x)

]
. (2.5)

Below we often use this freedom in writing the Hankel determinants.
In addition to the two representations given above, we present here one more

Hankel determinant formula for PN,M,L(x−1).
Proposition 2.1. The polynomial PN,M,L(x−1) admits the following represen-

tation

PN,M,L(x−1) = N !
N−1∏
j=0

(L − N − 1 + j)!(M − N + j)!
(L − 2)!(M − 1)! x

N(N−1)
2

× det
1⩽i,j⩽N

[
(x∂x)i+j−2

2F1

(
−L + 2, −M + 1

2

∣∣∣∣ 1x
)]

. (2.6)

We prove this proposition below in two steps. At the first step we show that
both representations (2.3) and (2.6) satisfy the same differential equation, which
is essentially the sixth Painlevé equation in its σ-form. At the second step we
show that they provide the same solution of this equation. The solution can be
identified in a unique way, say, as x → ∞ by the first three terms of the expansion.
Specifically, as far as the equivalence of (2.3) and (2.4) is established (see [17]), we
obtain such an expansion from (2.4). The first step is given in Sect. 2.3 and the
second step is explained in Sect. 3.1.
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As shown in Sect. 3, representation (2.6) is useful in obtaining expansions of
the polynomial PN,M,L(x−1) also at the points x = 0, 1, besides the point x = ∞.
Both (2.3) and (2.4) can hardly be used for this purpose.

2.3. Connection with the sixth Painlevé equation. We begin with recall-
ing some useful facts from the theory of sixth Painlevé equation; for a detailed expo-
sition, see [19,20,24]. An important role in the theory is played by the τ -function,
τ = τ(t) = τ(t; b1, b2, b3, b4) where t is the time variable, and b1, . . . , b4 are param-
eters. It is connected to the canonical Hamiltonian by the relation H = ∂t log τ(t),
and hence defined up to a multiplicative constant. For our purposes we need only
an explicit form of the τ -function corresponding to the so-called classical solutions
related to the Gauss hypergeometric function (see, e.g., [24], Sect. 2.3),

τ(t) = (t(t − 1))−(b3+b4)n/2
(

t − 1
t

)(A−B)n/2

× det
1⩽i,j⩽n

[
((t − 1)t∂t)i+j−2

tA(t − 1)B
2F1

(
b1 + b4, 1 − b1 + b4

1 + b2 + b4

∣∣∣∣t)] , (2.7)

where the parameters are subject to the constraints

b1 + b3 = n, A + B = 1 − b1 + b4.

Note that due to a relation similar to (2.5), the expression in (2.7) is independent
of A − B, so one can always set A = B = 1

2 (1 − b1 + b4). In our cases below, we
use A = 0, B = 1 − b1 + b4.

An important property of the τ -function is that, for generic values of the pa-
rameters b1, . . . , b4, the function

σ(t) = t(t − 1)∂t log τ(t) + (b1b3 + b1b4 + b3b4)t − 1
2

∑
1⩽j<k⩽4

bjbk (2.8)

satisfies the equation

σ′(t(t − 1)σ′′)2 +
(
σ′[2σ + (1 − 2t)σ′] + b1b2b3b4

)2 =
4∏

j=1

(
σ′ + b2

j

)
. (2.9)

The function (2.8) is called σ-function and (2.9) is usually referred to as the sixth
Painleve equation in its σ-form.

To show that the polynomial PN,M,L(x−1) is nothing but the τ -function, let us
consider the representation (2.3). We apply the Euler transformation of the Gauss
hypergeometric function,

2F1

(
a, b

c

∣∣∣∣x) = (1 − x)−a
2F1

(
a, c − b

c

∣∣∣∣ x

x − 1

)
,

to the function standing in the determinant in (2.3), that yields

2F1

(
−N, L − N − 1

−M

∣∣∣∣x) = (1 − x)N
2F1

(
−N, −M − L + N + 1

−M

∣∣∣∣ x

x − 1

)
.
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Ignoring an overall constant factor, we then get2

PN,M,L(x−1) ∝ 1
(x − 1)(L−N)(M−N)x

(L+N)(L−N−1)
2

× det
1⩽i,j⩽L−N

[
(x∂x)i+j−2(x − 1)M+L−N−1

× 2F1

(
−N, −M − L + N + 1

−M

∣∣∣∣ x

x − 1

)]
.

If we make change of the variable

x = t

t − 1 , (2.10)

then a comparison with (2.7) shows that

PN,M,L(x−1) ∝ 1
tN(L−N−1)(t − 1)N

τ(t), (2.11)

where the parameters of the τ -function are

b1 = L + M

2 − N, b2 = L − M

2 − 1, b3 = L − M

2 , b4 = −L + M

2 . (2.12)

Note that n = L − N , A = 0 and B = −L − M + N + 1.
Let us now consider the representation (2.6). Recall that at the moment it is

unproven and we need to show that it is identical to (2.3). We make the change of
the variable

x = t − 1
t

, (2.13)

so that (2.6) takes the following form:

PN,M,L(x−1) ∝
(

t − 1
t

)N(N−1)
2

× det
1⩽i,j⩽N

[(
(t − 1)t∂t

)i+j−2
2F1

(
−L + 2, −M + 1

2

∣∣∣∣ t

t − 1

)]
.

After the Euler transformation we get

PN,M,L(x−1) ∝
(

t − 1
t

)N(N−1)
2

× det
1⩽i,j⩽N

[(
(t − 1)t∂t

)i+j−2(t − 1)−L+2
2F1

(
M + 1, −L + 2

2

∣∣∣∣t)].
A comparison with (2.7) shows that

PN,M,L(x−1) ∝ 1
(t − 1)N(L−N−1) τ(t), (2.14)

where the parameters of the τ -function are

b1 = L + M

2 , b2 = L − M

2 , b3 = N − L + M

2 , b4 = M − L

2 + 1. (2.15)

In this case n = N , A = 0, and B = −L + 2.

2Recall that f(x) ∝ g(x) means that f(x) = Cg(x) for some constant C.
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A crucial observation which can be made by inspecting (2.12) and (2.15) is that
these two sets of the parameters can be obtained one from another, modulo signs
of the elements. To get more insight on the relation between these τ -functions,
it is useful to consider the corresponding σ-functions appearing in both cases. In
the first case, described by (2.10), (2.11) and (2.12), the σ-function constructed by
(2.8) reads

σ(t) = t − 1
t

P ′
N,M,L(x−1)

PN,M,L(x−1)

∣∣∣∣
x= t

t−1

−
(

N − L + M

2

)2
t

+ N2 − 3N(M + L)
4 + N + ML

2 + L − M

4 . (2.16)

In the second case, described by (2.13), (2.14) and (2.15), the σ-function constructed
by (2.8) reads

σ(t) = t

t − 1
P ′

N,M,L(x−1)
PN,M,L(x−1)

∣∣∣∣
x= 1−t

t

−
(

N − L + M

2

)2
t

− N(M + L)
4 − N

2 + L2 + M2 − L + M

4 . (2.17)

It is easy to see that the two σ-functions (2.16) and (2.17) are related by the map

σ(t) 7→ −σ(1 − t), b1b2b3b4 7→ −b1b2b3b4. (2.18)

The map (2.18) leaves the σ-form (2.9) intact and it is an example of symmetry
transformations of the sixth Painleve equation [20].

Furthermore, using these transformations (for further details, see [20], Sect. 4)
one can obtain the σ-function directly in terms of our initial variable x. This can be
done by making the corresponding change of the variables t 7→ x in each of the two
cases (2.10) and (2.13). In each case the set of parameters {b1, b2, b3, b4} is mapped
into another set of parameters {ν1, ν2, ν3, ν4}. In our construction the map (2.18)
guarantees that the resulting σ-form appears to be the same in both cases, that
is the two expressions for the polynomial PN,M,L(x−1) provided by (2.3) and (2.6)
satisfy the same equation.

This result in terms of the variable x can be formulated as follows.

Proposition 2.2. The σ-function

σ(x) = x(x − 1)∂x log PN,M,L

(
x−1)− Ã x + B̃, (2.19)

with

Ã = (N + 1)2

4 , B̃ = L(M + 1)
2 − (L + M)(3N + 1)

4 + N

2 + N2. (2.20)

satisfies the sixth Painlevé equation in its σ-form

σ′(x(x − 1)σ′′)2 +
(
σ′[2σ + (1 − 2x)σ′] + ν1ν2ν3ν4

)2 =
4∏

j=1

(
σ′ + ν2

j

)
, (2.21)

where σ′ ≡ ∂xσ(x), σ′′ ≡ ∂2
xσ(x), and the parameters ν1, . . . , ν4 can be chosen to be

ν1 = M − N − 1
2 , ν2 = −L + N + 1

2 , ν3 = N + 1
2 , ν4 = N − 1

2 . (2.22)
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In [17] (see Prop. 9 therein) this proposition have been formulated for the
partition function Z, related to the σ-function as

σ(x) = x(x − 1)∂x log Z − A x + B,

with

A = LM

2 + (N − 1)2

4 , B = (N + 1)(L + M − 2N)
4 + N2 − M

2 .

For a later use we also note that instead of the parameters M and L, one can
use the parameters ν1 and ν2 given in (2.22) together with N (which, in turn, is
related to ν3 and ν4). For example, the constant B̃ in (2.20) can be written as

B̃ = −ν1ν2

2 − N(ν1 − ν2)
2 + 3N2 + 1

8 + N

2 . (2.23)

Below we will often use this way of writing for various expressions in addressing
their behavior as N, M, L → ∞.

Given function (2.19) one can reconstruct the polynomial PN,M,L(x−1) by in-
tegrating the σ-function,

log PN,M,L(x−1) =
∫ (

σ(x) + Ãx − B̃
) dx

x(x − 1) + C̃, (2.24)

where C̃ is some integration constant.

3. Asymptotic expansions at the singular points

To uniquely identify the solution of the sixth Painlevé equation (2.21) as being
governed by the polynomial PN,M,L(x−1), we use the asymptotic expansions of
this polynomial at the singular points of the sixth Painleve equation, namely, at
the points x = 0, 1, ∞. It is known from the general theory (see, e.g., [21]) that
a solution is uniquely determined by at least first three terms of the asymptotic
expansion. In this section we construct these expansions of PN,M,L(x−1) and obtain
those for the σ-function.

3.1. Expansion as x → ∞. Here we have the following result.

Proposition 3.1. As x → ∞,

PN,M,L(x−1) = 1 + κ1

x
+ κ2

x2 + O
(
x−3) , (3.1)

where the coefficients are

κ1 = abc

a + 1 , κ2 = bc [a(a + 1)(bc + 1) − (b + 1)(c + 1)]
2(a + 1)(a + 2) , (3.2)

with
a = N, b = L − N − 1, c = M − N.

We first show how this result follows from the representation (2.4). Next,
we will show that the same result follows from (2.6), that completes the proof of
Prop. 2.1.
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We start with a standard calculation from the random matrix theory. Let µ(m)
denote an arbitrary measure on Z⩾0. We represent the Hankel determinant as a
multiple sum

det
1⩽i,j⩽N

[ ∞∑
m=0

mi+j−2 µ(m)
xm

]
=

∞∑
m1,...,mN =0

det
1⩽i,j⩽N

[
mi+j−2

j

] N∏
j=1

µ(mj)
xmj

=
∑

0⩽m1<...<mN⩽∞

∏
1⩽i<j⩽N

(mj − mi)2
N∏

j=1

µ(mj)
xmj

. (3.3)

From this expression it is clear that the leading term of the x → ∞ expansion of
the determinant corresponds to the values mi = i − 1, i = 1, . . . , N . The first order
correction to the leading term comes from the values

mi = i − 1, i = 1, . . . , N − 1, mN = N.

The second-order correction is the sum of two contributions, which corresponds to
the values:

mi = i − 1, i = 1, . . . , N − 1, mN = N + 1,

and
mi = i − 1, i = 1, . . . , N − 2, mN−1 = N, mN = N + 1.

Hence, as x → ∞, we have

det
1⩽i,j⩽N

[ ∞∑
m=0

mi+j−2 µ(m)
xm

]
= C

xN(N−1)/2

(
1 + γ1

x
+ γ2

x2 + O

(
1
x3

))
, (3.4)

where

C =
∏

1⩽i<j⩽N

(j − i)2
N−1∏
j=0

µ(j) =
N−1∏
j=0

(j!)2µ(j).

The coefficients γ1 and γ2 can be readily computed to be

γ1 = µ(N)
µ(N − 1)N2,

γ2 = µ(N + 1)
µ(N − 1)

(
N(N + 1)

2

)2
+ µ(N)

µ(N − 2)

(
N(N − 1)

2

)2
.

(3.5)

Let us consider the determinant in (2.4), namely, we focus on the Gauss hyper-
geometric function determining the elements of the matrix. Using the identity

2F1

(
a, b

c

∣∣∣∣z) = (1 − z)−a
2F1

(
a, c − b

c

∣∣∣∣ z

z − 1

)
, (3.6)

we first rewrite it in the form

2F1

(
−L + N + 1, −L + N

−L − M + 2N

∣∣∣∣1−x

)
= xL−N−1

2F1

(
−L + N + 1, −M + N

−L − M + 2N

∣∣∣∣1− 1
x

)
.
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The 2F1-function in the right-hand side in the above relation is a polynomial in
x−1 of the degree min(L − N − 1, M − N). It can further rewritten in the form

2F1

(
−L + N + 1, −M + N

−L − M + 2N

∣∣∣∣1 − 1
x

)
= (L − N)!(M − N + 1)!

(L + M − 2N)! 2F1

(
−L + N + 1, −M + N

2

∣∣∣∣ 1x
)

.

Let us now take into account the (1−x)-factor standing in the determinant in (2.4).
Applying (3.6) twice, one has the relation

2F1

(
a, b

c

∣∣∣∣z) = (1 − z)c−a−b
2F1

(
c − a, c − b

c

∣∣∣∣z).

This relation implies that

1
(1 − x−1)M+L−2N+1 2F1

(
−L + N + 1, −M + N

2

∣∣∣∣ 1x
)

= 2F1

(
L − N + 1, M − N + 2

2

∣∣∣∣ 1x
)

.

In total, we have thus obtained the identity

1
(1 − x)M+L−2N+1 2F1

(
−L + N + 1, −L + N

−L − M + 2N

∣∣∣∣1 − x

)
= (−1)M+L+1 (L − N)!(M − N + 1)!

(L + M − 2N)!

× 1
xM−N+2 2F1

(
L − N + 1, M − N + 2

2

∣∣∣∣ 1x
)

.

As a result, using also identity (2.5) to move the x-factor from the determinant
in (2.4), we find that the polynomial PN,M,L(x−1) admits the following representa-
tion:

PN,M,L(x−1) = N !
N−1∏
i=0

(L − N)!(M − N + 1)!
(L − N + i)!(M − N + 1 + i)!

(
1 − 1

x

)N(M+L−N)

× x
N(N−1)

2 det
1⩽i,j⩽N

[
(x∂x)i+j−2

2F1

(
L − N + 1, M − N + 2

2

∣∣∣∣ 1x
)]

. (3.7)

The determinant here is of the form (3.3), with

µ(m) = (L − N + 1)m(M − N + 2)m

(m + 1)!m! ,

where the standard notation for the Pochhammer symbol have been used,

(z)m := z(z + 1) · · · (z + m − 1).
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Hence, as x → ∞,

det
1⩽i,j⩽N

[
(x∂x)i+j−2

2F1

(
L − N + 1, M − N + 2

2

∣∣∣∣ 1x
)]

=
∏N−1

j=0 (L − N + 1)j(M − N + 2)j

N ! xN(N−1)/2

{
1 + L(M + 1)N

N + 1
1
x

+ L(M + 1)
4

(
(L + 1)(M + 2)

N + 2 + (L − 1)M
N + 1

)
1
x2 + O(x−3)

}
. (3.8)

Clearly, the leading term here cancels the prefactor in (3.7), so that PN,M,L(0) = 1.
Furthermore, expanding the factor (1−x−1)N(M+L−N) in (3.7) in the Taylor series,
from (3.8) one can easily obtain the coefficients κ1 and κ2 in (3.1). This finalizes
the proof of Prop. 3.1.

Let us now comment that exactly the same result follows from the new repre-
sentation (2.6). Indeed, for the determinant in (2.6) we have the expansion (3.4),
with

µ(m) = (−L + 2)m(−M + 1)m

(m + 1)!m! . (3.9)

More explicitly, we have

det
1⩽i,j⩽N

[
(x∂x)i+j−2

2F1

(
−L + 2, −M + 1

2

∣∣∣∣ 1x
)]

=
∏N−1

j=0 (−L + 2)j(−M + 1)j

N ! xN(N−1)/2

{
1 + κ1

x
+ κ2

x2 + O
(
x−3)} ,

where κ1 and κ2 are exactly those given by (3.2). Clearly, the overall constant
here cancels the prefactor in (2.6), and the property PN,M,L(0) = 1 is recovered. In
total, Prop. 3.1 follows from (2.6), as it should. This finalizes the proof of Prop. 2.1.

Using Prop. 3.1 together with Prop. 2.2 one can compute an expansion of the
corresponding σ-function near the point x = ∞, namely

σ(x) = −Ãx + B̃ − κ1 + κ1 + κ2
1 − 2κ2

x
+ O

(
x−2),

where κ1 and κ2 are to be taken from (3.2) and Ã and B̃ are given by (2.20). More
explicitly, we have the following.

Corollary 3.1.1. The σ-function (2.19) has the following x → ∞ behavior

σ(x) = − (N + 1)2

4 x + N − 1
2(N + 1)ν1ν2 + (N + 1)2

8

+

[
ν2

1 −
(

N+1
2
)2
][

ν2
2 −

(
N+1

2
)2
]

(N + 1)2(N + 2) x−1 + O
(
x−2), (3.10)

where ν1 and ν2 are given by (2.22).

3.2. Expansion as x → 0. Next we consider asymptotic behavior of the
polynomial PN,M,L(x−1) near the point x = 0. We have the following result.

Proposition 3.2. As x → 0,

PN,M,L(x−1) = C

xac

{
1 + κ1x + κ2x2 + O(x−3)

}
, (3.11)
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where

C =
(

a + c

a

)−1
PL(a, b, c) =

(
a + b + c

a

)−1
PL(a, b, c + 1)

and the coefficients are

κ1 = ac(c + 1)
a + b

, κ2 = ac(c + 1)
a + b

(c2 + c + 1)(a2 + ab − 1) − b − 2bc

2(a + b − 1)(a + b + 1) , (3.12)

with

a = N, b = |M − L + 1|, c = min(L − N − 1, M − N). (3.13)

We will prove Prop. 3.2 using representation (2.6). Constructively, the proof
will be based again on formula (3.4) in which we make the change x−1 7→ x. The
details however depend on whether M ⩾ L − 1 or M ⩽ L − 1.

Let us perform calculations assuming that M ⩾ L − 1. We first transform the
2F1-function in the determinant in (2.6) such that it will become a polynomial in x.
For this end one can use the following relation valid for m and n positive integers,
n ⩽ m, and c real (not to be confused with that in Prop. 3.2), c ⩾ 1:

2F1

(
−n, −m

c

∣∣∣∣x) = m!
(m − n)! (c)n

xn
2F1

(
−n, −n − c + 1

m − n + 1

∣∣∣∣ 1x
)

.

For M ⩾ L − 1, one has

2F1

(
−L + 2, −M + 1

2

∣∣∣∣ 1x
)

= (M − 1)!
(M − L + 1)!(L − 1)!

× x−L+2
2F1

(
−L + 2, −L + 1

M − L + 2

∣∣∣∣x).

Removing the factor x−L+2 from determinant by relation (2.5), we then have

PN,M,L(x−1) = N !
N−1∏
j=0

(L − N − 1 + j)!(M − N + j)!
(L − 2)!(M − L + 1)!(L − 1)!

× x
N(N−1)

2 −(L−2)N det
1⩽i,j⩽N

[
(x∂x)i+j−2

2F1

(
−L + 2, −L + 1

M − L + 2

∣∣∣∣x)].
The determinant here can be written, up to the change x 7→ x−1, in the form (3.4),
with

µ(m) = (−L + 2)m(−L + 1)m

(M − L + 2)mm! . (3.14)

Hence, for M ⩾ L − 1, as x → 0,

det
1⩽i,j⩽N

[
(x∂x)i+j−2

2F1

(
−L + 2, −L + 1

M − L + 2

∣∣∣∣x)] =
N−1∏
j=0

(−L + 2)j(−L + 1)jj!
(M − L + 2)j

× x
N(N−1)

2
{

1 + κ1x + κ2x2 + O(x3)
}

,

where the constants κ1 and κ2 can be computed by the formulas (3.5) for γ1 and
γ2, respectively, with µ(m) in (3.14), and they are are given by the expressions in
(3.12) with

a = N, b = M − L + 1, c = L − N − 1.
21



As a result, we obtain that for M ⩾ L − 1, as x → 0,

PN,M,L(x−1) = C

x(L−N−1)N

{
1 + κ1x + κ2x2 + O(x3)

}
,

where

C = N !
N−1∏
j=0

(M − N + j)!j!
(L − N + j)!(M − L + 1 + j)! .

This constant can also be written as follows:

C = N !(L − N − 1)!
(L − 1)!

N−1∏
j=0

(M − N + j)!j!
(L − N − 1 + j)!(M − L + 1 + j)! .

Here the product can be recognized as the numbers of the boxed plane partitions
PL(N, M − L + 1, L − N − 1), see (2.2). Equivalently, one can write

C = N !(M − N)!
M !

N−1∏
j=0

(M − N + 1 + j)!j!
(L − N + j)!(M − L + 1 + j)! ,

where the product equals PL(N, M −L+1, L−N), which is essentially the partition
function of the four-vertex model, see (1.5) and the discussion in Sect. 2.1.

In the case M ⩽ L − 1, the calculations are essentially similar. In fact all
formulas in this case can be obtained from those given above by formal substitution
M ↔ L − 1. As a result, this lead to the expansion (3.11), where the parameters
a, b, c are given by (3.13). This finalize the proof of Prop. 3.2.

From Props. 3.2 and 2.2 it follows that the σ-function as x → 0 is given by
σ(x) = ac + B̃ −

(
ac + Ã + κ1

)
x +

(
κ1 + κ2

1 − 2κ2
)
x2 + O

(
x3),

where κ1 and κ2 are given in (3.12) and a and c are defined in (3.13). More
explicitly, we have the following.

Corollary 3.2.1. The σ-function (2.19) has the following x → 0 behavior:

σ(x) = −ν1ν2

2 − N |ν1 + ν2|
2 − N2 − 1

8 +
Nν1ν2 + N2−1

4 |ν1 + ν2|
|ν1 + ν2| + N

x

+
N |ν1 + ν2|

[(
ν1ν2 + N

2 |ν1 + ν2| + N2+1
4
)2 − 1

4 (|ν1 + ν2| + N)2
]

(|ν1 + ν2| + N)2
[
(|ν1 + ν2| + N)2 − 1

] x2

+ O
(
x3). (3.15)

It is interesting to note, that if ν1 + ν2 > 0, that is M > L − 1, this expression
can be conveniently written in the form

σ(x) = −S2

2 + S3

S1
x +

∏
i<j(νi + νj)

S2
1
[
S2

1 − 1
] x2 + O

(
x3), (3.16)

where
S1 =

∑
i

νi, S2 =
∑
i<j

νiνj , S3 =
∑

i<j<k

νiνjνk.

If ν1 + ν2 < 0, then one has to make the replacement ν1,2 7→ −ν2,1. Finally, if
ν1 + ν2 = 0, we just have

σ(x) = ν2
1
2 − N2 − 1

8 − ν2
1x + O

(
x3). (3.17)
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3.3. Expansion as x → 1. We conclude this section by considering the tech-
nically most difficult case of an expansion at the point x = 1.

Proposition 3.3. As x → 1,

PN,M,L(x−1) = C
{

1 + κ1(x − 1) + κ2(x − 1)2 + O
(
(x − 1)3)} , (3.18)

where

C =
(

a + c

a

)−1
PL(a, b + 1, c) (3.19)

and the coefficients are

κ1 = − abc

b + c + 1 , κ2 = abc
abc(b + c + 1) + b2 + c2 + 3bc + 3c + 3b + a + 1

2(b + c)(b + c + 1)(b + c + 2) ,

(3.20)
with

a = N, b = L − N − 1, c = M − N. (3.21)

We will prove this proposition using the connection of the Hankel matrix in
the representation (2.6) at x = 1 with the ensemble of the Hahn polynomials, for a
list of properties of the Hahn polynomials, see, e.g., [35], Sect. 9.5. We will use the
Hahn polynomials in the normalization with the highest coefficient being equal to
one,

pi(m) = (a + 1)i(−n)i

(i + α + β + 1)i
3F2

(
−i, i + α + β + 1, −x

α + 1, −n

∣∣∣∣1).

For α, β > −1 or α, β < −n (see [35], formula (9.5.2)) these polynomials satisfy the
orthogonality condition

n∑
m=0

(
α + m

m

)(
β + n − m

n − m

)
pi(m)pj(m) = δijhi, (3.22)

with
hi = i!

(n − i)!
(i + α + β + 1)n+1(α + 1)i(β + 1)i

(i + α + β + 1)i(i + α + β + 1)i+1
. (3.23)

To see the connection of the Hankel matrix in (2.6) at x = 1 with the ensemble of
the Hahn polynomials, we multiply the entries of the matrix by the factor (−1)i+j−2

that obviously does not alter the value of the determinant, and denote the resulting
matrix by H(x). Its entries are

(H(x))ij =
∑
m⩾0

µ(m)mi+j−2

xm
(i, j = 1, . . . , N),

where the measure µ(m) is given by (3.9). This measure is essentially that of the
Hahn polynomials, due to the identity

(−L + 2)m(−M + 1)m

(m + 1)!m! = (−1)n

n + 1

(
α + m

m

)(
β + n − m

n − m

)
,

where one should set
α = min(−M, −L + 1),
β = max(−L, −M − 1),
n = min(L − 2, M − 1).

(3.24)
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Note that we deal with the case α, β < −n; we recall that
(−a+m

m

)
= (−1)m

(
a−1
m

)
.

The three parameters α, β and n are constrained by the condition
n = −β − 2. (3.25)

To simplify writing below, we denote H ≡ H(1). Since the entries of H are
independent of N , the size of the matrix, the orthogonality condition (3.22) yields

det H =
N−1∏
i=0

h̃i, h̃i ≡ (−1)n

n + 1 hi.

Plugging (3.24) into (3.23) gives

h̃i = i!(L − 2)!(M − 1)!(M + L − 1 − 2i)!(M + L − 2 − 2i)!
(L − 1 − i)!(L − 2 − i)!(M − i)!(M − 1 − i)!(M + L − 1 − i)! ,

and rearranging the factors in the product, using
N−1∏
i=0

(a + 2i)!(a + 1 + 2i)! =
2N−2∏

i=0
(a + i)! =

N−1∏
i=0

(a + i)!(a + N + i)!,

one can readily find

det H =
N−1∏
i=0

(L − 2)!(M − 1)!(M + L − 2N + i)!i!
(L − 1 − i)!(L − 2 − i)!(M − i)!(M − 1 − i)! .

As a result, from (2.6) it follows that the constant C in (3.18) reads

C = N !
N−1∏
i=0

(M + L − 2N + i)!i!
(L − N + i)!(M − N + 1 + i)!

= N !(M − N)!
M !

N−1∏
i=0

(M + L − 2N + i)!i!
(L − N + i)!(M − N + i)! ,

where the product in the second equality can easily recognized as the number of
the boxed plane partitions PL(N, L − N, M − N), see (2.2).

To compute the coefficients κ1 and κ2 in (3.18) we first compute the coefficients
in the Taylor-series expansion

det H(x)
det H

= 1 + γ1(x − 1) + γ2(x − 1)2 + O
(
(x − 1)3)

from the relation det H(x) = exp{tr log H(x)}, that gives

γ1 = tr(H−1H ′), γ2 = 1
2

{(
tr H−1H ′)2 + tr H−1H ′′ − tr(H−1H ′)2

}
, (3.26)

where H ′ ≡ H ′(x)|x=1 and H ′′ ≡ H ′′(x)|x=1. The entries of the matrix H−1 can be
expressed (see, e.g., [36], Thm. 1.1, and also [37], Thm. 9) in terms of the coefficients
of the polynomials pi(m),(

H−1)
jk

=
N−1∑
i=0

h̃−1
i pi,j−1pi,k−1, pi(m) =

i∑
k=0

pi,kmk.

The traces in (3.26) can be evaluated with the help of the recurrence relation (see
[35], formula (9.5.4))

mpi(m) = pi+1 + Bipi(m) + Cipi−1(m).
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Here,

Ci = hi

hi−1
(3.27)

and the coefficient Bi in the case of condition (3.25) can be written in the form

Bi = (α + β)(α − β)(α − β − 2)
4(2i + α + β)(2i + α + β + 2) − α + β

4 − 1. (3.28)

The first trace in (3.26) can be computed as follows:

tr H−1H ′ = −
r∑

m=0
mµ(m)

N−1∑
i=0

h̃−1
i p2

i (m) = −
N−1∑
i=0

Bi.

Essentially similarly, but slightly more involved calculation gives

tr H−1H ′′ =
N−1∑
i=0

(
Bi + B2

i

)
+ 2

N−1∑
i=1

Ci + CN ,

tr(H−1H ′)2 =
N−1∑
i=0

B2
i + 2

N−1∑
i=1

Ci.

Hence,

γ1 = −
N−1∑
i=0

Bi, γ2 = 1
2
(
γ2

1 − γ1 + CN

)
.

To compute the sum of Bi’s we expand the rational part in (3.28) in elementary
ratios, that gives

N−1∑
i=0

Bi = N

4

(
(α − β)(α − β − 2)

2N + α + β
− α + β

4 − 1
)

.

We also have (see (3.23), (3.25) and (3.27))

CN = −N(N + α − 1)(N + α)(N + β + 1)(N + β)(N + α + β)
(2N + α + β − 1)(2N + α + β)2(2N + α + β + 1) .

Expanding the factor x
N(N−1)

2 in (2.6) at x = 1, for the coefficients κ1 and κ2 in
(3.18) we obtain

κ1 = γ1 + N(N − 1)
2 , κ2 = 1

2
(
κ2

1 − κ1 + CN

)
.

Finally, plugging α and β from (3.24) into the above expressions and simplifying,
we arrive at (3.20). This completes the proof of Prop. 3.3.

From Props. 2.2 and 3.3 it follows that the σ-function has the following expres-
sion near the point x = 1:

σ(x) = B̃ − Ã +
(
κ1 − Ã

)
(x − 1) +

(
κ1 + 2κ2 − κ2

1
)
(x − 1)2 + O

(
(x − 1)3).

Here κ1 and κ2 are given by (3.20), and Ã and B̃ are given in (2.20); note that the
coefficient of the second-order term is equal to the constant CN . In terms of ν1 and
ν2 the result reads as follows.
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Corollary 3.3.1. The σ-function (2.19) has the following x → 1 behavior:

σ(x) = −ν1ν2

2 − N(ν1 − ν2)
2 + N2 − 1

8 +
Nν1ν2 + N2−1

4 (ν1 − ν2)
ν1 − ν2 − N

(x − 1)

+
N(ν1 − ν2)

[(
ν1 − N

2
)2 − 1

4

][(
ν2 + N

2
)2 − 1

4

]
(ν1 − ν2 − N)2

[
(ν1 − ν2 − N)2 − 1

] (x − 1)2 + O
(
(x − 1)3). (3.29)

Note that the coefficients in this expansion can also be written in the form
analogous to (3.16) up to the change ν1 7→ −ν1.

4. Thermodynamic limit in the symmetric case

In this section we focus on construction of the asymptotic expansions for the σ-
function and the corresponding polynomial PN,M,L(x−1) in the limit N, M, L → ∞
such the two parameters p and q defined by (1.8) are finite and equal to each other,
p = q. In this case it is suitable to use the parameters r ≡ p = q and ϵ defined in
(1.10). This will provide a proof of Thm. 1.1. The non-symmetric case, p ̸= q, is
considered in the next section.

4.1. Preliminaries. To derive expansions of the function log PN,M,L(x−1) in
the thermodynamic limit, we start with analyzing the σ-form of the sixth Painlevé
equation in the large N limit. We recall that the σ-function is given in terms of
log PN,M,L(x−1) by (2.19). Expressions (2.22) for the parameters ν1, . . . , ν4 and
the expansions of the σ-function at the singular points given by Cor. 3.1.1, 3.2.1,
and 3.3.1, suggest that the σ-function may be searched in the form of the following
asymptotic ansatz in the decaying powers of N :

σ(x) =
∑
k⩾0

N2−kσ2−k(x). (4.1)

Following [18], we note that the justification of ansatz (4.1) is based on the Wasow
theorem, see [27], Chap. IX, Thm. 36.1. This theorem implies that if one succeeds
in the construction of the expansion (4.1) with the functions σi(x), which are piece-
wise analytic functions of x, then there exists a genuine solution of equation (2.21)
with the asymptotic expansion (4.1). To justify that this solution indeed coincides
with the solution given by (2.19), one has to verify that they have the same behav-
iors at the singular points, x = 0, 1, ∞, given by Cors. 3.1.1, 3.2.1, and 3.3.1. We
recall that for the Painlevé equations expansions of solutions at the singular points
fix the solutions [21].

The Wasow theorem is applicable to the sixth Painlevé equation in its Hamil-
tonian formulation. Indeed, the Wasow theorem deals with the first-order vector
ordinary differential equations resolved with respect to the derivatives. The σ-
function is intimately related to the Hamiltonian and there exists a one-to-one
correspondence between the canonical variables (the coordinate and momentum)
and the σ-function [20]. The conditions of the Wasow theorem can be verified by
writing the Hamiltonian equations of motion of the sixth Painlevé system in a vector
form. Details of this calculation can be found in [18], App. A. For further comments
concerning the method of obtaining asymptotic expansions for the σ-function, see
[18], Sect. 4.2, Rem. 4.3 and the discussion thereafter.

The expansion (4.1) can be constructed in a standard way by substituting it in
the sixth Painlevé equation (2.21). On this way, we first obtain the leading term,
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σ2(x), by requiring that it reproduces the conditions at the points x = 0, 1, ∞.
Next we derive the further terms, and show that they can be obtained recursively.
For these terms we also have to obtain that they reproduce the conditions at the
points x = 0, 1, ∞.

Having the outlined strategy in mind, we now turn to equation (2.21) and
consider the construction of the leading term of the large N expansion of the σ-
function. Our first aim here is to expose how the function σ2(x) can be found under
assumption that, as N → ∞,

νi = viN + O(1), i = 1, . . . , 4, (4.2)

where vi are some parameters to be specified later. Below we drop the dependence
on x in the notation for functions to simplify writing.

Clearly, with (4.1) and (4.2) the right-hand side of (2.21) is of O(N8) and the
same is valid for the second term in the left-hand side. The first term in the left-
hand side, with the second-order derivative, is just of O(N6). Excluding the trivial
root of the constant solution, σ′ = 0 (and hence assuming that σ′

2 ̸= 0), we thus
find that the equation for the σ-function splits into two first-order equations for the
σ2-functions:

σ2 = xσ′
2 − σ′

2
2 − v1v2v3v4

2σ′
2

±

√∏
i

(
σ′

2 + v2
i

)
2σ′

2
. (4.3)

For later use we introduce two functions f±(σ′
2) by rewriting these equations in the

form
σ2 = xσ′

2 + f±(σ′
2), (4.4)

where the plus and minus signs match those in (4.3).
Equations (4.4) are the Clairaut equations (see, e.g., [38]), i.e., they are of the

form
y = xy′ + Φ(y′), y′ = y′(x).

Differentiation with respect to x gives(
x + Φ′(y′)

)
y′′ = 0. (4.5)

If y′′ = 0, then y is a linear function,

y = Cx + Φ(C), (4.6)

where C is a constant. This is the so-called general solution of the Clairaut equation.
If instead the first factor in (4.5) vanishes, then the corresponding solution is called
singular solution and it is of the form

y =
(
xy′ + Φ(y′)

)∣∣
y′=(Φ′)−1(−x).

Note that there could be many such solutions or none.
To study our problem, let us first consider the situation where the parameters

v1, . . . , v4 are related by
v4 = v3, v2 = −v1. (4.7)

We also assume that v1 ⩾ v3. Then,

f±(σ′
2) =

{
g±(σ′

2) σ′
2 ∈ (−∞, −v2

1 ]
⋃

[−v2
3 , ∞)

g∓(σ′
2) σ′

2 ∈ [−v2
1 , −v2

3 ],
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where
g+(σ′

2) = v2
1v2

3
σ′

2
+ v2

1 + v2
3

2 , g−(σ′
2) = −σ′

2 − v2
1 + v2

3
2 .

In the case of the function g+(σ′
2) we have g′

+(σ′
2) = −(v1v3/σ′

2)2 and hence there
are two singular solutions corresponding to σ′

2 = ±v1v3/
√

x; in the case of the
function g−(σ′

2) we have g′
−(σ′

2) = −1 and there are no singular solutions. Thus
equations (4.3) have two general solutions

(σ2)g,+ = Cx + v2
1v2

3
C

+ v2
1 + v2

3
2 , (σ2)g,− = C(x − 1) − v2

1 + v2
3

2 , (4.8)

and two singular ones,

(σ2)s,± = ±2v1v3
√

x + v2
1 + v2

3
2 . (4.9)

Note that the two general solutions may correspond to the same linear function
if the integration constant C has the same value in both of them and satisfies
(C + v2

1)(C + v2
3) = 0. We meet exactly this situation in our considerations below.

To proceed, we fix now values of the parameters. Recalling (2.22) and (4.7),
we set

v1 = −v2 = r + 1
2 ≡ w, v3 = v4 = 1

2 ,

where we have introduced a new parameter w.
Consider now the function log PN,M,L(x−1). In the leading order,

log PN,M,L(x−1) = f2N2 + O(N).

From (2.24) we have

f2 =
∫ (

σ2 + Ã2x − B̃2

) dx

x(x − 1) + C̃2, (4.10)

where Ã2, B̃2, C̃2 are O(N2) terms of the constants Ã, B̃, C̃, respectively, e.g.,
Ã = N2Ã2 + O(N). The constants Ã and B̃ are defined in (2.20); the constant C̃
fixes the normalization, PN,M,L(0) = 1.

We obtain Ã2 and B̃2 from Ã = (N + 1)2/4 (see (2.20)) and the expression
(2.23) for B̃, respectively,

Ã2 = 1
4 , B̃2 = w2

2 − w + 3
8 . (4.11)

As for the constant C̃2, it can fixed by requiring that the function f2 attains its
values at the points x = ∞, 0, 1, as prescribed by the statements of Props. 3.1,
3.2, and 3.3, respectively. As we see below, there exists one and only one such a
function.

To obtain these values of the function f2, we have to rely on some auxiliary
asymptotic result. As far as the number of boxed plane partitions is involved in
Props. 3.3 and 3.2, we represent this number in the form

PL(a, b, c) = G(a + 1)G(b + 1)G(c + 1)G(a + b + c + 1)
G(a + b + 1)G(a + c + 1)G(b + c + 1) , (4.12)

where G(z) is the Barnes G-function defined by the relations

G(z + 1) = G(z)Γ(z), G(2) = G(1) = 1. (4.13)
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It is well known that [39], as z → ∞,

log G(z + 1) = z2

2 log z − 3
4z2 + ln 2π

2 z − 1
12 log z + ζ ′(−1) + O

(
z−2) , (4.14)

where ζ ′(−1) = −0.165142... is the derivative of the Riemann function ζ(z) at
z = −1.

Now we ready to compute values of the function f2. First, from Prop. 3.1 it
follows that PN,M,L(0) = 1 and hence, for arbitrary values of the parameters (i.e.,
not just limited to the symmetric case):

lim
x→∞

f2(x) = 0. (4.15)

Next, we find the value of f2 at the point x = 1 using Prop. 3.3. From (3.19)
and (4.13), we find

PN,M,L(1) = G(a + 2)G(b + 2)G(c + 2)G(a + b + c + 2)
G(a + b + 2)G(a + c + 2)G(b + c + 2) , (4.16)

where a = N , b = L − N − 1, and c = M − N (see (3.21)). In the symmetric case
a = N , b = rN + O(1), and c = rN + O(1), so from (4.16) and (4.14) we find that

f2(1) = (2r + 1)2

2 log(2r + 1) − (r + 1)2 log(r + 1) − r2 log 4r. (4.17)

Finally, let us consider the behavior of f2 near the point x = 0. From Prop. 3.2
it follows that

xacPN,M,L(x−1)
∣∣
x=0 = G(a + 2)G(b + 1)G(c + 2)G(a + b + c + 1)

G(a + b + 1)G(a + c + 2)G(b + c + 1) , (4.18)

where a = N , b = |M − L + 1|, c = min(L − N − 1, M − N) (see (3.13)). In the
symmetric case a = N , c = rN + O(1), but b = O(1) as N → ∞, hence (4.14)
yields (

r log x + f2(x)
)∣∣

x=0 = 0. (4.19)
The values of the function f2 at the points x = 1 and x = 0 in the non-

symmetric case (p ̸= q) which follow from (4.16) and (4.18), respectively, are com-
puted in Sect. 5.1 (see (5.10) and (5.11)).

4.2. Construction of the leading term. Now we ready to address the prob-
lem of construction of the function f2 describing the leading term of the function
log PN,M,L(x−1) in the thermodynamic limit. The function f2 should satisfy the
following properties. First, the corresponding σ2-function should be given in terms
of the solutions (4.8) and (4.9) of the associated Clairaut equation. Second, the
function f2 obtained from the function σ2 by (4.10) should be consistent with the
statements of Props. 3.1–3.3. In particular, it should satisfy the conditions (4.15),
(4.17), and (4.19). Third, it should be a continuous function of x, or, more ex-
actly, piece-wise continuous, in case if several solutions from the first property are
involved.

Let us consider the first property, namely, we intend to identify the function
σ2 by requiring that its expansions at the points x = ∞, 1, 0 are consistent with
(3.10), (3.29), and (3.15), respectively, specified to the symmetric case. Note that
in doing so, we also involve partially the second property, because these expansions
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follow from the Props. 3.1–3.3. We recall that we deal with the following values of
the parameters:

v1 = −v2 = w, v3 = v4 = 1
2 .

We start with considering the vicinity of the point x = ∞, where, as it follows
from (3.10), we should have

σ2 = −x

4 − w2

2 + 1
8 + O(x−2), x → ∞.

Clearly, the solution of the Clairaut equation which fulfills the required x → ∞
behavior is any of the two general solutions (σ2)g,± with C = −v2

3 = −1/4, see
(4.8).

Next, in the vicinity of the point x = 1, as it follows from (3.29), we should
have

σ2 = w2

2 − w + 1
8 − w

2 (x − 1) + w

8 (x − 1)2 + O
(
(x − 1)3) , x → 1.

Apparently, the solution which has such an expansion is the singular solution
(σ2)s,−, see (4.9), with C = w2/2 + 1/8.

Finally, in the vicinity of the point x = 0 from (3.17) it follows that

σ2 = w2

2 − 1
8 − w2x + O

(
x3), x → 0.

The solution which fulfills the required x → 0 behavior is any of the two general
solutions in (4.8) with C = −w2.

Let us denote the obtained expressions for the σ2-function by σI
2, σII

2 , and σIII
2 ,

respectively. Summarizing, we thus have obtained

σI
2 = −x

4 − w2

2 + 1
8 ,

σII
2 = −w

√
x + w2

2 + 1
8 ,

σIII
2 = −w2x + w2

2 − 1
8 .

(4.20)

We recall that these expressions are valid near the points x = ∞, 1, 0, respectively.
Let us now consider the function f2 = f2(x). We denote by f I

2, f II
2 , and f III

2
the functions which are related to σI

2, σII
2 , and σIII

2 , respectively, via (4.10). Taking
into account (4.11), we obtain the following expressions

f I
2 =

(
w − 1

2

)2
log x

x − 1 + C̃I
2.

f II
2 = 2w log

(
1 +

√
x
)

−
(

w − 1
4

)
log x + C̃II

2 .

f III
2 = −

(
w − 1

2

)2
log(1 − x) −

(
w − 1

2

)
log x + C̃III

2 .

Note that just like for the functions σI
2, σII

2 , and σIII
2 , the obtained expressions for

f I
2, f II

2 , and f III
2 are valid near the points x = ∞, 1, 0, respectively. This finishes

consideration of the first property of the function f2.
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The second property of the function f2 in question concerns the values of the in-
tegration constants C̃I

2, C̃II
2 , and C̃III

2 . The conditions (4.15) and (4.19) are fulfilled
with

C̃I
2 = 0, C̃III

2 = 0. (4.21)
The condition (4.17) means that

C̃II
2 = 2w2 log 2w −

(
w + 1

2

)2
log(2w + 1) −

(
w − 1

2

)2
log(2w − 1), (4.22)

or

C̃II
2 = 1

2 log 1
2w

−
(

w + 1
2

)2
log
(

1 + 1
2w

)
−
(

w − 1
2

)2
log
(

1 − 1
2w

)
. (4.23)

As a result, we have fixed all the three functions f I
2, f II

2 , f III
2 completely.

Now we address the third property, namely, that the function f2 must be piece-
wise continuous. We consider the simplest possible ansatz that each of these three
expressions is valid in some interval which contains the corresponding point. Specif-
ically, we require that f2 is a piece-wise continuous function of x ∈ [0, ∞) and there
exist two critical points x±

c ≷ 1 such that

f2 =


f I

2 x ∈ [x+
c , ∞)

f II
2 x ∈ [x−

c , x+
c ]

f III
2 x ∈ [0, x−

c ].

The points x±
c must obey the equations

f I
2(x+

c ) = f II
2 (x+

c ), f II
2 (x−

c ) = f III
2 (x−

c ). (4.24)
It turns out that despite the fact that these equations are in general transcendent,
they can be solved, and, furthermore, uniqueness of their solutions can be proven.

Let us consider the first equation in (4.24). Introduce the function
ρ+(x) = f II

2 (x) − f I
2(x).

Using the first relation in (4.21) and (4.22), we get

ρ+(x) =
(

w + 1
2

)2
log

√
x + 1

2w + 1 +
(

w − 1
2

)2
log

√
x − 1

2w − 1 − w2 log x

4w2 .

Apparently, the equation ρ+(x) = 0 has the root x = 4w2, and so we conclude that
x+

c = 4w2 =: xc.

To show that there are no other roots on the interval (1, ∞), we evaluate the
derivative of the function ρ+(x) and find

ρ′
+(x) = (

√
x − 2w)2

4x(x − 1) .

Thus, the function ρ+(x) is a monotonously growing function for x ∈ (1, ∞), except
the point x = 4w2. This point is exactly the root we have obtained, and so there
are no other roots on the interval (1, ∞). Note that the second derivative of ρ+(x)
also vanishes at this point but the third one does not, that implies that this is a
point of the third-order phase transition.

Let us consider the second equation in (4.24). Introduce the function
ρ−(x) = f II

2 (x) − f III
2 (x).
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Using now the second relation in (4.21) and (4.23), we get

ρ−(x) =
(

w + 1
2

)2
log 1 +

√
x

1 + (2w)−1 +
(

w − 1
2

)2
log 1 −

√
x

1 − (2w)−1 − 1
4 log 4w2x.

Obviously, ρ−(x) = 0 for x = 1/4w2, and so

x−
c = 1

4w2 = x−1
c .

We also have

ρ′
−(x) = − (2w

√
x − 1)2

4x(1 − x) ,

so the function ρ−(x) is a monotonously decreasing function for x ∈ (0, 1), except
the point x = (4w2)−1 where it vanishes together with its first and second deriva-
tives. Thus, x = 1/4w2 is the only root of ρ−(x) for x ∈ (0, 1). This is another
point of the third-order phase transition.

As a comment to this calculation, it is useful to note that equations (4.24)
appear to be elementary if we would assume that the function f2 is continuous
together with its first derivative. In other words, the assumption that the system
demonstrates no first-order phase transitions can be very handy. Indeed, it means
that the function σ2 is required to be continuous and therefore (4.24) are replaced
by the similar equations for the values of the function σ2 at these points. From
(4.20) then one immediately obtains that x±

c = (4w2)±1.
The assumption that there are no first-order phase transitions is in a complete

agreement with general properties of discrete random matrix models, which are
known to exhibit phase transitions not harder than third-order ones [40]. We recall
that PN,M,L(x−1) can be regarded as such a model, see (3.3) and (2.6).

4.3. Sub-leading corrections. We now address the problem of computing
the sub-leading corrections. For the σ-function it means construction of other terms
in the 1/N expansion (4.1); we limit ourselves here by obtaining the functions σ1
and σ0 though the procedure admits derivation of all the terms recursively [18].
The corresponding expansion for the function log PN,M,L(x−1), as we see below,
may additionally contain a log N term with the constant coefficient.

To fix the structure of 1/N corrections in a unique way, we first consider the
O(1) terms in (4.2). Indeed, for ν3 and ν4, see (2.22), the O(1) terms are equal to
1/2 and −1/2, respectively, and there are no further 1/N corrections. The bulk
system parameters (besides N) are contained in ν1 and ν2. These bulk system
parameters can be identified in such a way that ν1 and ν2 have no O(1) terms, that
is, v1 and v2 are defined such that following relations hold exactly:

ν1 = v1N, ν2 = v2N. (4.25)

If we further set v1 = 1/2 + p and v2 = −1/2 − q, then we arrive at p and q defined
in (1.8). In the symmetric case one cannot however require absence of O(1) terms,
but can require, for example, that v1 and v2 have these terms equal,

ν1 = wN + ϵ

2 , ν2 = −wN + ϵ

2 . (4.26)

An advantage of the choice (4.26) is that the σ-form of the sixth Painleve equation,
(2.21), then contains only even powers of N in its coefficients, just like in the non-
symmetric case (4.25). This property of the coefficients is very useful and can
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imply, under further conditions to be met, that all terms σ1−2k, k = 0, 1, . . ., in
(4.1) vanish.

The expansion (4.1) can be constructed by plugging it in (2.21) and matching
powers in N . Instead of operating with (2.21) directly, one can simplify calculations
by noting that since σ′

2 ̸= 0 for all values of x ∈ [0, ∞), a systematic treatment
of 1/N corrections can be done by considering the factorization of (2.21) on two
equations

σ = xσ′ + F±(σ′, σ′′), (4.27)
where the functions F±(σ′, σ′′) = F±(σ′, σ′′; ν1, ν2, ν3, ν4) are

F±(σ′, σ′′) = −σ′

2 −
∏

i νi

2σ′ ±

√∏
i

(
σ′ + ν2

i

)
− σ′

(
x(x − 1)σ′′

)2

2σ′ . (4.28)

In the large N limit the functions F±(σ′, σ′′) in the leading order turn into the
functions f±(σ′

2) appearing in the Clairaut equations (4.4),
F±(N2σ′

2, 0; v1N, v2N, v3N, v4N) = N2f±(σ′
2). (4.29)

Thus, the expansion (4.1) can be constructed by identifying which one of the two
equations in (4.27) actually is satisfied in all orders in N .

This appears to be straightforward in Regime II where the leading term, σ2, is
given by a singular solution of σ2 = xσ′

2+f−(σ′
2) thus identifying the equation which

contains the function F−(σ′, σ′′). Furthermore, it can also be easily shown that in
this case the first sub-leading correction vanishes, σ1 = 0. Indeed, recalling that
the σ′′-term and the O(1) corrections of the parameters ν1, . . . , ν4 can contribute
only to the order 1/N2 with respect to the leading term, the substitution σ =
N2σ2 + Nσ1 + O(1) yields

F−
(
σ′, σ′′) = F−(N2σ′

2 + Nσ′
1, 0; wN, −wN, N/2, N/2)

(
1 + O(N−2)

)
= N2f−(σ′

2 + σ′
1/N) + O(1)

= N2f−(σ′
2) + Nf ′

−(σ′
2)σ′

1 + O(1), (4.30)

where at the second step we have used (4.29) specified to the symmetric case for
a concreteness. Taking into account that for the singular solution x + f ′

−(σ′
2) = 0,

for the function σ1 we obtain
σ1 =

(
x + f ′

−(σ′
2)
)
σ′

1 = 0. (4.31)
Note that σ1 = 0 for Regime II implies that in the expansion (4.1) all the terms
of odd powers in 1/N also vanish, and (4.1) becomes an expansion in 1/N2 (see
also the discussion in [18], Sect. 4, where the similar phenomenon have been argued
differently).

As for Regime I and Regime III, we have obtained that σ2-function in these
cases is given by regular solutions of the Clairaut equation. These solutions are such
that f−(σ′

2) = f+(σ′
2), and so both equations in (4.27) vanish in the leading order.

To identify which one of the two equations responsible for the 1/N expansion, below
we expand functions F±(σ′, σ′′) to find equations for the σ1-function, and choose
the solutions which possess the required x → ∞ (for Regime I) and x → 0 (for
Regime III) expansions as prescribed by Cor. 3.1.1 and Cor 3.2.1, respectively. The
σ1-functions in both cases appear to be given by singular solutions of some other
Clairaut equations. This allows us to identify the relevant equation among the two
in (4.27) just like it has been done above for the Regime II. It turns out that the
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equation with the function F−(σ′, σ′′) in (4.27) is the relevant one for all the three
regimes.

We now turn to giving details of calculations for each of the regimes separately.
4.3.1. Regime I. We start with noting that plugging (4.26) in (3.10) gives the

following expression for the function σ1 as x → ∞:

σ1 = −x

2 + w2 + 1
4 +

(
w2 − 1

4

)2 1
x

+ O
(
x−2) . (4.32)

To obtain the σ1-function it is sufficient to consider large N expansion of the
functions F±(σ′, σ′′) to order N ; we expand them to order N0, so that we can
obtain next the function σ0. We recall that in Regime I σ′

2 = −1/4 and hence
the square root term in (4.28) is not contributing to the leading, N2, order. More
exactly, the term

∏
i(σ′ + ν2

i ) is of O(N6) (instead of O(N8)); explicitly

∏
i

(
σ′ + ν2

i

)
= N6

(
w2 − 1

4

)2 [
(σ′

1)2 − 1
4

]

+ N5

{(
w2 − 1

4

)[
(σ′

1)2 − 1
4

]
+
(

w2 − 1
4

)2(
σ′

0 + 1
4

)}
2σ′

1 + O(N4).

Furthermore, since σ′′
2 = 0, the term σ′(σ′′)2 ∼ N4σ′

2(σ′′
1 )2 contributes to the large

N expansion of F±(σ′, σ′′) starting from order N−1. As a result, we obtain

F±(σ′, σ′′) = N2
(

1
8 − w2

2

)
+ N

(
−σ′

1
2 − 2w2σ′

1 ∓ 2
(

w2 − 1
4

)√
(σ′

1)2 − 1
4

)

+

−1
2 − 2w2 ∓

2
(
w2 − 1

4
)

σ′
1√

(σ′
1)2 − 1

4

σ′
0 − 8w2(σ′

1)2 + w2

2 + ϵ2

8

∓

8w2
√

(σ′
1)2 − 1

4 +
w2 − 1

4

2
√

(σ′
1)2 − 1

4

σ′
1 + O(N−1). (4.33)

Hence, σ1 must satisfy one of the two equations

σ1 =
(

x − 1
2 − 2w2

)
σ′

1 ∓ 2
(

w2 − 1
4

)√
(σ′

1)2 − 1
4 , (4.34)

where the signs correspond to F±(σ′, σ′′). These equations are the Clairaut equa-
tions. The presence of the 1/x term in (4.32) indicates that we deal here with a
singular solution. All such solutions of (4.34) satisfy

(σ′
1)2 = (2x − 4w2 − 1)2

16(x − 1)(x − 4w2) .

Specifically, the solution which obeys (4.32) is

σ1 = −1
2
√

(x − 1)(x − 4w2),

and it can be easily checked that it corresponds to the plus sign in (4.34), that is,
to the function F−(σ′, σ′′).

As far as the function in (4.27) is determined, the function σ0 can be computed.
One can easily see a remarkable property of the expansion (4.33): the coefficient of
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the σ′
0 term is exactly the derivative with respect to σ′

1 of the N -order term. Since
σ1 is given by the singular solution of (4.34), the σ′

0 term exactly vanishes at order
N0 in (4.27), that yields

σ0 = −8w2(σ′
1)2 + w2

2 + ϵ2

8 + 8w2σ′
1

√
(σ′

1)2 − 1
4 +

(
w2 − 1

4
)

σ′
1

2
√

(σ′
1)2 − 1

4

.

Explicitly, the result reads

σ0 = −w2(x − 1)
x − 4w2 − x

4 + 1 + ϵ2

8 .

Let us now consider the function log PN,M,L(x−1). From Props. 3.1 and 2.2, it
follows that

log PN,M,L(x−1) = N2f2 + Nf1 + f0 + . . . , (4.35)

where, since PN,M,L(0) = 1, all the terms must vanish as x → ∞. In particular,

lim
x→∞

f1(x) = 0, lim
x→∞

f0(x) = 0.

We compute f1 by

f1 =
∫ (

σ1 + Ã1x − B̃1

) dx

x(x − 1) + C̃1, (4.36)

where, Ã1 and B̃1 are O(N) terms of the large N expansion of Ã and B̃ in (2.20),
respectively. Using (2.23) for B̃ and taking into account (4.26), we find

Ã1 = 1
2 , B̃1 = 1

2 .

Choosing C̃1 to ensure that limx→∞ f1(x) = 0, we get

f1 = 2w log 2w
√

x − 1 +
√

x − 4w2

(2w + 1)
√

x
− log

√
x − 1 +

√
x − 4w2

2
√

x
.

Essentially similarly, for f0, using

f0 =
∫ (

σ0 + Ã0x − B̃0

) dx

x(x − 1) + C̃0, (4.37)

where

Ã0 = 1
4 , B̃0 = 1 − ϵ2

8 ,

and choosing C̃0 such that limx→∞ f0(x) = 0, we obtain

f0 = −1
4 log

(
1 − 4w2

x

)
+ ϵ2

4 log
(

1 − 1
x

)
.

Finally, rewriting these formulas in terms of xc = 4w2 we arrive at the expressions
for the functions f I

1 and f I
0 appearing in Thm. 1.1.
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4.3.2. Regime II. Given that σ1 = 0, we are left with the task of obtaining
the σ0-function. This can be done directly by expanding the function F−(σ′, σ′′)
around the leading term by setting σ = N2σ2 + σ0 and taking into account that
σ′

2 ∈ (−w2, −1/4). As it can be anticipated from the considerations above for the
σ1-function, see (4.30), all terms at N0 order in (4.27) depending on σ′

0 vanish, just
like it takes place in (4.31) due to the overall factor x + f ′

−(σ′
2) = 0. As a result,

we get the following expression the function σ0:

σ0 = − [x(x − 1)σ′′
2 ]2(

4σ′
2 + 1

)(
σ′

2 + w2
) − w2

8σ′
2

+
(
σ′

2 + w2)(4σ′
2 − 1

)
8σ′

2
(
4σ′

2 + 1
)

− ϵ2

32σ′
2

+
ϵ2(4σ′

2 + 1
)(

σ′
2 − w2)

32σ′
2
(
σ′

2 + w2
) .

Using σ′
2 = −w/2

√
x and σ′′

2 = w/4x3/2, we get

σ0 = −w(x − 1)
8

{
3

2w −
√

x
+

√
x

2w
√

x − 1

}
+ ϵ2(x − 1)

4(2w
√

x − 1)
− 1 + ϵ2

8 .

Let us now consider the function log PN,M,L(x−1). We first note that a more
detailed calculation with the help of (4.14) applied to (4.16) with a = N , b =
rN − ϵ+1

2 , and c = rN + ϵ−1
2 yields

log PN,M,L(1) = N2f2(1) + Nf1(1) + 5
12 log N + f0(1) + O(N−1), (4.38)

where f2(1) is given by (4.17), and the values f1(1) and f0(1) are
f1(1) = −(r + 1) log(r + 1) + r log r (4.39)

and

f0(1) = 1
12 log 2r2

(r + 1)(2r + 1) + ϵ2

4 log r

r + 1 + ζ ′(−1) + log
√

2π, (4.40)

respectively. From Prop. 3.3 and expansion (4.38) we conclude that for the values
of x corresponding to Regime II the following expansion is valid:

log PN,M,L(x−1) = N2f2(x) + Nf1(x) + 5
12 log N + f0(x) + O(N−1). (4.41)

Clearly, the functions f1 and f0 can be found from the functions σ1 and σ0 by
(4.36) and (4.37), respectively.

Computing f1 by (4.36), where Ã1 = B̃1 = 1/2, we get

f1 = 1
2 log x + C̃1.

Computing f0 by (4.37), where Ã0 = 1/4 and B̃0 = (1 − ϵ2)/8, we get

f0 = 1
8
{

3 log
(
2w −

√
x
)

− log
(
2w

√
x − 1

)
+ log

√
x
}

+ ϵ2

2 log 2w
√

x − 1√
x

+ C̃0.

The integration constants can be fixed by using (4.39) and (4.40). We obtain

C̃1 = −(1 + r) log(1 + r) + r log r

and

C̃0 = − 1
12 log

(
4r(r + 1)(2r + 1)

)
− ϵ2

4 log
(
4r(r + 1)

)
+ ζ ′(−1) + log

√
2π.
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As a result, using √
xc = 2w = 2r + 1 we arrive at the expressions for the functions

f II
1 and f II

0 given in Thm. 1.1.
4.3.3. Regime III. Considerations in this regime in general are very similar to

those in Regime I. We start with expansion (3.15), which with (4.26) gives the
following expression for the function σ1 as x → 0,

σ1 = −|ϵ|
2 + |ϵ|

(
w2 + 1

4

)
x − |ϵ|

(
w2 − 1

4

)2
x2 + O(x3). (4.42)

To find the function σ1 and which one of the two equations in (4.27) is rele-
vant for 1/N expansion, and next obtain the function σ0, we expand the functions
F±(σ′, σ′′) to order N0:

F±(σ′, σ′′) = N2
(

w2

2 − 1
8

)
+ N

(
−σ′

1
2 − σ′

1
8w2 ∓

(4w2 − 1)
√

(σ′
1)2 − ϵ2w2

8w2

)

+
(

−1
2 − 1

8w2 ∓ (4w2 − 1)σ′
1

8w2
√

(σ′
1)2 − ϵ2w2

)
σ′

0 − (σ′
1)2

8w4 + 1
8 + ϵ2

32w2

±

(√
(σ′

1)2 − ϵ2w2

8w4 − ϵ2(4w2 − 1)
32w2

√
(σ′

1)2 − ϵ2w2

)
σ′

1 + O(N−1).

Hence, the function σ1 must be a singular solution (as far as (4.42) contains x2

term) of one of the following two Clairaut equations:

σ1 = xσ′
1 − σ′

1
2 − σ′

1
8w2 ∓

(4w2 − 1)
√

(σ′
1)2 − ϵ2w2

8w2 . (4.43)

The solution which obeys (4.42) is

σ1 = −|ϵ|
2
√

(1 − 4w2x)(1 − x),

and it corresponds to the plus sign in (4.43), that is, to the function F−(σ′, σ′′) in
(4.27).

As a result, for σ0 we get

σ0 = − (σ′
1)2

8w4 + 1
8 + ϵ2

32w2 −
√

(σ′
1)2 − ϵ2w2

8w4 + ϵ2(4w2 − 1)σ′
1

32w2
√

(σ′
1)2 − ϵ2w2

and substitution of the function σ′
1 gives

σ0 = − ϵ2(1 − x)
4(1 − 4w2x) − ϵ2x

4 + 1 + ϵ2

8 .

Let us now turn to the function log PN,M,L(x−1). We begin with addressing its
x → 0 behavior, using (4.18). We have a = N , b = |ϵ|, and c = rN − 1+|ϵ|

2 , so that,
as N → ∞, (4.14) yields

xacPN,M,L(x−1)
∣∣
x=0 = N(1 − |ϵ|)

(
r log r − (r + 1) log(r + 1)

)
+ 1 − ϵ2

2 log N

+ (1 − |ϵ|) log
√

2π + log G(1 + |ϵ|) + O(N−1). (4.44)
This formula implies that in the Regime III the following expansion is valid:

log PN,M,L(x−1) = N2f2(x) + Nf1(x) + 1 − ϵ2

2 log N + f0(x) + O(N−1).
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The x → 0 behavior of the function f2(x) is given by (4.19), and from (4.44) we
also get(

−(1 + |ϵ|) log
√

x + f1(x)
) ∣∣

x=0 = (1 − |ϵ|)
(
r log r − (r + 1) log(r + 1)

)
(4.45)

and
f0(0) = (1 − |ϵ|) log

√
2π + log G(1 + |ϵ|). (4.46)

Computing f1 by (4.36), where Ã1 = B̃1 = 1/2, we get

f1 = 2|ϵ|w log
(

2w
√

1 − x +
√

1 − 4w2x
)

− |ϵ| log
(√

1 − x +
√

1 + 4w2x
)

+ 1 + |ϵ|
2 log x + C̃1.

Computing f0 by (4.37), where Ã0 = 1/4 and B̃0 = (1 − ϵ2)/8, we get

f0 = −ϵ2

4 log(1 − 4w2x) + 1
4 log(1 − x) + C̃0.

From (4.45) we find

C̃1 = r log r − (r + 1) log(r + 1) − |ϵ|r log
(
4r(r + 1)

)
and from (4.46) we find

C̃0 = (1 − |ϵ|) log
√

2π + log G(1 + |ϵ|).

Finally, rewriting the arguments of the logarithms in terms of √
xc = 2w = 2r + 1,

we arrive at the expressions for the functions f III
1 and f III

0 provided in Thm. 1.1.
This finalizes the proof of Thm. 1.1.
Let us now consider the special case of ϵ = 0 of Regime III, and show how the

expansion (1.11) follows from our considerations above. Indeed, in this case σ1 = 0
and σ0 = 1/8, so (4.1) reads

σ = N2
(

−w2x + w2

2 − 1
8

)
+ 1

8 + O(N−1). (4.47)

This expression has to be compared with a trivial solution of (2.21) valid for ν1 =
−ν2, and ν1, ν3, ν4 arbitrary, of the form

σtriv = −ν2
1x + ν2

1 − ν3ν4

2 . (4.48)

Setting ν1 = wN , ν3 = (N + 1)/2, and ν4 = (N − 1)/2 in (4.48) one can reproduce
the terms shown in (4.47). This means that in Regime III at ϵ = 0 all terms in the
expansion (4.1) beyond σ0 vanish. Note that does not mean that σ = σtriv but it
implies that

σ = σtriv + O(N−∞),
where O(N−∞) stands for terms which are less than any given degree in 1/N . In
fact, this term corresponds to exponentially small corrections. These corrections
can also be tackled though some additional information is necessary. The situation
here is similar to that considered in [18] for the so-called ordered regime (Sect. 5
therein).

It is worth mentioning that the phenomenon of absence of the 1/N corrections
in (1.11) can already be anticipated from the x → 0 expansion for the polynomial
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PN,M,L(x−1) given in Prop. 3.2. The case of ϵ = 0 corresponds to b = 0 in (3.12),
and (3.11) says that, as x → 0,

PN,M,L(x−1) = 1(
a+c

a

)
xac

{
1 + c(c + 1)x + c(c + 1)(c2 + c + 1)

2 x2 + O(x3)
}

,

(4.49)
or

log
((

a + c

a

)
PN,M,L(x−1)

)
= ac log x + c(c + 1)

(
x + x2

2

)
+ O(x3). (4.50)

Recalling that a = N and c = rN − 1/2, we thus see that the right-hand side
of (4.50) in the large N limit contains no 1/N corrections; there are only terms
of orders N2, N and N0. Furthermore, the expression in the braces in (4.49) is
nothing but a truncated expansion of (1 − x)−c(c+1) (one can check by expanding
further in x) and so the corresponding c(c + 1) term in (4.50) is log(1 − x). One
can therefore expect that for x taking positive values at some interval attached to
the origin, the following must hold:

log
((

a + c

a

)
PN,M,L(x−1)

)
= ac log x + c(c + 1) log(1 − x) + O(N−∞). (4.51)

As we have established, Regime III corresponds to x ∈ [0, x−1
c ) = [0, (2r + 1)−2)

and so (4.51) holds for these values of x.
As a final comment here, we mention that (4.51) admits a simple interpretation

when translated back to the partition function using (1.4) and (1.5). Reverting to
the weights (1.2), one can write

Z = w
(M−N)(L−N)
1 w

(M−L+N)N
3 (w5w6)M(L−N)

(w5w6 − w3w4)(M−N)(L−N)

(
1 + O(N−∞)

)
(4.52)

where M − L + 1 = 0. The weights are subject to the constraint that they must
obey the condition of the Regime III, which now reads

w3w4

w5w6
∈
[
0, N2/(M + L − N)2).

If one expands the denominator in (4.52) in Taylor series in w3w4/w5w6, then the
leading term gives the weight of the anti-ferroelectric ground state configuration
shown in Fig. 5. Thus, formula (4.52) can be interpreted as the result of summation
over relevant perturbations from this ground state, valid up to exponentially small
corrections in the large N limit.

5. Thermodynamic limit in the non-symmetric case

In this section we focus on construction of the asymptotic expansions for the σ-
function and the corresponding polynomial PN,M,L(x−1) in the limit N, M, L → ∞
such that the parameters p and q defined by (1.8) are finite and not equal to each
other, p ̸= q. This will provide a proof of Thm. 1.2.

5.1. Preliminaries. In Sect. 4.1 it is shown that the leading term of the σ-
function in the thermodynamic limit, the function σ2, see (4.1), can be found as a
solution of the Clairaut equations (4.4). The non-symmetric case mean that the two
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parameters v1 and v2 are unrelated, thought the relation v4 = v3 holds. Henceforth
we set

v1 := v, v2 := −u, v3 = v4 = 1
2 . (5.1)

Note that v = p + 1/2 and u = q + 1/2 where p and q are defined in (1.8). Since
p, q > 0, we have v, u > 1/2. We focus our attention on the case where the function
σ′

2 satisfies
σ′

2 ∈ (− min(v2, u2), −1/4]. (5.2)
For the functions f±(σ′

2) in (4.4) we then have

f±(σ′
2) = −σ′

2
2 + vu

8σ′
2

∓

(
σ′

2 + 1/4
)√(

σ′
2 + v2

)(
σ′

2 + u2
)

2σ′
2

. (5.3)

As we see below, the condition (5.2) is indeed always fulfilled in our problem.
As usual, we have general solutions given by linear functions (4.6). In the non-

symmetric case (5.1) some concerns may arise in dealing with the singular solutions.
Recall that these are the solutions which correspond to vanishing of the first factor
in (4.5). In the case of the functions (5.3) one has to find roots of quartic equations.

Instead of dealing with these roots explicitly, which are given by bulky expres-
sions, one can search the solutions in a parametric form [31]. To solve the equations
x + f ′

±(σ′
2) = 0 for the function σ′

2 in terms of x, we introduce function y = y(x)
by defining it such that √

σ′
2 + u2

σ′
2 + v2 = αy + β

γy + δ
, (5.4)

where α, . . . , δ are some functions of v and u only. One can set α(v, u) = γ(u, v) and
β(v, u) = δ(u, v), so that (5.4) holds identically at u = v. In our calculations below
we make a particular choice of these functions, though this choice is not essential
for obtaining a solution in the parametric form.

To proceed, we introduce the notation
X± = αy + β ± (γy + δ), Y± = v(αy + β) ± u(γy + δ).

From (5.4) we get

σ′
2 = − Y+Y−

X+X−
. (5.5)

Substituting (5.5) into the relation x + f ′
±(σ′

2) = 0, and using (5.4), we obtain

x =
X2

±
(
X∓ + 2Y±

)(
X∓ − 2Y±

)
16Y 2

±(αy + β)(γy + δ) . (5.6)

Expression (5.6) together with (5.4) and (5.5) substituted in (4.4) yields

σ2 = − v

4u
+ (v2 − u2)(αy + β)

4uY±
∓ (4u2 − 1)(γy + δ)

16(αy + β) ∓ (4v2 − 1)(αy + β)
16(γy + δ) . (5.7)

In these expressions the ±-signs corresponds to the functions f±(σ′
2). We also note

that x − 1 has a factorized form as well:

x − 1 =
X2

∓
(
X± + 2Y±

)(
X± − 2Y±

)
16Y 2

±(αy + β)(γy + δ) . (5.8)

This is a remarkable property of the parametrization (5.4) because we need to
integrate the function σ2 to obtain the corresponding function f2.
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Indeed, according to (2.24), we have

f2 =
∫ (

σ2 + Ã2x − B̃2

) dx

x(x − 1) + C̃2, (5.9)

where (see (2.20), (2.23), and (5.1))

Ã2 = 1
4 , B̃2 = vu − u − v

2 + 3
8 .

From expressions (5.6), (5.7), and (5.8) it is clear that if we change of the integration
variable x 7→ y and take into account that dx = (∂yx)dy, then the integrand in
(5.9) appears to be an algebraic function of y. Hence, we can compute f2 explicitly
in terms of y.

To construct the function f2 as a piece-wise continuous function one has to
take into account its values at the points x = ∞, 1, 0, for generic values of p and q.
We recall that at the point x = ∞ the function f2 vanishes, see (4.15). The value
f2(1) can be found from (4.16) and (4.14),

f2(1) = 1
2

{
p2 log p + q2 log q + (p + q + 1)2 log(p + q + 1)

− (p + 1)2 log(p + 1) − (q + 1)2 log(q + 1) − (p + q)2 log(p + q)
}

. (5.10)

Concerning the point x = 0, from Prop. 3.2 one can find[
min(p, q) log x + f2(x)

]∣∣
x=0 = (p − q)2

2 log |p − q| − (|p − q| + 1)2

2 log(|p − q| + 1)

+ sgn(p − q)
2

{
(p + 1)2 log(p + 1) − p2 log p

− (q + 1)2 log(q + 1) + q2 log q
}

, (5.11)

where formulas (4.12) and (4.14) have been used.

5.2. Construction of the leading term. We start with listing properties
of the function σ2 near the points x = ∞, 1, 0 assuming that p ̸= q.

Behavior of the σ-function at the point x = ∞ is established in Cor. 3.1.1.
From (3.10) in the parameterization (5.1) we have

σ2 = −x

4 − uv

2 + 1
8 + O

(
x−2) , x → ∞. (5.12)

The case of the point x = 1 is considered in Cor. 3.3.1. From (3.29) it follows that

σ2 = vu − v − u

2 + 1
8 − 4vu − v − u

4(v + u − 1)(x − 1)

+
(
v − 1

2
)2 (

u − 1
2
)2 (v + u)

(v + u − 1)4 (x − 1)2 + O
(
(x − 1)3) , x → 1. (5.13)

The case of the point x = 0 is considered in Cor. 3.2.1. From (3.15) it follows that

σ2 = vu − |v − u|
2 − 1

8 − 4vu − |v − u|
4(|v − u| + 1)x

+ (4vu − 2|v − u| + 1)2 |v − u|
16(|v − u| + 1)4 x2 + O

(
x3) , x → 0. (5.14)

We now construct the function σ2 satisfying all these properties.
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The linear growth at infinity of the function σ2 and the absence of an 1/x
term in (5.12) imply that it is given by the general solution (4.6) where we have to
choose C = −1/4. Denoting this function by σI

2, we conclude that the function σ2
for sufficiently large values of x is given by σI

2, which reads

σI
2 = −x

4 − uv

2 + 1
8 . (5.15)

More exactly, we have σ2 = σI
2 for x ∈ [xc, ∞), where the value of the critical point

xc needs to be determined. The interval [xc, ∞) corresponds to Regime I.
Let us now consider the case of the vicinity of the point x = 1. Expression

(5.13) imply a non-linear behavior of the function σ2 near x = 1 and hence we have
to search this function among the singular solutions of the Clairaut equations (4.4)
where the functions f±(σ′

2) are given by (5.3). We first identify which equation,
with f+(σ′

2) or f−(σ′
2), may possess the required asymptotics (5.13). Substituting

the values of σ2 and σ′
2 in (4.4) at x = 1 we find that it is the equation with the

function f−(σ′
2).

Next we pass to the solution in the parametric form defined by the relation
(5.4), which we choose in the following form:√

σ′
2 + u2

σ′
2 + v2 = 2uy + u − v

2vy + v − u
.

Hence,

σ′
2 = (u − v)2 − 4uvy

4y(1 + y) (5.16)

and therefore

x = (y + 1)2(y + u − v)(y + v − u)
(2vy + v − u)(2uy + u − v) . (5.17)

To indicate that in the vicinity of the point x = 1 the function σ2 belongs to Regime
II, we denote it σII

2 . We have

σII
2 = vu

2 − v2 + u2

16vu
− 1

4 − y

2 +
(
4v2 − 1

) (
u2 − v2)

16v(2vy + v − u) +
(
4u2 − 1

) (
v2 − u2)

16u(2uy + u − v) . (5.18)

Now the crucial step in the whole procedure is to identify which one of the four
roots of the quartic equation (5.17) corresponds to the asymptotic expansion (5.13).

To do this, we use (5.8) to obtain

x − 1 = y2(y − v − u + 1)(y + v + u + 1)
(2vy + v − u)(2uy + u − v) . (5.19)

Computing the values of the expression in (5.18) at y = −v − u − 1, 0, v + u − 1 we
find that the required value σ2(1) = (uv − u − v + 4)/2, see (5.13), is attained at
y = v + u − 1. Furthermore, representing y near this value as

y = v + u − 1 + γ1ε + γ2ε2 + O(ε3) (5.20)

and choosing the coefficients γ1 and γ2 such that (5.19) becomes

x − 1 = ε + O(ε3),
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we find

γ1 = (2v − 1) (2u − 1) (v + u)
2(v + u − 1)2 ,

γ2 =
(2v − 1) (2u − 1) (v + u)

(
1 + 6(v2 + u2) − (4uv + 3)(v + u)

)
8(v + u − 1)5 .

Clearly, expression (5.20) provides an expansion of the function y = y(x) near the
point x = 1. This function is uniquely defined as the root of the quartic equation
(5.17) by its value y(1) = u + v − 1. Substitution of (5.20) into (5.18) exactly
reproduces the required expansion (5.13). This means that we have constructed
the function σII

2 which corresponds to the function σ2 in Regime II.
Let us now address the position of the critical value of x = xc at which Regime

I changes into Regime II. At the moment, we do this under the assumption that
the function σ2 is continuous at this point,

σI
2(xc) = σII

2 (xc).

Below we lift this assumption and derive the result for xc from the similar equation
for the function f2, that proves absence of first-order phase transitions. Denoting
the corresponding value of y at the critical point by yc ≡ y(xc) we find from (5.15),
(5.18), and (5.17) that yc is one of the two roots of the equation

y2 + (1 − 4vu)y + (v − u)2 = 0. (5.21)

Choosing the root which lies on the right from the value y(1) = u + v − 1 (note
that γ1 > 0 in (5.20), so y(x) is expected to be an increasing function), we get

yc =
4vu − 1 +

√
(4v2 − 1)(4u2 − 1)

2 . (5.22)

The corresponding value of xc is

xc =
4vu + 1 +

√
(4v2 − 1)(4u2 − 1)

2 (5.23)

= 1
4
(√

(2v − 1)(2u − 1) +
√

(2v + 1)(2u + 1)
)2

.

Thus, for the values x ∈ [1, xc] the function y(x) monotonously increases from the
value u + v − 1 up to the value yc, given in (5.22). Note also that xc → 4w2 as
v, u → w, in agreement with the symmetric case.

Let us now consider the values of y on the left from the point x = 1. As it
follows from (5.17), as y decreases from the value u+v−1 down to the value |u−v|,
the variable x runs its values from 1 to 0. We thus conclude that our function y is
the monotonous bijective map on the interval [0, xc]:

y(x) : [0, xc] 7→ [|v − u|, yc],

where y(0) = |v − u| and y(xc) = yc. Furthermore, since x → ∞ as y → ∞ in
(5.17), this map extends to the whole domain x ∈ [0, ∞) and it corresponds to
y ∈ [|v − u|, ∞).

The obtained property of the function y makes it possible to study the function
σII

2 near the point x = 0. Essentially similarly, as we have found the expansion near
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the point x = 1 above, we find that, as x → 0,

y = |v − u| + |v − u|(4vu − 2|v − u| + 1)
2(|v − u| + 1)2 x

+
|v − u|(4uv − 2|v − u| + 1)

(
1 + 6(v2 + u2) − (4vu − 3)|v − u|

)
8(|p − q| + 1)5 x2 + O(x3).

Substituting this expansion into (5.18), we immediately arrive at the expression
given in (5.14). This means that our solution obtained for Regime II also satisfies
the conditions near the point x = 0 and no analogue of Regime III arises in the
non-symmetric case, p ̸= q (or u ̸= v).

Now turning to the function f2, we conclude that all these considerations imply
that

f2 =
{

f I
2 x ∈ [xc, ∞)

f II
2 x ∈ [0, xc].

(5.24)

As for the function f I
2, by substituting (5.9) into (5.15) and fixing the constant of

integration to match the condition (4.15), we obtain

f I
2 = (2v − 1)(2u − 1)

4 log x

x − 1 . (5.25)

As for the function f II
2 , we make the change of the integration variable x 7→ y in

(5.9), where, due to (5.18), we have
dx

x
=
{

2
y + 1 + 1

y + u − v
+ 1

y + v − u
− 2v

2vy + v − u
− 2u

2uy + u − v

}
dy. (5.26)

Taking into account (5.19), from (5.17) we obtain

f II
2 = − (u + v − 1)2

2 log y − (u − v)2 + 2v + 2u − 1
2 log(y + 1)

+ 4u2 − 1
4 log(2uy + u − v) + 4v2 − 1

4 log(2vy + v − u)

− 2u − 1
2 log(y + u − v) − 2v − 1

2 log(y + v − u)

+ (u + v) log(y + u + v + 1) + C̃2. (5.27)

The constant of integration C̃2 can be fixed by imposing the condition (5.10). Using
that y(1) = u + v − 1 from (5.27) we obtain

f II
2 (1) = − (u + v − 1)2

2 log(u + v − 1) + (u + v)2

2 log(u + v)

+ (2u − 1)2

4 log(2u − 1) + (2v − 1)2

4 log(2v − 1) + (u + v) log 2 + C̃2,

and a comparison (recall that v = p + 1/2 and u = q + 1/2) with (5.10) yields

C̃2 = − (2v + 1)2

8 log(2v + 1) − (2v − 1)2

8 log(2v − 1)

− (2u + 1)2

8 log(2u + 1) − (2u − 1)2

8 log(2u − 1). (5.28)

This fixes the function f II
2 .
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Using (5.25), (5.27), and (5.28), one can now show directly that (5.24) indeed
holds. Namely, we prove that there exists one and only one solution xc ∈ (1, ∞)
of the equation f II

2 (xc) = f I
2(xc). Calculation goes along the same lines as in the

symmetric case (see end of the Sect. 4.2). Introduce the function
ρ(x) = f II

2 (x) − f I
2(x).

Substituting (5.17) and (5.19) into (5.25), we get

ρ(x) =
(

v2

2 + 1
8

)
log (2vy + v − u)2

(4v2 − 1) y(y + 1) +
(

u2

2 + 1
8

)
log (2uy + u − v)2

(4u2 − 1) y(y + 1)

+
(

uv + 1
4

)
log y(y + u + v + 1)(y − v − u + 1)

(y + 1)(y + u − v)(y + v − u)

+ 1
2v log (2v − 1)(y + u − v)(y + v + u + 1)

(2v + 1)(y + v − u)(y − v − u + 1)

+ 1
2u log (2u − 1)(y + v − u)(y + v + u + 1)

(2u + 1)(y + u − v)(y − v − u + 1)

+ 1
2 log (y + u − v)(y + v − u)(y + 1)

(2uy + u − v)(2vy + v − u) . (5.29)

It is not difficult to see, that all the six logarithms in (5.29) vanish as soon as
(5.21) holds, that leads us to (5.23). Hence, our result for xc obtained above under
the assumption of absence of the first order transition is recovered. Let us now
show that there are no other roots of the equation ρ(x) = 0 on the interval (1, ∞).
Evaluating the derivative of the function ρ(x), from (5.29) and (5.17) we get

ρ′(x) =
(

∂x(y)
∂y

)−1
∂ρ(x(y))

∂y

=
(2vy + v − u)(2uy + u − v)

[
y2 + (1 − 4vu)y + (v − u)2]2

4y2(y + 1)2(y + v + u + 1)(y − v − u + 1)(y + v − u)(y + u − v) ,

and, again using (5.17),

ρ′(x) =
[
y2 + (1 − 4vu)y + (v − u)2]2

4xy2(y + v + u + 1)(y − v − u + 1) . (5.30)

Recalling that x → 1 as y → v + u − 1 (see (5.19)) and x → ∞ as y → ∞ (see
(5.17)), we conclude from (5.30) that the function ρ(x) is an increasing function on
the interval (1, ∞) except the point x = xc where it has a simple zero, and where
its first and second derivatives vanish, but the third one does not. This means that,
besides that the point x = xc is the only possible point of the phase transition, our
system undergoes a third-order phase transition at this point.

It can also be directly checked that the resulting function f2, given by (5.24),
has the expected x → 0 behavior as prescribed by (5.11).

5.3. Sub-leading corrections. Now we address calculation of the corrections
to the leading term. Recall that we fix our parameters such that ν1 and ν2 has no
O(1) terms as N is large,

ν1 = vN, ν2 = −uN,

and v and u are related to the parameters p and q defined in (1.8) by v = p + 1/2
and u = q + 1/2.
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Just like in the symmetric case, the 1/N expansion (4.1) in the non-symmetric
case can be constructed by using a relevant equation among the two in (4.27).
Again, such an equation can be easily identified provided the leading term, the
function σ2, is given by a singular solution of the Clairaut equation. We meet
such a situation in our problem in Regime II, and it is the equation containing the
function F(σ

′, σ′′). Calculation (4.30) can be repeated without modifications for
the non-symmetric case, again providing the result σ1 = 0, see (4.31). In fact, all
the terms of odd powers in 1/N also vanish, and (4.1) is an expansion in 1/N2 in
Regime II.

In Regime I the situation in the non-symmetric case repeats that in the sym-
metric case, since the leading term σ2 is given by a regular solution of the Clairaut
equation. This term solves both equations in (4.27) in the leading order, since
f+(σ2) = f−(σ2). To identify which one of the two equations in (4.27) is actu-
ally responsible for the 1/N expansion, we should search for a suitable solution for
the function σ1. In total, the recipe of derivation of sub-leading corrections in the
non-symmetric case goes along the same lines as in the symmetric one.

We turn to the details of calculation for Regime I and Regime II separately.
5.3.1. Regime I. We start with x → ∞ asymptotic expansion (4.32) yielding

σ1 = −x

2 + uv + 1
4 + (4v2 − 1)(4u2 − 1)

16x
+ O

(
x−2) , x → ∞. (5.31)

We recall that in this regime σ′
2 = −1/4 and so both equations in (4.27) vanish

in the leading order. To identify which one of the two equations in (4.27) is respon-
sible to 1/N expansion and find the functions σ1 and σ0, we expand the functions
F±(σ′, σ′′) to order N0:

F±(σ′, σ′′) = N2
(

1
8 − vu

2

)
+ N

(
−σ′

1
2 − 2vuσ′

1 ∓ 2

√(
v2 − 1

4

)(
u2 − 1

4

)(
(σ′

1)2 − 1
4

))

+

−1
2 − 2uv ∓ 2σ′

1

√(
v2 − 1

4
) (

u2 − 1
4
)√

(σ′
1)2 − 1

4

σ′
0 − 8vu(σ′

1)2 + vu

2

∓

(8v2u2 − v2 − u2)√(σ′
1)2 − 1

4√(
v2 − 1

4
) (

u2 − 1
4
) +

√(
v2 − 1

4
) (

u2 − 1
4
)

2
√

(σ′
1)2 − 1

4

σ′
1 + O(N−1).

Hence, σ1 must be a solution of one the following two equations:

σ1 = xσ′
1 − σ′

1
2 − 2vuσ′

1 ∓ 2

√(
v2 − 1

4

)(
u2 − 1

4

)(
(σ′

1)2 − 1
4

)
. (5.32)

These are the Clairaut equations and we have to search for a singular solution that
matches the asymptotic expansion (5.31). The proper solution reads

σ1 = −1
2
√

s(x), s(x) = x2 − (1 + 4vu)x + (v + u)2. (5.33)

Note that the critical value x = xc given by (5.23) is one of the roots of the
polynomial s(x), the second root is always smaller than xc. The solution (5.33)
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corresponds to the plus sign in (5.32) and hence the equation in (4.27) relevant for
the 1/N expansion is the one involving the function F−(σ′, σ′′).

The function σ0 can be directly computed. Since σ1 is given by a singular
solution, the σ′

0 term vanishes in the equation in the order N0, that yields

σ0 = −8vu(σ′
1)2 + vu

2 +

(
8v2u2 − v2 − u2)σ′

1

√
(σ′

1)2 − 1
4√(

v2 − 1
4
) (

u2 − 1
4
) +

√(
v2 − 1

4
) (

u2 − 1
4
)

2
√

(σ′
1)2 − 1

4

σ′
1.

Substituting (5.33), we get

σ0 = −x

4 + 1
8 − 4vux2 − 2(v + u)2x + (v + u)2

4s(x) .

Let us now consider the function log PN,M,L(x−1). For this quantity we have the
expansion (4.35). Note that all the terms must vanish at infinity, limx→∞ f1 = 0,
limx→∞ f0 = 0, etc. Computing f1 by (4.36) with Ã1 = B̃1 = 1/2 and choosing C̃1
such that f1(∞) = 0, we get

f1 = v log
(

2vx − v − u +
√

s(x)
(2v + 1)

√
x(x − 1)

)
+ u log

(
2ux − v − u +

√
s(x)

(2u + 1)
√

x(x − 1)

)

− 1
2 log

2x − 4uv − 1 + 2
√

s(x)
4x

.

Essentially similarly, for f0, using (4.37) with Ã0 = 1/4 and B̃0 = 1/8 and choosing
C̃0 such that f0(∞) = 0, we obtain

f0 = 1
4 log x(x − 1)

s(x) .

Finally, rewriting these formulas in terms of p and q we arrive at the expressions
for the functions f I

1 and f I
0 appearing in Thm. 1.2.

5.3.2. Regime II. We recall that here we have σ1 = 0. The function σ0 can be
found by expanding the function F−(σ′, σ′′) to order N0, that yields

σ0 = − vu

8σ′
2

+

(
σ′

2 − 1
4
)√(

σ′
2 + v2

)(
σ′

2 + u2
)

8σ′
2
(
σ′

2 + 1
4
) − [x(x − 1)σ′′

2 ]2

4
(
σ′

2 + 1
4
)√(

σ′
2 + v2

)(
σ′

2 + u2
) .

To obtain an explicit expression for σ0 in terms of y = y(x), one can use the
expression (5.16) for σ′

2. Taking into account (see (5.26)) that

∂yx =
2y(y + 1)

(
4vuy3 − (v − u)2 [3y2 + 3y − (v + u)2 + 1

] )
(2uy + u − v)2(2vy + v − u)2

one can also express σ′′
2 in terms of y and hence find σ0 as a function of y.

Let us now consider the function log PN,M,L(x−1). As in the symmetric case,
for log PN,M,L(1) we have the expansion (4.38), where f2(1) is given by (5.10), and
the values f1(1) and f0(1) are given by

f1(1) = −1
2

{
(p + 1) log(p + 1) + (q + 1) log(q + 1) − p log p − q log q

}
, (5.34)
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and

f0(1) = − 1
24 log (p + 1)(q + 1)

pq
− 1

12 log p + q + 1
p + q

+ ζ ′(−1) + log
√

2π, (5.35)

respectively. These values can be used to construct the expansion (4.41) where the
functions f1 and f0 can be found from σ1 and σ0 by the usual formulas (4.36) and
(4.37). As for the function f1, since σ1 = 0, we just repeat the calculation from the
symmetric case, now using (5.34) to fix the integration constant, that yields

f1 = 1
2 {log x + p log p − (p + 1) log(p + 1) + q log q − (q + 1) log(q + 1)} .

As for function f0, one can perform the integration (4.37) by changing the integra-
tion variable x 7→ y, similarly to the case of the function f2. The calculation of f0
appears to be notably involved, the final result reads

f0 = 1
8

{
log y + log(y + 1) − 2 log(2vy + v − u)

− 2 log(2uy + u − v) + 3 log
(
y2 + (1 − 4vu)y + (v − u)2)

+ 1
3 log

(
4vuy3 − (v − u)2 [3y2 + 3y − (v + u)2 + 1

] )}
+ C̃0.

The constant of integration can be fixed by computing the value at x = 1, or
y = u + v − 1, and we get

f0
∣∣
y=u+v−1 = 1

12 log (2v − 1)(2u − 1)(v + u − 1)
v + u

+ C̃0.

Comparison with (5.35) gives

C̃0 = − 1
24 log

(
16p(1 + p)q(1 + q)

)
+ ζ ′(−1) + log

√
2π.

In total, we arrive at the functions f II
1 and f II

0 appearing in Thm. 1.2, which is now
finally proven.

6. Conclusion

In this paper, we have studied the five-vertex model on a rectangular domain
with scalar-product boundary conditions. Relying on the connection between the
partition function of the model and the sixth Painlevé equation, we have derived
the expansion of the free energy in the limit where the size of the domain tends to
infinity. The key advantage of this approach lies in its capability to provide not
only the leading term of such an expansion, but also sub-leading corrections. All
terms of the expansion can be computed recursively. Here, we limit ourselves by
explicit expressions to the order of a constant (see Thms. 1.1 and 1.2).

Our results reveal an interesting feature: in the case of a rectangular domain,
there is no Regime III, in other words, one phase transition disappears. To gain a
better understanding of this phenomenon, we have generated several configurations
of the model numerically. In order to ensure sampling from the correct probability
distribution, we resorted to the Coupling From the Past Algorithm [41,42]. For the
simulation we use w1 = w3 = w4 = 1 and w5 = w6 = 1/

√
x (see the comment at

the end of Sect. 1.1 and the discussion in Sect. 2.1). Examples of configurations are
presented in Fig. 6 (square domain) and Fig. 7 (rectangular domain). Numerical
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Figure 6. Configurations of the five-vertex model at
√

x = 0.24
(left) and

√
x = 0.3 (right) on a ‘square’ domain with N = 80,

M = 200, and L = 201. On the left picture the two disordered
regions are separated by a region of the anti-ferroelectric order.
On the right picture these two disordered regions merge with each
other.

Figure 7. A configuration of the five-vertex model at
√

x = 0.01
on a rectangular domain with N = 60, M = 150, and L = 225.
The disordered region does not split, and there is no region of the
anti-ferroelectric order.

simulation clearly shows the distinction in the behavior of the model for the square
and rectangular domains.

Specifically, for a square domain (where ϵ = M −L+1 is of O(1) as N, M, L →
∞) if x > x−1

c , then there exists a single disordered region. For x = 1, which is
known as the free-fermion point of the five-vertex model, the configurations are
described by random boxed plane partitions and the disordered region has a form
of the ellipse [43]. In numerical simulations, we have been interested in the values
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of x slightly above and below the critical value x = x−1
c separating Regime II and

Regime III, according to Thm. 1.1. Pictures of Fig. 6 show typical configurations
for a ‘square’ domain with N = 80, M = 200, and L = 201. In this geometry the
phase transition between Regime III and Regime II occurs at 1/

√
xc ≈ 0.25. On the

left picture where
√

x = 0.24, which corresponds to the Regime III, one can see two
disordered regions separated by a region with the anti-ferroelectric order. On the
right picture

√
x = 0.3, which corresponds to the Regime II, these two disordered

regions merge with each other and we observe just a single disordered region.
Based on this simple illustration one can conclude, that the phase transition

occurring at x = x−1
c corresponds to the split of the disordered region into two

distinct parts and hence it resembles the “merger transition” studied in [28]. This
interpretation also aligns perfectly with the results of [12]. It is useful also to
mention that as x → 0 both disordered regions shrink down and the model falls
into the anti-ferroelectric ground state (see Fig. 5).

On the other hand, in the case of a rectangular domain, the disordered region
remains connected and the split does not occur. The picture of Fig. 7 shows an
example of configuration for a very small value (as small as the algorithm has
allowed us to produce the picture for a reasonable amount of computing time)
of the parameter

√
x = 0.01 for the rectangle domain with N = 60, M = 150,

and L = 225. The disordered region changes its shape from the ellipse (which
occurs at x = 1) but one can observe no signal of splitting it on two (or whatever)
regions. Thus, one can conclude that the disordered region remains connected as x
decreases. On the contrary to the case of the square domain, there is no analogue
of the anti-ferroelectric ground state, and as a consequence, the disordered region
does not disappear as x → 0 [34].

We end up by a brief discussion of the phase transition between Regime I and
Regime II at x = xc, which take place for both rectangular and square shaped
domains. This transition can be characterized by disappearance of the disordered
region in the center of the domain as the parameter x increases from x < xc (Regime
II) to x > xc (Regime I). It is clear, that the dominance of the b-weight vertices
(see also discussion in Sect. 2.1) that occurs for large x cannot be spoiled by the
geometry of the domain. One could expect to see this in numerical simulations, but
unfortunately for large x, especially for x > xc, the methods such as used above
for small x are not able to produce a configuration for sufficiently large domains in
a reasonable time. It definitely deserves further study how various algorithms can
be adapted to produce meaningful pictures at large sizes of the domain.
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