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Nickel (Ni) is a magnetic transition metal with two allotropic phases, stable face-centered cubic (FCC) and
metastable hexagonal close-packed (HCP), widely used in structural applications. Magnetism affects many me-
chanical and defect properties, but spin-polarized density functional theory (DFT) calculations are computation-
ally inefficient for studying material behavior requiring large system sizes and/or long simulation times. Here
we develop a “magnetism-hidden” machine-learning Deep Potential (DP) model for Ni without a descriptor for
magnetic moments, using training datasets derived from spin-polarized DFT calculations. The “magnetism-
hidden” DP-Ni model exhibits high transferability and representability for a wide-range of FCC and HCP prop-
erties, including (finite-temperature) lattice parameters, elastic constants, phonon spectra, and many defects. As
an example of its applicability, we investigate the Ni FCC-HCP allotropic phase transition under (high-stress)
uniaxial tensile loading. The DP model for magnetic Ni facilitates accurate large-scale atomistic simulations
for complex mechanical behavior and serves as a foundation for developing interatomic potentials for Ni-based
superalloys and other multi-principal component alloys.

I. INTRODUCTION

Although most applications of nickel (a soft ferromagnet
below 627 K) do not focus on their magnetic properties, many
of its non-magnetic properties depend sensitively on its elec-
tronic spin degrees of freedom. Inclusion of magnetic de-
grees of freedom impacts the ab initio prediction of phase
stability [1, 2], vacancy and self-interstitial formation ener-
gies [3–6], elastic moduli [1, 7], stacking fault energies [8–
11], and mechanical properties. For example, Ni elastic con-
stants, calculated via density-functional theory (DFT) with-
out spin polarization lead to errors of ∼23% [7] compared
with the experiment. Similarly, stacking fault energies calcu-
lated with and without spin degrees of freedom differ by 24-
50% [8, 9]. Hence, magnetism is important for a wide range
of non-magnetic (structural) properties. Here, we propose an
approach to developing an interatomic potential for the struc-
tural and thermodynamic properties of magnetic metals and
their crystal defects and implement it for the industrially im-
portant metal, nickel. We do this with a machine learning
(ML) potential framework which is trained against DFT cal-
culations that include magnetic degrees of freedom.

While DFT provides a highly accurate, quantum
mechanics-based approach to understanding the struc-
ture and properties of Ni, its applicability to the properties
of defects and finite temperature behavior is limited by
the large computational demands required for reasonable
system size and time scales. DFT calculations involving
103−5 spin-polarized atoms and time scale > 1 nanosec-
ond are heroic. Empirical or semi-empirical interatomic
potentials are routinely employed to enable the simulation
of the properties of metals and their defects on these scales.
Over the past fifty years, dozens of Ni potentials have been
developed (e.g., see [12, 13]) and achieved some successes in
explaining experimental observations and predicting material
behavior. However, the transferability and accuracy of these
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potentials are limited by their fixed functional form; this
concern is particularly acute in determining the properties
of non-equilibrium structures, such as, hexagonal close-
packed (HCP) Ni. We benchmarked the basic properties
of face-centered cubic (FCC) and HCP Ni using various
interatomic potentials, including 8 embedded-atom method
(EAM) and 10 modified embedded-atom method (MEAM)
potentials (see Supplementary Table S1). All potentials
display significant discrepancies in simple properties, such
as the elastic constants (Cij) of metastable HCP Ni (possibly
due to the limited availability of fitting data); these deviations
can be as high as 41% (see C13, C33, C44 in Table S1). This
makes accurate prediction of the mechanical (elastic and
plastic) deformation of HCP Ni (as well as other non-FCC
phases) and phase transitions in Ni using these potentials
unreliable. Indeed, allotropic phases significantly impact the
strength/toughness of many metals [14–17]. A recent exam-
ple of such transformations was seen in heavily deformed,
nanocrystalline (grain refined) Ni [16, 18]; at a grain size
of ∼17 nm, 5-10% of grains transform to HCP (HCP Ni is
harder and stronger than FCC Ni) [16]. HCP Ni is also widely
observed in thin hetero-epitaxial films [19, 20]. HCP nickel
formation thermodynamics and its transformation behavior
are unclear [14, 16, 18, 19].

One approach to achieving accurate, efficient predictions
is through atomistic simulations employing machine-learning
based interatomic potentials (see [21] for a recent exam-
ple for titanium). Application of a similar ML approach for
Ni [22, 23], that does not include spin polarization, has proven
unreliable for several important properties (see Section II).
One strategy for developing ML potentials that capture the
influence of magnetism moments is the incorporation of ex-
plicit descriptors of the magnetic degrees of freedom within
the ML potential. For example, incorporating magnetic mo-
ments in the ML potentials (e.g., Fe and Mn-containing sys-
tems) greatly improves the accuracy of the prediction of ther-
modynamic and structural properties of magnetic metals [24–
31]. However, this implementation necessitates, larger, more
costly, DFT training datasets, and increases the complexity
of ML potential training and generates ML potentials that are
more computationally costly to use.
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Here, we develop ML potentials that incorporate the effects
of magnetism without an explicit description of the magnetic
degrees of freedom; such potentials are applicable to the ro-
bust prediction of non-magnetic properties. Specifically, we
develop an ML deep potential (DP) [32, 33] for the impor-
tant, magnetic metal Ni appropriate for accurate description
of finite temperature and defect (point defect, surface ener-
gies, stacking fault, dislocation core, grain boundary) proper-
ties and phase transformations. The new potential provides a
robust, predictive tool for the study of Ni and its mechanical
behavior.

II. RESULTS AND DISCUSSION

The DP model for Ni (DP-Ni) is trained via a supervised
ML technique. The training labels include atom coordinates,
total energy, atomic forces, and virial tensors, obtained from
spin-polarized DFT calculations. We employ the DP-GEN
framework [32] along with the Deep Potential Smooth Edition
(DeepPot-SE) [34] to conduct the training. A “specialization”
strategy [21] is adopted to further improve the accuracy. Ini-
tially, distorted 2 × 2 × 2 body-centered cubic (BCC), FCC,
and HCP structures are input into finite-temperature ab initio
molecular dynamics (AIMD) simulations to generate a start-
ing training dataset (108 entries). During the DP-GEN loop,
exploration involves DP-based MD (DPMD) simulations on
bulk and surface structures for several temperatures and pres-
sures, followed by DFT calculations on selected configura-
tions. The resultant DFT data is then incorporated into the
training dataset to refine the DP models. Convergence of the
DP-GEN loop is achieved when the agreement between DP
and DFT calculations for atomic forces reaches a predeter-
mined threshold.

Following the DP-GEN loop, the resulting DP model can
accurately represent the general properties of FCC and HCP
Ni albeit with some discrepancies in the cohesive energy curve
compared to DFT results. To address this, specialized train-
ing datasets are generated from selected configurations along
the cohesive energy line. These specialized training datasets
are then merged with those generated from the DP-GEN loop.
The combined training dataset used for potential development
consists of 2,020 entries, all derived from spin-polarized DFT
calculations. For a comprehensive discussion on the train-
ing process and training data generation, please refer to Sec-
tion IV C.

We systematically benchmark a wide range of crystal and
defect properties of DP-Ni; in particular, we examine equa-
tions of states, elastic constants, finite temperature proper-
ties, phonon spectra, point defect energies, surface properties,
stacking fault energies, plastic deformation, dislocation disso-
ciation, and grain boundary energies. We compare the DP-Ni
model performance against several of the most widely-used
and best-performed empirical/semi-empirical interatomic po-
tentials, including the EAM potential of Mishin et al. [35], the
MEAM 2021 potential of Vita et al. [36], the MEAM 2015
potential of Ko et al. [37], and the ML qSNAP potential by
Zuo et al [22]. These benchmarks provide a comprehensive

assessment of the performance of our new DP-Ni model with
other widely-used interatomic potentials for Ni.

A. Basic Crystal Properties

Table I compares a wide range of crystalline Ni proper-
ties with DFT calculations, experiments, DP-Ni, and other
interatomic potentials. The DP-Ni shows excellent agree-
ment with both DFT and experimental values for the stable
FCC and metastable HCP crystals. The energy difference be-
tween DP-Ni and DFT is within 3 meV/atom for both FCC
and HCP Ni, while the lattice parameter difference between
DP and DFT/experiment is within 0.004 Å. The EAM and
MEAM potentials also exhibit accurate lattice parameters for
both phases, with discrepancies less than 2% when compared
to DFT and experimental results. The DP-Ni model shows a
slight deviation of the cohesive energy from the experimen-
tal data but accurately reproduces the DFT value for FCC
Ni (this is likely associated with issues related to the DFT
data to which DP-Ni is trained). EAM and MEAM 2015 po-
tentials perfectly match the experimental cohesive energy of
4.450 eV/atom as required in their fitting procedure, while
MEAM 2021 underestimates it by ∼11%. In contrast, qS-
NAP potential exhibits a large deviation ∼30% from the ex-
perimental data. DP-Ni yields cohesive energy that is almost
identical to the DFT prediction for HCP Ni. Similarly, EAM
and MEAM 2015 yield results close to the experimental mea-
surements, while the other interatomic potentials exhibit sig-
nificant deviations from both DFT and experimental results.

Elastic constants are fundamental and essential material
properties reflecting mechanical stability and stiffness. The
largest discrepancy between DP and DFT/experiment for DP
FCC Ni is for C44 (2.3%)/C11 (6.8%); all other interatomic
potentials also accurately reproduce the elastic constants of
FCC Ni (except for a slight underestimation of C44 for the
MEAM potentials). For HCP Ni, the predicted Cijs from DFT
and DP yield mechanical stability according to the Born crite-
ria [43]; i.e., C11−|C12| > 0, (C11+C12)C33−2C2

13 > 0 and
C44 > 0. DP-Ni accurately reproduces the DFT elastic con-
stants of HCP Ni, with a maximum deviation at C12 (9.6%).
On the other hand, all other potentials show large deviations in
the elastic constants of HCP Ni as compared with DFT results;
particularly for EAM at C13 (37.4%), C33 (35.5%), and C44

(15.9%), and the other three potentials at C44 31.5%, 39.1%,
39.1% for MEAM 2021, MEAM 2015, and qSNAP, respec-
tively. The elastic constants measure the (stress) response of
the crystal to small strains and are indicative of sensitivity to
lattice distortions. The training data for the DP-Ni includes
many such locally distorted structures (see Section IV C). No
HCP crystal distortions are included in the fitting data of the
classical and ML qSNAP potentials.

B. Phonon Spectra

In addition to the Born mechanical stability criteria and co-
hesive energies, phonon spectra [45] also characterize crys-
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TABLE I. Comparison of several crystal properties obtained from DFT, experiment (Expt.), and various interatomic potentials (DP-Ni,
EAM [35], MEAM 2021 [36], MEAM 2015 [37], qSNAP [22]); i.e., lattice parameters (a), bulk energies (E), cohesive energies (Ecoh), elastic
constants (Cij) of FCC and HCP Ni, and FCC melting point. Bold numbers indicate deviations of > 15% versus DFT and/or experiment.

Structure Property DFT Expt. DP EAM MEAM 2021 MEAM 2015 qSNAP
FCC a (Å) 3.517 3.520a 3.518 3.520 3.519 3.521 3.521

E (eV/atom) -5.467 - -5.466 -4.450 -3.952 -4.450 -5.780
Ecoh (eV/atom) 4.865 4.450b 4.862 4.450 3.952 4.450 5.780

C11 (GPa) 275.7 261.2c 278.9 247.9 278.3 260.4 267.5
C12 (GPa) 156.0 150.8c 158.1 147.8 169.8 148.6 155.3
C44 (GPa) 130.7 131.7c 127.7 124.8 112.5 111.1 125.7
Tm (K) - 1728d 1635 - - 1892 -

HCP a (Å) 2.484 2.487e 2.485 2.483 2.490 2.487 2.491
c/a 1.643 1.645e 1.641 1.619 1.630 1.642 1.643

E (eV/atom) -5.443 - -5.446 -4.430 -3.956 -4.440 -5.772
Ecoh (eV/atom) 4.841 4.426f 4.842 4.430 3.956 4.440 5.772

C11 (GPa) 312.0 - 311.4 302.2 327.6 314.7 334.0
C12 (GPa) 142.3 - 156.0 147.6 159.5 133.8 144.0
C13 (GPa) 122.8 - 114.6 76.9 131.9 108.3 109.1
C33 (GPa) 330.7 - 344.7 213.3 355.6 336.0 369.2
C44 (GPa) 55.5 - 54.6 64.3 73.0 77.2 77.2

a Lattice constants at 6 K [38]. b [39]. c Experimental elastic constants at 0 K extrapolated from low T data [40]. d [41]. e Lattice constants a and c/a ratio at
room temperature [42]. f Ecoh of FCC based on the DFT energy difference between FCC and HCP.

FIG. 1. Comparison of predicted and measured phonon spectra for (a) FCC and (b) HCP. The experimental values are from FCC Ni neutron
diffraction data at 298 K [44], and the HCP DFT data is from this work.

tal stability. Figure 1 shows the phonon spectra of both FCC
and HCP Ni obtained from experiment [44], DFT, DP-Ni,
and other interatomic potentials. Both FCC and HCP Ni are
inherently stable (no imaginary frequencies). However, no-
table variations in accuracy are observed amongst the differ-
ent potentials. DP-Ni demonstrates outstanding performance
in both FCC and HCP crystal structures, reproducing all fre-
quencies across the phonon spectra with high accuracy. Mi-
nor deviations are observed for qSNAP potential (particularly
the HCP). Other classical potentials exhibit evident deviations
from the DFT and/or experimental data at symmetry points.

C. FCC Surface Energies and Point Defects

In Table II, the unrelaxed energies of low Miller index sur-
faces calculated by DP-Ni are compared to values obtained
from DFT, experiments, and other potentials. Our DFT re-
sults are consistent with both the values and ordering of pre-
vious DFT calculations [50]. DFT predicts that the {111}
close-packed plane has the lowest surface energy, whilst the
{210} surface is the highest. All interatomic potentials suc-
cessfully reproduce the lowest and highest energy planes. DP-
Ni results show excellent agreement with DFT, exhibiting a
maximum error of 2.2% for the {221} surface. MEAM 2021
and qSNAP potentials also provide accurate predictions (er-
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TABLE II. The calculated unrelaxed surface energies (Es), vacancy formation energies (Ef
v), interstitial formation energies (Ef

i ), and unstable
(γusf ) and stable stacking fault energies (γsf ), as well as grain boundary energies of low Miller index tilt boundaries for FCC Ni using DP-Ni, in
comparison with DFT results, available experimental data, and selected interatomic potentials. ⊛ indicates that the initial interstitial structure
is not stable and will undergo a transformation to the ⟨100⟩ dumbbell. Bold numbers indicate > 15% deviations from DFT/Expt.

Property DFT Expt. DP EAM MEAM 2021 MEAM 2015 qSNAP
Es{111} (J/m2) 1.919

2.240a

1.958 1.636 1.815 1.630 1.938
Es{221} (J/m2) 2.210 2.259 1.924 2.164 1.965 2.230
Es{110} (J/m2) 2.343 2.357 2.056 2.367 2.172 2.356
Es{211} (J/m2) 2.279 2.323 1.970 2.222 2.021 2.280
Es{210} (J/m2) 2.463 2.488 2.181 2.526 2.321 2.472
Es{100} (J/m2) 2.239 2.223 1.884 2.220 2.088 2.254

Ef
v (eV) 1.424 1.400–1.800b 1.236 1.598 1.539 1.509 1.465

Ef
i ⟨100⟩ dumbbell (eV) 4.048 - 4.184 4.885c 4.253 4.531 4.118

Ef
i ⟨111⟩ dumbbell (eV) 4.664 - 4.892 6.920 4.765 5.508 4.751

Ef
i ⟨110⟩ dumbbell (eV) 4.828 - 4.614 5.786 4.664 5.103 4.769
Ef

i Crowdion (eV) 4.826 - 4.614 5.114 4.669 5.112 4.788
Ef

i Octahedral (eV) 4.229 - 4.421 ⊛ 4.465 ⊛ 4.460
Ef

i Tetrahedral (eV) 4.670 - 4.986 6.920 5.085 5.508 ⊛

γusf ⟨110⟩ (mJ/m2) 766.6 - 801.6 924.3 746.9 898.2 789.9
γusf ⟨112⟩ (mJ/m2) 280.4 - 301.9 365.6 285.4 423.6 275.5
γsf ⟨112⟩ (mJ/m2) 135.9 125d 126.8 125.2 -26.9 60.0 52.2

Σ3 [11̄0] (111) (mJ/m2) 68.03 - 63.50 63.46 -13.45 30.09 26.53
Σ3 [11̄0] (112) (mJ/m2) 896.03 - 893.67 1064.03 782.53 960.66 908.44
Σ5 [100] (02̄1) (mJ/m2) 1288.75 - 1310.72 1564.08 1372.11 1421.66 1339.00
Σ7 [111] (32̄1̄) (mJ/m2) 1234.31 - 1212.57 1471.91 1210.14 1395.51 1286.36
Σ9 [11̄0] (221̄) (mJ/m2) 1120.58 - 1103.69 1368.13 1148.89 1258.83 1157.30
Σ11 [11̄0] (113) (mJ/m2) 454.23 - 440.81 531.15 420.36 518.89 464.21

a Polycrystalline average [46]. b [47]. c Variant ⟨100⟩ dumbbell. d [48, 49].

rors within 6%). However, EAM and MEAM 2015 potentials
slightly underestimate surface energies by 11.4%-15.9% and
5.8%-15.1%, respectively. The quoted experimental surface
2.240 J/m2 is a polycrystalline average [46]. The vacancy
formation energy (Ef

v) from DP-Ni is ∼0.124 eV which is
13.2% lower than the DFT value. All other potentials yield
higher values than the DFT Ef

v result.
The FCC structure exhibits six types of self-interstitial

structures, namely the ⟨100⟩ dumbbell, ⟨111⟩ dumbbell, ⟨110⟩
dumbbell, crowdion, octahedral, and tetrahedral (see Supple-
mentary Fig. S1). The DFT calculations show that ⟨100⟩
dumbbell has the lowest formation energy in FCC, followed
by octahedral, ⟨111⟩ dumbbell, tetrahedral, crowdion and
⟨110⟩ dumbbell. Note that the crowdion and ⟨110⟩ dumb-
bell energies are nearly equivalent, and relaxed configura-
tions exhibit a slight difference. This energy ordering is
consistent with other results [51–53]. DP-Ni captures all of
the metastable configurations with a maximum energy dis-
crepancy of < 6.8% (tetrahedral) compared to DFT results.
However, a small inconsistency with DFT is the altered en-
ergy ordering sequence for DP, which is (from low to high):
⟨100⟩ dumbbell, octahedral, crowdion, ⟨110⟩ dumbbell, ⟨111⟩
dumbbell and tetrahedral. Almost all EAM potential self-
interstitial energies are much higher than the DFT values, the
octahedral interstitial is unstable, and the EAM ⟨100⟩ dumb-

FIG. 2. The FCC Ni cohesive energy as a function of lattice parame-
ter from DFT and several potentials.

bell is short. The MEAM 2021 captures all six self-interstitial
configurations with small energy deviation compared to DFT,
but the energy ordering is quite different. The ⟨111⟩ dumb-
bell and tetrahedral energies from MEAM 2015 are nearly
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FIG. 3. The plane decohesion energy (γd - bright data points) and stress (σ - dim data points) as a function of plane separation distance (d) for
(a) {100}, (b) {110}, (c) {111} and (d) {112} planes.

the same after relaxation; the octahedral structure transforms
into a ⟨100⟩ dumbbell. The qSNAP potential accurately re-
produces all self-interstitial formation energies; however, the
tetrahedral interstitial transforms to a ⟨100⟩ dumbbell.

Note that the training datasets for the DP-Ni potential do
not include vacancy or self-interstitial configurations. This
implies that DP-Ni accurately captures the essential character-
istics of many defects in Ni even though such configurations
are not included in the training data. This underscores the ver-
satility and reliability of the DP-Ni model in predicting defect
properties.

D. Cohesive and Decohesive Energy

The relationship between the cohesive energy and atomic
spacing (cohesion curves) is critical for a wide range of prop-
erties. Figure 2 shows the cohesive curves for FCC Ni at
0 K, determined from DFT and interatomic potentials. The
DFT, DP-Ni, MEAM 2021, and MEAM 2015 curves are
smooth across the entire range. The DP-Ni and DFT curves
nearly overlap, while the MEAM 2015 deviates from the DFT
value near the equilibrium lattice parameter. In contrast, the
MEAM 2021 results show large deviations from the DFT data
in the crucial 0.5a0 to 2a0 range. The EAM curve remains

continuous at large atom separations but exhibits discontinu-
ities under large compression, with deviations from the DFT
curve in the 1.25− 2.0a0 range. The qSNAP potential yields
discontinuous and inaccurate cohesive energy curves and its
equilibrium FCC Ni cohesive energy is substantially different
from the DFT results (see Table I). This indicates that the qS-
NAP potential may introduce unexpected and significant er-
rors in mechanical properties.

Examining the (uniaxial) surface decohesion energy and its
gradient (stress) provides a deeper understanding of the en-
ergy landscape and forces involved in atomic plane separa-
tion; this is important for predicting and simulating fracture.
Figure 3 displays the surface decohesion energy and its gra-
dient for four crystallographic planes using DFT and inter-
atomic potentials. No plane separation data is explicitly in-
cluded in the DFT training datasets of DP-Ni. The DP-Ni
model demonstrates excellent predictability compared with
DFT for all planes. The MEAM 2021 and qSNAP potentials
also show relatively good agreement with DFT data. How-
ever, significant deviations in energy and stress are observed
for separation distance ranging from 0.5 < d < 3 Å for
the {100}, {110}, {112} planes and 0.5 < d < 2.5 Å for
the {111} plane. Additionally, the peak stress position for
qSNAP is shifted to larger d (∼ 1 Å). The EAM potential
exhibits discontinuities for {100}, {110}, {111} planes for
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FIG. 4. Stress-strain curves for (a) hydrostatic, (b) [001], (c) [011], (d) [111] uniaxial tension and (e) (111)[11̄0], (111)[1̄10], (f) (111)[1̄1̄2],
(111)[112̄] shear loading.

1.5 < d < 3.5 Å, leading to unphysical fluctuating decohe-
sion stresses. The EAM decohesion energies are much smaller
than DFT for d > 1.5 Å. Peak stress values for the EAM po-
tential are shifted to smaller d. The MEAM 2015 potential
yields decohesion results largely in agreement with DFT re-
sults except for abrupt jumps at d ∼ 2.5 Å.

E. Ideal Strength

Smooth cohesive and decohesive energies are important for
predicting (ideal) strength. Ideal strength is the maximum
stress that a perfect material can withstand before undergo-
ing plastic deformation or fracture [54]. This property can be
identified through the stress-strain curve (a valuable tool for
material application and design). We initially assess the ideal
strength of FCC Ni under tensile and shear loading using DFT
calculations; see Fig. 4 for the computed stress as a function of
applied strain in various directions. At low strains, the curves
are linear (linear elastic), while at higher strains the deviation
from the linear elastic response is evident; the ideal strength
(σideal) corresponds to the maximum stress or the stress at

the peak strain (ϵideal). The stress-strain response is strongly
anisotropic. For example, the σideal and ϵideal differ consid-
erably between the [001] and [011] directions under uniaxial
tension. Additionally, the (111)⟨112⟩ directions under shear
stress show obvious “stiff” and “soft” tendencies. Overall, Ni
shows σideal = 29.0 GPa and ϵideal = 0.52 under hydrostatic
tension while σideal = 35.3 GPa and ϵideal = 0.41 in [001]
uniaxial tension and σideal = 15.9 GPa and ϵideal = 0.28 in
(111)[1̄1̄2] shear.

Unlike elastic constants, ideal strength calculations involve
significant (rather than infinitesimal) deformation and there-
fore represent considerable demands on the ability of a poten-
tial to accurately describe deformation. We conduct a com-
parative analysis of stress-strain relationships among various
interatomic potentials using static calculations. The DP-Ni is
in excellent agreement with the DFT results, especially for
hydrostatic and [111] uniaxial tension, as well as (111)[11̄0],
(111)[1̄10] and (111)[112̄] shear. The largest deviations ob-
served are 10.4% and 9.3% in the non-linear region for [011]
tension and (111)[1̄1̄2] shear, respectively. The DP-Ni also
reproduces the ϵideal in all cases. MEAM 2021 performs well
in shear but overestimates the ideal strength and strain in hy-
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(a)

(c) (d)

(b)

FIG. 5. Finite-temperature properties of FCC Ni calculated from DFT, DP-Ni and other potentials. (a) lattice parameters and elastic constants
(b) C11, (c) C12 and (d) C44. The experimental values of lattice parameters are from [55], while the DFT and experimental data of elastic
constants are from [56] and [57], respectively. The DP melting point TDP

m is indicated by vertical dotted lines (∼ 90 K lower than the experiment
- termination of the temperature axis on the plots)

drostatic and uniaxial tension. Similarly, qSNAP shows good
performance in shear but overestimates σideal and underesti-
mates ϵideal under hydrostatic and most uniaxial tension cases.
The EAM model shows large deviations compared to DFT re-
sults, with a discrepancy of 58.7% under [011] tension. In
comparison with DFT, MEAM 2015 exhibits minor discrep-
ancies in hydrostatic but overestimates the ideal strength in
most uniaxial tension and shear cases.

F. Finite Temperature Properties

Nickel and Nickel-based alloys are widely used at elevated
temperatures, such as in superalloy turbine blades, hence we
also focus on the finite temperature properties using DP-Ni
in MD simulations. Figure 5 shows the variation of the FCC
Ni lattice parameter and elastic constants as compared with
experimental measurements [55] and simulations with other
interatomic potentials from 0 to 1700 K. The DP-Ni lattice

parameter is in good agreement with experimental results at
high temperatures (above 600 K) [55] and the thermal expan-
sion coefficient (slope) is similar to the experimental value.
The DP-Ni melting point for Ni is 1635 ± 5 K (Table I), ob-
tained using the two-phase method [58], is ∼5.4% lower than
the experimental value (1728 K). Figures 5(b)-(d) show the
temperature dependence of the elastic constants Cij from DFT
within the quasi-harmonic approximation [56] and various po-
tentials. Like the DFT and experimental results [56, 57], the
DP-Ni elastic constants decrease continuously with temper-
ature. Other potentials reveal different trends or profiles as
compared with DFT/experiment. The EAM data shows an in-
crease of Cij with temperature below 400 K, followed by a
continuous decrease at higher temperatures. This abnormal
elastic constant behavior is also observed for MEAM 2021
and qSNAP for C12. On the other hand, the MEAM 2015
elastic constants results show a similar (decreasing) trend as
the DFT/experiment results, although the discrepancies in the
magnitude can be significant, e.g., the discrepancy is > 15%
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(c)

FIG. 6. Generalized stacking fault energy (GSFE) lines (γ-lines) along the (a) ⟨110⟩/2 and (b) ⟨112⟩/2 directions, as well as (c) GSFE
surface (γ-surface) on the loosest packing {111} planes predicted by DP-Ni. The solid red and green arrows represent the slip path along
⟨112⟩/2 and ⟨110⟩/2 directions respectively, and dashed arrows show the corresponding dissociated slip paths. The symbols of + and ×
represent the positions of stable and unstable stacking faults.

for C12 for T > 700 K. The present results demonstrate
that most potentials are unreliable for predicting finite tem-
perature behavior. This is likely because they were fitted
to low temperature (and/or limited finite temperature) data,
while the DP method incorporates finite-temperature-like per-
turbations in the training set. The discrepancies between the
finite-temperature DFT and experimental results may be at-
tributed to several factors. These include issues related to the
exchange-correlation function [56] and approximations em-
ployed in extracting finite temperature results from DFT cal-
culations (e.g., the quasi-harmonic approximation).

G. Stacking Fault and Dislocation Core

The generalized stacking fault energy (GSFE) is a useful,
surrogate property for predicting the plastic response of the
material, i.e., dislocation and twinning properties [59]. The
GSFE represents the variation in the system energy required
for the slip of a part of the crystal over the other along par-
ticular crystal lattice planes under shear, leading to the for-
mation of stacking faults. The variation of the system en-
ergy accompanying the translation/slip along particular direc-
tions on a slip plane is referred to as the γ-line [60]. The
maximum energy along the γ-line corresponds to the unstable
stacking fault energy (γusf ), which represents the barrier for
dislocation nucleation at stress concentrations such as crack
tips. A metastable point on the γ-line, referred to as γsf , rep-
resents a dislocation dissociation energy. The complete two-
dimensional plane characterizing all possible slip directions,
γ-lines, is the γ-plane or γ-surface [60].

Figures 6(a)-(b) show the γ-lines along the ⟨110⟩/2 and
⟨112⟩/2 directions on the {111} plane (most dense plane in
FCC) determined from DFT and several interatomic poten-
tials. The only unstable stacking fault is along the ⟨110⟩/2
-direction with a γusf of 766.6 mJ/m2 at half of the Burger
vector b, ⟨110⟩/2, consistent with previous DFT calcula-
tions [61]. In the ⟨112⟩/2 slip direction, a stable stacking fault
occurs at b/3 (b=⟨112⟩/2) while an unstable stacking fault is
present at b/6. Although a peak appears at 2b/3 in the γ-

line, it is irrelevant because this barrier, 1168.4 mJ/m2, is too
high to allow slip. The DFT calculations yield γusf = 280.4
mJ/m2 and γsf = 135.9 mJ/m2. The γsf is in good agreement
with experimental results (125 mJ/m2 [48, 49]) and previous
DFT values ranging from 110 to 145 mJ/m2 [61, 62]. Fig-
ures 6 (a) and (b) also show the γ-line results from DP-Ni and
other interatomic potentials. All potentials reproduce the gen-
eral shape of the γ-lines from DFT except for MEAM 2015,
which shows a minimum value at b/2 along ⟨110⟩/2 direc-
tion. Table II lists the calculated γusf and γsf values. DP-Ni
reproduces the different stacking fault energies well compared
with DFT results, with deviations of only 4.6% for γusf in
the ⟨110⟩/2 slip, 7.6% for γusf and 6.7% for γsf along the
⟨112⟩/2 slip. (Notably, there is no stacking fault data in the
DP-Ni training datasets.) In contrast, the MEAM 2021 and
qSNAP potentials capture the γusf well in both ⟨110⟩/2 and
⟨112⟩/2 directions, but significantly underestimate the γsf ,
particularly for MEAM 2021 which yields an unphysical neg-
ative γsf . While the EAM potential accurately describes the
γsf , it overestimates both γusf in ⟨110⟩/2 and ⟨112⟩/2 direc-
tions. The MEAM 2015 potential fails to accurately describe
γusf and γsf . The unrealistic empirical and ML qSNAP poten-
tial GSFE results suggest that these potentials will struggle to
correctly simulate dislocation nucleation and dislocation dis-
sociation behavior. The minimum energy path is indicated on
the DP-Ni {111} γ-surface (Fig. 6(c)), which exhibits the ex-
pected symmetry from geometry. The minimum energy path
for dislocation dissociation is expected to follow the green or
red dashed arrows (Fig. 6(c)), indicating that a full dislocation
⟨110⟩/2 or ⟨112⟩/2 will dissociate into Schockley partials on
the {111} plane - as expected.

The Shockley partial dislocations are separated by a stable
stacking fault [66]. Accurate modeling of dislocation dissoci-
ation and partial dislocation separation is essential for precise
modeling of plastic behavior. We simulate this dissociation by
inserting a perfect ⟨110⟩/2 edge and screw dislocation at the
center of a 301× 17× 85 Å3 (the dislocation line is along the
y-direction, while the Burgers vector is in the x-direction) and
15× 302× 85 Å3 (dislocation line and Burgers vector paral-
lel the x direction) supercells with periodic boundary condi-
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FIG. 7. Dislocation core structures of two Shockley partials of ⟨110⟩/2 edge and screw dislocations in FCC Ni predicted by DP-Ni. (a) and (b)
show the atomic configurations of edge and screw dislocations visualized by OVITO [63]. The common neighbor analysis (CNA) method [64]
is utilized to distinguish the FCC (blue), HCP (yellow), and other (white) local atom stacking. The dislocation extraction algorithm (DXA) [65]
is employed to identify dislocations precisely. (c) and (d) show the corresponding differential displacement plots for (a) and (b). The partial
core separations are shown to be dedge and dscrew of 19.25 Å and 11.83 Å.

tions in the x- and y-directions, respectively. We then mini-
mize the energy (molecular statics simulation at 0 K) with DP-
Ni; the relaxed configurations are shown in Fig. 7. The edge
and screw configurations decompose into a pair of Shockley
partial dislocations with different separation distances. Dif-
ferential displacement (DD) [67] plots reveal the strain fields
around a dislocation by measuring the relative displacement
of a pair of nearest neighbor atoms. A partial dislocation con-
sists of three atoms with clockwise or counterclockwise net
chirality. In this case, the DD plots in Figs. 7(c) and (d) iden-
tify the positions of the partial dislocations. The DP-Ni par-
tial dislocation separation distances are dedge = 19.25 Å and
dscrew = 11.83 Å. Our result for the edge dislocation sepa-
ration distance aligns with weak-beam transmission electron
microscopy observations, i.e., 26±8 Å [48]. While dscrew is
not easily measured experimentally, our result of 11.83 Å is
consistent with the 12.0 Å obtained from the previous DFT
calculation [68].

H. Structures and Energies of Tilt Grain Boundaries

Grain boundaries (GB) in polycrystalline materials limit
dislocation slip and, hence, play an important role in deter-
mining strength and ductility. In this study, we investigate
several high angle symmetric tilt GBs, constructed based upon
geometry. We then identify the lowest energy GB structure by
sliding one grain relative to the other and minimizing the en-
ergy. The lowest-energy GB configurations (after relaxation
using DP-Ni) are shown in Fig. S2. The relaxed Σ3 [11̄0]
(111), Σ5 [100] (02̄1) and Σ11 [11̄0] (113) remain symmet-
ric, while Σ3 [11̄0] (112), Σ7 [111] (32̄1̄) and Σ9 [11̄0] (221̄)
relax to an asymmetric boundary structure. Table II shows
the GB energies from both DFT calculations and with sev-
eral interatomic potentials. DP-Ni accurately reproduces all
GB energies with only minor discrepancies (< 6.7%) com-
pared to the respective DFT values. Both DP-Ni and DFT
identify Σ3 [11̄0] (111) as the lowest GB energy, as reported
in most experimental observations [69]. The energy ordering
follows the pattern: Σ3 (111)< Σ11 < Σ3 (112)< Σ9 < Σ7
< Σ5. Other potentials capture the energy ordering of these
GBs but are less quantitative relative to the DFT results. EAM
accurately predicts the energy of Σ3 [11̄0] (111), but overes-
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timates other GB energies by 16.9%-22.1%. MEAM 2021,
MEAM 2015 and qSNAP roughly reproduce the energy of
low Σ GBs but drastically underestimate the energy of the im-
portant Σ3 [11̄0] (111) (by > 50%) - in fact the MEAM 2021
gives an unphysical negative value for this GB energy. Over-
all, DP-Ni reproduces all GB structures and corresponding
energies, demonstrating its potential for simulation of GB be-
havior (e.g., GB migration, deformation twinning, and discon-
nection behavior [70–72]).

I. Allotropic Transformation of Nickel under Uniaxial Tension

As a further, stringent test, on the performance of DP-Ni,
we examine the allotropic phase transformation of nickel un-
der uniaxial loading. Figure 8 shows the stress-strain rela-
tionship for Ni under uniaxial tension along the [001] crys-
tallographic direction; calculations are conducted at 0 K. The
results show a monotonic increase in stress as a function of
strain, followed by a sudden drop at a strain of ∼0.226. The
inset atomic configuration depicts the observed atomic struc-
ture at different strains, showing the strained FCC and HCP
structures. These insets indicate that the abrupt drop in the
stress corresponds to an FCC → HCP transformation. Subse-
quently, the HCP phase remains stable for an additional strain
of at least 15% (from point B). The transformation strain is
quite large compared with other strain-induced transforma-
tions [73–77]. However, such large transformation strains are
not unusual for FCC metals; e.g., see the experimental obser-
vations and theoretical calculations [78–84].

Specifically, in the case of nickel, an FCC→HCP trans-
formation was observed experimentally in nanocrystalline
(nanoscale grained) Ni subjected to large plastic strains [16,
18]. To confirm this transformation, the energy differences
(∆E) between structures at points A and B are measured, as
shown in Fig. 8. The positive ∆E obtained from both the
DP-Ni and DFT calculations suggest that the HCP structure at
point B is more stable compared to the strained FCC structures
at point A. We apply DFT to calculate the stress of the struc-
tures in the strain-stress curve from DP-Ni. As indicated by
the red squares in Fig. 8, the results from DP-Ni are very close
to those from DFT. At the allotropic transformation strain, the
energy difference between ∆EDP and ∆EDFT, is very small
(∼ 10 meV/atom), corroborating the fidelity of the DP-Ni
model. The observed crystallographic orientation relationship
between FCC and HCP structures in our study presents an
atypical case, namely, {100}FCC∥{0001}HCP and ⟨010⟩FCC∥
⟨112̄0⟩HCP. This orientation deviates from the commonly doc-
umented strain-induced FCC→HCP transformation, which is
typified by the orientation relation {111}FCC∥{0001}HCP and
⟨11̄0⟩FCC∥ ⟨112̄0⟩HCP [14, 17, 78, 85]. The present orienta-
tion relationship is associated with the very large mechanical
strains here. This orientation relationship was previously re-
ported based upon theoretical [79, 86] and experimental in-
vestigations [87] in other FCC metals. Interestingly, another
unconventional orientation relation was observed in nanocrys-
talline nickel ⟨110⟩FCC∥ ⟨12̄13̄⟩HCP [16].

III. CONCLUSION

We developed a “magnetism-hidden” machine learning
Deep Potential (DP) model for both FCC and HCP nickel,
based upon DFT calculations. The nickel DP (DP-Ni) was
trained using spin-polarized DFT calculations employing a
relatively small training dataset (see Supplementary Table
S2). Inclusion of spin polarization was found to be essen-
tial. DP-Ni achieves DFT-level accuracy in predicting a wide
range of properties for both FCC and HCP Ni, such as (finite-
temperature) lattice parameters and elastic constants, phonon
spectra, cohesive and decohesion energies/stresses, point de-
fect formation energies, stacking fault energies, and disloca-
tion and grain boundary properties. The DP-Ni results are,
overall, more reliable than predictions based upon other po-
tentials (including semi-empirical and other machine learning
potentials). DP-Ni thus serves as a promising tool for large-
scale atomistic simulations of Ni, especially for mechanical
properties. Our DP-Ni model facilitated the examination of
the allotropic FCC→HCP phase transition, wherein we iden-
tified a high critical strain and an atypical orientation relation-
ship under uniaxial tensile loading. The new DP-Ni potential
and the associated training datasets can be utilized as a foun-
dation for developing ML potential for Ni-based superalloys,
medium-entropy (FeCoNi) and high-entropy (FeCoNi-based)
alloys through methods such as the DP attention pre-training
model [88].

IV. METHODS

A. DFT Calculations

The Vienna Ab initio Simulation Package (VASP) [89,
90] is used to perform the density functional theory (DFT)
calculations using the projector augmented wave (PAW)
method [91] for generation of the training set and determining
property benchmarks. The exchange-correlation function is
treated within the generalized gradient approximation (GGA),
as formulated by Perdew-Burke-Ernzerhof (PBE) [92]. The
basis set includes Ni 3d84s2 electron levels. We employ
a plane wave cutoff energy of 600 eV and the Methfessel-
Paxton method [93] to determine partial wave function oc-
cupations with a 0.12 eV smearing width. Monkhorst-Pack
k-point grids [94] are optimized to sample the Brillouin zone
with a 0.1 Å-1 k-points grid. A 10-6 eV/atom total energy and a
10-3 eV/Å ionic force convergence criteria is employed. Both
the ground state calculations and ab initio molecular dynamics
(AIMD) simulations account for spin-polarization (magnetic
moment). More details may be found in the Supplementary
Information (SI).

B. Molecular Dynamics Simulations

Molecular dynamics (MD) and static calculations are con-
ducted using the Large-scale Atomic/Molecular Massively
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FIG. 8. The uniaxial stress vs. strain of Ni under uniaxial tension along [001] using DP-Ni at 0 K. The red square points are the stress
calculated by DFT under the corresponding strain. Allotropic phase transformation is induced upon a precipitous decrease in stress. The
energy difference values represent the cumulative energy discrepancy of structures at points A and B as computed by the DP-Ni and DFT,
respectively. The insert atomic configurations are labeled using CNA [64] for FCC (blue) and HCP (yellow) local packing by OVITO [63].
The crystallographic orientation relationship for FCC-HCP is {100}FCC∥{0001}HCP and ⟨010⟩FCC∥ ⟨112̄0⟩HCP.

Parallel Simulator (LAMMPS) [95]. Atomic structure opti-
mization is performed using the conjugate gradient method;
convergence criteria for force is 10-10 eV/Å (self-interstitial
configurations are converged to energy 10-13). The same sim-
ulation cell size/configurations are employed in both DFT
and MD calculations of the elastic constants, surface energy,
point-defect formation energy, grain boundary, stacking fault
energy, cohesive and decohesive energies, phonon spectra,
and ideal strength. See the SI for more details.

C. Training Strategy of Deep Potential for Ni

We utilize the general Deep Potential Generator (DP-GEN)
scheme [32], the Deep Potential Smooth Edition (DeepPot-
SE) [34], along with the “specialization” strategy [21] to gen-
erate the training datasets (a 6 Å cutoff radius is used through-
out). We employ a neural network of 240 × 240 × 240.

Initially, supercells with three perfect 2×2×2 cell BCC,
FCC, and HCP (2, 4, and 2 atoms per cell) are constructed.
Supercell volumes are rescaled by a scaling factor (0.96-1.06
in steps of 0.02), resulting in six configurations for each phase.
These scaled supercells are then randomly perturbed (3X) by
scaling the supercell translation vectors and adding relative
atomic translation in the range of -3 to 3% and -0.01 to 0.01 Å,
respectively. Next, two steps of AIMD are conducted for each
distorted structure (at 100 K) in the NVT ensemble (Nosé-
Hoover thermostat). A total of 108 ionic configurations are
obtained from the AIMD calculations (converged electronic
degrees of freedom), providing atom coordinates, total energy,

atomic forces, and virial tensors. This data serves as the initial
training dataset for the DP-GEN loop.

In each DP-GEN training step, four DP models are initiated
using four random initial neural net parameter sets. The train-
ing step consists of 400,000 epochs. The learning rate starts at
10−3 and exponentially decays to 5 × 10-8 during the training.
The loss function prefactors for the energy, atomic force, and
virial tensor pstarte = 0.02, plimit

e = 2, pstartf = 1,000, plimit
f = 1,

pstartv = 0, and plimit
v = 0, respectively, vary during training.

During the DP-GEN loop exploration step, a single DP
model is selected to explore various bulk and surface struc-
tures for each of the distorted BCC, FCC, and HCP super-
cells using DP-based MD (DPMD) with the LAMMPS pack-
age. The bulk structure is explored via MD in the temperature
range of 50 to 3,283.2 K (1.9 times the Ni melting point Tmelt)
under isothermal-isobaric (NPT) conditions, with pressures
varying between 0.001 and 50 kBar. Surface structures are
constructed from all crystal supercells by introducing {100},
{110}, and {111} (BCC and FCC) and {0001} and {101̄0}
(HCP) surfaces. Surface supercells are scaled and perturbed
similarly to the bulk structures and simulated via DPMD in a
canonical (NVT) ensemble over the same temperature range.
A criterion is set for choosing amongst the four models at each
DPMD step to perform spin-polarized DFT calculations (en-
ergy, force, virial) to add to the training datasets for subse-
quent DP-GEN loop iterations. See the SI for more details.

While the final four DP models reproduce many properties
of FCC and HCP Ni, they do not accurately reproduce cohe-
sive properties (see Table S1 and Fig. S3(b)). We address this
by generating a specialized training dataset consisting of 170
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configurations specifically selected from the cohesive energy
line. These configurations include 17 distinct structures; each
assigned a weight of 10 in the final training set (i.e., 10X the
other structures). The final training is performed on both the
training datasets from DP-GEN and the “specialization” (DFT
calculations are all spin-polarized). More details are provided
in the SI (see Table S2 for a summary of training datasets em-
ployed). We emphasize that while our training set is large,
it is considerably smaller than those employed in other ML
potentials [21, 96, 97].

V. DATA AVAILABILITY

The DP-Ni model and training datasets will be made avail-
able upon acceptance of the paper.
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initio calculations of elastic and magnetic properties of Fe, Co,
Ni, and Cr crystals under isotropic deformation, Physical Re-
view B 67, 035116 (2003).

[2] M. Zelený, D. Legut, and M. Šob, Ab initio study of Co and Ni
under uniaxial and biaxial loading and in epitaxial overlayers,
Physical Review B 78, 224105 (2008).

[3] C. Z. Hargather, S.-L. Shang, Z.-K. Liu, and Y. Du, A first-
principles study of self-diffusion coefficients of fcc Ni, Com-
putational Materials Science 86, 17 (2014).

[4] E. H. Megchiche, S. Pérusin, J.-C. Barthelat, and C. Mijoule,
Density functional calculations of the formation and migration
enthalpies of monovacancies in Ni: Comparison of local and
nonlocal approaches, Physical Review B 74, 064111 (2006).

[5] T. Mizuno, M. Asato, T. Hoshino, and K. Kawakami, First-
principles calculations for vacancy formation energies in Ni
and Fe: non-local effect beyond the LSDA and magnetism,
Journal of Magnetism and Magnetic Materials 226-230, 386
(2001).

[6] Y. Gong, B. Grabowski, A. Glensk, F. Körmann, J. Neuge-
bauer, and R. C. Reed, Temperature dependence of the Gibbs
energy of vacancy formation of fcc Ni, Physical Review B 97,
214106 (2018).

[7] G. Guo and H. Wang, Gradient-corrected density functional
calculation of elastic constants of Fe, Co and Ni in bcc, fcc
and hcp structures, Chinese Journal of Physics 38, 949 (2000).

[8] M. Chandran and S. K. Sondhi, First-principle calculation of
stacking fault energies in Ni and Ni-Co alloy, Journal of Ap-
plied Physics 109, 103525 (2011).

[9] K. Kumar, R. Sankarasubramanian, and U. V. Waghmare, In-
fluence of dilute solute substitutions in Ni on its generalized

stacking fault energies and ductility, Computational Materials
Science 150, 424 (2018).

[10] X. Zhang, B. Grabowski, F. Körmann, A. V. Ruban, Y. Gong,
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SUPPLEMENTARY INFORMATION

A. Property calculation by DFT

The stress-strain method [98, 99] is applied to evaluate the
elastic constants of FCC and HCP Ni. The final values of
Cij are obtained by averaging the data after applying a set of
normal strains (-0.01, -0.005, 0.005, 0.01) and shear strains
(-0.01, -0.005, 0.005, 0.01) to the FCC and HCP unit cells
(4 and 2 atoms, respectively). The monovacancy and self-
interstitials formation energies in FCC Ni are estimated us-
ing a 3 × 3 × 3 supercell with full relaxation. Generalized
stacking fault γ-lines for the FCC {111} planes are calcu-
lated using the slab-vacuum supercell method [100], where
atoms are allowed to relax only in the direction perpendicular
to the slip plane. These supercells consist of 24 atomic layers
and feature a vacuum layer thickness of 20 Å. The translation
plane is selected at the center of the supercell. Surface energy
and grain boundary energy calculations are performed using
configurations with a 20 Å vacuum layer. For the Σ7 [111]
(32̄1̄) configuration, a k-points grid spacing of 0.15 Å-1 is uti-
lized, while other calculation parameters are consistent with
the DFT settings in the main text.

The ideal strength of FCC Ni at 0 K is calculated using DFT
through the method of incremental loading. Tensile and pure
shear strengths along high symmetry crystallographic direc-
tions are identified as the maxima of stress along the incre-
mental loading path, simulated by subjecting a suitably ori-
ented periodic supercell of FCC Ni to combined stress/strain
loading, so as to maintain the desired state of stress in the
material. For tensile strength determination along a crystal-
lographic direction, at each step of incremental loading, the
strain along the tensile axis is held constant (fixed cell vector
in that direction), while relaxing all stress components (except
along the straining direction) to zero; i.e., a uniaxial stress
state. For the FCC crystal, tensile strengths are determined
along the high symmetry directions [001], [011] and [111].
Shear strength along a direction on a crystallographic plane
is determined by applying a shear strain along that direction
and relaxing all other stress components; i.e., a pure shear
stress state. Shear strengths are determined on the (111) plane
along the symmetric [1̄10] and [11̄0] directions, and along the
asymmetric [112̄] (easy) and [1̄1̄2] (hard) directions. The ideal
strength under hydrostatic dilatation (i.e., tensibility), is de-
fined as the maximum hydrostatic stress that the crystal can
sustain and is determined by incrementally dilating (isotropi-
cally expanding) the FCC crystal. At each volume along the
loading path, the resultant hydrostatic stress (negative pres-
sure) is evaluated. The maximum hydrostatic stress along the
loading path is the tensibility. Constrained relaxations under
combined stress and strain boundary conditions for the ideal
strength calculations are achieved through an in-house devel-
oped patch to the standard VASP code (see the Supplementary
Information in [14]). In this algorithm, the cell vectors and
cell shape, barring those fixed by the applied strain and the
ionic positions are iteratively optimized until the stress bound-
ary conditions are satisfied.

B. Property calculation by MD

Phonon spectra calculations are performed using the
PHONOPY [101] and phono-LAMMPS [102] software pack-
ages. A 3 × 3 × 3 supercell is employed for the FCC structure
(108 atoms), while a 4 × 4 × 4 supercell is employed for the
HCP structure (128 atoms).

The lattice parameters and elastic constants at finite tem-
peratures are determined using a time-averaging approach on
individual properties, employing the Nosé-Hoover thermostat
in LAMMPS. A fully periodic 16 nm × 16 nm × 16 nm super-
cell is initially constructed for a perfect crystal. This supercell
is then equilibrated for 40,000 time steps (40,000 fs) under
stress-free conditions and at the respective temperatures us-
ing MD simulations in an NPT ensemble. After equilibration,
the simulation box size is determined by time averaging over
4,000 fs using the same NPT ensemble. The lattice parameter
is determined from the size of the simulation box, averaging
over 10 measurements. Elastic constants are also obtained
through a time-averaging scheme in MD. The same super-
cell is subjected to equilibration for 168,000 time steps under
stress-free conditions at the target temperatures in an NPT en-
semble. An additional 168,000 time steps are performed un-
der the canonical NVT ensemble, applying a ±1% strain for
each strain component. The stress is measured by averaging
the instantaneous stress values obtained at alternate time steps
over 14,000 time steps, under the same NVT ensemble. Each
elastic constants are determined from the resulting stresses at
each strain (168,000/14,000=12 measurements for each strain
symmetry). For all interatomic potentials, the simulations are
repeated three times (three random seeds for the initial atomic
velocity distributions) and the average elastic constants are de-
termined at each temperature.

In this study, we examine the a/2 ⟨110⟩ edge and screw
dislocation cores located on the {111} plane using a periodic
array configuration of dislocations. The slip plane is the x-y
plane. Periodic boundary conditions are implemented in the
x and y directions, while the top and bottom (z) surfaces are
treated as traction-controlled/free surfaces. For the pure edge
and screw dislocations, the Burgers vector b is aligned with
the x direction. To minimize the interaction between adjacent
dislocation cores, we create sufficiently large supercells; 301
× 17 × 85 Å3 for edge dislocations and 15 × 302 × 85 Å3 for
screw dislocations. For edge dislocations, the dislocation line
is along the y-direction with the Burgers vector parallels the
x-direction. For screw dislocations, the dislocation line and
Burgers vector are parallel to the x-direction. To introduce
the initial full dislocation, we apply the displacement field of
the corresponding Volterra dislocation at the center of the su-
percells using the Atomsk package [103]. Dislocations with
a nonzero screw component undergo a homogeneous shear
strain of ϵyx = b · ξ/2 to rectify the plastic shear strain induced
by the screw component. The constructed dislocation cores
are subsequently relaxed using the conjugate gradient method,
with a force convergence criterion set to 10-4 eV/Å. The final
atomic configurations are visualized using the open visualiza-
tion tool (OVITO) [63]. Additionally, differential displace-
ment plots are analyzed utilizing the atomistic manipulation
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toolkit Atomman [104].

C. Training Strategy of Deep Potential for Ni

Figure S3(a) illustrates the workflow used for developing
the DP model for Ni. In the training step of the DP-GEN loop,
distorted 2×2×2 supercells of BCC, FCC and HCP structures
are employed as the starting configurations within the DPMD
calculations. To enhance the sampling efficiency, several tem-
peratures are explored for the bulk structures, partitioned into
four regions: (a) 50 K, [0.1, 0.2, 0.3, 0.4]Tmelt; (b) [0.5, 0.6,
0.7, 0.8, 0.9]Tmelt; (c) [1.0, 1.1, 1.2, 1.3, 1.4]Tmelt and (d)
[1.5, 1.6, 1.7, 1.8, 1.9]Tmelt. In each temperature region, the
pressure is systematically varied [0.001, 0.01, 0.1, 1, 5, 10, 20,
50] kBar. A total of 40 different MD conditions (temperatures
and pressures) are generated within each temperature region.
Surface structure exploration begins once all bulk structures
have been explored. Low Miller index surfaces, i.e.,{100},
{110}, and {111} planes for BCC and FCC, {0001} and
{101̄0} surfaces for HCP structures are constructed. Surface
supercells are scaled and perturbed similar to the process used
for bulk structures. The canonical (NVT) ensemble is em-
ployed within the same temperature range as bulk structures
for DPMD simulations. After the MD simulation is complete,
an indicator ε measures the standard deviations of atomic
force predictions among the four DP models to select can-

didate configurations based upon trust levels σlo = 0.10 and
σhi = 0.25 across the entire temperature range for both bulk
and surface structures. Configurations within σlo < ε < σhi

are chosen as candidates for spin-polarized DFT calculations.
The resulting DFT data is then added to the training datasets
and used to generate four new DP models for the subsequent
DP-GEN loop. Convergence is achieved when the number of
candidate structures for the DFT calculations is < 0.1% of the
total number of configurations explored.

Based on the DP-GEN loop, the final four DP models
demonstrate the capability to reproduce the general properties
of Ni such as total energies and elastic constants (for exam-
ple, see DP nonspecX in Table S1). However, the cohesive
energy curve from DP is inconsistent with DFT results (see
Fig. S3(b)). We address this issue by generating special train-
ing datasets comprising 17 distinct configurations specifically
selected from the cohesive energy curve and each assigned a
weight of 10 (10X the structures from DP-GEN loop). Virial
tensors and forces are not considered for the specialization
dataset. A final training is performed on both the training
datasets (2,020 entries in Table S2) from DP-GEN and “spe-
cialization”. The learning rate starts at 0.001 and decays ex-
ponentially to 5 × 10-8. The training consists of 8,000,000
epochs and the pre-factors in the loss function are pstarte =
0.02, plimit

e = 2, pstartf = 1000, plimit
f = 1, pstartv = 0.02, and

plimit
v = 1, respectively.
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TABLE S1. Lattice parameters (a, c/a), bulk energies (E), cohesive energies (Ecoh), and elastic constants (Cij) of FCC and HCP obtained
by using different interatomic potentials for Ni. DFT FM and DFT NM represent DFT calculations that are spin-polarized (magnetic) and
non-spin polarized (non-magnetic). The DP nonspecX is a DP model before “specialization”. Bold numbers indicate deviations of more than
15% compared to DFT FM and/or experiment.

FCC HCP
Potential a E Ecoh C11 C12 C44 a c/a E Ecoh C11 C12 C13 C33 C44

Expt. 3.520a - 4.450b 261.2c 150.8c 131.7c 2.487d 1.645d - - - - - - -
DFT FM 3.517 -5.467 4.865 275.7 156.0 130.7 2.484 1.643 -5.443 4.841 312.0 142.3 122.8 330.7 55.5
DFT NM 3.511 -5.411 5.186 256.7 174.3 114.7 2.475 1.652 -5.386 5.160 296.0 173.0 128.8 337.2 49.3

EAM
Mishin[35] 3.520 -4.450 4.450 247.9 147.8 124.8 2.483 1.619 -4.430 4.430 302.2 147.6 76.9 213.3 64.3
Zhou[105] 3.520 -4.450 4.450 247.0 147.3 124.9 2.483 1.658 -4.434 4.434 302.6 138.1 77.3 247.7 55.6
Foiles[106] 3.520 -4.450 4.450 233.3 154.3 127.6 2.489 1.630 -4.448 4.448 295.7 150.0 95.9 349.6 69.4

Ackland[107] 3.524 -4.459 4.459 260.7 150.5 131.4 2.490 1.642 -4.455 4.455 325.0 141.9 96.9 318.9 77.2
Adams[108] 3.520 -4.450 4.450 235.6 153.1 133.5 2.489 1.630 -4.447 4.447 300.9 148.7 91.9 357.3 72.5

Mendelev[109] 3.518 -4.390 4.390 247.0 147.3 122.8 2.486 1.658 -4.353 4.353 267.0 134.2 58.0 196.7 39.0
Stoller[110] 3.520 -4.450 4.450 240.9 150.5 127.1 2.482 1.654 -4.428 4.428 298.5 145.2 71.6 260.5 48.6
Angelo[111] 3.520 -4.450 4.450 246.7 147.5 125.0 2.480 1.685 -4.437 4.437 337.1 167.1 109.9 359.7 58.9

MEAM
Etesami[112] 3.520 -4.450 4.450 255.3 155.8 129.8 2.486 1.640 -4.441 4.441 315.8 155.1 97.0 366.2 59.7

Vita[36] 3.519 -3.952 3.952 278.3 169.8 112.5 2.490 1.630 -3.956 3.956 327.6 159.5 131.9 355.6 73.0
Asadi[113] 3.521 -4.450 4.450 260.4 150.7 131.0 2.487 1.641 -4.439 4.439 326.8 139.3 95.9 364.8 74.6
Aitken[114] 3.504 -4.849 4.849 264.2 149.6 125.6 2.471 1.653 -4.826 4.826 331.4 134.7 94.4 358.2 85.4
Shim[115] 3.521 -4.450 4.450 261.2 150.8 131.7 2.484 1.647 -4.429 4.429 332.7 139.0 91.9 366.5 75.0
Shim[116] 3.521 -4.450 4.450 261.2 150.8 131.7 2.484 1.647 -4.429 4.429 332.7 139.0 91.9 366.5 75.0

Ko[37] 3.521 -4.450 4.450 260.4 148.6 111.1 2.487 1.642 -4.440 4.440 314.7 133.8 108.3 336.0 77.2
Maisel[117] 3.521 -4.450 4.450 260.4 148.6 111.1 2.487 1.642 -4.440 4.440 314.7 133.8 108.3 336.0 77.2

Lee[118] 3.521 -4.450 4.450 261.2 150.8 131.7 2.484 1.647 -4.429 4.429 332.7 139.0 91.9 366.5 75.0
Mahata[119] 3.521 -4.450 4.450 260.4 150.7 131.0 2.487 1.641 -4.439 4.439 326.7 139.3 95.9 364.7 74.6
ML(SNAP)

Zuo[22] 3.521 -5.780 5.780 267.5 155.3 125.7 2.491 1.643 -5.772 5.772 334.0 144.0 109.1 369.2 77.2
Zuo[22] 3.522 -5.781 5.781 282.9 168.3 129.3 2.492 1.650 -5.773 5.773 341.8 166.9 132.5 421.0 63.6

DP
DP nonspecX 3.517 -5.467 2.978 278.4 157.3 129.1 2.484 1.643 -5.446 2.958 322.5 150.0 113.4 356.1 61.1

a [38], b[39], c[40], d[42]

TABLE S2. Summary of the training datasets for DP-Ni.

Dataset type Number of datasets Weightage
Initialization datasets 108 1

DP-GEN bulk 1140 1
DP-GEN surface 602 1

Cohesive energy (specialization) 17 10
Totala 2020

a The cohesive energy datasets are considered as 17 × 10 = 170.
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FIG. S1. Six types of self-interstitial configurations in the FCC crystal lattice.

FIG. S2. Optimized tilt grain boundary structures in FCC Ni obtained using DP-Ni at zero temperature. The relaxed (a) Σ3 [11̄0] (111), (c)
Σ5 [100] (02̄1) and (f) Σ11 [11̄0] (113) configurations are symmetric tilt grain boundaries and (b) Σ3 [11̄0] (112), (d) Σ7 [111] (32̄1̄) and
(e) Σ9 [11̄0] (221̄) are asymmetric boundaries. The atomic configurations are visualized using the open visualization tool (OVITO) [63] with
colors based upon the common neighbor analysis (CNA) method [64]. The FCC, HCP and other types of atoms are marked in blue, yellow
and white, respectively.
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FIG. S3. (a) The training workflow of the DP-Ni potential, and (b) the FCC Ni cohesive energy as a function of lattice parameter from DFT
and DP-Ni before “specialization” (DP nonspecX).
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