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Motivated by attempts to quantum simulate lattice models with continuous Abelian symmetries
using discrete approximations, we study an extended-O(2) model in two dimensions that differs
from the ordinary O(2) model by the addition of an explicit symmetry breaking term −hq cos(qφ).
Its coupling hq allows to smoothly interpolate between the O(2) model (hq = 0) and a q-state clock
model (hq → ∞). In the latter case, a q-state clock model can also be defined for noninteger values
of q. Thus, such a limit can also be considered as an analytic continuation of an ordinary q-state
clock model to noninteger q. In previous work, we established the phase diagram for noninteger q
in the infinite coupling limit (hq → ∞). We showed that there is a second-order phase transition
at low temperature and a crossover at high temperature. In this work, we seek to establish the
phase diagram at finite values of the coupling using Monte Carlo and tensor methods. We show
that for noninteger q, the second-order phase transition at low temperature and crossover at high
temperature persist to finite coupling. For integer q = 2, 3, 4, we know there is a second-order phase
transition at infinite coupling (i.e. the well-known clock models). At finite coupling, we find that
the critical exponents for q = 3, 4 vary with the coupling, and for q = 4 the transition may turn into
a BKT transition at small coupling. We comment on the similarities and differences of the phase
diagrams with those of quantum simulators of the Abelian-Higgs model based on ladder-shaped
arrays of Rydberg atoms.

I. INTRODUCTION

In a quantum many-body system, the Hilbert space
grows exponentially with the system size, and the simula-
tion of such systems in the strongly-coupled regime is an
extremely hard problem for classical computers. Even for
equilibrium systems at Euclidean time, as we have in lat-
tice quantum chromodynamics (QCD), our conventional
methods for finite density and real time suffer from sign
problems. Real-time dynamics seem completely out of
reach unless we use some new approach such as quantum
simulation [1].

To quantum simulate field theories, we need to start
with the simplest low-dimensional Abelian models such
as the Abelian-Higgs model (i.e. scalar quantum elec-
trodynamics). It has been shown that the Abelian-Higgs
model can be mapped to a Rydberg ladder [2–5]. In
this proposed approach, the Abelian-Higgs Hamiltonian
is mapped to an angular momentum Hamiltonian, which
in turn is truncated to a finite number of angular momen-
tum states. These can in principle be simulated on a Ry-
dberg ladder, however, one may want to start with even
simpler cases. In the limit of infinite self-coupling and
zero gauge coupling, the Abelian-Higgs model reduces to
the classical O(2) spin model, so the analog simulation of
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an O(2)-like model is a first step toward the simulation
of the Abelian-Higgs model.
In Wilson’s formulation of lattice gauge theory, the

gauge fields are defined on the links of the lattice. These
continuous gauge degrees of freedom give rise to an
infinite-dimensional Hilbert space at each link, and it is
not obvious how to represent such objects on a quantum
simulator. One solution is to truncate the link Hilbert
space in some way such that the model with truncated
gauge fields still approximates the full theory. For exam-
ple, in a theory with U(1) gauge fields, the fields may be
approximated with Zq discrete degrees of freedom [6]. To
optimize such a Zq approximation, it is useful to have a
continuous family of models that interpolate among the
various Zq approximations.
In this article, we study the effect of explicitly bro-

ken symmetries in classical O(2) spin systems in (1+1)
dimensions by adding a symmetry-breaking term

∆S(hq, q) = −hq

∑
x

cos(qφx) (1)

to the action of the ordinary O(2) model. (Note that the
coefficient was denoted γ in our previous work [7], how-
ever, we change the notation here to be consistent with
the existing literature [8–18].) When hq = 0, the model
reduces to the O(2) model, but when hq > 0 with q inte-
ger, the O(2) symmetry is reduced to a Zq symmetry. By
taking hq → ∞, we recover the q-state clock model, and
by varying q, we can interpolate between the Ising model
and the O(2) model. On the other hand, by fixing q and
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varying hq, we can interpolate between the O(2) model
and the q-state clock model. We allow also q to be non-
integer. For noninteger q and hq > 0, the Zq symmetry is
broken, but there remains a residual Z2 symmetry, which
is associated with an Ising phase transition. By allowing
q to take on real values instead of only integer values, one
can interpolate among the different Zq models.
In [7, 19], we studied the hq → ∞ limit of this model1.

For integer values of q, this is the well-studied clock
model. For noninteger q, we found a crossover at small β
and a second-order phase transition of the 2D Ising uni-
versality class at larger β. Thus we extended the phase
diagram for the case hq → ∞ to noninteger values of q.
The phase diagram for hq = 0 and hq = ∞ is shown in
the left panel of Fig. 1. In the present work, we study
the phase diagram for finite hq. Preliminary results were
presented in [20]. We performed a scan of the parameter
space and computed the specific heat. In many second-
order phase transitions the specific heat diverges near the
critical point. For such a transition, which is character-
ized by critical exponent α > 0, a heatmap of the specific
heat can serve as a proxy for the phase diagram. In the
right panel of Fig. 1, we insert several two-dimensional
slices where each slice shows a heatmap of the specific
heat at a fixed hq. The heatmaps were computed using
tensor renormalization group (TRG) methods developed
for the O(2) model [21–24] with size L = 1024. The re-
sulting picture suggests that the sharp edges and corners
that one sees at integer values of q in the hq = ∞ phase
diagram become smooth curves at finite hq. However, as
we will show later, this does not hold up under scrutiny.

The smooth lobes seen in the proxy phase diagram
are reminiscent of the phase diagram of a Rydberg atom
chain [25, 26] as shown in Fig. 2. In the left panel, the
phase diagram of a quantum simulator with continuously
tunable parameters composed of Rydberg atoms. Note
the similarity with a heatmap of the specific heat from
the Extended-O(2) model with finite hq. In the Rydberg
atom chain, exotic “floating phases” are found [27–29],
which gives motivation to search for similar exotic phases
in the Extended-O(2) model.

Specific cases of the Extended-O(2) model have been
studied before. For q = 2, 3, an early normalization group
analysis [8] showed that the model at finite hq should be
in the Ising and 3-state Potts universality class respec-
tively. However, Ref. [9] demonstrated that the critical
exponents vary with hq, and concluded that for q = 3,
there is a BKT phase for sufficiently small hq. The q = 4
with finite hq case, sometimes referred to as the XY h4

model, has been studied extensively due to its possible
relevance to two-dimensional physical systems with 4-fold
symmetry such as certain magnetic thin films [10, 11].

1 The action Eq. (3) differs slightly from the convention of [7],
where β was treated as a coupling attached to the first term in
the action. In the present work, β is factored out of the action,
so that it plays the role of inverse temperature.

The renormalization group analysis [8] showed there to
be a second-order phase transition with nonuniversal crit-
ical exponents which vary with hq. The BKT phase of
the O(2) model was recovered only for hq = 0. This
is supported by more recent work using a nonperturba-
tive renormalization group approach wherein the model
was studied with a continuously varying spatial dimen-
sionality 2 ≤ D ≤ 3 [30]. In Ref. [12], numerical MC
studies of the q = 4 case showed that the critical expo-
nent ν does vary with hq. This was supported further
by Refs. [13, 14], and more discussion can be found in
Refs. [10, 15]. However, in Ref. [16], it was found that for
sufficiently small hq, the second-order phase transition
for q = 4 is replaced by BKT transitions. This is sup-
ported by Ref. [9]. However, recent work [11, 17] suggests
that the apparent BKT phase at finite hq is essentially a
finite-size effect and might not persist to infinite volumes.
For q ≥ 5, the renormalization group analysis [8], showed
there should be a BKT phase between a low-temperature
ferromagnetic phase and a high-temperature paramag-
netic phase. For q = 6, this is supported by numerical
MC studies on triangular lattices [14]. The q = 5 case
was shown to have two transitions for any finite hq [18].

The previous studies of the Extended-O(2) model de-
scribed above were limited to integer values of q, and
typically focused only on one or two values. Further-
more, many focused only on large or small values of hq.
In the present work, we perform a comprehensive study
of the Extended-O(2) model over a large parameter space
with β, hq ∈ R ≥ 0 and with q ∈ R.
In the case hq = 0, the Extended-O(2) model reduces

to the ordinary O(2) model, which has been studied ex-
tensively [22, 31–37]. In the limit hq → ∞, the Extended-
O(2) model reduces to the Extended q-state clock model,
which was studied in [7]. With hq → ∞ and integer q,
it reduces to the ordinary q-state clock model, which has
been studied extensively [38–58].

The goal of the present work is to establish the phase
diagram of the Extended-O(2) model at finite hq for both
integer and noninteger values of q. This is motivated
by several things. To quantum simulate Abelian lattice
models, it may be necessary to approximate U(1) with,
e.g., discrete Zq approximations. The Extended-O(2)
model with integer q allows to smoothly break the O(2)
symmetry of the O(2) model down to the Zq symmetry
of a clock model. Studying the effect of this symmetry-
breaking is crucial to understanding the utility of various
Zq approximations of U(1). Furthermore, by allowing q
to be noninteger, we can explore the effect of breaking the
Zq symmetry itself, which may be useful for understand-
ing the resilience of a real-life Zq approximation to per-
turbations. Finally, early results from our study of this
model suggested a phase diagram reminiscent of one from
Rydberg atom chains where exotic floating phases are
found. By studying the phase diagram of the Extended-
O(2) model at finite hq, we will determine if similar exotic
phases can be found in this classical spin system.

This paper is organized as follows. Section II intro-
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FIG. 1: (Left) We consider the three-dimensional phase diagram of the Extended-O(2) model for parameter values
hq, β ∈ R ≥ 0, and q ∈ R. In the hq = 0 plane, the model reduces to the XY model for all values of q. The XY

model has a BKT transition near βc = 1.12 and a critical phase for β > βc. In the hq = ∞ plane, the phase diagram
is more interesting. For integer q, the model reduces to the well-studied clock model, which has a second-order phase
transition for q = 2, 3, 4 and two BKT transitions for integer q ≥ 5. For noninteger q, we previously established the
phase diagram for hq → ∞ [7]. We found crossovers (dashed lines) at small β and second-order phase transitions

(solid black lines) of the 2D Ising universality class at large β. Establishing the phase diagram at finite-hq is the goal
of the present work. (Right) We insert several two-dimensional slices where each slice shows a heatmap, computed
using TRG with L = 1024, of the specific heat at a fixed hq. As described in the main text, such heatmaps can serve
as a proxy for the phase diagram. Here they suggest that the sharp edges and corners seen in the hq = ∞ phase

diagram become smooth curves at finite hq. However, as we will show later, this does not hold up under scrutiny. A
finite-size scaling analysis will show that for noninteger q, the phase diagram looks qualitatively the same for all

hq > 0.

FIG. 2: (Left) The phase diagram of a quantum
simulator with continuously tunable parameters

composed of Rydberg atoms [25, 26]. Reproduced with
permission from Springer Nature. Note the similarity
with a heatmap (right) of the specific heat from the

Extended-O(2) model with finite hq.

duces the definition of the Extended-O(2) model and
thermodynamic quantities. The Monte Carlo (MC) and
TRG methods are introduced in Section III and a de-
scription of the finite-size scaling procedure is given. The
results are described in Section IV. The phase diagram
for integer q is studied using MC and results are given

in Section IVA. For noninteger q, the MC approach suf-
fers from very large autocorrelations on larger lattices.
Instead, the model is studied using TRG, with results
given in Section IVB. The MC method is used to val-
idate the TRG at small volume. In Section IVC, we
combine the integer and noninteger q results to present a
picture of the phase diagram for the model. In short, we
find that for noninteger q, there is a crossover at small
β and an Ising phase transition at larger β. That is, the
picture seen in the limit hq → ∞, seems to persist also to
finite hq. For integer q, the phase diagram is even more
interesting. At hq → ∞, it is in the clock model univer-
sality class with a second-order phase transition for each
of q = 2, 3, 4 and two BKT transitions for q ≥ 5. At
finite hq, the critical exponents, and hence the univer-
sality classes, vary with hq. At small hq, the transition
for q = 4 appears to turn into a BKT transition. We
summarize our results in Section V.

II. THE MODEL

The classical O(2) spin model is defined on a lattice
and has two-component unit vectors on each lattice site.
In two-dimensions, the unit vector at a site x can be
parameterized by a single angle φx ∈ [0, 2π), and the
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action takes the form

SO(2) =−
∑
x,µ

cos(φx+µ̂ − φx)− h
∑
x

cos(φx − φh),

(2)

where h = |⃗h| and φh are respectively the magnitude
and angle of the external magnetic field. We study the
“Extended-O(2) model” in two dimensions, obtained by
adding a symmetry-breaking term to the action of the
classical O(2) model

S =−
∑
x,µ

cos(φx+µ̂ − φx)− hq

∑
x

cos(qφx)

− h
∑
x

cos(φx − φh). (3)

When hq = 0, this is the ordinary O(2) model. When
hq > 0, the O(2) symmetry is broken. When hq → ∞
and q is integer, the spin angles are forced to take the

values φ
(k)
x = 2πk/q with k ∈ Z, and hence this becomes

the q-state clock model. We note that the action defined
in Eq. (3) is also valid for noninteger q.
For noninteger q, the 2π-rotational symmetry is bro-

ken so we have to carefully define the domain of the an-
gles φx. For example, one could choose φx ∈ [−π, π) or
φx ∈ [0, 2π). These different choices lead to very differ-
ent phase diagrams as we showed for the hq → ∞ case
in Ref. [7]. We prefer the choice φx ∈ [0, 2π), simply be-
cause the phase diagram gives a more consistent periodic
picture as q is increased2.
The partition function of this model is

Z =

∫ 2π−ε

−ε

∏
x

dφx

2π
e−βS . (4)

where ε is a small shift of the angles required to connect
with the clock models in the hq → ∞ limit. Details are
provided in Appendix A.

We define the internal energy as

⟨E⟩ = − ∂

∂β
lnZ = ⟨S⟩ , (5)

where ⟨. . . ⟩ denotes the ensemble average. We define the
specific heat as

CV =
−β2

V

∂⟨E⟩
∂β

=
β2

V
(⟨E2⟩ − ⟨E⟩2), (6)

where V = L2 is the lattice volume.
We perform MC simulations with zero external mag-

netic field (h = 0). Since MC simulations are performed

2 See the left panel of Figure 26 in Ref. [7] as opposed to the right
panel in the same figure.

in a finite volume, the expectation value of the magneti-

zation vector ⟨M⃗⟩ vanishes at zero magnetic field. There-
fore, we measure a proxy magnetization

⟨|M⃗ |⟩ =

〈∣∣∣∣∣∑
x

S⃗x

∣∣∣∣∣
〉
. (7)

where S⃗x is the two-component unit vector sitting at the
lattice site x. The corresponding magnetic susceptibility
is

χ|M⃗ | =
1

V

(
⟨|M⃗ |2⟩ − ⟨|M⃗ |⟩2

)
. (8)

For the proxy order parameter defined by Eq. (7), we
have the corresponding Binder cumulant

U|M⃗ | = 1− ⟨|M⃗ |4⟩
3⟨|M⃗ |2⟩2

. (9)

In the limit β → ∞, everything is frozen and so ⟨|M⃗ |4⟩ =
⟨|M⃗ |2⟩2, and this Binder cumulant goes to the triv-
ial value 2/3. In the limit β → 0, the magnetization

M⃗ is a 2-dimensional Gaussian distribution centered at
zero. The magnitude |M⃗ | of such a distribution is it-
self a Rayleigh distribution, which has a fourth moment

⟨|M⃗ |4⟩ = 2⟨|M⃗ |2⟩2. Hence, in the limit β → 0, this
Binder cumulant goes to the trivial value 1/3. The
Binder cumulant varies rapidly with β and varies with
lattice size. However, it has been shown that at a critical
value of β, the Binder cumulant takes a universal value
independent of lattice size [59], and as such, it is a use-
ful quantity for identifying phase transitions and locating
their critical points.

We also consider the Binder cumulant

Uϕ = 1−
⟨M4

ϕ⟩
3⟨M2

ϕ⟩2
, (10)

of the “rotated magnetization” Mϕ = cos(qϕ), where ϕ ≡
arctan(M2/M1), and where M1 and M2 are the first and

second components of the magnetization vector M⃗ . In
systems with two BKT transitions, e.g. the 5-state clock
model, the ordinary Binder cumulant Eq. (9) works well
to locate the small-β critical point but not the large-β
one. On the other hand, the rotated Binder cumulant
Eq. (10) can be used to locate the large-β critical point
but not the small-β one [49–52].
We also measure the structure factor

F (p⃗) =
1

L2

∑
j

∑
k

ei(x⃗j−x⃗k)·p⃗⟨S⃗j · S⃗k⟩, (11)

which is the Fourier transform of the spin-spin correlator

⟨S⃗j · S⃗k⟩. For an L × L lattice, we define momenta p⃗ =
2πn⃗/L, with n⃗ ∈ {(0, 0), (0, 1), (1, 0), . . . , (L/2, L/2)}.
The position vector x⃗j is the 2-component Cartesian vec-
tor corresponding to the jth lattice site. For periodic
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boundary conditions, we can write Eq. (11) as

F (p⃗) =
1

L2

〈∣∣∣∣∣∣
∑
j

e−ip⃗·x⃗j S⃗j

∣∣∣∣∣∣
2〉

. (12)

Now there is only a single sum over the lattice—making
this an efficient observable from which to obtain the crit-
ical exponent η associated with the correlation function.

III. METHODS

A. Markov Chain Monte Carlo

In general, an MCMC updating algorithm involves se-
lecting the next state in the Markov chain from a given
probability distribution. In the canonical version of the
Metropolis algorithm, a candidate is selected uniformly
and followed by an accept/reject step based on the prob-
ability of that state occurring in the distribution. For
many distributions, the Metropolis algorithm is ineffi-
cient due to very low acceptance rate. In contrast, the
heatbath algorithm achieves 100% acceptance by select-
ing the next state in the Markov chain uniformly from the
inverse of the cumulative distribution function (CDF).
However, in practice, it is often difficult or impractical
to implement a heatbath algorithm because inversion of
the CDF may be costly.

At finite hq, the spin angles of the Extended-O(2)
model are continuous, and we do not have an efficient
heatbath updating algorithm. With the Metropolis algo-
rithm, we found that the acceptance rate dropped as low
as ∼ 1%. Correspondingly, this lead to large autocor-
relations and a critical-like slowing down. To mitigate
this, we implemented a biased Metropolis heatbath al-
gorithm [60–62], wherein we compute a discretized CDF
and use a corresponding biased accept/reject step. This
algorithm satisfies the same detailed balance conditions
as the unbiased Metropolis algorithm. By decreasing the
discretization step size, the acceptance rate is improved
but at the cost of increasing the size of the lookup table
that is needed. In the limit of infinitesimal discretization
step size, one reaches the heatbath acceptance probabil-
ity of 100%. We fine-tuned the discretization step size
to optimize efficiency which lead to an acceptance rate
around 90%.

For the MCMC results, we started with hot lattices
(i.e. randomly oriented spins) followed by 215 equilibrat-
ing sweeps. With our biased Metropolis algorithm, equi-
libration is much faster than with the unbiased Metropo-
lis algorithm. Measurement sweeps were separated by
26 − 210 discarded sweeps. For some lattice sizes and pa-
rameter ranges there remained residual autocorrelations
which were mitigated by blocking the data with block-
size much larger than the integrated autocorrelation time
before calculating means and variances.

For noninteger q, the explicitly broken symmetry made
it very difficult for MCMC to sample the whole config-
uration space at low temperature. For lattices larger
than 32 × 32, the statistics needed become infeasibly
large—making it impossible to do the finite-size scaling
with MCMC. So for noninteger q, the large-volume re-
sults were obtained using a tensor renormalization group
method.

B. Tensor Renormalization Group

Using the character expansion

eβ cos(θ1−θ2) =

∞∑
m=−∞

Im (β) eim(θ1−θ2), (13)

where I is the modified Bessel function of the first kind,
the partition function Z can be expressed as

Z =
∑
{x,t}

∏
n

Axntnxn−1̂tn−2̂
(14)

with

Aijkl =
√
Ii (β) Ij (β) Ik (β) Il (β)

·
∫ 2π

0

dθ

2π
eiθ(i+j−k−l)eβh cos θ. (15)

If we do not have the symmetry breaking term hq cos(qθ),
there is the “selection rule”, so that we can analytically
evaluate the elements of the tensor. In the presence of the
symmetry breaking term, one can approximate the inte-
gral numerically using Gaussian quadrature, which is for-
mulated using orthogonal polynomials. For unbounded
integrals, one can use Hermite polynomials as was done
in Refs. [63–65] for non-compact scalar theories. In our
case the integral is bounded, so Legendre polynomials are
suitable for the Gaussian quadrature. Legendre polyno-
mials are similarly used in Ref. [66] for a U(1) model.
Then the element of the tensor (15) is evaluated using
the quadrature rule∫ 2π

0

dyf(y) ≈ π

K∑
i=1

wif (πxi + π) , (16)

where xi and wi are the i-th root of the Legendre polyno-
mial and corresponding weight, respectively, and where
K determines the accuracy of this approximation. Note
that the elements of A can be complex.
There is another (rather simpler) way to discretize the

angles without using the character expansion. By simply
replacing the integral by the summations, we obtain

Z ≈

(∏
n

K∑
αn=1

)∏
n

wαn

2

2∏
ν=1

h
(
πxαn

+ π, πxαn+ν̂
+ π

)
.

(17)
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Now the continuous angle is replaced by the root of the
Legendre polynomial that are labeled by discrete α at
each site, so that one may be able to consider that αs are
new discrete d.o.f. of this system. Then the local Boltz-
mann factor h can be regarded as a K ×K matrix now
and can be decomposed by singular values numerically:

hij =

K∑
k=1

UikσkV
†
kj , (18)

where {σ} is the singular values and U and V are uni-
tary matrices. Using them, we can approximately make
a tensor network representation of Z:

Z ≃

(∏
n

K∑
αn=1

)∏
n

Txntnxn−1̂tn−2̂
, (19)

where the tensor is defined by

Tijkl =

K∑
α=1

wα

2

√
σiσjσkσlUαiUαjV

†
kαV

†
lα. (20)

Note that in this construction the elements of T are real.
In our work we employ this latter discretization method.

To balance between accuracy and efficiency, one may
take a large K and initially truncate the bond dimension
of the tensor. For the current work, K is set to 1024,
and the accuracy is examined through a comparison with
MC for some parameters (see Appendix D for several
examples).

In this paper, magnetizations and susceptibilities are
shown. To calculate them, we employed the method that
was proposed by Morita and Kawashima [67] and that is
based on the higher order TRG (HOTRG). Thus, these
quantities are calculated by HOTRG while other quanti-
ties like specific heats are calculated by normal (Levin–
Nave) TRG. Note that the significance of the term “bond
dimension” differs between the TRG and the HOTRG,
since the HOTRG gives a better accuracy compared to
the normal TRG with a fixed bond dimension. How-
ever, also note that we check the convergence and take
sufficiently large bond dimensions regardless of which
methodology we use.

C. Finite size scaling

To obtain critical exponents for second-order transi-
tions, we consider the following leading finite size scaling
ansätze [68–70]

dUM

dβ

∣∣∣∣
max

= U0 + U1L
1/ν (21)

CV |max = C0 + C1L
α/ν (22)

⟨M⟩|infl = M0 +M1L
−β/ν (23)

χM |max = χ0 + χ1L
γ/ν (24)

F (p⃗)|max = F0 + F1L
2−η, (25)

where |max means evaluated at the maximum and |infl
means evaluated at the inflection point. We use M ≡
|M⃗ | to denote the magnitude of the proxy magnetization.
Then UM is the Binder cumulant with respect to the
proxy magnetization, CV is the specific heat, χM is the
susceptibility of the proxy magnetization, and F (p⃗) is the
structure factor. Note, when α = 0, as it is for transitions
of the 2D Ising universality class, the ansatz Eq. (22) is
modified to

CV |max = C0 + C1 lnL. (26)

The maxima were extracted by performing an MCMC
scan in β to locate the approximate position of the peaks.
This was followed by a higher resolution scan centered on
the peaks. The integrated autocorrelation time of the en-
ergy was estimated from each canonical time series. The
canonical runs were then “stitched” together using multi-
histogram reweighting [71] to interpolate to β values be-
tween the canonical MCMC runs. The maxima were ex-
tracted from jackknife bins by fitting a cubic polynomial
to the peak. The jackknife method was used to obtain
appropriate error bars for the final results. This was re-
peated at different lattice sizes, then fitted to the above
finite-size scaling ansätze in Python using the curve fit
function in the scipy.optimize package. More detail is
given in Appendix B.
For the exponent 1/ν, we fit the derivative of the

Binder cumulant to the form given by Eq. (21). Instead
of taking a finite difference derivative, we follow [68] and
use the analytical form

1

V

dUM

dβ
=

2⟨M4⟩[⟨M2⟩⟨E⟩ − ⟨M2E⟩]
3⟨M2⟩3

− ⟨M4⟩⟨E⟩ − ⟨M4E⟩
3⟨M2⟩2

.

(27)

where E is the energy density, M is the proxy magneti-
zation, and V is the number of lattice sites.
For the exponent−β/ν, we fit Eq. (23), where ⟨M⟩|infl

is the value of the proxy magnetization at its inflection
point. To determine the location of the inflection point,
we use the maximum of the derivative, which can be com-
puted without finite difference as

d⟨M⟩
dβ

= V (⟨E⟩⟨M⟩ − ⟨EM⟩) , (28)

where E is the energy density and V is the number of lat-
tice sites. As with other maxima, a cubic polynomial is
fitted to the peak to extract the maximum d⟨M⟩/dβ|max
and its location βpc. We then interpolate the proxy mag-
netization to the point βpc using a cubic polynomial to
obtain ⟨M⟩|infl = ⟨M⟩(βpc).
The quality of each fit was quantified using the p-value

of the χ2 statistic as a goodness-of-fit measure:

p = 1− P (dof/2, χ2/2), (29)
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where P (a, x) = (1/Γ(a))
∫ x

0
ta−1e−tdt is the lower in-

complete gamma function, and χ2 is the ordinary chi-
squared value of the fit. The p-value gives the likelihood
that the observed difference between the curve fit and
the data is due to chance. A high p-value (e.g. p > 0.05)
suggests that the fitting model is correct. We also record
the χ2/dof for each fit.

The pseudocritical points βpc (i.e. the peak locations)
for second-order transitions should approach the infinite
volume critical point as

βpc = βc +
a

L1/ν
. (30)

To distinguish between second-order and BKT transi-
tions, one can check whether the specific heat diverges
with volume. For a BKT transition, the specific heat
does not diverge with volume, and so Eq. (22) or (26) is
not suitable for BKT transitions.

There are several well-known scaling inequalities [72–
76] which relate the different critical exponents. Under
certain assumptions, it can be shown that these inequali-
ties become equalities. See any modern statistical physics
textbook such as Ref. [77]. In our case, we will consider
three such relations:

γ

ν
= 2− η (31)

α

ν
=

2

ν
− d (32)

d− γ

ν
= 2

β

ν
, (33)

where d = 2 in our case.
In a second-order transition, the critical exponent ν is

defined by the scaling of the correlation length ξ ∝ t−ν ,
where t ≡ (T − Tc)/Tc = βc/β − 1. However, for a BKT
transition, ξ diverges faster than any power of t, and
so we cannot define ν in the conventional way. See for
example Ref. [78], where it is shown that for the XY

model, ξ ∝ e−bt−1/2

or [40], where it is stated that ν
should be infinite for q = 5, 6.
One can define the exponent ν̃ for a BKT transition

[79] (we use tilde to distinguish from the ordinary ν) by
the scaling

ξ ∝ ebt
−ν̃

, (34)

and use this to label the universality class of the system.
For the XY model, ν̃ = 1/2. Then the pseudocritical
points βpc (i.e. the peak locations) for BKT transitions
should approach the infinite volume critical point as

βpc = βc +
A

(lnL+B)1/ν̃
. (35)

This is different from second-order scaling. However, as
noted in Ref. [79], fits to this form may be unstable, and
so this scaling relation may not be a good way to extract
the critical exponent ν̃. To investigate the q = 5 state

q α β γ δ η ν βc

2 0 1/8 7/4 15 1/4 1 1
2
ln(1 +

√
2)

3 1/3 1/9 13/9 14 4/15 5/6 2
3
ln(1 +

√
3)

4 0 1/8 7/4 15 1/4 1 ln(1 +
√
2)

TABLE I: Here we show (for reference) the critical
exponents for the integer q clock model for q = 2, 3, 4.

The clock model is the hq → ∞ limit of the
Extended-O(2) model. For q = 2, this is the Ising
model. For q = 3, the clock model is in the same

universality class as the 3-state Potts model. For q = 4,
it has been shown [80] that the clock model is in the 2D

Ising universality class. The final column gives the
exact infinite-volume critical point for these three cases.

clock model, Ref. [79] ended up using the equation with
ν̃ fixed at 1/2

βpc = βc +
A

(lnL+B)2
. (36)

This form was used to find βc, but Ref. [79] concluded
that it was only reliable for very large volumes.
To extract the β, γ, and η exponents from BKT transi-

tions, we use the scaling ansätze Eq. (23), (24), and (25).
For systems with two BKT transitions, e.g. the 5-state
clock model, the proxy magnetization does not always
work as an order parameter, and so alternative order pa-
rameters may have to be used with Eq. (23) and (24).
For example, in the 5-state clock model, the proxy mag-
netization is useful as an order parameter in the vicinity
of the small-β critical point, but not the large-β one.
Near the large-β critical point, one can use a “rotated
magnetization” [49–52] as is used in Eq. (10).

IV. RESULTS

A. Integer q

For integer values of q, the Extended-O(2) model re-
tains a rotational symmetry. When hq = 0, this is the
full O(2) symmetry. When hq is finite, this symmetry
reduces to a Zq symmetry. The model is easier to study
at integer q because the autocorrelations remain manage-
able even at large β.
To get a good survey of the model, we study q = 2,

3, 4, 5, 6 at hq = 0.1, 1.0. At infinite hq, the Extended-
O(2) model reduces to the ordinary clock model which
for q = 2, 3, 4 has a single second-order transition (see
Table I), and for q ≥ 5, has a pair of infinite-order BKT
transitions. We start with the assumption that the same
kind of transitions persist to finite hq. We show then that
this assumption fails to hold at intermediate and small
hq.
We performed MCMC simulations at L = 16, 32, 64,

96, 128, 160, 192, 224, 256. A biased Metropolis heat-
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q hq ν α β γ η

2 0.1 1.044(53) 0.021(18) 0.319(94) 1.859(96) 0.287(13)

2 1.0 1.022(71) -0.010(16) N/A 1.78(12) 0.251(14)

3 0.1 0.658(24) 0.354(35) N/A 1.291(45) 0.3651(93)

3 1.0 0.809(26) 0.311(21) N/A 1.411(36) 0.295(16)

4 0.1 2.49(89) -0.30(12) 0.76(87) 4.3(1.5) 0.2570(85)

4 1.0 1.20(14) -0.162(19) 0.78(61) 2.09(24) 0.2532(93)

5 0.1 N/A N/A N/A N/A 0.2716(72)

5 1.0 N/A N/A N/A N/A 0.2653(94)

6 0.1 N/A N/A N/A N/A 0.2880(86)

6 1.0 N/A N/A N/A N/A 0.2654(92)

TABLE II: The first two columns refer to the model
parameters, and the remaining columns list the critical
exponents obtained for the model. They are obtained
via the finite-size scaling ansätze Eq. (21)–(26). See
Table IV in the appendix for more information. Some
exponents could not be extracted reliably from our

data. For example, in some cases we were unable to get
satisfactory fits between our data and Eq. (23), and so
we were unable to extract β/ν. For q = 5, 6, we were
able to obtain good estimates only for the exponent η.

This is because q = 5, 6 have infinite order BKT
transitions for which ν is not well defined and our
method of extracting the bare exponents listed here

depends on an estimate of ν obtained via Eq. (21). This
may also be why we see large error bars for the case

q = 4, hq = 0.1, which we argue in the main text shows
characteristics of a BKT rather than a second-order
transition. Note, for q = 5, 6 there are two phase
transitions. The results listed here refer to the

transition at high temperature.

bath algorithm was used with an acceptance rate around
90%. Each run started with 215 equilibration sweeps fol-
lowed by 216 measurement sweeps. Each measurement
sweep was separated by 26 (or more) discarded sweeps
to help mitigate autocorrelation. Later during the anal-
ysis stage, the residual integrated autocorrelation time
was estimated and the effect was removed by binning the
observables. For some of the larger volumes, more runs
were performed to increase the statistics.

Using the FSS fit forms Eq. (21)–(26), we extracted
the exponents 1/ν, α/ν, −β/ν, γ/ν, and 2−η for integer
q and hq = 0.1, 1.0. These are tabulated in Table IV in
Appendix C. The critical exponents ν, α, β, γ, and η are
then extracted and listed in Table II. For example, the
exponent α is obtained by taking the ratio of measured
exponents α/ν and 1/ν. This is done at the level of
jackknife bins in order get reliable error bars on the final
critical exponents. For q = 5, 6, we do not include results
from Eq. (21) since the quantity is unstable and the fits
tend to be bad. This is because q = 5, 6 have infinite
order BKT transitions for which the critical exponent ν
is not well-defined. As a result, the bare exponents for
q = 5, 6, which depend on 1/ν are not listed in Table II.

q hq ν βc

2 0.1 1.059(50) 0.87756(46)

2 1.0 0.985(58) 0.65448(24)

3 0.1 0.878(21) 1.00044(56)

3 1.0 0.812(22) 0.82584(11)

4 0.1 2.04(18) 1.0841(84)

4 1.0 1.361(74) 0.9916(18)

5 0.1 N/A 1.136(11)

5 1.0 N/A 1.128(12)

6 0.1 N/A 1.1251(83)

6 1.0 N/A 1.1143(92)

TABLE III: Here we tabulate the jackknife average of
the estimates of ν and βc listed in Tables V and VI.

These results are obtained from Eq. (30) for q = 2, 3, 4
and Eq. (36) for q = 5, 6. This provides an alternative
estimate of ν from the one given in Table II which is

obtained from Eq. (21). Note, for q = 5, 6 there are two
infinite order BKT phase transitions for which ν is not

well defined. The results listed here refer to the
transition at high temperature.

For q = 2, 3, 4, we fit each observable to Eq. (30) to
estimate the critical exponent ν and critical point βc.
The results are tabulated in Table V in Appendix C.
Similarly, we use Eq. (36), to estimate the BKT criti-
cal points for q = 5, 6, and list them in Table VI. The
estimates of ν and βc are averaged (at the level of jack-
knife bins) over the different observables to obtain the
final estimates listed in Table III. For example, the first
row of Table III is a jackknife average of the first five
rows of Table V shown in Appendix C. Compare the es-
timates of the critical exponent ν in Table II obtained
from Eq. (21) with the estimates in Table III obtained
from Eq. (30). The results are consistent except for the
model with q = 3 and hq = 0.1.

For q = 2 with hq = ∞ (i.e. the Ising model), there is

a second-order phase transition at βc = ln(1 +
√
2)/2 ≃

0.4407 with critical exponents ν = 1, α = 0, γ = 7/4,
β = 1/8, and η = 1/4 (see Table I). With hq = 1.0, the
thermodynamic quantities show Ising-like divergences
near a critical point, which we estimate to be βc =
0.65448(24) in the infinite-volume limit. From finite-
size scaling, we find 1/ν = 0.978(68), α/ν = −0.010(16),
γ/ν = 1.745(19), and 2− η = 1.749(14). The bare expo-
nents are ν = 1.022(71), α = −0.010(16), γ = 1.78(12),
and η = 0.251(14). These are consistent with the criti-
cal exponents of the 2D Ising universality class. For this
case, we were unable to get satisfactory fits between our
data and Eq. (23), and so we were unable to extract β/ν.
When we decrease hq to 0.1, the thermodynamic quan-
tities show similar Ising-like divergences, with e.g. the
specific heat diverging logarithmically (see Fig. 3). The
critical point is now at βc = 0.87756(46). From finite-
size scaling, we find 1/ν = 0.958(49), α/ν = 0.020(17),
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FIG. 3: Here we look at data for some volumes
(L = 16, . . . , 256) for the model with q = 2 and
hq = 0.1. The top panel shows the magnetic

susceptibility, the bottom panel shows the specific heat,
and the inset within the top panel shows the Binder
cumulant. The data is from reweighted Monte Carlo

with error bars included. The vertical dashed line is at
βc ≈ 0.8773 where the Binder cumulant curves cross.

This figure illustrates the behavior typical of a
second-order phase transition—the Binder cumulants

cross at the transition point, the magnetic susceptibility
diverges, and the specific heat diverges logarithmically.

γ/ν = 1.780(16), β/ν = 0.306(81), and 2−η = 1.713(13).
Our estimates for the bare exponents are ν = 1.044(53),
α = 0.021(18), β = 0.319(94), γ = 1.859(96), and
η = 0.287(13). Our estimates for β and η are not con-
sistent with the 2D Ising universality class, however, the
scaling relations Eq. (31) and (33) are violated which
may mean that our estimates β/ν = 0.306(81), and
2− η = 1.713(13) are not reliable. As hq → 0, the criti-
cal point moves to larger β and connects with the BKT
transition near βc = 1.12 of the XY model when hq = 0.

For q = 3 with hq = ∞ (i.e. the 3-state Potts
model), there is a second-order phase transition at βc =

2 ln(1+
√
3)/3 ≈ 0.6700, with critical exponents ν = 5/6,

α = 1/3, γ = 13/9, β = 1/9, and η = 4/15 (see Ta-
ble I). At hq = 1.0, the thermodynamic functions show
second-order divergences near a critical point, which we
estimate to be βc = 0.82584(11) in the infinite-volume
limit. From finite-size scaling, we find 1/ν = 1.236(40),
α/ν = 0.385(21), γ/ν = 1.743(16), and 2−η = 1.705(16)
which are consistent with the exponents at hq = ∞.
The bare exponents are ν = 0.809(26), α = 0.311(21),
γ = 1.411(36), and η = 0.295(16). When we reduce hq to
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FIG. 4: Here we look at data for some volumes
(L = 16, . . . , 256) for the model with q = 4 and
hq = 0.1. The top panel shows the magnetic

susceptibility, the bottom panel shows the specific heat,
and the inset within the top panel shows the Binder
cumulant. The data is from reweighted Monte Carlo

with error bars included. The vertical dashed line is at
βc ≈ 1.09 where the Binder cumulant curves merge.
This figure illustrates the behavior typical of a BKT
phase transition—the Binder cumulants merge at the
transition point, the magnetic susceptibility diverges,

and the specific heat plateaus.

0.1, the critical point moves to βc = 1.00044(56). Assum-
ing a second-order transition, we find from finite-size scal-
ing 1/ν = 1.521(57), α/ν = 0.538(48), γ/ν = 1.962(16),
and 2 − η = 1.6349(93), which are different from the 3-
state Potts universality class. The bare exponents are
ν = 0.658(24), α = 0.354(35), γ = 1.291(45), and
η = 0.3651(93). The scaling relations are violated in
this case. As hq → 0, the critical point moves to larger β
and connects with the BKT transition of the XY model
when hq = 0.

For q = 4 with hq = ∞, the model is known to be
in the 2D Ising universality class with critical point at
βc = ln(1 +

√
2) ≈ 0.8814 and critical exponents given

in Table I. At hq = 1, the thermodynamic functions
diverge near a critical point which we estimate to be
βc = 0.9916(18) in the infinite-volume limit. From finite-
size scaling, we find 1/ν = 0.834(96), γ/ν = 1.742(14),
−β/ν = −0.65(51), and 2 − η = 1.7468(93). When ex-
tracting the exponent α/ν, attempts to fit to the form
Eq. (22) failed. However, a fit to the form Eq. (26)
yielded α/ν = −0.1349(90). The bare exponents are ν =
1.20(14), α = −0.162(19), β = 0.78(61), γ = 2.09(24),



10

and η = 0.2532(93). When we reduce hq to 0.1, the
critical point moves to βc = 1.0841(84). Assuming a
second-order transition, we find from finite-size scaling
1/ν = 0.40(14), α/ν = −0.120(19), γ/ν = 1.728(16),
−β/ν = −0.31(31), and 2−η = 1.7430(85). The bare ex-
ponents are ν = 2.49(89), α = −0.30(12), β = 0.76(87),
γ = 4.3(1.5), and η = 0.2570(85). These are not con-
sistent with the 2D Ising universality class. Since α is
negative and ν is finite, the specific heat decreases with
increasing volume. This can be seen in Fig. 4. Other
thermodynamic quantities diverge, and the Binder cu-
mulants merge suggesting a BKT transition instead of
a second-order transition. The scaling relation Eq. (32)
does not hold in this case, but the other two relations
do hold. As hq → 0, the critical point moves to slightly
larger β and connects with the BKT transition of the
XY model when hq = 0.

Finally, we consider q = 5, 6. At hq = ∞, these mod-
els both show a pair of BKT transitions. At finite hq

there also appear to be two BKT transitions as shown
in Fig. 5. As before, to extract critical exponents, we
look at maxima in the thermodynamic quantities. This
works well for the low-β transition, but not for the large-
β transition since many of the thermodynamic quantities
do not show a well-defined peak near the second transi-
tion. Nevertheless, the transition point can be located
by the Binder cumulant crossings. In a BKT transition,
the specific heat does not diverge with volume, and one
cannot use Eq. (22) to extract a critical exponent α. Fur-
thermore, the correlation length diverges faster than any
power, and so Eq. (21) cannot be used to extract ν. In
fact, in the conventional sense, ν must be infinite for
a BKT transition. Fits to the forms Eq. (23)–(25) are
performed and exponents recorded in Table IV. The re-
sults are generally consistent with BKT transitions. For
q = 5, 6, estimates of the critical points for the small-
β transition obtained by fitting to Eq. (36) are listed in
Table VI in Appendix C. The average values are listed
in Table III. However, it is not clear that Eq. (36) is a
reliable way to estimate the critical point for BKT transi-
tions, and the method of Binder cumulant crossings may
be preferred, however this was beyond the scope of this
work. For q = 5, 6, the small-β transition connects to
the BKT transition of the XY model when hq = 0. The
large-β transition moves to larger β as hq → 0. Recently,
it was estimated that for q = 5, the large-β transition
limits to βc2 ≈ 2.27 as hq → 0 [18].

We summarize now our results for integer q and com-
pare them with prior literature. In the infinite-coupling
limit hq → ∞, this model becomes the ordinary q-state
clock model. For integer q, the clock model has been
well-studied and is known to have a second-order tran-
sition for q = 2, 3, 4 and a pair of BKT transitions for
q ≥ 5. In our previous work [7], we studied this limit of
the model, and our results for integer q were consistent
with the prior literature. In the present work, we study
the model at finite hq. Specific cases appear in the lit-
erature, but nobody had yet performed a study of the
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FIG. 5: Here we look at data for some volumes
(L = 16, . . . , 256) for the model with q = 5 and
hq = 1.0. The top panel shows the magnetic

susceptibility, and the bottom panel shows the specific
heat. The inset within the top panel shows the Binder
cumulant of the proxy magnetization. The vertical

dashed line is at βc1 ≈ 1.08, where the Binder cumulant
curves cross. The inset within the bottom panel shows

the Binder cumulant of the rotated magnetization
defined in Eq. (10). The vertical dotted line is at

βc2 ≈ 1.22, where the Binder cumulant curves cross.
The data is from reweighted Monte Carlo with error
bars included. This figure illustrates the behavior

typical of the two BKT transitions that occur in the
ordinary clock model for q ≥ 5. The magnetic

susceptibility diverges at both transitions, and the
specific heat plateaus at both transitions. For L = 256,
we show only results near the first transition point.

Already here the error bars are rather large.

critical exponents of the model across a large parameter
range. For q = 2, our results are mostly consistent with
an Ising phase transition for the entire range of hq that
we studied. This is consistent with an early renormaliza-
tion group analysis [8]. For q = 3, Ref. [8] predicted the
3-state Potts universality class for all hq > 0. Our numer-
ical results agree with this for large hq but not for small
hq, where we find a second-order phase transition with
critical exponents different from the 3-state Potts model.
Our results for q = 3 and small hq are more consistent
with a numerical study [9], which showed that the critical
exponents vary with hq. This study also concluded that
there is a BKT phase for values of hq smaller than what
we studied here. For q = 4 with large and intermediate
values of the coupling, we find a second-order phase tran-
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sition with critical exponents that vary with hq. This is
consistent with prior literature [8, 10, 12–15, 30]. The
literature agrees on what happens at large and interme-
diate hq, but disagrees on what happens at small hq. The
early renormalization group analysis [8] showed that the
BKT transition is recovered only for hq = 0. Numer-
ical studies [9, 16] found evidence for BKT transitions
at small hq, however, more recent work [11, 17] suggests
that the apparent BKT phase at finite hq is essentially
a finite-size effect and might not persist to infinite vol-
umes. Our own results for q = 4 and small hq = 0.1 are
consistent with BKT, however, our lattices are not large
enough to exclude the possibility that these are finite-size
effects. Only a few studies by other groups give quantita-
tive results, such as critical points and exponents, which
we can compare against. For q = 4 and hq = 1.0, our
critical point and critical exponents seem consistent with
those in Refs. [11, 14]. For q = 4 and hq = 0.1, our results
for the critical point and critical exponent β agree with
those in Ref. [16]. For hq = 0.1 our quantitative results
for ν and γ disagree with those in Ref. [9], although we
agree with the conclusion that the behavior is BKT-like.
For integer q ≥ 5, our results suggest a pair of BKT tran-
sitions for all values of hq > 0. This is consistent with
prior literature including renormalization group analysis
[8] and numerical studies of specific cases [14, 18].

B. Noninteger q

At noninteger q, the explicitly broken Zq symmetry
causes difficulties for the MCMC approach. In fact, we
were unable to get reliable results on lattices larger than
32×32 due to the large autocorrelations that result. This
makes finite-size scaling infeasible with the MCMC ap-
proach. Instead, we use TRG to investigate the noninte-
ger q regime. We validate the TRG approach by compar-
ison with MCMC on smaller lattices. See Appendix D.

With TRG, we started with a low precision scan of the
parameter space for q ∈ [1, 6], β ∈ [0, 2], hq = 0.1, 1.0,
and L = 4, 8, . . . , 1024. For example, we show in Fig. 6
heatmaps of the specific heat (top row) and entangle-
ment entropy (bottom row) for hq = 1 (left column) and
hq = 0.1 (right column). Each pixel is a data point ob-
tained from TRG performed with L = 1024 and bond
dimension 40. The color in each heatmap ranges from
dark to light and this corresponds to a value ranging
from 0 to 2.5. The cutoff choice of 2.5 (which truncates
some of the specific heat values) was made to increase the
contrast in the heatmaps. For hq = 1, the heatmap of
the specific heat shows smooth lobes even as one crosses
integer values of q. When hq is reduced to 0.1, the lines
at large β fade away leaving a thick horizontal line that
connects to the BKT transition at hq = 0. Heatmaps of
the entanglement entropy (bottom row of Fig. 6) show
that there remain obvious discontinuities as one crosses
integer values of q.
The heatmaps of the specific heat show that the heights
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FIG. 6: Heatmaps from TRG of the specific heat (top
row) and entanglement entropy (bottom row) for the
Extended-O(2) model with hq = 1 (left column) and
hq = 0.1 (right column). Each point is from a TRG
calculation performed with L = 1024 and bond

dimension 40.

and positions of the peaks in the specific heat vary
smoothly as q is varied. The resulting smooth lobes
suggest smooth lines in the phase diagram even as one
crosses integer values of q. Such a phase diagram is remi-
niscent of that of Rydberg atom chains as shown in Fig. 2
and is a motivation for carefully checking for deeper sim-
ilarities between these two models. On the other hand,
heatmaps of the entanglement entropy show that there
remain obvious discontinuities as one crosses integer val-
ues of q. This suggests a phase diagram at finite hq that
is similar to the phase diagram at infinite hq. A rigor-
ous finite-size scaling analysis is needed to establish the
true phase diagram at noninteger q, and that is what we
present in the remainder of this section.

At noninteger values of q, the specific heat generally
shows two peaks. In the hq = ∞ limit, it was found [7]
that the small-β peak is only a crossover, but the large-β
peak is associated with a second-order phase transition
of the 2D Ising universality class. Here, we investigate
the finite hq regime.

First we consider the small-β peak, which we know [7]
is a crossover at hq = ∞. On the other hand, this peak
connects to the BKT transition of the XY model when
hq = 0. The question is; what happens at finite hq?
We find that the magnetic susceptibility plateaus with
volume—indicating a crossover—since a phase transition
here would result in divergence of the susceptibility with
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FIG. 7: Here we look at the behavior of the magnetic

susceptibility near the small-β peak for noninteger q. In
this example, q = 4.1. We obtain the susceptibility from

TRG with bond dimension 32 after applying small
external magnetic fields h = 10−5, δh = 10−5. In the

left panel, hq = 0.01 and in the right panel, hq = 0.001.
For sufficiently large volumes, the magnetic

susceptibility peaks plateau—implying a crossover. For
a true phase transition, the peaks would diverge with

increasing volume. As the symmetry-breaking
parameter hq is decreased toward zero, one must go to

larger volumes to show that the peaks are not
diverging.

volume (see Fig. 7). We conclude that the small-β peak
corresponds to a crossover even as hq → 0 and only be-
comes a BKT transition exactly at hq = 0.

Next, we consider the large-β peak, which corresponds
to a second-order transition of the 2D Ising universality
class when hq = ∞. As q approaches an integer from
below, the second-order transition (i.e. the second peak)
occurs at relatively small values of β. As q is decreased
toward the next integer, the critical point moves to large
values of β. In Fig. 8, we show TRG results for q = 3.9
and hq = 1 near the large-β peak. In the top panel,
we show the data collapse of the magnetic susceptibility
from TRG. The estimate βc = 1.196 was obtained by
fitting the peak positions to the finite-size scaling form
Eq. (30). To extract the magnetic susceptibility, an ex-
ternal field h = 40/L15/8 was imposed (with dh = 10−5

for the numerical differentiation). In the bottom panel,
we show the data collapse of the specific heat from TRG
for the same model. The specific heat was computed
from the second derivative of the free energy after ap-
plying smoothing splines to the free energy. These data
collapse curves are consistent with a second-order phase
transition of the 2D Ising universality class.

In summary, for all noninteger q and all hq > 0, we find
a crossover at small-β and a phase transition of the Ising
universality class at large β. As q approaches an integer
from below, the Ising transition line smoothly connects
to the critical point of the model with integer q. However,
for q a little larger than the integer, the Ising transition
occurs at much larger β. The apparent similarity with
the phase transition of a Rydberg atom chain therefore
does not hold up under scrutiny. In fact, the true phase
diagram for noninteger q looks qualitatively the same for
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FIG. 8: In the top panel, the data collapse of the
magnetic susceptibility from TRG for the large-β peak
for the model with q = 3.9 and hq = 1. The estimate

βc = 1.196 was obtained by fitting the peak positions to
the finite-size scaling form Eq. (30). To extract the

magnetic susceptibility, an external field h = 40/L15/8

was imposed (with dh = 10−5 for the numerical
differentiation). In the bottom panel, the data collapse
of the specific heat for the same model. These results
are consistent with there being a second-order phase
transition here of the 2D Ising universality class.

all hq > 0 with sharp discontinuities at integer values of
q.

C. Phase Diagram

Combining our findings for integer and noninteger q,
we obtain the phase diagram shown in Fig. 9. For hq = 0,
we have the XY model, which has a BKT phase tran-
sition, for all values of q. For hq → ∞, we have the
phase diagram of the q-state clock model which has been
extended to noninteger values of q.
In the limit hq → ∞, for q = 2, 3, 4, there is a single

second-order phase transition of the q-state clock model
universality class, and for integer q ≥ 5, there are two
BKT phase transitions. When hq is dialed toward zero,
the two BKT transitions for q ≥ 5 appear to persist to
all hq > 0. The small-β BKT transitions merge with the
BKT transition of the XY model at hq = 0. The large-β
BKT transitions, which vanish only for hq = 0, converge
to different but finite values of β in the limit hq → 0
[18]. For q = 3, 4, the critical exponents of the second-
order phase transitions vary with hq. We see evidence
that the transition for q = 4 turns into a BKT phase
transition at small hq > 0. There is some controversy
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FIG. 9: Here we present four two-dimensional scenarios of the full three-parameter phase diagram. Each slice is at a
different value of the symmetry-breaking parameter hq. In the left-most figure, the phase diagram at hq = 0. This is
the well-studied XY model at all values of q. There is a single BKT transition near βc = 1.12 and a BKT critical
phase at β ≥ βc. The second and third figures give the conjectured phase diagram at small and intermediate hq

respectively. In the right-most figure, we show the phase diagram for the hq → ∞ case. In this limit, the model
reduces to the q-state clock model which has been extended to noninteger q [7]. For hq > 0 we find for noninteger q
a crossover at small β and an Ising phase transition at larger β with an Ising ordered phase at large β. As hq is

increased, the only qualitative change for noninteger q is that everything shifts to smaller β. For q = 2, our results
are consistent with an Ising transition for all hq > 0. For q = 3, our results are consistent with a second-order phase
transition with critical exponents that vary with hq. For q = 4, which is in the 2D Ising universality class in the
clock model limit (hq → ∞), we find at intermediate hq a second-order phase transition that may be in a different
universality class. At small hq, our results are consistent with a BKT transition for q = 4. For integer q ≥ 5, there

are two BKT transitions with the small-β transitions connecting to the BKT line at hq = 0 and the large-β
transitions limiting to some other points in the hq → 0 limit.

about this point with some authors claiming there is a
BKT transition at small hq [9, 16] and others arguing that
the BKT transition only occurs for hq = 0 [8, 11, 17]. In
the present work, our lattices are not large enough to
conclusively answer this question.

For noninteger q, we find a crossover at small β, and a
second-order phase transition of the 2D Ising universality
class at large β for all hq > 0. This holds for all nonin-
teger q > 1, so between each consecutive pair of integers
⌊q⌋ and ⌈q⌉, there is a smooth second-order transition line
that terminates at the integer ⌈q⌉. Thus, the phase di-
agram is discontinuous at each integer q. In this model,
the symmetry-breaking term pushes the spins into the
angles φ = 2πk/q where k = 0, 1, . . . , ⌊q⌋. In some sense
the model “prefers” these angles with the strength of that
preference being given by the coupling strength hq. As q
is dialed across an integer value, an additional preferred
angle becomes available, so it is not surprising to see dis-
continuities in the phase diagram at each integer q when
hq is large. It is more surprising that this picture for non-
integer q persists to all finite hq > 0. That is, contrary to
the picture suggested by heatmaps of the specific heat,
the discontinuities in the phase diagram persist even to
very small hq. More details can be found in Ref. [81].

V. SUMMARY

We studied the effects of adding a symmetry break-
ing term −hq

∑
x cos(qφx) to the energy function of the

ordinary classical O(2) model in two dimensions. This
adds two continuously tunable parameters which allows
us to explore the effect of symmetry-breaking in O(2)-
like models. There is some previous literature on this
model, however, it is generally limited to specific integer
values of q and specific values of hq. In this work, we
have studied a much larger parameter space, and unlike
previous studies, we considered also noninteger values of
q in order to fully explore the effects of broken symme-
tries. The result is a rich phase diagram illustrated in
Fig. 9.

When q is integer, the symmetry-breaking term results
in the O(2) symmetry being reduced to a Zq symmetry.
In the hq → ∞ limit, the model reduces to the ordinary
q-state clock model, which for q = 2, 3, 4 has a second-
order phase transition and for q ≥ 5 has two BKT tran-
sitions. In the limit q → ∞, the ordinary O(2) model is
recovered. For q ≥ 5, the pair of BKT transitions seems
to persist to finite hq. When hq → 0, the small-β transi-
tion connects to the BKT transition of the O(2) model,
whereas the large-β transition goes to a different finite
value of β. For q = 3, 4, the phase diagram changes more
significantly as the symmetry-breaking parameter hq is
changed. For q = 3 at small hq and for q = 4 at inter-
mediate hq, we find second-order phase transitions with
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critical exponents different from those in the hq → ∞
limit. For q = 4, our results indicate that the transition
turns into a BKT transition at small hq.
For noninteger q, early results at finite hq suggested

smooth “lobes” of Zq ordered phases in the phase dia-
gram reminiscent of those seen in Rydberg atom chains
(see Fig. 2). However, this initial picture did not hold
up under scrutiny. In the hq → ∞ limit, we find that for
noninteger q, there is a crossover at small β and an Ising
phase transition at larger β. In the phase diagram, there
is a smooth Ising phase transition line that terminates
at the next larger integer, such that the phase diagram
looks nearly periodic from integer to integer, but with an
abrupt discontinuity at each integer. For noninteger q,
this picture seems to persist to all finite hq > 0. In the
phase diagram, Fig. 9, we see numerous examples of Ising
transition lines (noninteger q) terminating at BKT tran-
sition points (integer q) and followed by crossover lines on
the other side of the integer. This vividly illustrates the
strong influence that symmetries exert in these classes of
models and that even a barely broken symmetry results
in completely different behavior.

In summary, we found that adding a symmetry break-
ing term −hq

∑
x cos(qφx) to the ordinary classical O(2)

model results in a rich phase diagram containing second-
order phase transitions of various universality classes and
BKT transitions. This Extended-O(2) model can serve
as a playground in which to explore these different kinds
of phase transitions and their relationships. The model
interpolates between different Zq models via the con-
tinuously tunable parameter q, and so it may be use-
ful for optimizing the various Zq approximations of U(1)
in quantum simulations of Abelian gauge theories. Fur-

thermore, since the O(2) model is a nontrivial limit of
the Abelian-Higgs model, it may be useful to attempt
the analog quantum simulation of the O(2) model and
the extension of that model with the symmetry-breaking
term as a first step toward the analog simulation of the
Abelian-Higgs model.

ACKNOWLEDGEMENTS

We thank Gerardo Ortiz, James Osborne, Nouman
Butt, Richard Brower, Judah Unmuth-Yockey, and mem-
bers of the QuLAT collaboration for useful discussions
and comments.
This work was supported in part by the U.S. De-

partment of Energy (DOE) under Award Numbers DE-
SC0010113, and DE-SC0019139. J.Z. is supported by
NSFC under Grants No. 12304172 and No. 12347101,
Chongqing Natural Science Foundation under Grant
No. CSTB2023NSCQ-MSX0048, and Fundamental Re-
search Funds for the Central Universities under Projects
No. 2023CDJXY-048 and No. 2020CDJQY-Z003. This
research used resources of the Syracuse University HTC
Campus Grid and NSF award ACI-1341006 and the
National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Sci-
ence User Facility located at Lawrence Berkeley National
Laboratory, operated under Contract No. DE-AC02-
05CH11231 using NERSC awards HEP-ERCAP0020659
and HEP-ERCAP0023235. This work was also supported
in part through computational resources and services
provided by the Institute for Cyber-Enabled Research
at Michigan State University.

[1] R. P. Feynman, International Journal of Theoretical
Physics 21, 467 (1982).

[2] A. Bazavov, Y. Meurice, S.-W. Tsai, J. Unmuth-
Yockey, and J. Zhang, Phys. Rev. D92, 076003 (2015),
arXiv:1503.08354 [hep-lat].

[3] J. Zhang, J. Unmuth-Yockey, J. Zeiher, A. Bazavov,
S. W. Tsai, and Y. Meurice, Phys. Rev. Lett. 121,
223201 (2018), arXiv:1803.11166 [hep-lat].

[4] Y. Meurice, Phys. Rev. D 100, 014506 (2019),
arXiv:1903.01918 [hep-lat].

[5] Y. Meurice, Phys. Rev. D 104, 094513 (2021).
[6] S. Notarnicola, E. Ercolessi, P. Facchi, G. Marmo,

S. Pascazio, and F. V. Pepe, Journal of Physics
A: Mathematical and Theoretical 48, 30FT01 (2015),
arXiv:1503.04340.

[7] L. Hostetler, J. Zhang, R. Sakai, J. Unmuth-Yockey,
A. Bazavov, and Y. Meurice, Phys. Rev. D 104, 054505
(2021).
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Appendix A: Connecting to the Clock Model

The energy function of the ordinary q-state clock
model with zero external field is

S = −
∑
x,µ

cos(φx+µ̂ − φx), (A1)

where the allowed angles are the discrete values φx =
2πk/q with q, k ∈ Z. In a previous work [7], we defined
the “Extended q-state clock model” by allowing q to take
noninteger values and restricting the angles to

φ0 ≤ φx =
2πk

q
< φ0 + 2π, (A2)

with e.g. φ0 = 0. In that work, we characterized the full
phase diagram of the model.

In the present work, we consider the “Extended-O(2)
model” with zero-field energy function

S = −
∑
x,µ

cos(φx+µ̂ − φx)− hq

∑
x

cos(qφx). (A3)

Now, the allowed angles are the continuous values φ ∈
[0, 2π), but when hq is taken large, the Boltzmann factor
e−βS forces the angles to take the values φx = 2πk/q
with k ∈ Z. Hence, we claim that the Extended-O(2)
model reduces to the Extended q-state clock model in
the limit hq → ∞. However, there are some subtleties
when q is noninteger.
For noninteger q, the 2π-rotational symmetry is bro-

ken. Thus, we have to carefully define the domain of the
angles φx. For example, one could choose φx ∈ [−π, π)
or φx ∈ [0, 2π). These different choices lead to very dif-
ferent phase diagrams as we showed for the hq → ∞
case in [7]. We prefer the choice φx ∈ [0, 2π), sim-
ply because the phase diagram gives a more consistent
periodic picture as q is increased3. However, with the
choice φx ∈ [0, 2π), there is a hard cutoff at the angle
φ = 0. When hq = ∞, this is not a problem, but at finite
hq, this cutoff skews the distribution of angles severely
enough that the model at finite hq does not smoothly
connect to the model at infinite hq when hq → ∞. To
fix this, we need to slightly shift the angle domain such
that φx ∈ [−ε, 2π − ε). To match the clock model (i.e.
hq = ∞ case), one needs an ε that varies with q and sat-
isfies the condition 0 < ε < 2π(1− ⌊q⌋/q). In this work,
we choose

ε = π

(
1− ⌊q⌋

q

)
. (A4)

After taking the hq → ∞ limit, the ε → 0 limit can be
taken to connect with the clock models.

3 See the left panel of Figure 26 in [7] as opposed to the right panel
in the same figure.

FIG. 10: An example with q = 3, hq = 1, and lattice size
L = 192. The top panel shows the proxy magnetization,
and the bottom panel shows the magnetic susceptibility.

The purple points show the results from canonical
simulations. The cubic fit to the peak is applied using
the reweighted values shown in green. The red point
with x and y errors shows the peak maximum as

estimated by applying a cubic fit to each jackknife bin.

When q is noninteger, one may find that the Extended
O(2) model with hq → ∞ and the Extended q-state clock
model do not agree when β → 0. For noninteger q, the
Zq symmetry is explicitly broken, and for example, the
energy density of the Extended q-state clock model does
not go to zero in the limit β → 0 [7]. In contrast, the en-
ergy density in the Extended O(2) model does go to zero
in the limit β → 0 for all values of hq. The discrepancy
can be understood by considering the Boltzmann factor
of the Extended O(2) model, which has the form

e−βS = eβ
∑

cos(φx+µ̂−φx)+βhq
∑

cos(qφx) (A5)

The clock limit occurs when hq → ∞ and the second term
becomes very large—forcing the angles into the discrete
values φx = 2πk/q. When β → 0, the two limits compete
against each other. To match the clock model in the
hq → ∞ limit for all values of β, one has to adjust hq

such that βhq stays large as one approaches β = 0.

Appendix B: Finite-size Scaling Procedure

We do canonical MCMC lattice simulations in the
neighborhood of the critical point. We then use multihis-
togram reweighting to interpolate between these simula-
tions to precisely identify the maximum of some quantity.
For example, for the magnetic susceptibility, we:

1. Perform some number Nruns of canonical MCMC
lattice simulations. Each simulation gives us a time
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FIG. 11: An example of a finite size scaling fit for the
model with q = 3 and hq = 1. Here, we fit the maxima
of the magnetic susceptibility to the ansatz given by
Eq. (24). The numbers shown here may not exactly

match the values listed in Table IV because a different
averaging procedure is used there.

FIG. 12: An example of a finite size scaling fit for the
model with q = 3 and hq = 1. Here, we fit the

β-location of the peaks of the magnetic susceptibility to
the ansatz given by Eq. (30). The numbers shown here
may not exactly match the values listed in Table V

because a different averaging procedure is used there.

series of the proxy magnetization at a given β, and
this is used to estimate the susceptibility for that
β

2. Stitch these canonical runs together via multihis-
togram reweighting. See Fig. 10. This procedure
gives us the magnetization estimated at many (i.e.
Nβ >> Nruns) β values

• Before reweighting, the integrated autocorre-
lation time of the magnetization is estimated
from each canonical time series

• The output of the reweighting procedure is
Njb jackknife bins of the magnetization esti-
mated at each of the Nβ β values

3. Within each jackknife bin, we compute the suscep-
tibility at the Nβ β values, fit a cubic polynomial
to the peak of the susceptibility, and extract the
maximum and the β-value at the maximum

4. In the end, we end up with Njb jackknife esti-
mates of the maximum M of the susceptibility. See
Fig. 10. Our best estimate of the maximum is

MJ ± sJ(MJ), (B1)

where the jackknife mean and error bar are com-
puted as

MJ =
1

Njb

Njb∑
i=1

MJ
i (B2)

sJ(MJ) =

√√√√Njb − 1

Njb

Njb∑
i=1

(
MJ

i −MJ
)2

, (B3)

where MJ
i is the maximum computed from the ith

jackknife bin. Note that “J” is merely a label to
indicate that a quantity is from jackknife—it is not
an index.

5. This procedure is repeated for several lattice sizes
L and then fit to the appropriate finite size scaling
form Eq. (21)–(26). See, for example, Figures (11)
and (12)

Appendix C: FSS Results at Integer q
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q hq Exponent Ratios Fit Form Lmin Lmax p-value χ2/dof Exponent Ratios

2.0 0.1 1/ν Eq. (21) 32 256 0.196 1.483 0.958(49)

2.0 0.1 α/ν Eq. (26) 32 256 0.498 0.878 0.020(17)

2.0 0.1 γ/ν Eq. (24) 32 256 0.386 1.058 1.780(16)

2.0 0.1 −β/ν Eq. (23) 32 256 0.617 0.711 -0.306(81)

2.0 0.1 2− η Eq. (25) 32 256 0.198 1.476 1.713(13)

2.0 1.0 1/ν Eq. (21) 32 256 0.722 0.571 0.978(68)

2.0 1.0 α/ν Eq. (26) 32 256 0.011 2.991 -0.010(16)

2.0 1.0 γ/ν Eq. (24) 32 256 0.532 0.828 1.745(19)

2.0 1.0 −β/ν Eq. (23)

2.0 1.0 2− η Eq. (25) 32 256 0.07 2.06 1.749(14)

3.0 0.1 1/ν Eq. (21) 32 256 0.858 0.384 1.521(57)

3.0 0.1 α/ν Eq. (22) 32 256 0.029 2.514 0.538(48)

3.0 0.1 γ/ν Eq. (24) 32 256 0.264 1.302 1.962(16)

3.0 0.1 −β/ν Eq. (23)

3.0 0.1 2− η Eq. (25) 32 256 0.852 0.392 1.6349(93)

3.0 1.0 1/ν Eq. (21) 32 256 0.822 0.436 1.236(40)

3.0 1.0 α/ν Eq. (22) 32 256 0.402 1.032 0.385(21)

3.0 1.0 γ/ν Eq. (24) 32 256 0.873 0.361 1.743(16)

3.0 1.0 −β/ν Eq. (23)

3.0 1.0 2− η Eq. (25) 32 256 0.407 1.021 1.705(16)

4.0 0.1 1/ν Eq. (21) 32 256 0.942 0.241 0.40(14)

4.0 0.1 α/ν Eq. (26) 32 256 0 10.332 -0.120(19)

4.0 0.1 γ/ν Eq. (24) 32 256 0.53 0.831 1.728(16)

4.0 0.1 −β/ν Eq. (23) 32 256 0.09 1.922 -0.31(31)

4.0 0.1 2− η Eq. (25) 32 256 0.398 1.035 1.7430(85)

4.0 1.0 1/ν Eq. (21) 32 256 0.167 1.576 0.834(96)

4.0 1.0 α/ν Eq. (26) 32 256 0.53 0.83 -0.1349(90)

4.0 1.0 γ/ν Eq. (24) 32 256 0.568 0.777 1.742(14)

4.0 1.0 −β/ν Eq. (23) 32 256 0.39 1.049 -0.65(51)

4.0 1.0 2− η Eq. (25) 32 256 0.073 2.032 1.7468(93)

5.0 0.1 γ/ν Eq. (24) 32 256 0.039 2.379 1.727(15)

5.0 0.1 −β/ν Eq. (23) 32 256 0.067 2.083 -0.35(22)

5.0 0.1 2− η Eq. (25) 32 256 0.028 2.541 1.7284(72)

5.0 1.0 γ/ν Eq. (24) 32 256 0.042 2.339 1.722(14)

5.0 1.0 −β/ν Eq. (23) 32 256 0.06 2.148 -0.44(24)

5.0 1.0 2− η Eq. (25) 32 256 0.354 1.117 1.7347(94)

6.0 0.1 γ/ν Eq. (24) 32 256 0.678 0.629 1.710(11)

6.0 0.1 −β/ν Eq. (23) 32 256 0.009 3.08 -0.15(16)

6.0 0.1 2− η Eq. (25) 32 256 0.214 1.432 1.7120(86)

6.0 1.0 γ/ν Eq. (24) 32 256 0.867 0.371 1.726(15)

6.0 1.0 −β/ν Eq. (23)

6.0 1.0 2− η Eq. (25) 32 256 0.096 1.889 1.7346(92)

TABLE IV: Critical exponents are tabulated for integer q = 2, 3, 4, 5, 6 and finite hq = 0.1, 1.0. The p-value is a
goodness-of-fit measure defined in Eq. (29). For q = 5, 6, there appear to be two BKT transitions as is the case for
hq = ∞. Here, we include data only for the transition at small inverse temperature. Empty cells indicate that it was

not possible to obtain a trustworthy fit.
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q hq From Lmin Lmax p-value χ2/dof ν βc

2.0 0.1 dUM/dβ|max 32 256 0.119 1.767 1.13(10) 0.8775(12)

2.0 0.1 CV |max 32 256 0.016 2.816 1.03(11) 0.87726(38)

2.0 0.1 χM |max 32 256 0.256 1.32 1.054(54) 0.87753(48)

2.0 0.1 ⟨M⟩|infl 32 256 0.172 1.561 1.014(80) 0.87734(49)

2.0 0.1 F (q⃗)|max 32 256 0.179 1.534 1.066(45) 0.87816(76)

2.0 1.0 dUM/dβ|max 32 256 0.123 1.752 0.979(73) 0.65440(53)

2.0 1.0 CV |max 32 256 0.164 1.59 1.04(16) 0.65442(27)

2.0 1.0 χM |max 32 256 0.842 0.407 0.991(55) 0.65453(28)

2.0 1.0 ⟨M⟩|infl 32 256 0.963 0.194 0.908(82) 0.65423(28)

2.0 1.0 F (q⃗)|max 32 256 0.778 0.497 1.012(42) 0.65482(40)

3.0 0.1 dUM/dβ|max 32 256 0.133 1.706 0.791(35) 0.99873(93)

3.0 0.1 CV |max 32 256 0.924 0.276 0.863(41) 1.00073(74)

3.0 0.1 χM |max 32 256 0.03 2.507 0.811(19) 0.99924(45)

3.0 0.1 ⟨M⟩|infl 32 256 0.176 1.545 0.756(29) 0.99878(54)

3.0 0.1 F (q⃗)|max 32 256 0.215 1.429 1.168(44) 1.0047(16)

3.0 1.0 dUM/dβ|max 32 256 0.22 1.415 0.808(31) 0.82568(18)

3.0 1.0 CV |max 32 256 0.173 1.558 0.909(47) 0.82603(13)

3.0 1.0 χM |max 32 256 0.093 1.905 0.760(21) 0.82574(10)

3.0 1.0 ⟨M⟩|infl 32 256 0.12 1.764 0.760(27) 0.82575(11)

3.0 1.0 F (q⃗)|max 32 256 0.015 2.855 0.823(18) 0.82603(19)

4.0 0.1 dUM/dβ|max 32 256 0.158 1.607 2.26(59) 1.098(27)

4.0 0.1 CV |max

4.0 0.1 χM |max 32 256 0.229 1.387 1.96(12) 1.0797(54)

4.0 0.1 ⟨M⟩|infl 32 256 0.082 1.972 2.05(26) 1.082(12)

4.0 0.1 F (q⃗)|max 32 256 0.839 0.412 1.88(13) 1.0772(67)

4.0 1.0 dUM/dβ|max 32 256 0.954 0.216 1.34(17) 0.9918(47)

4.0 1.0 CV |max

4.0 1.0 χM |max 32 256 0.053 2.21 1.251(47) 0.9883(13)

4.0 1.0 ⟨M⟩|infl 32 256 0.46 0.935 1.52(26) 0.9952(60)

4.0 1.0 F (q⃗)|max 32 256 0.791 0.479 1.334(67) 0.9912(20)

TABLE V: Here we fit the peak (or inflection point) locations to the form Eq. (30) to estimate the infinite-volume
critical point βc and the critical exponent ν. The p-value is a goodness-of-fit measure defined in Eq. (29). Empty

cells indicate that it was not possible to obtain a trustworthy fit.
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q hq From Lmin Lmax p-value χ2/dof βc

5.0 0.1 χM |max 32 256 0.167 1.579 1.1308(77)

5.0 0.1 ⟨M⟩|infl 32 256 0.037 2.402 1.143(23)

5.0 0.1 F (q⃗)|max 32 256 0.26 1.312 1.133(13)

5.0 1.0 χM |max 32 256 0.571 0.774 1.1267(96)

5.0 1.0 ⟨M⟩|infl 32 256 0.078 2.007 1.133(22)

5.0 1.0 F (q⃗)|max 32 256 0.939 0.246 1.126(15)

6.0 0.1 χM |max 32 256 0.11 1.819 1.1237(76)

6.0 0.1 ⟨M⟩|infl 32 256 0.012 2.971 1.123(13)

6.0 0.1 F (q⃗)|max 32 256 0.348 1.127 1.128(12)

6.0 1.0 χM |max 32 256 0.209 1.445 1.125(11)

6.0 1.0 ⟨M⟩|infl 32 256 0.339 1.143 1.099(16)

6.0 1.0 F (q⃗)|max 32 256 0.206 1.456 1.118(13)

TABLE VI: Here we fit the peak (or inflection point) locations to the form Eq. (36) to estimate the infinite-volume
critical point βc of the small-β phase transition. The p-value is a goodness-of-fit measure defined in Eq. (29).
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Appendix D: TRG and MC Comparisons

Whereas Monte Carlo is a well-established approach
with easily quantifiable uncertainties, it is an approach
that sometimes struggles with critical slowing down. In
the Extended-O(2) model studied in this paper, the
Monte Carlo approach has no problem when q is integer.
However, when q is noninteger, the Markov chain suf-
fers from large autocorrelation times which worsen with
increasing lattice size. The result is that for noninteger
q, it becomes infeasible to produce de-correlated samples
for large volumes e.g. for L >> 32.

In contrast, tensor renormalization group (TRG)
methods do not suffer from autocorrelation and critical
slowing down. However, because of the truncations used,
there are systematic uncertainties that are not always
well-quantified. To be confident that our TRG methods
are reliable, we compare them against MC in the regimes
which are accessible to Monte Carlo.

In Fig. 14, we consider several different values of q
and hq at two different volumes. For noninteger values
of q, we compare small volumes L = 16, 32. For inte-
ger values of q, we are able to compare larger volumes
L = 128, 256. In the top panel of each figure, we com-
pare the specific heat from Monte Carlo and TRG. With
TRG, we compute the free energy and apply smooth-
ing splines before computing the specific heat as the sec-
ond derivative of the free energy. In the bottom panel,
we show the magnetic susceptibility from Monte Carlo.
These figures show very good agreement between Monte
Carlo and TRG for the specific heat.

With Monte Carlo, we use zero external field (h = 0),

and so the magnetization M⃗ averaged over many equi-
librium configurations would average to zero for all β.

Instead, we measure a proxy magnetization |M⃗ | defined
in Eq. (7). The corresponding susceptibility is defined in
Eq. (8).

With TRG, we use a different approach. Since the
TRG procedure preserves the symmetry, zero external
field yields zero magnetization. Thus in this study we
imposed the finite external field to extract the magne-
tization. In a technical point of view we have used the
method proposed by Morita and Kawashima in ref. [67]
to calculate the magnetization (as declared in the method
section). Note that the magnetizations and the suscep-
tibilities calculated by the TRG are based on the nor-
mal magnetization rather than the proxy one. However,
again, we expect the critical behavior does not change
between the normal and proxy definitions.

Because of the different approaches used by Monte
Carlo and TRG, it is not meaningful to directly compare
the magnetization or the magnetic susceptibility. Hence,
we do not include TRG susceptibilities in the bottom

panels in Fig. 14. However, we expect the critical be-
havior to be the same in the thermodynamic limit. We
show an example of this in Fig. 13 for the case q = 3.9
and γ = 1. In the top panel, we show how the suscepti-
bility (calculated from Monte Carlo) peaks approach the
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FIG. 13: We compute the susceptibility for q = 3.9 and
hq = 1 in the vicinity of the second-order transition in
two different ways. In the top panel, we see how the
susceptibility peaks from Monte Carlo approach the
critical point, and in the bottom panel we look at the
susceptibility peaks from TRG. From the Monte Carlo
peak positions, we estimate βc = 1.19511(32) (vertical

blue line) by fitting the peak locations to the
finite-size-scaling form Eq. (30). From the TRG peak
positions, we estimate βc = 1.196 (vertical dashed line)
via the same finite-size scaling form. As described in
the main text, because of large autocorrelations, the
Monte Carlo results at noninteger q are not strictly
reliable for L > 32, and this might explain the small

observed discrepancy between MC and TRG.

critical point with increasing volume. The critical point
βc = 1.19511(32) (vertical blue line) was estimated by
fitting the Monte Carlo peak locations to the finite-size
scaling form Eq. (30). In the bottom panel of Fig. 13, we
do the same but with the susceptibility calculated using
TRG. Here, we estimate βc = 1.196 (vertical dashed line)
using the same finite-size scaling form. Note, that the
Monte Carlo results are not strictly reliable for L > 32
in this figure since for q = 3.9 there are very large and
unmitigated autocorrelations. Nevertheless, it seems the
finite-size scaling shift of the MC peaks are in general
agreement with the finite-size scaling shift of the TRG
peaks.
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FIG. 14: We compare Monte Carlo and TRG results at various model parameters. In each figure, we compare in the
top panel the specific heat C from Monte Carlo (error bars and no connecting lines) with the specific heat from

TRG (solid line). In the bottom panel of each figure, we show the magnetic susceptibility χ from Monte Carlo. The
TRG susceptibility is not shown since the susceptibility cannot be directly compared for the two methods. For the
top two figures, we show the case q = 3.9 with hq = 0.1 (left) and hq = 1 (right). The β range was chosen to show
both peaks in the specific heat, although at these small volumes, only one peak is visible for hq = 0.1. In the middle

two figures, we show the case q = 4.1 with hq = 0.1 (left) and hq = 1 (right). The β range was chosen to show
small-β peak in the specific heat. For the case hq = 1, the specific heats of the two different volumes lie directly on
top of each other. In the bottom two figures, we show the case q = 5 with hq = 0.1 (left) and hq = 1 (right). At

integer q, we are able to reliably go to larger volumes with Monte Carlo, so we compare L = 128 and L = 256 here.
The β range was chosen to show the small-β peak in the specific heat.
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