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Fluctuation Theorem on a Riemannian Manifold
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Based on the covariant underdamped and overdamped Langevin equations with Stratonovich cou-
pling to multiplicative noises and the associated Fokker-Planck equations on Riemannian manifold,
we present the first law of stochastic thermodynamics on the trajectory level. The corresponding
fluctuation theorems are also established, with the total entropy production of the Brownian particle
and the heat reservoir playing the role of dissipation function.
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I. INTRODUCTION

Since the early 1990s, fluctuation theorems (FTs) [1–
3] have played an indispensable role in understanding
the origin of macroscopic irreversibility. Such theorems,
often realized in the form of unequal probabilities for
the forward and reversed processes, greatly helped in re-
solving the long lasting puzzles and debates regarding
Boltzmann’s H-theorem, known as Loschmidt paradox.
Based on Sekimoto’s work [4] on stochastic energetics,
Seifert [5] was able to establish a version of FT associated
to the stochastic trajectories described by overdamped
Langevin equation (OLE), and subsequent works [6–8]
extended the construction to the cases of various gener-
alized forms of Langevin equation (LE).

Can we establish FTs on the trajectory level on curved
Riemannian manifold? This is the question we wish to
address in this work. In recent years, stochastic ther-
modynamics has gained increasing importance in un-
derstanding phenomena at the mesoscopic scale [9–13].
There are certain realistic scenarios, such as the diffu-
sion of individual protein molecule on a biological mem-
brane, which calls for a construction of LE and FT on
Riemannian manifolds. Another motivation for the quest
of stochastic thermodynamics and FT on Riemannian
manifolds is to take it as a midway step towards general
relativistic description of these fields, which is important
because, in essence, every physics system must abide by
the principles of relativity, whereas the spacetime sym-
metries in general relativity impose much stronger re-
strictions, making it harder to break the time reversal
symmetry.

Historically, there have been some repeated attempts
in the construction of LE on Riemannian manifolds in
the mathematical [14–19] and physical [20, 21] litera-
ture. However, the first law and other thermodynamic
relations were not considered in these works. Xing et
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al. [22, 23] explored an Ito-type nonlinear LE and es-
tablished a FT on Riemannian manifold. Most of these
works have interpreted the word “covariance” in the sense
of second order (or jet bundle) geometry, which is dif-
ferent from the usual coordinate covariance in standard
Riemannian geometry. Ref. [20] seems to be an excep-
tion. However, the difference between our work and [20]
is acute: the LE in [20] is presented only in the config-
uration space, something like the OLE to be described
in Section II B. However, as will be explained near the
end of Section II B, the covariance of LE in [20] actu-
ally holds only in flat manifolds and only with respect to
linear coordinate transformations, while our work cov-
ers both the configuration space (OLE) and phase space
(ULE) descriptions, and our formalism is genuinely co-
variant under general coordinate transformation in the
sense of first order geometry.

II. LANGEVIN AND FOKKER-PLANCK

EQUATIONS ON RIEMANNIAN MANIFOLD

A. Underdamped case

In Ref. [24], the relativistic covariant underdamped
Langevin equation (ULE) on pseudo-Riemannian space-

time is established. The same procedure can be used for
constructing the LE for a point particle of mass m > 0
moving on d-dimensional Riemannian space M with pos-
itive definite metric gµν(x), so we directly present the
result,

dx̃µ
t =

p̃µt
m

dt, (1)

dp̃µt =

[

Rµ
a ◦S dw̃a

t +
1

2
Rµ

a
∂

∂pν
Rν

adt

]

−
1

m
Kµ

ν p̃
ν
t dt+ fµ

exdt−
1

m
Γµ

αβ p̃
α
t p̃

β
t dt, (2)

where Rµ
a represent the stochastic amplitudes which

may depend on x̃µ and p̃µ, Γµ
αβ is the Christoffel connec-

tion associated with gµν(x), K
µ
ν is the tensorial damp-

ing coefficient (referred to as damping tensor henceforth),
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and dw̃a
t are Gaussian noises with probability distribu-

tion functions (PDFs)

Pr[dw̃a
t = dwa] =

1

(2πdt)d/2
exp

[

−
δabdw

adwb

2dt

]

. (3)

The symbol ◦S represents the Stratonovich coupling
which ensures the chain rule in stochastic calculus. Greek
indices µ, ν, · · · label spatial directions and latin indices
a, b, · · · label independent noises, which are all running
from 1 to d. Tilded variables like x̃µ, p̃µ represent random
variables, and the un-tilded symbols like xµ, pµ their re-
alizations. In particular, (xµ, pµ) denotes the coordinate
of the Brownian particle on TM in a concrete realization.

Some remarks are in due here.

(i) The LE described above is a system of stochas-
tic differential equations on the tangent bundle TM re-
garded as the space of micro states of the Brownian par-
ticle. Normally, the space of micro states for a particle
is taken to be the cotangent bundle T ∗M . However, due
to the non-degeneracy of the metric gµν , the tangent and
cotangent spaces are dual to each other, and the tan-
gent and cotangent bundles can be used interchangeably
(see [25–27] for explicit use of both approaches). Recall
that TM is naturally equipped with the Sasaki metric
[25, 26, 28]

ĝ := gµνdx
µ ⊗ dxν + gµνθ

µ ⊗ θν ,

where θµ = dpµ+Γµ
αβp

αdxβ , together with the invariant
volume element [here g(x) := det gµν(x)]

d2dX = g(x) dx1 ∧ dx2 ∧ ... ∧ dxd ∧ dp1 ∧ ... ∧ dpd.

As explained in [25, 26], the Sasaki metric is closely con-
nected to the symplectic structure on TM .

Notice that the metric gµν(x) on M plays an indis-
pensable role while obtaining the above Sasaki metric
and also while describing the last term of eq. (2).

(ii) The choice for the stochastic amplitude Rµ
a is

non-unique. Different choices correspond to different
Langevin systems, and the result of this work should hold
for all choices such that Rµ

a is an invertible matrix func-
tion which is differentiable in (xµ, pµ) and transforms as
a vector for each fixed a.

(iii) Our approach to LE is the traditional one, as
opposed to the more abstract nonlinear approach used
in [22, 23]. Eq. (2) can be viewed as the geodesic equa-
tion supplemented by additional force terms, including a
stochastic force

ξµ := Rµ
a ◦S dw̃a

t /dt+
1

2
Rµ

a
∂

∂pν
Rν

a,

a damping force fµ
dp := −Kµ

ν p̃
ν
t /m and an external

force fµ
ex. The second term in the stochastic force is

known as additional stochastic force [29, 30], which is

required in order for the Brownian particle to be able
to reach thermal equilibrium with the heat reservoir. In
one-dimensional case, the stochastic force can also be ex-
pressed in the form of post-point rule ξ = R ◦p dw̃t/dt,
hence some authors argued that the post-point rule is
better suited for LE with multiplicative noises. However,
in higher-dimensional cases, the post-point rule leads to
a different result,

Rµ
a ◦p dw̃

a
t /dt = Rµ

a ◦S dw̃a
t /dt+

1

2
Rν

a
∂

∂pν
Rµ

a.

(iv) The Stratonovich coupling maintains the chain
rule, which ensures the covariance in the usual sense in
Riemannian geometry. This makes an important differ-
ence from the previous works [16–19, 22, 23].

(v) Although eqs. (1)-(2) look the same as their rela-
tivistic counterparts [24], there are some essential differ-
ences. First, the time t used here is absolute, mean-
ing that eqs. (1)-(2) are non-relativistic; Second, the
heat reservoir hiding behind the stochastic and damp-
ing force terms is also non-relativistic, there is no need
to worry about the relativistic effects such as the Tolman-
Ehrenfest red shift; Last, the momentum space is flat, as
opposed to the relativistic case.

The external force term depends on the position x of
the Brownian particle and an external control parame-
ter λ, and can be separated into conservative and non-
conservative parts,

fµ
ex = fµ

con + fµ
noc = −∇µU(x, λ) + fµ

noc.

There is some ambiguity in this decomposition, e.g.

fµ
ex = (fµ

con + f̂µ) + (fµ
noc − f̂µ) = f̂µ

con + f̂µ
noc,

where f̂µ is an arbitrary conservative force. This also
leads to an ambiguity in the energy

E(x, p, λ) =
1

2m
gµν(x)p

µpν + U(x, λ)

of the Brownian particle. In the extremal case with

f̂µ = −fµ
con, The energy will be consisted purely of the

kinematic energy.

Since the Stratonovich coupling preserves the chain
rule, we have

dẼt =
∂E

∂pµ
dp̃µt +

∂E

∂xµ
dx̃µ

t + dλU

=
1

m
(p̃t)µ(ξ

µ + fµ
dp)dt+

1

m
(p̃t)µf

µ
nocdt+ dλU, (4)

where Ẽt is the energy considered as a random variable
and E its realization. The part of the increase of energy
caused by the heat reservoir is purely a thermal effect
and thus comprehended as trajectory heat dQ̃t, the rest
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part is purely mechanical and should be comprehended
as trajectory work dW̃t,

dQ̃t =
(p̃t)µ
m

(

ξµ + fµ
dp

)

dt,

dW̃t =
(p̃t)µ
m

fµ
nocdt+ dλU. (5)

Thus eq. (4) becomes the first law of stochastic thermo-
dynamics on the trajectory level, i.e.

dẼt = dQ̃t + dW̃t.

The ambiguity in the decomposition of the external force
also leads to an ambiguity in the trajectory work. How-
ever, in any case, the trajectory heat dQ̃t = dẼt − dW̃t

is always unambiguously defined. Please be reminded
that, unlike the usual heat and work in standard thermo-
dynamics which are inexact differentials defined on the
space of macro states, the trajectory heat and work are
only defined on a stochastic trajectory of the Brownian
particle.

The Fokker-Planck equation (FPE) associated to
eqs. (1)-(2) can also be established on TM . The PDF
for the Brownian particle under the measure d2dX is de-
noted as Φt(x, p) := Pr[x̃t = x, p̃t = p], and is clearly
coordinate-independent. By use of the diffusion operator
method [31], one can get

∂tΦt =
∂

∂pµ

[

1

2
Dµν ∂

∂pν
Φt +

1

m
Kµ

νp
νΦt − fµ

exΦt

]

−
1

m
L(Φt), (6)

where Dµν := Rµ
aR

ν
a is the diffusion tensor and

L = pµ
∂

∂xµ
− Γµ

αβp
αpβ

∂

∂pµ

is the Liouville vector field on TM [25, 26].

Let the non-conservative force be temporarily turned
off and the external control parameter be fixed. Then, af-
ter sufficiently long period of time, the Brownian particle
will reach a thermal equilibrium with the heat reservoir,
yielding the equilibrium PDF

Φt(x, p) =
1

Z
exp

[

−
1

T

(

gµνp
µpν

2m
+ U(x, λ)

)]

. (7)

Putting this PDF into the FPE (6), one gets the Einstein
relation

Dµν = 2TKµν, (8)

which implies that the damping tensor Kµν are not inde-
pendent of the stochastic amplitudes Rµ

a and that Kµν

is invertible as a matrix. As long as only the FPE is con-
cerned, there is an additional freedom in the sign choice
of Rµ

a, because D
µν appear as a quadratic form in Rµ

a.

To facilitate the discussion about FT, we introduce
the time-reversal transform (TRT) for the process rang-
ing from tI to tF :

I :

{

xµ(t) 7→ xµ(tF + tI − t)
pµ(t) 7→ −pµ(tF + tI − t)

,

which is often briefly described as I : (x, p) 7→ (x,−p) for
short. Notice that the infinitesimal time increment dt is
not affected by such transformation and remains to be
positive.

It is obvious that TRT preserves the metric, i.e.

I∗ĝ = ĝ. The damping force fµ
dp|X = −Kµ

νp
ν/m re-

verses sign under TRT, thus the damping tensor must be
invariant under TRT,

Kµν |I(X) = Kµν |X , X = (x, p), I(X) = (x,−p).

Eq. (8) implies that the diffusion tensor is also invari-
ant under TRT. There is some freedom in choosing the
stochastic amplitudes, and hence also in determining
their behaviors under TRT. Here we assume the simplest
transformation rule,

Rµ
a|I(X) = Rµ

a|X .

An immediate consequence is that the additional stochas-
tic force should reverse sign under TRT. The coefficients
of dt in eq. (2) can be classified into even and odd parts
under TRT, i.e.

Fµ = fµ
ex −

1

m
Γµ

αβp
αpβ with Fµ|I(X) = Fµ|X ,

and

F̄µ =
1

2
Rµ

a
∂

∂pν
Rν

a −
1

m
Kµ

νp
ν with F̄µ|I(X) = −F̄µ|X .

Then eq. (2) can be recast in a simpler form,

dp̃µt = Rµ
a ◦S dw̃µ

t + Fµdt+ F̄µdt. (9)

The last equation is the starting point for introducing
the discretized version of the ULE in Appendix B 2.

B. Overdamped case

The stochastic mechanics characterized by LE is a
branch of physics with multiple time scales, of which the
smallest one is the time scale dt which allows for a suffi-
cient number of collisions between the Brownian particle
and the heat reservoir particles which cause little changes
in the state of the Brownian particle [32]. If the tempo-
ral resolution ∆t greatly exceeds dt but is still smaller
than the relaxation time, the ULE (1)-(2) emerges. If
∆t is further increased so that it is much larger than the
relaxation time, the overdamped limit emerges.
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The relaxation process of the Brownian particle can
be viewed either as the process by which the damping
force attains a state of mechanical equilibrium with other
forces (mechanical relaxation process), or as the process
by which the Brownian particle achieves local thermal
equilibrium with the heat reservoir (thermodynamic re-
laxation process). The characteristic timescales associ-
ated with both processes are m/κ, where κ is the eigen-
value of Kµν . Consequently, the OLE should arise when
∆t greatly exceeds m/κ.

The two kinds of relaxation process correspond to two
approaches for taking the overdamped limit. From the
perspective of mechanical relaxation process, the OLE
can be described as the condition for mechanical equilib-
rium

0 = fµ
dp + fµ

ex + ξµ. (10)

This result is achieved in flat space under the condition
that the damping tensor is position- and momentum-
independent [33, 34], and is often viewed as a stochastic
differential equation in configuration space. However, if
the stochastic amplitudes are momentum-dependent, so
is the additional stochastic force. Thus the mechanical
equilibrium condition cannot be understood as a stochas-
tic differential equation in configuration space. To avoid
the above difficulty, let us consider the simpler situa-
tion in which the stochastic amplitudes are momentum-
independent. Using the thermodynamic relaxation ap-
proach [35], it will be shown that, even in this simpler
situation, a nontrivial additional stochastic force term
still arises in the corresponding OLE.

The overdamped condition implies that the momen-
tum space PDF already reaches the equilibrium form,
while the configuration space PDF does not, so that the
full PDF Φt(x, p) can be factorized,

Φt(x, p) = ρt(x)P
s(x, p),

where

P s(x, p) :=
1

(2πmT )−d/2
exp

[

−
gµν(x)p

µpν

2mT

]

(11)

is the (Maxwell) equilibrium PDF in momentum space,

and ρt(x) :=

∫

g1/2ddp Φt(x, p) = Pr[x̃t = x] is the PDF

in configuration space. By adding the first order correc-
tions from the near equilibrium states, the overdamped
FPE is found to be (see Appendix. A),

∂tρt = ∇µ

[

1

2
D̂µν∇νρt − K̂µ

νf
ν
exρt

]

, (12)

where K̂µν = (K−1)µν and D̂µν = 4T 2(D−1)µν . Two
important properties of eq. (12) are worth of notice: 1)
The Einstein relation still holds for the rescaled damping
and diffusion tensors

D̂µν = 2TK̂µν;

and 2) The Boltzmann distribution

ρt(x) =
1

Zx
e−U(x,λ)/T

is a solution of eq. (12) provided the non-conservative
force is turned off and the external parameter is fixed,
wherein Zx represents the configuration space normal-
ization factor, which should not be confused with the
normalization factor Z appeared in eq. (7).

Using the diffusion operator method, it can be
checked that the LE associated with eq. (12) takes
the same form as eq. (10), but with a momentum-
independent stochastic force term

ξµ = Rµ
a ◦S dw̃a

t /dt+
1

2
Rµ

a∇ν(K̂
ν
αR

α
a). (13)

Denoting

R̂µ
a := K̂µ

νR
ν
a, F̂

µ = K̂µ
νf

ν
ex +

1

2
R̂µ

a∇νR̂
ν
a, (14)

the OLE can be written in a simpler form

dx̃µ
t = R̂µ

a ◦S dw̃a
t + F̂µdt. (15)

This equation is similar in form to the LE presented in
[21]. However, unlike eq. (14), the additional stochastic
force presented in [21] contains only an ordinary coordi-
nate derivative rather than covariant derivative. Conse-
quently, the claimed general covariance of the LE of [20]
is questionable: it actually holds only for flat manifolds
and only with respects to linear coordinate transforma-
tions.

Since the inertial effect can be ignored in the over-
damped case, the energy of the Brownian particle con-
tains only the potential energy, i.e. E(x, λ) = U(x, λ).
Using eq. (10) and the chain rule, we have

dẼt =
∂U

∂xµ
dx̃µ

t + dλU = −(fcon)µdx̃
µ
t + dλU

= [ξµ + (fdp)µ]dx̃
µ
t + (fnoc)µdx̃

µ
t + dλU.

Similar to the underdamped case, the energy absorbed
from the heat reservoir is understood as the trajectory
heat, and the rest part of the energy increase as trajec-
tory work. Thus we have, thanks to eq. (10),

dQ̃t = [ξµ + (fdp)µ]dx̃
µ
t = −(fex)µdx̃

µ
t , (16)

dW̃t = (fnoc)µdx̃
µ
t + dλU.

III. FLUCTUATION THEOREM

Now we come to the stage for describing FT on Rie-
mannian manifold based on the description of stochastic
trajectories. Since the trajectory probability in contin-
uous time is hard to deal with, we adopt the following
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strategy: first we take a discrete equidistant set of time
nodes tI = t0 < t1 < ... < tn = tF to rewrite the LE and
factorize the corresponding trajectory probabilities, and
then take the continuum limit at the end of the calcula-
tion.

The stochastic process in discrete time can be
viewed as a sequence of random variables, i.e. X̃[t] =

(X̃0, X̃1, ..., X̃n) with X̃i = X̃ti for the underdamped
case and x̃[t] = (x̃0, x̃1, ..., x̃n), with x̃i = x̃ti for the
overdamped case.

Before proceeding, it is necessary to clarify the con-
cepts of ensemble and trajectory entropy productions. At
the time t, the ensemble entropy of the Brownian particle
reads

St = −

∫

d2dXΦt lnΦt,

and the ensemble entropy production in the process is
∆S = StF − StI . Notice that (throughout this paper,
an overline denotes ensemble average, while 〈 〉 denotes
trajectory average)

−ln ρt := −

∫

g1/2ddx ρt ln ρt

is not the entropy of the overdamped Brownian particle,
however, the ensemble entropy production of the Brown-
ian particle can be represented as the difference of −ln ρt,
because the ensemble entropy for the overdamped Brow-
nian particle can be evaluated to be

St = −ln ρt +
d

2
+

d

2
ln(2πmT ),

where the last two terms arise from the momentum space
integration of the term involving the distribution P s(x, p)
given in eq. (11). Subtracting the initial value from the
final value leaves only the difference of −ln ρt,

∆S = ln ρtI − ln ρtF .

In contrast, the trajectory entropy production is defined
simply to be the difference between the logarithms of the

PDF at the initial and final times, i.e.

∆SX[t]
= lnΦtI (X0)− lnΦtF (Xn)

for the underdamped and

∆Sx[t]
= ln ρtI (X0)− ln ρtF (Xn)

for the overdamped cases.

Now let us consider the underdamped case. It is im-
portant to distinguish the terms process and trajectory:
the latter is a realization of the former. The forward
process X̃[t] refers to a stochastic process governed by
the ULE (1)-(2), wherein the external control parameter
λ[t] = (λ0, λ1, ..., λn) varies over time. Correspondingly,
the reversed process X̃−

[t] also refers to a stochastic pro-

cess governed by the same LE, but its initial state should
be identified with the time-reversal of the final state of
the forward process, i.e. X̃−

0 = I(X̃n), and the corre-
sponding external control parameter should satisfy λ−

i =
λn−i. The reversed trajectory X[t] = (X0, X1, ..., Xn) is

defined such that X−
i := I(Xn−i).

We will prove that the total entropy production, i.e.
the sum of the trajectory entropy production with the
change of the entropy of the heat reservoir, should be

ΣX[t]
= ln

Pr[X̃[t] = X[t]]

Pr[X̃−
[t] = X−

[t]]
. (17)

Since the Brownian motion is a Markov process, the
trajectory probability can be decomposed into product
of transition probabilities,

Pr[X̃[t] = X[t]]

=
(

n−1
∏

i=0

Pr[X̃i+1 = Xi+1|X̃i = Xi]
)

Pr[X̃0 = X0].

A similar decomposition can be made for Pr[X̃−
[t] = X−

[t]]. Therefore, we have

ΣX[t]
=

n−1
∑

i=0

ln
Pr[X̃i+1 = Xi+1|X̃i = Xi]

Pr[X̃−
i+1 = X−

i+1|X̃
−
i = X−

i ]
+ ln

Pr[X̃0 = X0]

Pr[X̃−
0 = X−

0 ]

=

n−1
∑

i=0

ln
Pr[X̃i+1 = Xi+1|X̃i = Xi]

Pr[X̃−
n−i = I(Xi)|X̃

−
n−i−1 = I(Xi+1)]

+ ln
Pr[X̃0 = X0]

Pr[X̃n = Xn]
, (18)

where, in the last step, the definitions of the reversed
process and reversed trajectory have been used and re-

arrange of terms in the summation has been adopted.
The last term in eq. (18) is simply the trajectory entropy
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production, because

ΦtI (X0) = Pr[X̃0 = X0], ΦtF (Xn) = Pr[X̃n = Xn].

On the other hand, the continuum limit of the first term
reads (see Appendix.B 2)

lim
n→+∞

n−1
∑

i=0

ln
Pr[X̃i+1 = Xi+1|X̃i = Xi]

Pr[X̃−
n−i = I(Xi)|X̃

−
n−i−1 = I(Xi+1)]

= −
1

T

∫ tF

tI

dt
pµ

m
∇µ (T + U) +

1

T

∫ tF

tI

dt
pµ
m

fµ
noc, (19)

where T := pµpµ/2m is the kinematic energy. According
to eq. (5), the trajectory work should be

∆WX[t]
=

∫ tF

tI

dt

(

pµ
m

fµ
noc +

∂U

∂λ

dλ

dt

)

,

and the change of energy is

∆EX[t]
= ∆TX[t]

+∆UX[t]

=

∫ tF

tI

dt
pµ

m
∇µT +

∫ tF

tI

dt

(

pµ

m
∇µU +

∂U

∂λ

dλ

dt

)

.

Since the trajectory heat is ∆QX[t]
= ∆EX[t]

−∆WX[t]
,

eq. (18) can also be rewritten as

ΣX[t]
= ∆SX[t]

−
1

T
∆QX[t]

= ∆SX[t]
+∆SRes, (20)

where, since the heat reservoir maintains in equilibrium,
the Clausius equality holds, the change of the entropy of
the heat reservoir reads

∆SRes = ∆QRes/T = −∆QX[t]
/T.

Thus ΣX[t]
is indeed the total entropy production. In-

serting eq. (20) back into eq. (17), we get the desired
FT

Pr[X̃[t] = X[t]]

Pr[X̃−
[t] = X−

[t]]
= e

ΣX[t] = e
∆SX[t]

−∆QX[t]
/T

, (21)

which tells that the process with positive total entropy
production is probabilistically more preferred.

Taking the trajectory average of eq. (21), we get, by
use of the Jensen inequality, the following result,

e
−

〈

ΣX̃[t]

〉

≤
〈

e
−ΣX̃[t]

〉

=

∫

D[X[t]] Pr[X̃
−
[t] = X−

[t]]

=

∫

D[X−
[t]] Pr[X̃

−
[t] = X−

[t]] = 1, (22)

where D[X[t]] = dX0 ∧ dX1 ∧ ... ∧ dXn is the measure
on the trajectory space. It is easy to prove that the map
X[t] 7→ X−

[t] preserves the measure, i.e. D[X[t]] = D[X−
[t]].

Eq.(22) is the so-called integral FT, which tells that the

entropy production is non-negative in any macroscopic
process, i.e.

〈

ΣX̃[t]

〉

≥ 0.

The FT in the overdamped case can be constructed
following a similar fashion, however the processes must
be described solely in configuration space. The defini-
tions of the reversed process x̃−

[t] and the reversed trajec-

tory x−
[t] are similar to the underdamped case, with the

replacement Xi → xi. Therefore,

Σx[t]
:= ln

Pr[x̃[t] = x[t]]

Pr[x̃−
[t] = x−

[t]]

=

n−1
∑

i=0

ln
Pr[x̃i+1 = xi+1|x̃i = xi]

Pr[x̃−
n−i = xi|x̃

−
n−i−1 = xi+1]

+ ln
Pr[x̃0 = x0]

Pr[x̃n = xn]
.

In the continuum limit, we have (see Appendix.B 1)

lim
n→+∞

n−1
∑

i=0

ln
Pr[x̃i+1 = xi+1|x̃i = xi]

Pr[x̃−
n−i = xi|x̃

−
n−i−1 = xi+1]

=
1

T

∫ tF

tI

vµf
µ
exdt, (23)

where vµ is the velocity of the Brownian particle. Ac-
cording to eq. (16), the trajectory heat is

∆Qx[t]
= −

∫ tF

tI

vµf
µ
exdt,

and the trajectory entropy production is

∆Sx[t]
= ln ρtI (x0)− ln ρtF (xn) = ln

Pr[x̃0 = x0]

Pr[x̃n = xn]
.

Finally, we arrive at the desired FT

Pr[x̃[t] = x[t]]

Pr[x̃−
[t] = x−

[t]]
= e

Σx[t] = e
∆Sx[t]

−∆Qx[t]
/T

.

The integral FT in the overdamped case can be obtained
in complete analogy to the underdamped case, therefore,
there is no need to repeat the construction.

IV. CONCLUDING REMARKS

The covariant LE and FPE on a Riemannian man-
ifold are constructed in both underdamped and over-
damped cases. The concepts of trajectory heat and tra-
jectory work are clarified, and the first law on the tra-
jectory level is established. The Stratonovich coupling
plays an important role in establishing the appropriate
form of the first law. In either cases, the corresponding
FTs are proved in both differential and integral forms.
These results allow for a complete extension of the exist-
ing stochastic thermodynamics to arbitrary Riemannian



7

manifolds, which in turn may be helpful in understanding
the origin of irreversibility in certain biological scenarios.

During the construction, we also clarified the link be-
tween the PDF with the ensemble and trajectory entropy
productions, which may also shed some light in the par-
allel constructions in flat spaces. Moreover, the different
forms of the additional stochastic forces in the under-
damped and overdamped cases are also worth of notice.

Last, we hope the results presented here could be in-
spiring for an ultimate resolution for the fully general
relativistic construction for the FTs.
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Appendix A: Overdamped Fokker-Planck equation

Here we outline the procedure for taking the overdamped limit following the line of Ref. [35]. Using the diffusion operator

A =
δab

2
LaLb + L0 with L0 =

1

m
L − 1

m
Kµ

νp
ν ∂

∂pµ
, La = Rµ

a
∂

∂pµ
,

the underdamped FPE can be written as

∂tΦt = A†Φt, (A1)

where A† is the adjoint of A. The FPE can be rewritten as

∂tΦ̄t = Ā†Φ̄t,

where Φ̄t := [P s]−1/2Φt and Ā† := [P s]−1/2A†[P s]1/2, and P s is given in eq. (11). Ā† can be decomposed in terms of the creation and
annihilation operators

aµ = ζ
∂

∂pµ
+

1

2ζ
pµ, a†µ = −ζ ∂

∂pµ
+

1

2ζ
pµ

which obey the commutation relation [aµ, a
†
ν ] = gµν , wherein ζ =

√
mT .

Since Kµν is a symmetric tensor, its eigenvectors eµν̂ constitute an orthonormal basis. The components of a tensor under the
orthonormal basis are denoted by adding a hat on its index, e.g. Wµ̂ = eνµ̂Wν , Vµ̂ = eνµ̂V

ν , where eνµ̂ is the dual basis. For convenience,
only lower indices are used under the orthonormal basis. The commutator between the creation and the annihilation operators can be

rewritten as [aµ̂, a
†
ν̂ ] = δµ̂ν̂ . Moreover, pµ and ∂

∂pµ
can be decomposed as

pµ = ζeµν̂(aν̂ + a†ν̂),
∂

∂pµ
=

1

2ζ
eµν̂(aν̂ − a†ν̂).

Using the above notations, one has

Ā† = − 1

m
κµ̂Nµ̂ +

1

ζ
f µ̂exa

†
µ̂ − 1

m
L,

where κµ̂ represent the eigenvalues of Kµν , and Nµ̂ := a†µ̂aµ̂. Let ψ0 := [P s]1/2, ψµ̂ := a†µ̂ψ0. Clearly, we have aµ̂ψ0 = 0, i.e. the ground

state ψ0 of the Fock space generated by a†µ̂ corresponds to the equilibrium distribution P s, and the excited states to non-equilibrium

modifications.

In principle, Φ̄t can be expanded as a linear superposition of the eigenstates of Nµ̂. However, in the overdamped limit, the time
resolution ∆t is considered to be much larger than the relaxation time, so, in the first-order approximation near equilibrium state, we have

Φ̄t(x, p) ≈ C0(x, t)ψ0(x, p) + Cµ̂(x, t)ψµ̂(x, p). (A2)

Some important commutation relations are listed below:

[pα, a†µ̂] = ζeαµ̂, [
∂

∂pα
, a†µ̂] =

1

2ζ
eαµ̂,

[
∂

∂xα
, a†µ̂] =

1

2ζ
∂αgνβp

βeνµ̂ + a†ν∂αe
ν
µ̂,

[L, a†µ̂] = ζeσµ̂

[

∂

∂xσ
− Γν

ασp
α ∂

∂pν

]

+ ζeνα̂∇β̂
eνµ̂(aβ̂ + a†

β̂
)a†α̂ . (A3)

Using eq. (A3) one gets

L(Φ̄t) = L(C0)ψ0 + L(Cµ̂)ψµ̂ + Cµ̂L(ψµ̂) = L(C0)ψ0 + L(Cµ̂)ψµ̂ + Cµ̂[L, a†µ̂]ψ0

 https://doi.org/10.2748/tmj/1178244668
https://doi.org/10.1070/PU1994v037n08ABEH000038
https://doi.org/10.1007/s10955-023-03205-4
http://arxiv.org/abs/2307.07805
https://link.springer.com/book/10.1007/978-3-319-00227-9
https://link.springer.com/book/10.1007/978-3-642-05411-2
https://doi.org/10.1038/srep30520
http://arxiv.org/abs/1609.07250
https://doi.org/10.1016/j.padiff.2021.100186
http://arxiv.org/abs/2110.00883
https://doi.org/10.1103/PhysRevE.91.062118
http://arxiv.org/abs/1309.5750
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= L(C0)ψ0 + L(Cµ̂)ψµ̂ + ζ∇νe
ν
µ̂C

µ̂ψ0 + ζeνα̂(∇β̂
eνµ̂)C

µ̂(a†
β̂
a†α̂ψ0),

where the property
(

∂
∂xσ − Γν

ασpα
∂

∂pν

)

ψ0 = 0 has been used. Since L(C0) and L(Cµ̂) still contain momentum, these expressions can

be further expanded,

L(C0)ψ0 = ∂µ̂C0pµ̂ψ0 = ζ∇µ̂C0ψµ̂,

L(C ν̂)ψν̂ = ζ∇µ̂C
µ̂ψ0 + ζ∇α̂C

β̂(a†α̂a
†

β̂
ψ0).

Defining an operator Dµ̂ := (ζ/T )(f µ̂ex − T∂µ̂) and substituting eq. (A2) into eq. (A1), the evolution equations of C0 and Cµ̂ follow,

∂tC
0 = −T

ζ

[

∇µ̂C
µ̂ + (∇νe

ν
µ̂)C

µ̂
]

, (A4)

∂tC
µ̂ = −κ

µ̂

m
Cµ̂ +

1

m
Dµ̂C

0. (A5)

The overdamped limit means that κµ̂ is large. In such a limit, C0 and Cµ̂ are respectively of orders O((κµ̂)0) and O((κµ̂)−1). Therefore,
up to order O((κµ̂)0), we can safely ignore the left hand side of eq. (A5), yielding

Cµ̂ ≈ 1

κµ̂
Dµ̂C

0.

Inserting this result into eq. (A4), we get

∂tC
0 = −T

ζ

[

∇µ̂

(

1

κµ̂
Dµ̂C

0

)

+ (∇νe
ν
µ̂)

1

κµ̂
Dµ̂C

0

]

= −T
ζ
∇ν

(

eνµ̂
1

κµ̂
eαµ̂DαC

0

)

= −∇νK̂
να

[

gαµf
µ
exC

0 − T∇αC
0
]

= ∇µ

[

1

2
D̂µν∇νC

0 − K̂µ
νf

ν
exC

0

]

, (A6)

where K̂µν = eµα̂e
ν
α̂(κ

α̂)−1 is inverse of the damping tensor Kµν , and D̂µν := 2TK̂µν = 4T 2(D−1)µν is the rescaled diffusion tensor.
Since

ρt(x) =

∫

g1/2ddp Φt(x, p) =

∫

g1/2ddp ψ0(x, p)Φ̄t(x, p) = C0(x, t),

the overdamped FPE (12) follows from eq. (A6).

Appendix B: Continuum limit

Let us first introduce some mathematical tricks. Let A be a full-rank square matrix and B be a matrix of the same size, the determinant
of A+Bdt can be expanded as

det[A+Bdt + O(dt2)] = det[A] det[I +A−1Bdt +O(dt2)] = det[A] + det[A] Tr[A−1B]dt +O(dt2). (B1)

Let f(t) be a continuous function on [tI , tF ]. Then there is a continuum limit

lim
n→+∞

n−1
∏

i=0

[1 + f(ti)dt +O(dt2)] = exp

[

∫ tF

tI

dtf(t)

]

, (B2)

where dt = (tF − tI)/n and ti ∈ [idt, (i+ 1)dt]. Combining eqs. (B1)-(B2), we have

lim
n→+∞

n−1
∏

i=0

det[A(ti) + B(ti)dt+ O(dt2)]

det[A(ti) + C(ti)dt +O(dt2)]
= exp

[

∫ tF

tI

dtTr[A−1(B − C)]

]

, (B3)

where A(t), B(t), C(t) are continuous matrix functions on [tI , tF ].

1. Overdamped case

The discrete time version of the OLE (15) reads

x̃µi+1 − x̃µi = F̂µ(λ̄i)|(x̃i+1+x̃i)/2
dt + R̂µ

a|(x̃i+1+x̃i)/2
dw̃a

i ,

where λ̄i := (λi+1 + λi)/2. The choice of discretization rule for F̂µ does not affect the continuum limit, but we still take the middle-point
rule for consistency of notations. We introduce a function

dwa(x, y, λ) := (R̂−1)aν |x̄
[

xν − yν + F̂ ν(λ)|x̄dt
]

,
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where x̄ := (x+ y)/2. This function is connected with the Gaussian noise dw̃a
i via the relation

dw̃a
i = dwa(x̃i+1, x̃i, λ̄i). (B4)

The reversed process is governed by same LE with the external control parameter time-reversed, so that

dw̃a
i = dwa(x̃−i+1, x̃

−
i , λ̄

−
i ) = dwa(x̃−i+1, x̃

−
i , λ̄n−i−1).

The last equation can also be rewritten as

dw̃a
n−i−1 = dwa(x̃−n−i, x̃

−
n−i−1, λ̄i). (B5)

Using eqs. (B4) and (B5), the transition probabilities of the forward and reversed processes can be expressed as

Pr[x̃i+1 = xi+1|x̃i = xi] = g−1/2(xi+1) det

[

∂dwa

∂xµ

]

(xi+1, xi, λ̄i) Pr[dw̃
a
i = dwa(xi+1, xi, λ̄i)] (B6)

Pr[x̃−n−i = xi|x̃−n−i−1 = xi+1] = g−1/2(xi) det

[

∂dwa

∂xµ

]

(xi, xi+1, λ̄i) Pr[dw̃
a
n−i−1 = dwa(xi, xi+1, λ̄i)]. (B7)

It is easy to calculate the Jacobi matrix of dwa,

∂dwa

∂xµ
(xi+1, xi, λ̄i) = (R̂−1)aµ|x̄i

+
1

2

{

∂µ(R̂
−1)aνv

ν
i − ∂µ[(R̂

−1)aν F̂
ν(λ̄i)]

}

x̄i

dt,

∂dwa

∂xµ
(xi, xi+1, λ̄i) = (R̂−1)aµ|x̄i

+
1

2

{

−∂µ(R̂−1)aνv
ν
i − ∂µ[(R̂

−1)aν F̂
ν(λ̄i)]

}

x̄i

dt,

where vi := (xi+1 − xi)/dt is the velocity of the Brownian particle. Using eq. (B3), we can get

lim
n→+∞

n−1
∏

i=0

g−1/2(xi+1) det
[

∂dwa

∂xµ

]

(xi+1, xi, λ̄i)

g−1/2(xi) det
[

∂dwa

∂xµ

]

(xi, xi+1, λ̄i)
= exp

[

−
∫ tF

tI

vν(R̂−1)aν∇µR̂
µ
adt

]

. (B8)

Therefore, using eq. (3), we arrive at the following continuum limit,

lim
n→+∞

n−1
∏

i=0

Pr[dw̃a
i = dwa(xi+1, xi, λ̄i)]

Pr[dw̃a
n−i−1 = dwa(xi, xi+1, λ̄i)]

= exp

[

1

T

∫ tF

tI

vµf
µ
exdt

]

exp

[

∫ tF

tI

vν(R̂−1)aν∇µR̂
µ
adt

]

. (B9)

Finally, using eqs. (B6)-(B7) and (B9), we get

lim
n→+∞

n−1
∏

i=0

Pr[x̃i+1 = xi+1|x̃i = xi]

Pr[x̃−n−i = xi|x̃−n−i−1 = xi+1]
= exp

[

1

T

∫ tF

tI

vµf
µ
exdt

]

,

which is essentially identical to eq. (23).

2. Underdamped case

Similarly, we write down the discrete time version of eqs. (1) and (9),

x̃µi+1 − x̃µi =
p̃µi+1 + p̃µi

2m
dt,

p̃µi+1 − p̃µi = Fµ(λ̄i)|(X̃i+1+X̃i)/2
dt+ F̄µ|(X̃i+1+X̃i)/2

dt+ Rµ
a|(X̃i+1+X̃i)/2

dw̃a
i .

Now x̃i+1 should be viewed as a function in p̃i+1 and X̃i,

x̃i+1 = x(p̃i+1, X̃i) =
p̃i+1 + p̃i

2m
dt + x̃i.

Denoting ∆(Xi+1, Xi) = δd(xi+1 − xi − (pi+1 + pi)dt/2m), we have the conditional probability

Pr[x̃i+1 = xi+1|p̃i+1 = pi+1, X̃i = Xi] = g−1/2(xi+1)∆(Xi+1, Xi).

Notice that ∆(Xi+1,Xi) = ∆(I(Xi), I(Xi+1)). Defining

dwa(X, Y, λ) := (R−1)aν |X̄
[

pν − kν − F ν(λ)|X̄dt+ F̄ ν |X̄dt
]

,

where X = (x, p), Y = (y, k) and X̄ = (X + Y )/2, we have

dw̃a
i = dwa(X̃i+1, X̃i, λ̄i) = dwa(p̃i+1, x(p̃i+1, X̃i), X̃i, λ̄i).

Similarly, for the reversed process, we have

dw̃a
n−i−1 = dwa(p̃−n−i, x(p̃

−
n−i, X̃

−
n−i−1), X̃

−
n−i−1, λ̄i).

Now introduce the matrix

Ta
µ(X, Y, λ) :=

∂dwa

∂pµ
(X, Y ) +

∂xν

∂pµ
∂dwa

∂xν
(X, Y )
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=
∂dwa

∂pµ
(X, Y ) +

1

2m

∂dwa

∂xµ
(X, Y )dt.

The transition probabilities of the forward and reversed processes can be written as

Pr[X̃i+1 = Xi+1|X̃i = Xi] = Pr[x̃i+1 = xi+1|p̃i+1 = pi+1, X̃i = Xi] Pr[p̃i+1 = pi+1|X̃i = Xi],

= g−1(xi+1)∆(Xi+1,Xi) det[T
a
µ](Xi+1,Xi, λ̄i) Pr[dw̃

a
i = dwa(Xi+1,Xi, λ̄i)], (B10)

and

Pr[X̃−
n−i = I(Xi)|X̃−

n−i−1 = I(Xi+1)] = g−1(xi)∆(I(Xi), I(Xi+1)) det[T
a
µ](I(Xi), I(Xi+1), λ̄i)

× Pr[dw̃a
i = dwa(I(Xi), I(Xi+1), λ̄i)]. (B11)

The Jacobi matrices in Ta
µ(X, Y, λ) can be explicitly calculated, yielding

Ta
µ(Xi+1,Xi, λ̄i) = (R−1)aµ|X̄i

+
1

2

{

m
∂

∂pµ
(R−1)aνA

ν
i − ∂

∂pµ
[(R−1)aνF

ν(λ̄i)]−
∂

∂pµ
[(R−1)aν F̄

ν ]

}

X̄i

dt,

Ta
µ(I(Xi), I(Xi+1), λ̄i) = (R−1)aµ|X̄i

+
1

2

{

−m ∂

∂pµ
(R−1)aνA

ν
i +

∂

∂pµ
[(R−1)aνF

ν(λ̄i)]−
∂

∂pµ
[(R−1)aν F̄

ν ]

}

X̄i

dt,

where Aµ
i := (pµi+1 − pµi )/(mdt) is the coordinates acceleration, and terms of order O(dt2) are omitted. Using these results together with

eq. (B3), we can get

lim
n→+∞

n−1
∏

i=0

det[Ta
µ](Xi+1,Xi, λ̄i)

det[Ta
µ](I(Xi), I(Xi+1), λ̄i)

g−1(xi+1)

g−1(xi)

= exp

[

∫ tF

tI

(

Rµ
a
∂

∂pµ
[(R−1)aν(ma

ν − fνex)] +
2

m
Γµ

µαp
α

)

dt

]

exp

[

−
∫ tF

tI

g−1 p
µ

m

∂

∂xµ
gdt

]

= exp

[

∫ tF

tI

Rµ
a
∂

∂pµ
(R−1)aν(ma

ν − fνex)dt

]

,

where aµ = Aµ + Γµ
αβp

αpβ/m is covariant acceleration. Using eq.(3), the following continuum limit can be derived,

lim
n→+∞

n−1
∏

i=0

Pr[dw̃a
i = dwa(Xi+1, Xi, λ̄i)]

Pr[dw̃a
i = dwa(I(Xi), I(Xi+1), λ̄i)]

= exp

[

− 1

T

∫ tF

tI

pµ

m
(maµ − fµex)dt

]

exp

[

−
∫ tF

tI

Rµ
a
∂

∂pµ
(R−1)aν(ma

ν − fνex)

]

. (B12)

Finally, using eqs. (B10) and (B11), we get

lim
n→+∞

n−1
∏

i=0

Pr[X̃i+1 = Xi+1|X̃i = Xi]

Pr[X̃−
n−i = I(Xi)|X̃−

n−i−1 = I(Xi+1)]
= exp

[

− 1

T

∫ tF

tI

pµ

m
(maµ − fµex)dt

]

= exp

[

− 1

T

∫ tF

tI

dt
pµ

m
∇µ (T + U) +

1

T

∫ tF

tI

dt
pµ

m
fµnoc

]

.

This result is identical to eq. (19).


