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Abstract—In this letter, we propose a deep-unfolding-based
framework (DUNet) to maximize the secrecy rate in reconfig-
urable intelligent surface (RIS) empowered multi-user wireless
networks. To tailor DUNet, first we relax the problem, decouple
it into beamforming and phase shift subproblems, and propose
an alternative optimization (AO) based solution for the relaxed
problem. Second, we apply Karush-Kuhn-Tucker (KKT) condi-
tions to obtain a closed-form solutions for the beamforming and
the phase shift. Using deep-unfolding mechanism, we transform
the closed-form solutions into a deep learning model (i.e., DUNet)
that achieves a comparable performance to that of AO in terms
of accuracy and about 25.6 times faster.

Index Terms—Reconfigurable intelligent surface (RIS), beam-
forming, phase shift, secrecy rate, deep-unfolding.

I. Introduction

To provide coverage to the inaccessible spots and enhancing
the connectivity in the sixth generation (6G) networks,

reconfigurable intelligent surfaces (RISs) can be used to es-
tablish line-of-sight (LoS) links [1]–[3]. Due to its passive
nature, RIS are energy-efficient and flexible for installation
[4]. However, RIS-assisted communications entail security
issues due to the passive eavesdroppers which require secrecy-
aware designs as well as difficulties in acquiring channel state
information (CSI) [5]. Besides, RIS-assisted communications
are complex and often associated with highly nonconvex
problems [5]. Different studies investigated some of these
problems [6], [7]. However, the proposed solutions in these
studies are iterative, slow, and may not meet the targets of the
six generation (6G) networks in terms of real-time inference.

Recently, deep learning approaches have been widely used
to handle different problems in wireless systems [8]–[10].
Some studies considered deep learning to design solutions for
RIS-assisted networks [11], [13]. Most of the studies in the
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literature have considered data-driven deep learning models
which require large data set for training. Hence, to decrease
the required amount of data while achieving near optimal
performance, deep-unfolding mechanism can be used to design
highly efficient models.

In this work, we propose a deep-unfolding based framework
(DUNet) to optimize the secrecy rate in multiuser RIS-assisted
communication. We formulate the optimization problem as
a secrecy rate maximization and propose a solution for the
relaxed version of the problem. Next, we apply the optimality
conditions to design DUNet based on the closed-form expres-
sion of the beamforming and the phase shift. The proposed
deep learning model achieves performance comparable to that
of the numerical solution and about 25.6 times faster.

II. SystemModel And Problem Formulation

Fig. 1. RIS-empowered multiuser network.

We consider a downlink multiuser RIS network as shown in
Fig. 1, where we have a base station (BS) and communicates
with K legitimate users while E ground eavesdroppers are
attempting to wiretap K communications. The BS, legitimate
users, and eavesdroppers are equipped multiple antennas de-
noted as NB,NK , and NE formulating uniform linear arrays
(ULA). The RIS is equipped with J elements. The coordinates
of UAV, legitimate user k, eavesdropper e, and the RIS are
respectively given as CB = (xB, yB,HB)T , Ck = (xk, yk)T ,
Ce = (xe, ye)T , and CR = (xR, yR, zR)T .

Assuming that the LoS link is blocked and the received
signals at the users are scattering components. Hence, using
Rayleigh fading model, the channel modelling between the BS
and k and e is given as

hB,k =
√
ρd−αB,k


√

RB,k

RB,k + 1
h̃LoS

B,k +

√
1

RB,k + 1
h̃NLoS

B,k

 ∈ CNB×NK ,

(1)
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hB,e =
√
ρd−αB,e


√

RB,k

RB,k + 1
h̃LoS

B,e +

√
1

RB,e + 1
h̃NLoS

B,e

 ∈ CNB×NE ,

(2)

hB,R =
√
ρd−κB,R


√

RB,R

RB,R + 1
h̃LoS

B,R +

√
1

RB,R + 1
h̃NLoS

B,R

 ∈ CJ×NB ,

(3)
where ρ is the channel power gain at the reference distance

d0 = 1 m, dB,i =
√
∥CB −Ci∥, i ∈ {k, e,R} is the distance

between the BS and the users, and α and κ are the pathloss
exponents. RB,i is the Rician factor between the BS and
users. h̃NLoS

B,i , i ∈ {k, e,R} are assumed to be independent and
identically distributed variables following circularly symmet-
ric complex Gaussian distribution with zero mean and unit
variance. h̃LoS

B,k and h̃LoS
B,e are given as follows

h̃LoS
B,k = aT

NB
aNk , (4)

h̃LoS
B,e = aT

NB
aNe , (5)

where

aNB =

 1, exp
(

j 2πdB
λ

(
cosϖB,i sin ζB,i

))
, ...,

exp
(

j 2πdB
λ

(NB − 1)
(
cosϖB,i sin ζB,i

))  , i {k, e} ,
aNk =

 1, exp
(

j 2πdk
λ

(
cos ϕB,k sinϑB,k

))
, ...,

exp
(

j 2πdk
λ

(NK − 1)
(
cos ϕB,k sinϑB,k

))  ,
aNe =

 1, exp
(

j 2πde
λ

(
cos ϕB,e sinϑB,e

))
, ...,

exp
(

j 2πde
λ

(NE − 1)
(
cos ϕB,e sinϑB,e

)) 
where dB, dk, and de are the antenna elements separation

distance for the case of BS, legitimate user k , and eavesdrop-
per e, respectively. ζB,i and ϖB,i are the azimuth and elevation
angles of departure. ϑB,i and ϕB,i represent are the azimuth and
elevation angles of arrival. The LoS channel between the h̃LoS

B,R
is given as follows

h̃LoS
B,R = aT

J aNB , (6)

The array responses aJ and aNB are defined as

aJ =

[
1, ..., exp

(
− j

2π
λ

dx (Jx − 1) sin ϕ cosφ
)]

⊗

[
1, ..., exp

(
− j

2π
λ

dz (Jz − 1) cos ϕ
)] (7)

aNB =

 1, exp
(
− j 2π

λ
dB cos θ

)
, ...,

exp
(
− j 2π

λ
dB (NB − 1) cos θ

)  , (8)

where dx and dz represent RIS elements separation distance
along x-axis and z-axis, respectively. Jx and Jz are the RIS
elements along the x-axis and z-axis, respectively. sin ϕ cosφ =
xR−xB
dB,R

and cos ϕ = HB−zR
dB,R

with φ and ϕ respectively represent
the azimuth angle of arrival and the elevation angle of arrival.
λ is the wavelength. θ is the angle of departure. The channels
between the users and the RIS contain both LoS and NLoS.
Using Rician channel modeling, these channels are given as

hR,i =
√
ρd−κR,i


√

RR,i

RR,i + 1
h̃LoS

R,i +

√
1

RR,i + 1
h̃NLoS

R,i

 , i ∈ {k, e}
(9)

where dR,i is the distance between the RIS and the user i and
κ is the pathloss exponent. h̃NLoS

R,k ∈ CJ×NK and h̃NLoS
R,e ∈ CJ×NE

respectively denote the NLoS link between the RIS and the
user, RIS and the eavesdropper, which are modeled as complex
Gaussian distributed with zero mean and unit variance. h̃LoS

R,i
is the LoS link between the user and the RIS can be expressed
as

h̃LoS
R,i =

[
1, ..., exp

(
− j

2π
λ

dx (Jx − 1) sin ϕi cosφi

)]
⊗

[
1, ..., exp

(
− j

2π
λ

dz (Jz − 1) cos ϕi

)] (10)

where φi and ϕi respectively represent the azimuth angle of
arrival and the elevation angle of arrival of the RIS and the
user link. The transmit signal at the BS can be expressed as

x =Ws + v, (11)

where W = [w1,w2, ...,wK] with wk ∈ CNB×NK is the precoding
matrix, s is the information signal with E

(
sksH

k

)
= INK , and v

is the artificial noise vector due to the hardware imperfections

where v ∼ CN
(
0, υdiag

{
K∑

i=1
wiwH

i

})
and υ ∈ [0, 1] is the

proportionality coefficient to characterize the hardware impair-
ments. Let Θ = diag

(
exp ( jω1) , .., exp ( jωm) , ..., exp ( jωJ)

)
with ωm represents the phase shift of the element m. The
received signal can be given as

dk=
(
hH

B,k + hH
R,kΘhB,R

)
(wk sk + v)

+
(
hH

B,k + hH
R,kΘhB,R

) ∑
j∈K/k

w js j+zk
(12)

where zk ∼ CN
(
0, σ2

kINK

)
is the additive white Gaussian

noise (AWGN). Similarly, the signal of the eavesdropper e
can be expressed as de =

(
hH

B,e + hH
R,eΘhB,R

)
(wk sk + v) +(

hH
B,e + hH

R,eΘhB,R

) ∑
j∈K/k

w js j+ze with ze ∼ CN
(
0, σ2

eINE

)
. Let

the estimated cascaded channel matrix for the user k be
denoted as Gk =

[
g1, ..., gNK

]T
∈ CNK×NB J , with gNK =[

gT
1,NK

, ..., gT
NB,NK

]T
denotes the estimated cascaded channel

vector at the receiving antenna NK . The received signal in
(12) can be rewritten for the case of the user k as follows

dk =
(
hH

B,k +GkΘ1F

)
(wk sk + v)

+
(
hH

B,k +GkΘ1F

) ∑
j∈K/k

w js j+zk,
(13)

where 1F =
[
1T

1 , ..., 1
T
NB

]T
with where the elements of the

column NB are ones and all other columns are zeros. Thus,
GkΘ1F ∈

NK×NB . The signal-to-interference-plus-noise ratio
(SINR) γk is given as below

γk =

∣∣∣∣(hH
B,k +GkΘ1F

)
wk

∣∣∣∣2

∑
j∈K/k

∣∣∣∣(hH
B,k +GkΘ1F

)
w j

∣∣∣∣2 (
(1 + υ) υdiag

(
w jwH

j

))
︸                                                            ︷︷                                                            ︸

interfernece
+ ℧k︸︷︷︸

distortion

+ (1 + υ)σ2
k︸      ︷︷      ︸

noise


(14)
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where ℧k is the signal distortion due to the hardware imper-
fections and given as

℧k=
(
hH

B,k +GkΘ1F

) (
υwkwH

k + (1 + υ) υdiag
(
wkwH

k

))
×

(
(GkΘ1F)H + hB,k

)
The hardware imperfections have impact on the interference
and the noise levels as it can be seen in the first and third
terms in the denominator of γk.

Similarly, we can define the SINR for the eavesdropper e

γe =

∣∣∣∣(hH
B,e +GeΘ1F

)
wk

∣∣∣∣2
∑

j∈K/k

∣∣∣∣(hH
B,e +GeΘ1F

)
w j

∣∣∣∣2 (
(1 + υ) υdiag

(
w jwH

j

))
+℧e + (1 + υ)σ2

e


,

(15)
where ℧e is the signal distortion due to the hardware imper-
fections and given as

℧e=
(
hH

B,e +GeΘ1F

) (
υwkwH

k + (1 + υ) υdiag
(
wkwH

k

))
×

(
(GeΘ1F)H + hB,e

)
Channel state information (CSI) of the eavesdropper cannot
be obtained. Therefore, using estimated channel error, we can
define the channel coefficients of the eavesdropper as

hB,e = ĥB,e + ∆hB,e,

Ge = Ĝe + ∆Ge,
(16)

where ∆hB,e = ιe,1ge,1 ∼ CN
(
0, ιe,1INB×NE

)
and ∆Ge = ιe,2ge,2 ∼

CN
(
0, ιe,2INB×NE

)
. ιe,1 and ιe,2 are constants measuring the

level of channel uncertainties. The achievable rates is defined
as follows

rk = log2 (1 + γk) (17)

and
re = log2 (1 + γe) (18)

The secrecy rate is defined as

Rsec
k = rk − re (19)

We aim at maximizing the secrecy rate through optimizing the
beamforming and the phase shift. The optimization problem
is formulated as follows

max
w,Θ

∑
k∈K

Rsec
k (20)

s.t.
K∑

k=1

∥wk∥
2 ⪯ PB, (20a)

∥wk∥
2 ⪰ 0, (20b)

rk ≥ εk, (20c)
max
∆hB,e,∆Ge

re ≤ εe, (20d)∣∣∣exp ( jωm)
∣∣∣ = 1. (20e)

Constraint (20a) is the power budget constraint with PB

represents the total transmit power. Constraints (20c) and (20d)
are the secrecy constraints which ensures that the rate of
the legitimate user is above the limit εk and the rate of the
eavesdropper is below the limit εe; where 0 < εe < εk.

Since constraints (20c) and (20d) represent lower and upper
bounds, problem (20) is nonconvex. In the following sections,
we provide a traditional solution for problem (20) and based
on this solution, we design a deep learning framework using
deep unfolding techniques.

III. Alternative Optimization (AO) Method

To facilitate derivation, we follow the semi-definite relax-
ation (SDR) procedure in [15] to reformulate the problem in
(20) as

max
Q,Θ

∑
k∈K

Rsec
k (21)

s.t.
∑
k∈K

Tr (Qk) ⪯ PB, (21a)

Qk ⪰ 0, (21b)
rk ⪰ εk, (21c)

max
∆hB,e,∆Ge

re ⪯ εe, (21d)∣∣∣exp ( jωm)
∣∣∣ = 1, (21e)

Rank (Qk) = 1. (21f)

Constraint (21d) still intractable, we apply Bernstein-Type
inequality [14] to transform (21d). Towards this, we define the
slack variables n, a, and b. Thus, constraint(21d) can rewritten
as

g
H
e Φege + 2Re

{
BH
ge

}
+ ĉ ≤ 0 (22)

where
ge =

[
gH

e,1 gTe,2

]H
,

Φe =

 ι2e,1Ω

ιe,2ιe,2
(
Ω ⊗ (Θ1F)∗

) ιe,2ιe,2
(
Ω ⊗ (Θ1F)T

)
ι2e,2

(
Ω ⊗ AT

)  ,
Ω = Tr

 ηeQk −
∑

j∈K/k
Q j (1 + υ) υdiag

(
Q j

)
−υQk (1 + υ) υdiag (Qk)

 ,
B =

[
ιe,1

(
ĥH

B,e + ĜeΘ1F

)
Ω ιe,2vecT

((
ĥH

B,e + ĜeΘ1F

)
(Θ1F)H Ω

) ]H
,

ĉ =
(
ĥH

B,e + ĜeΘ1F

)
Ω

(
ĥB,e +

(
ĜeΘ1F

)H
)
+ (1 + υ)σ2

e ,

with A = (Θ1F) (Θ1F)H . Then, using Bernstein-Type inequal-
ity, we can express (21d) as in the following

Tr (Φe) −
√

2 ln (1/n) − ln (1/n) b + ĉ ≤ 0,∥∥∥∥∥∥ vec (Φe)
√

2B

∥∥∥∥∥∥
2
≤ a,

bI +Φe ≥ 0, b ≥ 0,

(23)

Based on the above procedure, the optimization problem in
(21) can be approximated as

max
Q,Θ,a,b

∑
k∈K

Rsec
k (24)

s.t. (21a), (21b), (21c), (21e), (21f), (23),
b ≥ 0, (24a)

The optimization problem can be divided into beamforming
subproblem and phase shift subproblem. The two subproblems
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Fig. 2. Structure of the proposed DUNet.

can be jointly solved. The beamforming subproblem is given
as below

max
Q

∑
k∈K

Rsec
k (25)

s.t. (21a), (21b), (21c), (21f), (24a),(
ι2e,1 + ι

2
e,2J

)
Tr (Ω) −

√
2 ln (1/n)

− ln (1/n) b + ĉ ≤ 0,
(25a)∥∥∥∥∥∥∥∥

(
ι2e,1 + ι

2
e,2J

)
vec (Ω)√

2
(
ι2e,1 + ι

2
e,2J

)
Ω

(
ĥB,e +

(
ĜeΘ1F

)H
) ∥∥∥∥∥∥∥∥

2

≤ a, (25b)

bI +
(
ι2e,1 + ι

2
e,2J

)
Ω ≥ 0, (25c)

Using SDR [16] and the techniques in [14], the convex
problem (25) can be efficiently handled using CVX. The phase
shift subproblem is given as follows

max
A,a,b

∑
k∈K

Rsec
k (26)

s.t. (21e), (23), (26a)

Similarly, problem (26) is convex and can be tackled using the
same procedure as in the case of the beamforming subproblem.
Algorithm 1 illustrates the main steps of solving (20).

Algorithm 1 AO for solving problem (20)

Initialization: Q(0), Θ(0), ιe,1, ιe,2, a(0), b(0), υ, n, εk, εe, τ = 0,
and ϵ

1: while
∣∣∣∣∣∣ ∑k∈K Rsec

k (τ) −
∑

k∈K
Rsec

k (τ − 1)

∣∣∣∣∣∣ ≥ ϵ do

2: τ = τ + 1
3: Solve (26) to obtain Θ(τ), a(τ), and b(τ) with Q(τ−1),

Θ(τ−1), a(τ−1) and b(τ−1).
4: Update Q(τ)

k by solving (25) with Q(τ−1), Θ(τ), a(τ) and
b(τ)

5: end while

IV. Deep-Unfolding based Framework (DUNet)

In this section, we discuss the details of the proposed deep-
unfolding-based framework (DUNet). The proposed DUNet
utilizes the proposed solution AO as grounds and convert it via
deep-unfolding into a multilayer neural network [17]. Below,
we go through the procedure of obtaining the closed-form
expressions while considering the rank of the solution for the
beamforming and the unit-modulus constrain for the case of

the phase shift. The architecture of the proposed is illustrated
in Fig. 2.

The numerical solution in Section III can obtain the opti-
mal solution by performing eigenvalue decomposition if the
obtain solution admits Rank-one. However, the occurrence of
Rank

(
Q∗i

)
> 1 is possible. Hence, the proposed DUNet is

designed in such a way to convey a solution that admits Rank-
one.

We can employ the tightness of the relaxed problems (25)
and (26) to design the proposed DUNet. To show that the
problems are convex with respect to the optimization variables
and satisfy slater’s qualifications, Karush-Kuhn-Tucker (KKT)
conditions are necessary and sufficient conditions [16] for
the solution of the problems. We construct the following
Lagrangian function

L=
∑
k∈K

Rsec
k + µ

PB −
∑
k∈K

Tr (Qk)

 − Tr (ΞkQk)

−Tr
(
C2DC1

)
− Tr

(
C2DC2

)
−Tr

(
C3DC3

)
− Tr (AΥ) + ψ

(27)

where DC1 ,DC2 , and DC3 , are the set of Lagrange multipliers
associated with (25a), (25b), and (25c) with A∗ representing
the optimal solution of (26). ψ represents the set of variables
associated with other constraints. The KKT conditions are
given as

∇QL = 0,∇AL = 0, (28a)

µ ≥ 0,B∗k,Υ
∗,D∗C1

,D∗C2
,D∗C3,D

∗
C4
⪰ 0, (28b)

Ξ∗kQ∗k = 0, (28c)

A∗Υ∗ = 0, (28d)

Applying KKT conditions yields the following closed-form
expression

Q∗k =
[

1
Ξ∗k − µ

∗
+ S∗

]+
, (29)

where

S∗ =
1

ln 2D̄∗
−

I∗ − (1 + υ)σ2
i

⌣

N
,

D̄∗= D∗C1

(
vec (1 + υ) A − A (1 + υ) υdiag

(
INB×NK

))
+ D∗C2

+D∗C3 + D∗C4
,

I∗= Tr
((

ĥH
B,k + ĜkΘ1F

)
Φk

(
ĥB,k +

(
ĜkΘ1F

)H
))
,

⌣

N= Tr
((

ĥH
B,k + ĜkΘ1F

)
A

(
ĥB,k +

(
ĜkΘ1F

)H
))
,
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A∗ =


√(

2(1+υ)(σ2
i −σ

2
e)+ĥH

B,eĜeQ∗k
)2
−Σ−1 2 (1 + υ)

(
σ2

i − σ
2
e

) 
∑

j∈K/k
Tr

((
ĥH

B,k + ĜkΘ1F

)
Q∗j

(
(1 + υ) υdiag

(
Q∗j

)) (
ĥB,k +

(
ĜkΘ1F

)H
))

+
(
υQ∗k + (1 + υ) diag

(
Q∗k

))






+

(30)

where

Ξ = 4

1 +
(
ĥH

B,k+ĜkΘ1F

)
Q∗k

(
ĥB,k+

(
ĜkΘ1F

)H
)

 D∗C1

(
vec (1 + υ) Q∗k − vec (1 + υ) υdiag

(
Q∗k

))
+ D∗C2

(
ι2e,2 (Ω ⊗ IJ)

)
+D∗C3

(
vec

(
ι2e,2 (Ω ⊗ IJ)

))
+ D∗C4

(
ι2e,2vecT

(
ΩĜeIJ×NK

))
+ Υ∗




It can be observed that D̄∗, I∗,

⌣

N, and S∗ are semi-definite and
Rank (S∗) = NB × NK whereas Rank (Ξ∗) = NB × NK or NB ×

NK−1. Hence, we choose Rank (Ξ∗) = NB×NK−1 to guarantee
that Q∗k lies in the null space of Ξ∗k and thus Rank

(
Q∗k

)
= 1.

With similar analysis, we obtain the closed-form expression
for A as in (30) on top of next page.

where Rank (Υ∗) = J × NK − 1 to guarantee that A∗ lies in
null space of Υ∗, and thus Rank (A∗) = 1. Using the solution
in (29) and (30), we build the basic layer of DUNet as in
Fig. 2. To decrease the number of layer while enhancing the
accuracy, we use the incremental learning mechanism in [18]
to train DUNet.

V. Simulation Results

The default number of legitimate users is set to 8 and the
number of eavesdroppers is set to 4; unless stated otherwise.
In all cases, the users are divided into number of groups equal
to the number of the eavesdroppers. For example, 8 legitimate
users are divided in 4 groups where each eavesdropper wiretap
two a group. BS is equipped with four antennas while all
users are equipped with two antennas for each. κ = α = 3.2,
dx = dz = λ/4, dB = λ/2, and R = 4. Noise power is set to -80
dBm, and ϵ = 0.001.

Fig. 3. Secrecy rate versus PB.

From Fig. 3 we can observe that the proposed DUNet
achieves similar performance to that of AO in terms of secrecy
rate for different values of the BS power PB. Increasing the
value of ι and υ decreases the secrecy because higher power

consumption is required to compensate the signal loss due to
hardware impairments and channel errors. Additionally, the
prediction accuracy of the proposed DUNet is impacted by
the levels of signal distortion and channel errors due to the
statistical nature of these parameters. Nevertheless, DUNet
achieves 99.61% performance of AO and as it will be shown
in Fig. 6, DUNet is drastically faster compared to AO.

Fig. 4. Achievable secrecy rate versus RIS elements.

Fig. 4 illustrates the performance comparison between AO
and DUNet for under the impact of hardware level υ and for
different number RIS elements. K = 12, E = 4, and PB =

30 dBm. The secrecy rate increases with the increase of the
number of RIS elements and that is because the signal from
RIS becomes dominant and a wider margin to perform secure
phase shift optimization is obtained. Moreover, the increasing
of υ leads to decreasing in the secrecy rate due to the need
for higher power to compensate. DUNet still robust the drastic
increase of υ and has closer performance to that of AO.

Fixing the εe at 1, we plot the secrecy rate versus the rate
threshold εk while considering the impact of number of anten-
nas, the number of RIS elements, and the channel uncertainty.
This is depicted in Fig 5. υ = 0.02,K = 12, and E = 4.
The value of εk determines the secrecy and confidentiality of
the message of the user k. We can observe from the figure
that the increase of εk leads to the decreasing of the secrecy
rate and that is because the increase in the gap εk − εe incurs
more power consumption the meet the secrecy constraints. The
increasing of NB and J leads better performance by improving



6

Fig. 5. Secrecy rate versus rate threshold εk .

the channel gain, enhancing the signal strength, and providing
margin to optimize the beamforming and phase shift. The
performance gap between the AO and DUNet increases for
higher εk. Increasing the number of layers may decrease this
gap but may also lead higher running time.

Fig. 6. Running time of frameworks versus problem size.

To compare the performance of AO and DUNet in terms of
running time, we plot the results for different number of users
while fixing all other parameters as shown in Fig. 6. It is very
obvious from the figure that the increasing of the problem size
(i.e., K and E ) leads to drastic increase of the running time in
case of AO. On the other side, the impact of the increasing of
the problem size is marginal for the case of DUNet. This leads
to the conclusion that the proposed DUNet is more suitable
for real-time application compared with AO.

VI. Conclusion

In this letter, we proposed a design of a deep-unfolding
based framework to handle the beamforming and the phase
shift in RIS-empowered secure multi-user communication.
First, we formulated a secrecy rate maximization problem;
then, we relaxed the problem and designed AO solution.
Second, we applied KKT conditions to obtain closed-form
solutions for the beamforming and the phase shift. Finally,
we transformed the closed-form solutions into deep learning
model using deep unfolding mechanism. The proposed DUNet

achieves better performance than AO in terms of inference
speed and closer to AO in terms of accuracy.
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