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ABSTRACT

The fisheye camera, with its unique wide field of view and other characteristics, has found extensive
applications in various fields[1, 2]. However, the fisheye camera suffers from significant distortion
compared to pinhole cameras, resulting in distorted images of captured objects. Fish-eye camera
distortion is a common issue in digital image processing, requiring effective correction techniques
to enhance image quality. This review provides a comprehensive overview of various methods used
for fish-eye camera distortion correction[3]. The article explores the polynomial distortion model,
which utilizes polynomial functions to model and correct radial distortions. Additionally, alternative
approaches such as panorama mapping, grid mapping, direct methods, and deep learning-based
methods are discussed. The review highlights the advantages, limitations, and recent advancements
of each method, enabling readers to make informed decisions based on their specific needs.

Keywords Fish-eye Camera · Distortion · Correction · Deep Learning · Panorama Mapping

1 Introduction

Fish-eye lenses have gained popularity in various fields, including photography[4], computer vision[5], robotics[6],
and virtual reality[7], due to their wide field of view and unique visual effects. However, these lenses often introduce
significant distortion to the captured images, which can distort the shapes of objects and degrade image quality. To
overcome this challenge, fish-eye camera distortion correction methods have been developed to rectify the images and
restore their original appearance.

The correction of fish-eye camera distortion is a crucial task in digital image processing. It involves the application of
mathematical models and algorithms to compensate for the non-linear distortions introduced by fish-eye lenses. Cor-
recting the distortion can improve the accuracy of measurements, facilitate accurate object recognition, and enhance
overall image quality for various applications.

http://arxiv.org/abs/2401.00442v1
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This review aims to provide a comprehensive overview of the different methods employed to correct fish-eye camera
distortion. The review will cover both traditional and more recent approaches, discussing their underlying principles,
advantages, limitations, and potential applications. By understanding the various methods available, researchers, pro-
fessionals, and enthusiasts in the field can make informed decisions about the most suitable technique for their specific
needs.

The following sections will delve into the polynomial distortion model, which is widely used for fish-eye camera
distortion correction. Additionally, alternative methods such as panorama mapping, grid mapping, direct methods,
and deep learning-based approaches will be explored. Each method will be examined in detail, highlighting their
strengths and weaknesses and providing insights into their practical implementation.

Overall, this review aims to serve as a valuable resource for individuals interested in fish-eye camera distortion cor-
rection. By presenting a comprehensive overview of the available methods, this review aims to facilitate a deeper
understanding of the techniques involved and foster further advancements in the field of digital image processing.

2 Camera Projection Models

The imaging process of a fisheye camera is commonly approximated as a unit sphere projection model. The imaging
process of a fisheye camera can be decomposed into two steps: first, linearly projecting the 3D points in space onto a
virtual unit sphere; and then projecting the points on the unit sphere onto the image plane, which is a nonlinear process.
In the context of fisheye cameras, four common projection models are widely used: Equidistant Projection Model[8],
Equiangular Projection Model[8], Orthographic Projection Model[9] and Stereographic Projection Model[10].

2.1 Equidistant Projection Model

The Equidistant Projection Model assumes that the rays of light passing through the lens and projecting onto the image
sensor form equal angles with the optical axis. In this projection model, the mapping between 3D points (X, Y, Z) in
the camera coordinate system and 2D image coordinates (u, v) can be expressed as follows:

θ = arctan(Y,X) (1)

ϕ = arctan(
√

X2 + Y 2, Z) (2)

rd = f ∗ ϕ (3)

u = rd ∗ cos(θ) (4)

v = rd ∗ sin(θ) (5)

Here, (θ, φ) represents the spherical coordinates on the unit sphere, r is the radial distance from the optical center, (u,
v) represents the normalized image coordinates, and f is the focal length of the fisheye lens.

2.2 Equiangular Projection Model

The Equiangular Projection Model is commonly used for capturing panoramic or 360-degree images with fisheye
lenses. It involves mapping the 3D points on a unit sphere to 2D image coordinates using an equiangular grid. In this
projection model, the mapping between 3D points (X , Y , Z) on the unit sphere and 2D image coordinates (u, v) can
be expressed as follows:

θ = arctan(Y,X) (6)

ϕ = arctan(
√

X2 + Y 2, Z) (7)

u = θ + π/(2π) (8)

v = (θ + π/2)/π (9)

Here, (θ, φ) represents the spherical coordinates on the unit sphere, and (u, v) represents the normalized image coordi-
nates, ranging from 0 to 1.
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2.3 Orthographic Projection Model

The Orthographic Projection Model is a camera projection model that assumes the rays of light from the scene are
parallel and perpendicular to the image plane. In this model, the 3D points are directly projected onto a 2D image
without any perspective distortion. The mapping between the 3D points (X , Y , Z) in the camera coordinate system
and the 2D image coordinates (u, v) can be expressed as follows:

u = X/scalex + centerx (10)

v = Y/scaley + centery (11)

Here, (u, v) represents the image coordinates, (X , Y ) represents the 3D points in the camera coordinate system.

2.4 Stereographic Projection Model

The characteristic of the Stereographic Projection Model is that it preserves angles, which is a desirable property
in mathematics known as conformality. Preserving angles means that the angles formed by any intersecting lines
remain unchanged after the transformation, even though the lines themselves may become curved. Under a conformal
transformation, a circle still remains a circle (where a straight line can be considered a circle with an infinite diameter).
Therefore, to some extent, a conformal transformation also preserves the "shape" of objects. In the simulated scenario
below, all boundary lines on the surface of the cylinder are transformed into circular arcs, and all angles formed by
intersecting lines remain unchanged at 90.

rd = 2f ∗ tan(2 ∗ θ) (12)

3 Distortion Correction Methods

Camera distortion is the alteration of an image’s perspective caused by the camera’s lens, sensor, or other factors. There
are several types of distortion, including: Radial distortion, Tangential distortion, as well as Non-linear distortion. The
purpose of camera distortion correction is to transform the distorted image captured by the camera into an image that
resembles the ideal image produced by a pinhole camera. This correction aims to improve the accuracy of the image,
enhance its visual quality, and meet the specific requirements of various applications.

The application of fisheye cameras in computer vision often requires advanced distortion correction methods to ensure
accurate and reliable image analysis. Fisheye lenses introduce significant distortions that can impact the accuracy
of measurements, object recognition, and scene understanding. In this section, we discuss various state-of-the-art
methods for fisheye camera distortion correction, aiming to transform the distorted fisheye images into rectified images
resembling those captured by ideal pinhole cameras.

3.1 Distortion Types

3.1.1 Symmetric Radial Distortions

Symmetric radial distortions are what are typically imagined when discussing image distortion. Often, this type of
distortion will be characterized depending on if it is positive (pincushion) or negative (barrel) distortion.

3.1.2 Asymmetric Radial Distortions

Asymmetric radial distortions are radial distortion effects much like the above, but unlike symmetric radial distortion,
asymmetric radial distortion characterizes distortion effects that are dependent both on the distance from the image
centre as well as how far away the object being imaged is. Asymmetric radial effects are most pronounced in two
scenarios:

Cameras with long focal lengths and very-short relative object distances. e.g. a very-near-field telephoto lens that
is capturing many objects very close. Observing objects through a medium of high-refraction, or differing refractive
indices. e.g. two objects underwater where one is near and one is far away. This type of distortion is typically tricky
to visualize, as well as to quantify, because it is dependent on the environment. In most robotic and automated vehicle
contexts, asymmetric radial distortion is not a great concern! Why? Well, the difference in distortions depends on the
difference in distances between objects. This is usually because of some kind of refractive difference between two
objects being imaged, or because the objects are out of focus of the camera (i.e. focal length is too large relative to the
object distance).
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Neither of the above two scenarios are typical; as such, asymmetric radial distortion is an important aspect of modeling
the calibration in applications when these scenarios are encountered.

In most robotic contexts, the primary use for imaging and visual-odometry is done in relatively short ranges with
cameras that have short focal lengths, and the primary medium for light to travel through is air. Since there doesn’t
tend to be big atmospheric variances between objects that are close, and since light is all traveling through the same
medium, there isn’t much of an asymmetric refractive effect to characterize or measure. As a result, this kind of radial
distortion isn’t common when calibrating cameras for these kinds of applications. If we can’t measure it, we shouldn’t
try to model it!

3.1.3 Tangential (De-centering) Distortions

Tangential distortion is sometimes also called de-centering distortion, because the primary cause is due to the lens
assembly not being centered over and parallel to the image plane. The geometric effect from tangential distortion is
not purely along the radial axis. Instead, as can be seen in the figure above, it can perform a rotation and skew of the
image plane that depends on the radius from the image centre!

3.2 Polynomial Distortion Model

The polynomial distortion model is one of the most commonly used methods for fish-eye camera distortion correction.
It relies on a mathematical model that describes the radial distortion present in fish-eye images. Typically, this model
uses polynomial functions to approximate the distortions and correct them. The correction process involves converting
the pixel coordinates of the image to normalized coordinates and applying the polynomial functions to rectify the
distortions. This method is widely adopted due to its simplicity and effectiveness in addressing radial distortions in
fish-eye images. While there are more models than what is described here, the industry has largely standardized on
the following two distortion models.

3.2.1 Brown-Conrady

Brown-Conrady distortion[11] is probably what most think of as the "standard" radial and tangential distortion model.
It was first published in 1966 by Brown and Conrady, and has been used in many applications since.

This model characterizes radial distortion as a series of higher order polynomials:

r =
√

x2 + y2 (13)

δr = k1r
3 + k2r

5 + k3r
7 + ...+ knr

n+2 (14)
In practice, only the k1 through k3 terms are typically used. For cameras with relatively simple lens assemblies (e.g.
only contain one or two lenses in front of the CMOS/CCD sensor), it is often sufficient to just use the k1 and k2 terms.

To relate this back to our image coordinate system (i.e. x and y), we usually need to do some basic trigonometry:
δxr = sin(ϕ)δr = x/r(k1e

3 + k2r
5 + k3r

7) (15)

δyr = cos(ϕ)δr = y/r(k1e
3 + k2r

5 + k3r
7) (16)

Angential distortion, as characterized by the Brown-Conrady model, is often simplified into the following x and y
components. We present these here first as they are probably what most are familiar with:

δxt = 2p2xy + p1(r
2 + 2x2) (17)

δyr = p2(r
2 + 2y2) + 2p1xy (18)

This actually derives from an even-power series much like the radial distortion is an odd-power series. The full
formulation is a solution to the following:

δt = P (r) cos(ϕ − ϕ0) (19)
Where p(r) is our de-centering distortion profile function, is the polar angle of the image plane coordinate, and is
the angle to the axis of maximum tangential distortion (i.e. zero radial distortion). Expanding this into the general
parameter set we use today is quite involved (read the original Brown paper!), however this will typically take the
form:

δxt = [p1(r
2 + 2x2) + 2p2xy](1 + p3r

2 + p4r
4 + p5r

6 + ...) (20)
δyr = [2p1xy + p2(r

2 + 2y2)](1 + p3r
2 + p4r

4 + p5r
6 + ...) (21)

Because tangential distortion is usually small, we tend to approximate it using only the first two terms. It is rare for
de-centering to be so extreme that our tangential distortion requires higher order terms because that would mean that
our lens is greatly de-centered relative to our image plane. In most cases, one might ask if their lens should simply be
re-attached in a more appropriate manner.
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3.2.2 Kannala-Brandt

Almost a century later (2006, from the original Conrady paper in 1919), Juho Kannala and Sami Brandt[12] published
their own paper on lens distortions. The main contribution of this paper adapts lens distortion modeling to be optimized
for wide-angle, ultra wide-angle, and fish-eye lenses. Brown Conrady’s modeling was largely founded on the physics
of Seidel aberrations, which were first formulated around 1867 for standard lens physics of the time, which did not
include ultra wide and fish-eye lenses.

The primary difference that most folks will notice using this model lies in symmetric radial distortion. Rather than
characterizing radial distortion in terms of how far a point is from the image centre (the radius), Kannala-Brandt
characterizes distortion as a function of the incidence angle of the light passing through the lens. This is done because
the distortion function is smoother when parameterized with respect to this angle ( ), which makes it easier to model
as a power-series:

θ = arctan(r, f) (22)

δr = k1θ
2 + k2θ

4 + k3θ
6 + ... (23)

Above, we’ve shown the formula for θ when using perspective projection, but the main advantage of the Kannala-
Brandt model is that it can support different kinds of projection by swapping our formula for θ, which is what makes
the distortion function smoother for wide-angle lenses. Kannala-Brandt also aims to characterize other radial (such as
asymmetric) and tangential distortions. This is done with the following additional parameter sets:

δrother = (l1θ + l2θ
3 + l3θ

5)(i1 cosφ+ i2 cos(2φ) + i4 sin(2φ) + ...) (24)

δt = (m1θ +m2θ
3 +m3θ

5)(j1 cosφ+ j2 cos(2φ) + j4 sin(2φ) + ...) (25)

Overall, this results in a 23 parameter model! This is admittedly overkill, and the original paper claims as much. These
models, unlike the symmetric radial distortion, are an empirical model derived by fitting an N-term Fourier series to
the data being calibrated. This is one way of characterizing it, but over-parameterizing our final model can lead to poor
repeatability of our final estimated parameters. In practice, most systems will characterize Kannala-Brandt distortions
purely in terms of the symmetric radial distortion, as that distortion is significantly larger in magnitude and will be the
leading kind of distortion in wider-angle lenses.

3.3 Feature-based Methods

In the context of fisheye camera distortion correction, feature-based methods play a vital role by leveraging the charac-
teristics of the fisheye image to infer and rectify the camera’s distortion parameters. This section presents an overview
of several feature-based methods commonly used for fisheye camera distortion correction.

3.3.1 Corner Detection and Rectification

Corner detection and rectification methods involve the detection of corners in the fisheye image, such as employing
Harris corner detection[13] or Shi-Tomasi corner detection[14]. Subsequently, distortion rectification is performed by
utilizing the relationships between the detected corners in terms of distances and angles to estimate the camera’s dis-
tortion parameters. By employing these parameters, the entire image can be rectified to mitigate the fisheye distortion.

3.3.2 Feature Point Matching and Rectification

Feature point matching and rectification methods rely on the extraction and matching of feature points in the fisheye
image. Popular techniques, such as SIFT feature points[15] or SURF feature points[16], are employed for feature
point extraction. The detected feature points are then matched with their corresponding points in the rectified image,
enabling the inference of the camera’s distortion parameters and subsequent rectification.

3.3.3 Line Detection and Rectification

Line detection and rectification methods capitalize on the presence of straight lines in the fisheye image. By detecting
lines using techniques like the Hough transform[17], the camera’s distortion parameters can be inferred. The obtained
parameters are subsequently utilized to rectify the entire image, ensuring that the straight lines preserve their linearity
in the rectified image.
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3.3.4 Optical Flow-based Methods

Optical flow-based methods exploit the information provided by the optical flow in the fisheye image for distortion
correction. By calculating the pixel displacements in the fisheye image, the camera’s distortion parameters can be
inferred and used for rectification. Optical flow algorithms, such as the Lucas-Kanade method[18] or deep learning-
based optical flow estimation, can be employed to estimate the pixel displacements.

3.4 Direct Methods

Direct methods for fish-eye camera distortion correction involve the detection and analysis of specific features or pat-
terns in the image to estimate the distortion parameters. These methods typically rely on the relationships between
the distorted image coordinates and the undistorted object coordinates. Techniques such as RANSAC (Random Sam-
ple Consensus) can be used to robustly estimate the distortion parameters from the feature correspondences. Direct
methods are advantageous in scenarios where calibration data or a priori knowledge about the distortion model is not
available.

3.4.1 Horizontal Expansion Method

The Horizontal Expansion Method is a technique used for fisheye image rectification and distortion correction. It aims
to transform a distorted fisheye image into a rectilinear image, which has straight lines and a more natural perspective.
The method involves expanding the horizontal field of view of the fisheye image and mapping the distorted pixels to
their corresponding locations in the rectilinear image.

3.4.2 Latitude-Longitude Mapping Method

The Latitude-Longitude Mapping Method is a technique used for transforming a fisheye image into a panoramic or
equirectangular projection. This method involves mapping the distorted fisheye pixels to their corresponding lati-
tude and longitude coordinates on a spherical or cylindrical coordinate system, and then projecting them onto a 2D
equirectangular grid.

3.4.3 Panorama Mapping Method

The Panorama Mapping Method is a technique used for fisheye image rectification and distortion correction. It aims
to transform a distorted fisheye image into a rectilinear image, which has straight lines and a more natural perspective.
The method involves mapping the distorted fisheye pixels to their corresponding locations in the rectilinear image.

3.5 Deep Learning-Based Methods

With the recent advancements in deep learning, neural network-based approaches have emerged for fish-eye camera
distortion correction. These methods involve training a neural network to learn the mapping function between distorted
and undistorted images. A large dataset of paired images with known distortions is used for training the network. Once
trained, the network can perform distortion correction on new input images. Deep learning-based methods offer the
advantage of learning complex distortion patterns and can handle a wide range of distortions effectively. However,
they require a substantial amount of training data and computational resources. This section provides an overview of
deep learning methods commonly used for fisheye camera distortion correction.

3.5.1 Converlutional Meural Metworks(CNNs)

Convolutional Neural Networks (CNNs) have been extensively employed for fisheye camera distortion correction.
These networks consist of multiple convolutional layers that extract hierarchical features from the input images. By
training CNNs on a large dataset of distorted and undistorted fisheye image pairs, they can learn the underlying pat-
terns and relationships to predict the distortion-free version of a given fisheye image. (Rong et. al., 2016)[19] intends
to employ CNNs (Convolutional Neural Networks), to achieve radial distortion correction. Inspired by the growing
availability of image dataset with non-radial distortion (Rong et. al., 2016) propose a framework to address the issue
by synthesizing images with radial distortion for CNNs. To this end (Lu et. al., 2017)[20] propose a fast level set
model-based method for intensity inhomogeneity correction and a spectral properties-based color correction method
to overcome these obstacles. In contrast to conventional approaches, the proposed model integrates a new signed en-
ergy force function that can detect contours at weak or blurred edges efficiently. (Borkar et. al., 2019)[21] evaluate the
effect of image distortions like Gaussian blur and additive noise on the activations of pre-trained convolutional filters.
(Borkar et. al., 2019) propose a metric to identify the most noise susceptible convolutional filters and rank them in
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order of the highest gain in classification accuracy upon correction. Radial lens distortion often exists in images taken
by commercial cameras, which does not satisfy the assumption of pinhole camera model. They generated images
with a large number of images of high variation of radial distortion, which can be well exploited by deep CNN with
a high learning capacity, and reach the state-of-the-art results. (Shi et. al., 2018)[22] claim that a weight layer with
inverted foveal models can be added to these existing CNNs methods for radial distortion correction. Convolutional
neural networks (CNNs) have been widely used for road scene understanding in the last few years with great success.
(Arsenali et. al., 2019)[23] propose RotInvMTL: a multi-task network (MTL) to perform joint semantic segmenta-
tion, boundary prediction, and object detection directly on raw fisheye images. An attempt to optimize a CNN-based
detector for fisheye cameras was made, taking into consideration the barrel distortion, which complicates the object
detection (Goodarzi et. al., 2019)[24]. The obtained result proves that fisheye augmentation can considerably advance
a CNN-based detector’s performance on fisheye images in spite of the distortion. (Sáez et. al., 2019)[25] present
a methodology that provides real-time semantic segmentation on fisheye cameras leveraging only synthetic images.
(Sáez et. al., 2019) propose some Convolutional Neural Networks(CNN) architectures based on Efficient Residual
Factorized Network(ERFNet) that demonstrate notable skills handling distortion and a new training strategy that im-
proves the segmentation on the image borders. (Vasiljevic et. al., 2020)[26] show that self-supervision can be used to
learn accurate depth and ego-motion estimation without prior knowledge of the camera model. Inspired by the geo-
metric model of Grossberg and Nayar, (Vasiljevic et. al., 2020) introduce Neural Ray Surfaces (NRS), convolutional
networks that represent pixel-wise projection rays, approximating a wide range of cameras. The strong radial distortion
breaks the translation invariance inductive bias of Convolutional Neural Networks. (Ramachandran et. al., 2022)[27]
provide a detailed analysis on the competition which attracted the participation of 120 global teams and a total of
1492 submissions. The fisheye image has a severe geometric distortion which may interfere with the stage of image
registration and stitching. In the stage of fisheye image correction (Hao et. al., 2023)[28] propose the Attention-based
Nonlinear Activation Free Network (ANAFNet) to deblur fisheye images corrected by Zhang calibration method.

3.5.2 Generative Adversarial Networks(GANs)

Generative Adversarial Networks (GANs) have also been utilized for fisheye camera distortion correction. GANs
consist of a generator network and a discriminator network, which are trained simultaneously in an adversarial manner.
The generator network generates undistorted fisheye images, while the discriminator network aims to distinguish
between the generated undistorted images and the real undistorted images. Through this adversarial training process,
GANs can learn to generate high-quality undistorted fisheye images.

(Li et. al., 2012)[29] present a novel embedded real-time fisheye image distortion correction algorithm with applica-
tion in IP network camera. A fast and simple distortion correction method is introduced based on Midpoint Circle
Algorithm (MCA) which aims to determine the pixel positions along a circle circumference based on incremental cal-
culation of decision parameters. Each lens is calibrated separately and interior/relative orientation parameters (IOPs
and ROPs) of the camera are determined on the basis of designed calibration network on the central and side images
captured by the aforementioned lenses (Aghayari et. al., 2017)[30]. Designed calibration network is considered as
a free distortion grid and applied to the measured control points in the image space as correction terms by means of
bilinear interpolation. Deep learning techniques have become popular for performing camera model identification.
To expose weaknesses in these methods (Chen et. al., 2018)[31] propose a new anti-forensic framework that utilizes
a generative adversarial network (GAN) to falsify an image’s source camera model. (Nikonorov et. al., 2019)[32]
present a new end-to-end framework applying two convolutional neural networks (CNNs) to reconstruct images cap-
tured with multilevel diffractive lenses (MDLs). The generative adversarial network (GAN) is first used to remove
image-wise color distortion, while a patch-wise network is then used to apply chromatic deblur. Correction of the
distortion of images is crucial in many computer vision applications. (Liao et. al., 2020)[33] present distortion rectifi-
cation generative adversarial network (DR-GAN), a conditional generative adversarial network (GAN) for automatic
radial DR. To the best of the knowledge, this is the first end-to-end trainable adversarial framework for radial distortion
rectification. (Gallego et. al., 2020)[34] present a network architecture with parallel convolutional neural networks
(CNN) for removing perspective distortion in images. While other works generate corrected images through the use of
generative adversarial networks or encoder-decoder networks, (Gallego et. al., 2020) propose a method wherein three
CNNs are trained in parallel, to predict a certain element pair in the 3*3 transformation matrix. Generative adversarial
networks (GANs) have been implemented to convert IR images into RGB images for enriching semantic information.
(Zhang et. al., 2021)[35] study wggan: a wavelet-guided generative adversarial network for thermal image translation.
A wavelet-guided generative adversarial network (WGGAN) is proposed to address the problem. In order to improve
the quality of low-light image (Zhang et. al., 2021) propose a Heterogenous low-light image enhancement method
based on DenseNet generative adversarial network. Secondly, the feature map from low light image to normal light
image is learned by using the generative adversarial network. (Thapa et. al., 2021)[36] present the distortion-guided
network (DG-Net) for restoring distortion-free underwater images. (Thapa et. al., 2021) then use a generative adver-
sarial network guided by the distortion map to restore the sharp distortion-free image. (Luo et. al., 2021)[37] propose
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an unsupervised deep convolutional network that takes rectified stereo image pairs as input and outputs corresponding
dense disparity maps. Second, the left and right images, which are reconstructed based on the input image pair and
corresponding disparities as well as the vertical correction maps, are regarded as the outputs of the generative term of
the generative adversarial network (GAN).

3.5.3 Encoder-Decoder Architectures

Encoder-decoder architectures, such as U-Net and its variants, have proven effective for fisheye camera distortion
correction. These architectures consist of an encoder network that captures the high-level features of the distorted
fisheye image and a decoder network that reconstructs the undistorted image from the encoded features. The encoder-
decoder structure allows for the preservation of spatial information during the distortion correction process.

4 Conclusion

Fish-eye camera distortion correction is a critical task in digital image processing, aimed at rectifying the distortions
introduced by fish-eye lenses and improving image quality. In this review, we provided a comprehensive overview of
various methods used for fish-eye camera distortion correction.

We discussed the polynomial distortion model, which utilizes polynomial functions to model and correct radial distor-
tions. This method is widely adopted due to its simplicity and effectiveness. Additionally, alternative approaches such
as panorama mapping, grid mapping, direct methods, and deep learning-based methods were explored. Each method
has its strengths and limitations, and their suitability depends on specific requirements and constraints.

Through this review, researchers, professionals, and enthusiasts in the field of digital image processing gained a deeper
understanding of the available techniques for fish-eye camera distortion correction. The review highlighted the underly-
ing principles, advantages, limitations, and potential applications of each method, enabling informed decision-making.

To evaluate the performance of distortion correction methods, various experiments can be conducted, including
synthetic data evaluation, calibration image evaluation, comparative studies, real-time performance evaluation, and
application-specific evaluations. These experiments provide insights into the accuracy, computational efficiency, and
applicability of the methods in different scenarios.

In conclusion, fish-eye camera distortion correction methods play a crucial role in enhancing image quality and en-
abling accurate analysis in various fields. By understanding the different techniques and conducting appropriate exper-
iments, researchers can select the most suitable method for their specific needs, contributing to advancements in the
field of digital image processing.
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