
Andreev bound states in Josephson junctions of semi-Dirac semimetals

Ipsita Mandal
Department of Physics, Shiv Nadar Institution of Eminence (SNIoE),

Gautam Buddha Nagar, Uttar Pradesh 201314, India

We consider a Josephson junction built with the two-dimensional semi-Dirac semimetal, which
features a hybrid of linear and quadratic dispersion around a nodal point. We model the weak link
between the two superconducting regions by a Dirac delta potential because it mimics the thin-
barrier-limit of a superconductor-barrier-superconductor configuration. Assuming a homogeneous
pairing in each region, we set up the BdG formalism for electronlike and holelike quasiparticles
propagating along the quadratic-in-momentum dispersion direction. This allows us to compute the
discrete bound-state energy spectrum ε of the subgap Andreev states localized at the junction. In
contrast with the Josephson effect investigated for propagation along linearly dispersing directions,
we find a pair of doubly degenerate Andreev bound states. Using the dependence of ε on the
superconducting phase difference ϕ, we compute the variation of Josephson current as a function of
ϕ.
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1. INTRODUCTION

In a configuration consisting of two superconductors cou-
pled together by a weak link between them, a dissipation-
less current flows across the junction in equilibrium [1–3],
which is dubbed as the Josephson current IJ . IJ is a single-
valued and 2π-periodic function in the phase difference ϕ
of the pair potential of the two superconductors. In such a
set-up, the Andreev surface states of the two superconduc-
tors hybridize to form Andreev bound states (ABSs) at the
junction. These states are the dominant contributors to the
Josephson current through the junction [4–7], because the
contributions from the excited states in the continuum are
negligible. There is an extensive literature devoted to the
study of such Josephson effects in two-dimensional (2d) and
three-dimensional (3d) materials like graphene and Weyl-
like semimetals [5, 8–14], where the weak link is a tunneling
barrier. In other words, the two superconducting regions
(each abbreviated by “S”) are weakly coupled by a middle
region consisting of the normal (i.e., non-superconducting)
phase (abbreviated by “N”) of a semimetal. Two alter-
nate configurations include the S-N-S [5, 8] and the S-B-S
(where “B” indicates a potential barrier in the N region)
[9, 10, 12–14] junctions. While the superconductivity is in-
duced via proximity-effect by placing a conventional s-wave
superconductor on top of the corresponding electrode [15],
the tunnel barrier can be created by applying a gate volt-

age V0 across N. A schematic representation of the S-B-S
set-up is illustrated in Fig. 1(a).

The characterization of the Josephson junctions in the
Dirac/Weyl-like systems, described above, has spanned
both isotropic and anisotropic bandstructures. For the
anisotropic cases, in addition to a linear-in-momentum dis-
persion along one of the momentum axes (let us call it
kz), there exists quadratic(cubic)-in-momentum variations
along the remaining axes orthogonal to kz [12, 13]. How-
ever, in such studies, the propagation direction has always
been chosen to be along the linear-in-momentum dispersion
axis. To fill in this gap, we consider here a 2d semi-Dirac
semimetal, which features a quadratic dispersion along the
axis perpendicular to kz, which we label as the kx-axis, and
consider the propagation of the quasiparticles/quasiholes
along the quadratic dispersion direction (i.e., along the
x-axis). Such hybrid dispersion characteristics appear in
the low-energy spectra of a tight-binding model on the (1)
honeycomb lattice in a magnetic field (resulting in the so-
called Hofstadter spectrum) [16] and (2) square-lattice with
three bands of spinless fermions [17]. The 2d anisotropic
semimetallic bandstructure can be found in systems like
multi-layer VO2 -TiO3 nanostructures [17–20], organic con-
ductor α-(BEDT-TTF)2I3 [21, 22], deformed graphene [23–
26], and cold atoms trapped in an optical honeycomb lattice
[27]. The anisotropic nature of the spectrum manifests it-
self through distinctive signatures in various transport and
thermodynamic properties [18, 28–31].

In this paper, we consider the S-B-S configuration in
the thin-barrier-limit, constructed with the semi-Dirac
semimetal, by approximating the barrier by a Dirac delta
function [6, 32, 33]. In our set-up, the weak link is repre-
sented by the thin-barrier-limit of an S-B-S junction, which
is defined by L ≪ ξ, where L is the barrier thickness and
ξ is the superconducting coherence length. We employ
the scattering matrix approach for the associated Bogoli-
ubov–de Gennes (BdG) Hamiltonian, which has been one
of the standard techniques used extensively to determine
the conductance of an N-S junction [34–38], with the ap-
propriate generalization applicable for the S-B-S junctions.

The propagation direction of the quasiparti-
cles/quasiholes is taken to be parallel/antiparallel to
the x-axis. We denote the transverse dimension of the
junction by W , where W is assumed to be large enough to
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impose periodic boundary conditions along the z-directiom.
In the short-barrier regime, the main contribution to the
Josephson current comes from the subgap Andreev states
[4–6], because the contributions from the excited states
in the continuum are suppressed by a factor of L/ξ. We
compute the energies of the ABSs in the thin-barrier-limit,
and determine the resulting Josephson current.
The paper is organized as follows. In Sec. 2, we de-

scribe the low-energy effective Hamiltonian of the semi-
Dirac semimetal in the normal phase, and show its eigen-
values and eigenfunctions. In Sec 3, the BdG Hamiltonian,
necessary to describe the S-B-S junction, is shown along
with the expressions for the electronlike and holelike wave-
functions. This is followed by Sec. 4, where the ABS energy
values are derived and the Josephson current is computed
numerically. Finally, we end with a summary and outlook
in Sec. 5.

2. SEMI-DIRAC SEMIMETAL

An effective low-energy continuum model of the 2d
anisotropic semi-Dirac semimetal, featuring a hybrid dis-
persion spectrum which is linear along kz and quadratic
along kx, is represented by the Hamiltonian [16–20, 28, 29,
31, 39]

H(k) =
ℏ2 k2x
2m

σx + ℏ v kz σz . (1)

Here, m is the effective mass parameter along the x-axis,
v is the Fermi velocity along the z-axis, and σx and σz are
two of the three Pauli matrices. In order to simplify the
notations, we define the dimensionless momenta

Kx =
ℏ kx
p

and Kz =
ℏ kz
p

,where p = 2mv . (2)

The tight-binding Hamiltonian [16], from which the above
low-energy continuum Hamiltonian has been obtained, con-
sists of a honeycomb lattice comprising two sublattice sites
labelled as A and B (analogous to the case of graphene).
Hence, there exists a pair of valleys at the two inequivalent
K points/corners of the Brillouin zone, which we denote by
K+ and K−. The Hamiltonian H(k) here represents the
states in the vicinity of the valley located at K+.
The energy eigenvalues of H(k) are given by

E = s ε0
√
K4

x +K2
z , ε0 =

p2

2m
= 2 p v , s = ± , (3)

as shown in Fig. 1(b). Here, the “+” and “−” signs, as
usual, refer to the conduction band (i.e., the upper band
with the positive energy eigenvalue) and the valence band
(i.e., the lower band with the negative energy eigenvalue),
respectively. Henceforth, we set ε0 to unity for uncluttering
of notations, which just implies that all our energies are
scaled in units of ε0. Furthermore, we will set ℏ = 1, except
occasionally, when we retain it for the sake of clarity.
A set of two orthonormal eigenvectors is given by

Ψs(k) =
1√

K4
x + (sE +Kz)

2

[
sE +Kz K2

x

]T
,

E =
√
K4

x +K2
z . (4)

For a given value of the transverse (to the propagation
direction) momentum Kz with |Kz| ≤ |E|, the relation
K4

x = E2 −K2
z leads to the four solutions Kx = ± Kx and

Kx = ±K̃x, where Kx =
(
E2 −K2

z

)1/4
and K̃x = iKx.

Consequently, in addition to the propagating plane wave
solutions, there are also evanescent waves present [17, 40–
42]. If the Fermi energy cuts the bands at energy E,
then for propagation along the x-direction, the corre-
sponding “right-moving” plane waves will have the factor

ei sgn(E) K̃x x — this just implies that if the propagating
quasiparticles are occupying the upper(lower) band, then
they have a positive(negative) group velocity.

We note that the “extra” solutions involving the evanes-
cent waves (i.e., the ones with the momenta ±K̃x) do not
exist when the propagation direction is taken to be along
the z-axis, as the dispersion is linear-in-momentum along
that direction. As a result, we expect a richer structure
of the ABSs when we analyze the problem of junctions en-
countered for transmission along the x-direction, which fea-
tures a nonlinear dependence on the momentum.

3. JOSEPHSON JUNCTION

In order to represent the superconducting phases across
the Josephson junction [cf. Fig. 1(a)], we need to define the
superconducting pair potential in each region. The time-
reversal operator interchanges the valleys in a graphene-
like bandstructure (which has pseudospin-1/2 quasiparti-
cles), where each valley is represented by a Hamiltonian
constructed out of the Pauli matrices. Because of the val-
ley degeneracy, it suffices to consider one of the two possible
sets, thus leading to a 4× 4 BdG Hamiltonian. Adopting a
homogeneous approximation, we follow the construction in
Refs. [9, 34], such that the pair potential can be modelled
as

∆(x) =

{
∆0 e

i ϕ1 σ0 for x < 0

∆0 e
i (ϕ1+ϕ) σ0 for x > 0

, σ0 = 12×2 , (5)

representing BCS-like Cooper pairing in the spin-singlet s-
wave channel. The phases of the superconducting order
parameter in the two regions are given by ϕ1 and ϕ1 + ϕ,
respectively, such that the phase difference is ϕ. Since the
final expressions for the ABSs and the Josephson current
depend only on ϕ, we set ϕ1 = 0, without any loss of gen-
erality. Due to the presence of the Delta function potential
barrier between the two superconductors, we need to con-
sider the potential energy function

V (x) = V0 δ(x) . (6)

In order to contrast our scenario with the linear-in-
momentum dispersion cases, a few important points need
to be remembered here. Although the thin-barrier-limit is
equivalent to a Dirac delta potential, we do not have any
constraint on the derivatives of the wavefunction across the
junctions when the dispersion is linear, implying that the
standard delta function potential approximation for thin
barriers cannot be taken from the outset [9]. For those sit-
uations, we need to start with a finite normal state region
(rather than a Dirac delta function), obtain the equations
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(a) (b)

FIG. 1. Schematics of the (a) S-B-S junction configuration; (b) anisotropic dispersion of a semi-Dirac semimetal with a
quadratic(linear)-in-momentum dependence along the kx(kz) direction. The projections of the dispersion shown in the background
clearly demonstrate the hybrid nature.

from the boundary conditions at the S-B and B-S junctions,
and finally impose the appropriate limits while computing
the final solutions [5, 9, 11, 12, 14]. However, for a quadratic
dispersion, we can use the Dirac delta approximation from
the start, because here we have a constraint on the first

order derivatives (with respect to the position coordinate
along the propagation direction) of the wavefunction across
the junction, analogous to the tunneling problem involving
a Schrödinger particle.

The BdG Hamiltonian can be constructed as [9, 34]

H =
∑
r

Ψ†(r)HBdG(r)Ψ(r), Ψ(r) =
[
cA+(r) cB+(r) c†A−(r) −c†B−(r)

]T
,

HBdG(r) =

H(K → −i∇r)− EF + V (x) ∆(x)

∆†(x) EF − V (x)−H(K → −i∇r)

 , (7)

where r = (x, z) is the position vector, and the indices ±
on the fermionic operators label the two valleys.
Here we demarcate the left superconducting region as

“L” and the right superconducting region as “R”, with the
delta function barrier being the weak link in the middle.
The electronlike and holelike BdG quasiparticles are ob-
tained from the eigenvalue equation

HBdG(r)ψK(r) = εψK(r) . (8)

If ψN (K) denotes an eigenfunction of H(K), then the
electronlike and holelike eigenfunctions of HBdG(r) are of
the forms ψe(K, φ) e

iK·r and ψh(K, φ) e
iK·r, respectively,

where [43]

ψe(K, φ) =
[
ψN (K) (ε−Ω) e−i φ

∆0
ψN (K)

]
and

ψh(K, φ) =
[
ψN (K) (ε+Ω) e−i φ

∆0
ψN (K)

]
. (9)

Here,

Ω = i
√
∆2

0 − ε2 , (10)

and φ represents the phase of the superconducting order
parameter.

Let us define the variable

β = arccos(ε/∆0) , (11)

which will be useful in the expressions that follow. Using
Eqs. (4) and (9), let us now spell out the form of the eigen
wavefunction

Ψ(r,Kz) = ψL(r,Kz)Θ(−x) + ψR(r,Kz)Θ(x) , (12)

expressed in a piecewise manner for the two regions, setting
the chemical potential at EF > 0. We assume that1 V0 ≫
EF ≫ ∆0 and (V0 − EF ) ≫ EF . Since the translation
symmetry is broken along the x-axis, Kx is not conserved,
whereas the transverse momentum component Kz remains
unchanged across the junction.

1. In the left superconductor region, we need to con-
struct a linear combination of the form

ψL(r,Kz) = al ψe(−κex,Kz, 0) e
−i κe

x x+Kz z

+ bl ψh(−κhx,Kz, 0) e
−i κh

x x+Kz z

+ cl ψe(−κ̃ex,Kz, 0) e
−i κ̃e

x x+Kz z

+ dl ψh(κ̃
h
x,Kz, 0) e

i κ̃h
x x+Kz z , (13)

where
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(a) (b)

FIG. 2. Behaviour of |ε| as a function of (a) Kz and (b) ϕ, for some representative values of V0 (shown in the plotlegends), with
EF set to unity.

ψe(Kx,Kz, φ) ≃
[
ei β (EF +Kz) ei β K2

x e−i φ (EF +Kz) e−i φK2
x

]T
,

ψh(Kx,Kz, φ) ≃
[
Kz − EF K2

x ei β−i φ (Kz − EF ) ei β−i φK2
x

]T
, (14)

κex ≃ kmod + i κ , kmod ≃
(
E2

F −K2
z

)1/4
, κ ≃ Im

[{
(EF + i∆0)

2 −K2
z

}1/4 ]
,

κhx ≃ −kmod + i κ̃ , κ̃ ≃ Im
[{

(EF − i ∆0)
2 −K2

z

}1/4 ]
, κ̃ex = iκex , κ̃hx = iκhx . (15)

2. In the right superconductor region, the wavefunction
localizing at the interface is described by the linear
combination (cf. chaper 5 of Ref. [33])

ψR(r,Kz) = ar ψe(κ
e
x,Kz, ϕ) e

i κe
x x+Kz z

+ br ψh(κ
h
x,Kz, ϕ) e

i κh
x x+Kz z

+ cr ψe(κ̃
e
x,Kz, ϕ) e

i κ̃e
x x+Kz z

+ dr ψh(−κ̃hx,Kz, ϕ) e
−i κ̃h

x x+Kz z . (16)

Imposing the continuity of the wavefunction and the con-
straint on its first order derivatives (with respect to x)
across the junction, located at x = 0, we get the follow-
ing equations:

ψL(0, z,Kz) = ψR(0, z,Kz) and

∂xψR(x, z,Kz)
∣∣
x=0

− ∂xψL(x, z,Kz)
∣∣
x=0

= V0 ψL(0, z,Kz) .

(17)

1 The condition ∆0 ≪ EF ensures that the mean-field approxima-
tion, applicable for using the BdG formalism, is valid. The second
condition (V0 − EF ) ≫ EF arises because we are focussing on the
short-barrier regime.

From the four components of the BdG wavefunction, we
get 2 × 4 = 8 linear homogeneous equations in the 8 un-
known variables (al, bl, cl, dl, ar, br, cr, dr), which consti-
tute the coefficients of the piecewise-defined wavefunction.
In the resulting equations, the overall z-independent factors
of eiKz z cancel out. Let M denote the 8 × 8 matrix con-
structed out of the coefficients of the 8 variables. For the
equations to be consistent, we need to impose the condition
detM = 0. This helps us determine the energy eigenvalues
of the subgap ABSs, which are localized near the junction,
since they decay exponentially with the distance from the
weak link into the superconducting region on either side.

4. RESULTS

In order to reduce the complexity of the computations
to the determinant of a lower dimensional matrix, we first
eliminate four of the eight unknown variables by using four
of the eight linear homogeneous equations. Specifically, in
our calculations, we first solve for (al, bl, cl, dl) in terms of
(ar, br, cr, dr), using ψL(0, z,Kz) = ψR(0, z,Kz). These
solutions are plugged into the constraint

∂xψR(x, z,Kz)
∣∣
x=0

−∂xψL(x, z,Kz)
∣∣
x=0

= V0 ψL(0, z,Kz) ,



5

(a) (b)

FIG. 3. (a) Magnitude of the energy ε of the Andreev bound states against the ϕ -Kz plane, for EF = 1 and V0 = 100. (b) The

behaviour of the total Josephson current (∝ Ĩ), in arbitrary units, as a function of ϕ, obtained at EF = 1 and kB T = 0.005∆0. We
have used four values of V0 as shown in the plotlegends.

such that (al, bl, cl, dl) no longer appear in the equations
resulting from the operation. Now we construct the 4 × 4

matrix M̃ out of the coefficients of the four variables, viz.,
(ar, br, cr, dr). The explicit form of this matrix is very
long and, therefore, we write the 4 columns one by one:

c1 =



ei β
(
E2

F −K2
z

) [
ei ϕ {EF (−z V0 + (1 + i)(1 + (1 + i) z)κx) +Kz (−z V0 + 2 i (z + 1)κx)} − (1 + i)κx {EF + (1 + i)Kz}

]
ei βκ2x (EF +Kz)

[
ei ϕ {EF (−z V0 + (1 + i) (1 + (1 + i) z)κx) +Kz (z V0 − 2 i (z + 1)κx)} − (1 + i)EF κx + 2 iKz κx

]
(
E2

F −K2
z

) [
EF

{
−z V0 + (1 + i)κx

(
(z + 1) ei ϕ + i z − 1

)}
+Kz

{
−z V0 + 2 i

(
−1 + ei (2 β+ϕ)

)
κx

}]
κ2x (EF +Kz)

[
EF

{
−z V0 + (1 + i)κx

(
(z + 1) ei ϕ + i z − 1

)}
+Kz

{
z V0 − 2 i

(
−1 + ei (2 β+ϕ)

)
κx

}]


,

(18)

c2 =



(
E2

F −K2
z

) [
ei ϕ {V0 z (EF −Kz) + (1 + i)EF (z − i)κx + 2 iKz κx} − (1− i) (z + 1)κx {EF − (1− i)Kz}

]
κ2x (EF −Kz)

[
ei ϕ {−V0 z (EF +Kz) + (1 + i)κx ((1 + i)Kz − EF (z − i))}+ (1− i) (z + 1)κx {EF + (1− i)Kz}

]
ei β

(
E2

F −K2
z

) [
EF

{
V0 z + (1 + i)κx

(
(1 + i) z − i ei ϕ + i

)}
+Kz

{
−V0 z + 2 i κx

(
ei ϕ − z − 1

)}]
ei βκ2x (EF −Kz)

[
Kz

{
−V0 z + 2 i κx

(
ei ϕ − z − 1

)}
− EF

{
V0 z + (1 + i)κx

(
(1 + i) z − i ei ϕ + i

)}]


,

(19)

c3 =



ei(β+ϕ)
(
E2

F −K2
z

) [
−z Kz (V0 + 2κx) + EF

{
−V0 z − (1− i)κx

(
(1 + i) z − e−i ϕ + 1

)}]
ei β κ2x (EF +Kz)

[
ei ϕ {−z Kz (V0 + 2κx) + EF (V0 z + (1− i)κx + 2 z κx)} − (1− i)EF κx

]
(
E2

F −K2
z

) [
−z Kz (V0 + 2κx)− EF

{
V0 z + (1 + i)κx

(
−i ei ϕ (z + 1) + z + i

)}]
κ2x (EF +Kz)

[
−z Kz (V0 + 2κx) + EF

{
V0 z + (1 + i)κx

(
−i ei ϕ (z + 1) + z + i

)}]


, (20)
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c4 =



(
E2

F −K2
z

) [
ei ϕ {−z Kz (V0 + 2κx) + EF (V0 z + (1− i) (z − i)κx)}+ (1 + i)EF (z + 1)κx

]
κ2x (EF −Kz)

[
ei ϕ {z Kz (V0 + 2κx) + EF (V0 z + (1− i) (z − i)κx)}+ (1 + i) (z + 1)EF κx

]
−ei β

(
E2

F −K2
z

) [
−z EF V0 + (1 + i)EF κx

{
(i− 1) z + ei ϕ − 1

}
+ z Kz (V0 + 2κx)

]
ei βκ2x (EF −Kz)

[
z Kz (V0 + 2κx) + EF

{
V0 z − (1 + i)κx

(
(i− 1) z + ei ϕ − 1

)}]


, (21)

such that

M̃ = e−i ϕ
[
c1 c2 c3 c4

]
.

Here, z = e2 i β − 1. The consistency condition reduces

to detM̃ = 0. The equation resulting from this vanish-
ing determinant gives a lower order polynomial equation
in ei β (compared to the one obtained from detM = 0)
and, hence, is easier to solve. In fact, we obtain a quartic
equation in the variable z, as shown below:

z4
(
K2

z − E2
F

)2
(V0 + 2Kx)

2 (
V 2
0 + 4K2

x

)
− 8 z3

(
K2

z − E2
F

)
K2

x (cosϕ− 1) (2Kx + V0)
[
2
(
K2

z − E2
F

)
Kx + V0K

2
z

]
+ 16 z2 K2

x sin2
(ϕ
2

) [
−E2

F K
2
z (V0 + 2κx) (V0 + 4κx) + 2E4

F κx (V0 + 3κx) +K4
z (V0 + 2κx)

2 − 2E4
F K2

x cosϕ
]

+ 128 z E2
F K4

x sin4
(
ϕ

2

)
+ 64E2

F K4
x sin4

(ϕ
2

)
= 0 . (22)

The order of this polynomial equation (whose roots we need
to determine) is the same as what we found for the case
of the linearly dispersing Rarita-Schwinger-Weyl (RSW)
semimetal [14], featuring four bands (rather than two).
The coefficients of various powers of z in Eq. (22) are

all real and, hence, we can analyze the nature of the roots
by applying the general criteria applicable for a real quar-
tic polynomial equation. First we obtain the associated
depressed quartic, which takes the form:

z4 + q z2 + ρ z + γ = 0 .

Let D be the discriminant of the depressed polynomial.
For a given set of values for EF , V0, and Kz, we compute
numerically the values of D, q, and γ. For each case, we find
that D > 0. This means that if q > 0 or 4 γ−q2 > 0, we get
a pair of complex conjugate roots (i.e., we get four complex
roots which are of the form z1, z

∗
1 , z2, and z∗2). This is

what we find from our numerical simulations. However,
since z = e2 i β − 1, an admissible solution must satisfy the
condition |z + 1| = 1. From our numerical data, we find
that only one set of complex conjugate roots, out of the
pair, fall in the allowed category. This is in contrast with
the RSW case [14], where we get, in general, four distinct
solutions for |ε|.
From the above analysis, we arrive at the conclusion that

the energies of the subgap states appear as the pairs ±|ε| for
a doubly degenerate value of |ε|. Therefore, for each value
of |ε|, we get a total of four ABSs — two with the value |ε|
and two with the value−|ε|. To demonstrate the results, we
include some representative plots, and all of these are ob-
tained by setting EF = 1. In Fig. 2, we show the behaviour
of |ε| as a function of (a) Kz (with a fixed value of ϕ), and
(b) ϕ (with a fixed value of Kz), for some representative
values of V0. The bound state energies are periodic in ϕ

with period 2π. They are, in fact, functions of cosϕ, as is
evident from Eq. (22). This dependence is reflected in the
nature of the curves in Fig. 2(b). Fig. 3(a) illustrates the
variation of |ε|-values against the ϕ -Kz plane and, hence,
shows the dependence of the bound state energies on both
these variables in a combined way.
The Josephson current density across the junction at a

temperature T is given by [5, 6]

IJ(ϕ) = −2 e

ℏ
W

2π

4∑
n=1

∫
dKz

∂εn
∂ϕ

f(εn) , (23)

where εn labels the energy values of the four Andreev bound

states, and f(ζ) = 1/
(
1 + e

ζ
kB T

)
is the Fermi-Dirac dis-

tribution function. Fig. 3(b) shows the behaviour of IJ as
a function of ϕ, scaled by appropriate numbers/variables

(this scaled quantity being denoted as Ĩ), for four values of
V0.

5. SUMMARY AND OUTLOOK

In this paper, we have have computed the characteristics
of the emergent ABSs, and the resulting Josephson cur-
rent, in a Josephson junction built with a 2d semi-Dirac
semimetal. The junction is taken to be perpendicular to
the quadratically dispersing direction in this anisotropic
material, which features a hybrid dispersion. The weak
link between the two superconducting regions is modelled
by a Dirac delta function potential. Using the BdG formal-
ism, we have determined the wavefunction localizing at the
junction for |ε| ≪ ∆0. This requires a piecewise continu-
ous definition — the usual procedure adopted for solving
reflection and transmission problems in quantum mechanics
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involving junction configurations. Demanding consistency
of the equations obtained from matching the boundary con-
ditions at the junction, we arrive at a quartic polynomial
equation in an appropriate variable variable (related to the
modulus of the ABS energy ε), obtained from the vanish-
ing of the relevant determinant. The physically admissible
roots of this quartic give the discrete energy spectrum ε
of the ABSs. Although a closed form solution cannot be
found, due to the fourth order polynomial involved, we have
deduced the nature of the roots from our numerical data.
We have found that the values of |ε| are doubly degenerate,
leading to four ABSs — two with energy |ε| and two with
energy −|ε|. We have also shown that the solutions depend
on the phase difference (ϕ) between the two superconduct-
ing regions via functions of cosϕ.
Our main finding is that, because of the quadratic dis-

persion, we need to include the “evanescent” wave solu-
tions, while defining the wavefunctions in each region. This
is in stark contrast with the cases where the propagation
axis is along a direction of linear-in-momentum dispersion
[5, 9, 11–14]. The existence of the extra solutions results in
a higher order polynomial equation to be solved, compared
to the analogous linearly dispersing cases [5, 9, 11–13] with
the same number of bands involved. In fact, comparing
our results with the isotropic four-band RSW system stud-
ied earlier [14], we find that the order of the polynomial,
for propagation along the quadratic-in-momentum disper-
sion in a two-band system, is the same as that in a linearly
dispersing four-band system.
In this paper, we have considered the Josephson current

in the thin-barrier-limit, which allows one to model the

barrier as a Dirac delta function. One can consider a finite
barrier instead, but the computations will be significantly
challenging. In such cases, we have a finite normal state re-
gion sandwiched between two superconducting regions, and
we need to determine the piecewise continuous wavefunc-
tions from the boundary-condition-matching at the S-B and
B-S junctions at x = 0 and x = ℓ, where ℓ is the length of
the barrier along the propagation direction. Furthermore,
barriers of more generic shapes (rather than the simple rect-
angular form) can be considered, which might be realized
in futuristic experimental set-ups. Yet another interest-
ing barrier-configuration is to consider scenarios where the
anisotropic dispersion is rotated about the propagation-axis
across the junction(s), as considered in Refs. [44, 45].

In the future, it will be worthwhile to study the Joseph-
son effect in 3d multi-Weyl semimetals [12, 13, 41, 42], by
considering the Josephson junction aligned perpendicular
to one of the nonlinearly dispersing directions. Another in-
teresting avenue is to introduce a tilt in the Hamiltonians of
various nodal-point semimetals [13], and investigate the re-
sulting ABSs. Last but not the least, analysis of Josephson
junctions built with isotropic Luttinger semimetals, har-
bouring quadratic band crossing points [46, 47], is left for
future work.
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