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GLOBAL RIGIDITY FOR SOME PARTIALLY HYPERBOLIC
ABELIAN ACTIONS WITH 1-DIMENSIONAL CENTER

SVEN SANDFELDT

ABSTRACT. We obtain a global rigidity result for abelian partially hyperbolic
higher rank actions on certain 2—step nilmanifolds Xrt. We show that, under
certain natural assumptions, all such actions are C'°*°—conjugated to an affine
model. As a consequence, we obtain a centralizer rigidity result, classifying
all possible centralizers for any C'—small perturbation of an irreducible, affine
partially hyperbolic map on Xr. Along the way, we also prove two results of
independent interest. We describe fibered partially hyperbolic diffeomorphisms
on Xt and we show that topological conjugacies between partially hyperbolic
actions and higher rank affine actions are C'*°.

1. INTRODUCTION

Rigidity of ZF—actions on tori (and nilmanifolds) with some hyperbolicity have
been studied extensively. The general philosophy is: large abelian actions with
some hyperbolicity should be globally rigid, i.e. smoothly conjugated to algebraic
models. A big breakthrough result in this direction was obtained by Katok and
Spatzier [43] where they prove that all perturbations of certain algebraic Anosov
actions are smoothly conjugated back to the corresponding algebraic models.
There they also outline a rigidity program for abelian actions with hyperbol-
icity. Since the paper by Katok and Spatzier, a lot of results have been obtained
for large abelian actions close to some algebraic model with some hyperbolicity
[16], 18] [14], 59, 60, [64] 65, 63, 23] 12]. Even earlier than the result by Katok and
Spatzier, Katok and Lewis [42] proved a global rigidity statement for Anosov ac-
tion on tori. In [42], the authors show that a certain class of Anosov Z%—actions
on the torus T is, necessarily, smoothly conjugated to an algebraic model,
even though the action might not be close to the algebraic model. A crucial
assumption in [42] is that the Z?—action contains many Anosov elements. The
property of having many Anosov elements was removed by F. Rodriguez Hertz
in [50], where Rodriguez Hertz only assumes that the action contains one Anosov
element. Nilmanifolds are natural generalizations of tori. There has been a lot
of work studying global rigidity of higher rankﬂ Anosov actions on nilmanifolds
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since the paper by Katok and Lewis [37, 38, 39, 25]. The culmination of these
works is the result by F. Rodriguez Hertz, Z. Wang and Fisher, Kalinin, Spatzier
[52, 26] proving that abelian higher rank Anosov actions on (infra-)nilmanifolds
are smoothly conjugated to algebraic models, completely resolving the question of
global rigidity of abelian higher rank Anosov actions on these manifolds. Relaxing
the Anosov assumption leads to the question:

When are partially hyperbolic ZF— actions on nilmanifolds globally rigid?

These actions have been remarkably resistant. Even local rigidity for algebraic
partially hyperbolic actions on (non-toral) nilmanifolds has been open for a long
time, until recent advances by Z. J. Wang [63]. In this paper, we produce an
initial result towards answering the global rigidity question.

In Theorem [A] we prove the first global rigidity result for higher rank abelian
actions on nilmanifolds with one partially hyperbolic element.

The questions of local and global rigidity of higher rank actions can also be stud-
ied for different types of actions, either dropping the assumption that the action
is abelian, or dropping the assumption that the action should have some hyper-
bolicity. Local rigidity has been obtained for large abelian parabolic actions, with
no hyperbolicity [17, 15, 62} [13]. Removing the assumption that the action should
be abelian, we can study the actions of higher rank lattices in semi-simple Lie
groups, see for example [24] and the references therein. In fact, the rigidity result
for Abelian actions in [42] was used to obtain local rigidity of SL(n,Z)—action
on tori. Considering rigidity of Anosov lattice actions on nilmanifolds, there are
also global results, see for example [10]. A key point in [10] is that any conjugacy
between the hyperbolic lattice action and the algebraic model also conjugates the
action of a large abelian subgroup to some algebraic abelian action. So, the results
of [52, 26] can be applied to improve the regularity of the conjugacy. Considering
the main results of this paper, see Theorem [A], a natural question is:

Are partially hyperbolic higher rank lattice actions on Heisenberg nilmanifolds
globally rigid?

1.1. Global rigidity of partially hyperbolic actions. Let G be a simply
connected {—step nilpotent Lie group. That is, the lower central series G = G,
GUHY =[G, GU)], terminate at ¢, G} = e. Given a lattice I' < G we define the
associated compact nilmanifold as the quotient Xr = I'\G. Compact nilmanifolds
have associated groups of automorphisms and affine maps

(1.1) Aut(Xr) = {L € Aut(G) : LT =T},
(1.2) Aff(XT) = {fo(z) = L(z)g~" : L € Aut(Xy), g € G}.
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By automorphism rigidity of nilpotent lattices [48] we can, equivalently, define
Aut(Xt) = Aut(T') = Aut(m Xr). An automorphism p : Z¥ — Aut(Xy) is said to
have a rank—1 factor if there is some quotient Xp of Xr such that p descends to
Xr and the induced map p : Z¥ — Aut(Xr) factor through a map Z — Aut(X).
A homomorphism p : Z¥ — Aut(Xr) is higher rank if it has no rank—1 factor.
More generally, given a smooth action a : Z¥ x Xp — Xp we have an induced
map a, : Z¥ — Aut(m Xt). We say that « is higher rank if the induced map a,
is higher rank.

A diffeomorphism f : Xt — Xt is partially hyperbolic if there is a D f—invariant
splitting T Xr = E° @& E° & E* such that E° is exponentially contracted, E" is
exponentially expanded and the behaviour along £° is dominated by the behaviour
of Df along E* and E* (for a precise definition, see Section 2.1]). If the center
bundle E° is the trivial bundle then f is Anosov. The main result of this paper
is an extension of the results of [52] to certain nilmanifolds by weakening the
assumption that « is Anosov. Instead, we assume that the action « contains a
partially hyperbolic element.

Theorem A. Let G be a 2—step nilpotent Lie group with dim[G,G] =1, <G
a lattice and Xt = T'\ G the associated nilmanifold. Let o : Z*F x Xp — Xr be a
smooth higher rank action with ng € Z* such that f = o™ is partially hyperbolic
and satisfying

(i) f has 1—dimensional center,
(ii) the stable and unstable foliations W*, W* are quasi-isometric in the uni-
versal cover.

Then « is C*®—conjugated to some affine action o : ZF — Aff(Xt).

Remark 1. With G as in Theorem [Althe group G can be written as G = H"xR™,
n # 0, where H™ is a Heisenberg group. The nilmanifold Xt is also a product of
a Heisenberg nilmanifold and a torus. On these manifolds there exists no Anosov
actions since the derived subgroup, [G,G], is isometric for any automorphism.
So Theorem [A] is the only global rigidity result on these manifolds, since [52], 20]
do not apply. In fact, to the author’s knowledge, Theorem [Al is the first global
rigidity result for abelian actions assuming only one partially hyperbolic element.

Remark 2. In principle the proof of Theorem [Al should work for /—step G with
¢ > 2 as long as dimG®¥ = 1. In this case the quasi-isometric assumption,
assumption (i), would have to be changed. This is a work in progress.

Remark 3. If « is topologically conjugated to some affine action, then the meth-
ods from [52] generalize to partially hyperbolic systems, see Theorem So, the
main novelty of Theorem [Alis that we produce a topological conjugacy from « to
an affine action ay.
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1.2. Applications to centralizer classification and centralizer rigidity.
Given a diffeomorphism f : M — M on a closed manifold we define its smooth

centralizer as the group of diffeomorphisms that commute with f. That is, we
define

(1.3) Z=(f) = {9 € Diff*(M) : fg=gf}.

We are interested in two questions about the group Z>(f):

(i) What are possible groups that arise as Z*°(f) for some f € Diff>(M)?
(i) If Z>(f) is large (compared to the conjecturally generic size Z, [50, [57])
what can be said about f7

In this level of generality, questions (i) and (i) are difficult (or possibly im-
possible) to answer. Instead, we fix fo € Aff(Xr) for some Xr = I' \ G, and
consider question (i) and (#4) for those f € Diff>**(Xt) that are C'—close to fo.
We call (i) the question of local centralizer classification and (ii) the question of
local centralizer rigidity around fy. These questions were raised and addressed by
Damjanovi¢, Wilkinson and Xu in [20] where the authors study perturbations of
time—ty map of geodesic flows on negatively curved manifolds and trivial circle
extensions of hyperbolic automorphisms. In [5] the authors study local central-
izer rigidity of time—1 maps of Anosov flows on 3—manifolds, generalizing results
from [20] in the context of 3—manifolds. Another generalization of results from
[20] was obtained by W. Wang in [66], where semi-simple Lie groups of higher
rank were studied instead of rank—1 simple groups. For ergodic toral automor-
phisms, Gan, Xu, Shi and Zhang studied partially hyperbolic diffeomorphisms on
T3 homotopic to an hyperbolic automorphism [28]. In [54] the author studies lo-
cal centralizer classification and rigidity for some partially hyperbolic, irreducible@
toral automorphisms.

If f is partially hyperbolic with (uniquely integrable) center foliation W€, then
we obtain a normal subgroup Z2°(f) C Z°°(f), the center fizing centralizer:

(1.4) ZX(f) . ={g € Diff>*(Xr) : g € W x), v € Xr}.

From [21, Theorem 5], if Z2°(f) is sufficiently big and f is fibered (see [2I], Defi-
nition 1]) then f is smoothly conjugated to an isometric extension of an Anosov
map. Combining this with Theorem [Al we completely classify the centralizers of
diffeomorphisms C'—close to affine partially hyperbolic maps.

2An automorphism A € GL(d,Z) is irreducible if the characteristic polynomial pa(t) is
irreducible in Q[¢].
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Let G be the (d + 1)—dimensional Heisenberg group and X =1I"\ G a compact
Heisenberg nilmanifold. We have a natural fibration

(1.5) 7 Xp — T¢

such that any affine map on Xt descends to an affine map on T¢. From the group
relations in G, any automorphism L € Aut(Xr) induce an element of Sp(d,Z)
on T¢. Any L € Sp(d,Z) also define an element of Aut(Xr), see Section 22
Given fy, € Aff(Xt) we denote by Ly, € Sp(d,Z) the induced automorphism on
T?. Before stating the theorem we define for any f, € Aff(Xt), with irreducible,
hyperbolic induced map on the base Ly, € Sp(d,Z), the natural number

(1.6) ro(fo) = rank (g:gg;) = rank (Zsp(d,Z)(Lsu)) )

The number r¢( fo) is calculated explicitly in Lemma[A.3] if d > 6 then ro(fy) > 1.

Theorem B. Let Xr be a compact Heisenberg nilmanifold and let fo € Aff(Xt)
be partially hyperbolic with 1—dimensional center and Lg, irreducible. If f &
Diff*(Xt) is C'—close to fy then one of the following holds

(i) either Z*°(f) is virtually trivial,
(i) or Z°°(f) is virtually Z x T in which case f is an isometric extension of
some Anosov diffeomorphism on T¢,
(iii) or Z*®(f) is virtually Z™ x T and if ro > 1 then f is C*°—conjugate to
some (possibly different) affine map fo € AF(Xy).

Remark 4. All cases (i), (i7) and (i77) occur, so Theorem [Bl completely classifies
the centralizer of f € Diff>(Xr) close to a partially hyperbolic f, € Aff(Xt). Case
(¢) holds generically [6]. Case (i7) can be produced by fixing some irreducible,
hyperbolic L € Sp(d,Z) and defining f on G & R?x R by f(x,t) = (Lx,t+ 3(x))
where the second coordinate is identified with [G,G] 2 R and 8 : T¢ — R is a
cocycle over L that is not cohomologous to a constant. The last case holds when
f is C™—conjugate to some affine fy, so in particular when we take the trivial
perturbation f = fj.

Remark 5. Similar results as Theorem [B] have been obtained independently by
Damjanovi¢, Wilkinson and Xu using different methods with additional assump-
tions [19].

1.3. Partially hyperbolic maps on nilmanifolds. When proving Theorems
[Al and B, we use a description of partially hyperbolic diffeomorphisms on the
nilmanifolds considered in Theorem [Al The main property that we show is that,
under the assumptions of Theorem [Al the system f is fibered in the terminology
of [4]:
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Theorem 1.1. Let G = H" x R™ (where we allown =0), I' < G a lattice with
associated nilmanifold Xy = '\ G. Let f € Diff**(Xt) be partially hyperbolic and
satisfy (i), (it) from Theorem[Al If G is abelian we assume, in addition, that the
induced map f, : Hi(Xr) — Hy(Xr) has at least one rational eigenvalue. The
following holds

(i) f is dynamically coherent with global product structure,

(ii) all foliations W7, o = s, ¢, u, cs, cu, are uniquely integrable,

(i11) the center foliation W have compact oriented circle leaves,

(i) f is fibered over some hyperbolic Ly, € GL(d,Z) in the sense that there
is some Holder ® : Xp — T¢ such that ®(fr) = Lea®(x), We(z) =
O~ ®(z)) and ® is homotopic to the projection 7 : Xp — T4,

(v) there is a finite index subgroup Z2(f) < Z*(f) such that if g € Z2(f)
we have ®(gz) = BP(x) where B € GL(d,Z) is defined by B®, = ®,g¢.,
B is the induced map on homology if G is non-abelian,

moreover, if G is not abelian then

(vi) f is accessible.

Remark 6. The assumption that f, has at least one rational eigenvalue is to
remove derived-from-Anosov examples since these examples are not fibered.

Remark 7. Properties (¢) and (i7) follow from [7].

Remark 8. This Theorem is similar to the classification of partially hyperbolic
diffeomorphisms on 3—dimensional manifolds by Hammerlindl and Hammerlindl-
Potrie [33, 32, 34]. In fact, in dimension 3, using [§], Theorem [[1] essentially
reduces to the main results of [33, 32] (in [32] we must make the extra assumption
that the linearization L € GL(3,7Z) has at least one rational eigenvalue).

1.4. Improved regularity of topological conjugacies between higher rank
actions. The conjugacy in Theorems [Al and [Bl case (éi7), is produced in two
steps. First, we construct a topological conjugacy and second we show that the
topological conjugacy is C'°. The second step is the content of the following
theorem, that may be of independent interest.

Theorem 1.2. Let Xp be a nilmanifold and o : ZF — Aff(Xt) a homomor-
phism. Suppose that aq is higher rank. If o : ZF — Diff*(Xy) is bi-Holder
conjugate to ag by H : Xr — Xt and there is some ng € ZF such that f = o™ is
partially hyperbolic and accessible with center dim(E¢) = dim(E¢x, ), then H is a
C*®—diffeomorphism. ’
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Theorem is a generalization of the global rigidity result by F. Rodriguez Hertz
and Z. Wang [52] to some higher rank partially hyperbolic actions. In fact, large
parts of the results in [52] generalize immediately to partially hyperbolic actions.
One exception is that Rodriguez Hertz and Wang use a characterization of Anosov
diffeomorphisms due to Mané [45], to show that many elements of the action are
Anosov. This characterization can not be applied in the partially hyperbolic
setting. We also change some technical aspects of the proof, removing the use of
Pesin theory.

1.5. Description of proofs. Let G and « : Z¥ x Xr — Xt be as in Theorem [A]
and f = o™ the partially hyperbolic element. By considering the Lie algebra of
G, g, it is immediate that G takes the form G = H" x R™, n # 0, where H" is
the (2n+ 1)—dimensional Heisenberg group (for n = 0 we will consider H™ as the
trivial group 1). Moreover, under the assumptions of Theorem [B] G has to be a
Heisenberg group H" for some n (this follows since any lattice I' in H™ x R™ is,
virtually, a product lattice so irreducibility of (fy). guarantee that either n = 0
or m = 0). The proof of Theorem [A] is divided into three steps, first we show
that any f as in Theorem [A] is fibered, then we show that any action « as in
[Al is topologically conjugated to some affine model and finally we show that the
topological conjugacy can be improved to a smooth conjugacy.

1.5.1. Step 1. The first part of the proof of Theorem [Alis to show that any element
f as in the theorem has to fiber over a hyperbolic automorphism of the torus and
that f is accessible. Both of these properties are contents of Theorem [L.1l First,
we obtain a map ® on G, which is a contender for being the map in Theorem [L.T],
this is done as in [27]. Second, we show that ® is injective on the lifted stable
and unstable leaves W, o = s, u. By invariance of domain, this implies that the
stable and unstable distributions of f satisfy dim(£?) < dim(EJ), where EJ is the
corresponding distribution for the linearization L of f. Since f has center E¢ of
dimension 1 by assumption we conclude that dim(E7) = dim(EY) for o = s, ¢, u.
This shows, see Lemma B.I] that ® descends to a map ® : X — T¢. Showing
that ® gives a fiber bundle structure as in Theorem [Tl is then similar to [7].

Proving accessibility uses a topological argument. Since Xt does not have a
virtually abelian fundamental group, and since the kernel of the induced map

(1.7) b, =7, mXp=I—7°

is the center of I', there can not exist a connected compact set K C Xr such that
® : Xr — T? is a finite covering map. This implies, in particular, that f can not
have a compact su—leaf. So, the proof of accessibility reduces to proving that if
f has a non-open accessibility class, then there is a compact su—leaf. Obtaining
a compact su—Ileaf is done by studying the holonomies between center leaves in
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the universal cover induced by the fundamental group, as in [49, map 7,, defined
on page 71]. If K, € GNW¢(x) is the closed set such that y € K, does not have
open accessibility class, then there is an action of I' on K, defined by mapping y
to the unique intersection between the accessibility class of vy and K,. We show
that the induced I'—action on the image of K, in W¢(z)/[I",T] has a fixed point
if K, is non-empty. This fixed point corresponds to a compact su—leaf, which
gives a contradiction so K, must be empty.

1.5.2. Step 2. The remainder of the proof of Theorem [A] follows an idea by
Spatzier and Vinhage [58]: instead of producing the conjugacy directly, we pro-
duce a homogeneous structure on Xt that is compatible with «. The homogeneous
structure on Xt is obtained as the action of a certain quotient of the su-path group
(see Section [M]). We use the map ® to define the su-path group, P, and a natural
action of P on Xr. The most technical part of the paper is the following theorem
from Section [6l

Theorem 1.3. There is a unique a—invariant measure p such that @, = vol,
moreover A7, = 0.

Using Theorem [[3] we show that there is a normal subgroup, N, of P such
that N = P/N is a Nilpotent Lie group that act transitively and freely on G.
Moreover, the action of N is constructed such that « is compatible with the
N—action in the sense that the joint action of N x Z* is through a semi-direct
product. We then use the N—action to produce coordinates on Xr, in which f
is affine. These coordinates gives a bi-Holder conjugacy H from « to some affine
action ay.

1.5.3. Step 3. We finish the proof of Theorem [Al by proving Theorem [[.2] improv-
ing the regularity of H from bi-Holder to C'°°. The proof is similar to the proof
in [52]. We begin the proof by using results from Wilkinson [67] to show that
the conjugacy H is smooth along the center W¢. The proof of Theorem then
follows [52] to show that the component of the conjugacy along some coarse expo-
nent [y] defining a chamber wall for the chamber that contains ng (see Section 2.2I)
is smooth. That is, we show that the [x]—component of the bi-Hdlder conjugacy
H restricted to W?*(z) and normalized by = +— e, denoted HY . We(z) — GM
where GI is the coarse group with Lie algebra ng}, is uniformly C'*°. Once we
know that Hg[c’d is smooth, we study the map

(1.8) P:Gr'(E*) - R, P(z,V)=det (D,HXy)

where ( = dim(E([)’d) and the determinant is calculated with respect to some
background Riemannian metric. The main observation is that P(z,V’) can not
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vanish for all V € Gr’(E*) for any x € Xr (see Lemma B7). This shows that HX
is a submersion for every z, so its fibers form a C*°—foliation within W?* denoted
W#*. Finally, we construct a a—invariant distribution EX! transverse to the
distribution E*® = T'W*® by using a graph transform argument. Existence of the
distributions EX! and E** allows us to produce new partially hyperbolic elements
of the action o in a Weyl chamber adjacent to the Weyl chamber containing
the first partially hyperbolic element, ng. By induction we produce a partially
hyperbolic element in every Weyl chamber. Using that a contains many partially
hyperbolic elements, HX' is uniformly C™ for every coarse exponent [x]. It follows
that H is uniformly C'* along W* and W*". Since H is uniformly C'*° along W*,
W and W€ we can apply Journé’s lemma twice to show that H is C*°.

Theorem [Bl follows from Theorem [Al and results from [21].

1.6. Outline of paper. In Section 2] we go through some of the background
results, and basic definitions from partially hyperbolic dynamics and higher rank
actions on nilmanifolds. In Section B] we prove Theorem [Tl In Section | we
introduce the su—path group, one of the main objects in this paper, and show
some of its basic properties. In Section [B we recall the suspension construction
of an abelian action and use it, combined with results from [3], to derive an
invariance principle for higher rank actions on nilmanifolds. Section [6]is the most
technical part of the paper, here we prove Theorem [[.3. In Section [7l we prove
that the action o in Theorem [Alis topologically conjugated to some affine action.
In Section [8 we prove Theorem [[.2] showing that the topological conjugacy is
C*. Finally, in Section [@ we complete the proofs of Theorems [Al and [Bl We also
include an appendix, Appendix [Al proving some basic properties of higher rank,
abelian algebraic actions on nilmanifolds.

1.7. Acknowledgements. The author thanks Danijela Damjanovi¢, Homin Lee,
Kurt Vinhage, Amie Wilkinson and Disheng Xu for useful discussion.

2. BACKGROUND AND DEFINITIONS

2.1. Partially hyperbolic diffeomorphisms. Let M be a smooth closed man-
ifold and f € Diff**(M) a diffeomorphism. We fix a smooth metric g on M
inducing a norm ||-||. We say that f is (absolutely) partially hyperbolic if there is
a continuous D f—invariant splitting

(2.1) T, M = E*(z) ® E°(x) & E"(x)
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and constants v,y,7,V € (0,1), ng € N such that for n > ny
(2.2) IDf" sl < v <y < [(DF") 7 e
(2.3) IDf"

If we can choose the constants such that

-1

Y

<A <o <[

EC

(2.4) v<yy, V<Y

then we say that f is r—bunching. The distributions E*, £ and E" are the stable,
center and unstable distributions respectively.

Let f € Diff>*(M) be partially hyperbolic. The stable and unstable distributions
are always uniquely integrable to foliations W* and W* with uniformly C* leaves,
but the center distribution may fail to be integrable. A sufficient condition for E°
being integrable is dynamical coherence. We say that f is dynamically coherent if
E® = FE°@ E* and E* = E°@® E* are both integrable to foliations W and W<,
In this case we obtain a foliation tangent to E¢ by intersecting W¢ = W N W,
We will denote the distance between two points p, g € W (z), o = s, ¢, u, cs, cu, in
the leaf metric by d,(p, ¢). Denote the ball about z of radius ¢ in d, by W7 (z). If
f is r—bunching and dynamically coherent then W W and W ¢ have uniformly
C" leaves [35] (or [20, Theorem 7]).

Let M be the universal cover of M. We lift f : M — M to a diffeomorphism
F : M — M. Any foliation F on M naturally lifts to a foliation F of M. In
particular, if f : M — M is partially hyperbolic (and dynamically coherent) then
we can lift all foliations W7, ¢ = s, ¢, u, cs, cu, to foliations W< on M. Similarly
one lifts the distributions £ on M to distributions on M , also denoted E°.

Definition 2.1. We say that a continuous foliation with C*—leaves F of M have
quast isometric leaves in the universal cover if there is a constant () > 1 such that

(2.5) d(z,y) < de(z,y) < Qd(z,y), x,y € F(p)

where dx is the metric along F.

Remark 9. The inequality d(z,y) < dz(z,y) is immediate since any path con-
necting x and y along F(p) also connect x and y in M.

Remark 10. We could have asked dz(z,y) < Ad(z,y) + B in the definition, but
this is equivalent to Definition 2.1 since dz and d are comparable in small balls
in F if F have uniformly C!—leaves.

Assume now that f : M — M is dynamically coherent. Since E* is uniformly
transverse to £, W* and W have a local product structure. Similarly, W¢ and
W subfoliate W and E° is transverse to E", so the foliations W¢ and W* have
a local product structure in W,
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Definition 2.2. We say that f have global product structure [31] if

(2.6) HW (2) NWH(y) = z,y € M,
(2.7) #W3(z) N W”(y) = z,y € M,
(2:8) #W () N W (y) =1, @,y € W=(p),
(2.9) #W@)NWi(y) =1, x,y € W"(p).

When f has global product structure we define global holonomy maps in the
universal cover M. Given z € M and y € W*(x) we define

(2.10) oy W) = We(y),  {ap,(2)} = W (2) nW=(y).

Since W* and W€ subfoliate W< the holonomy maps 7 restricts to maps

FIGURE 1. Unstable holonomy between W¢(z) and W¢(y), y € W*(z).

Tay We(z) — W<(y). The holonomy maps 7wy, descend to holonomy maps
between center leaves on M, Figure [Il Similarly we define stable holonomies
w5, s We(z) — We(y) when y € W*(x). When we consider holonomies between
center leaves then the holonomy maps are C'** [9]. If f is r—bunching then the
holonomies 77, : W(z) — W¢(y), 0 = s,u, are C" [47].

We say that a path v : [0,1] - M is an su—path if [0, 1] has a subdivision
0=ty <t; <..<ty_1 <ty =1such that Im (7| [t t41] ) is entirely contained in
either an Ws—leaf or a W*—leaf. If any two points x,y € M are connected by an
su—path, then we say that f is accessible. A set E C M is o—saturated, o = s, u,
if x € E implies W7(z) C E, and su—saturated if it is s and u—saturated.
Equivalently f is accessible if the only su—saturated sets are M and (). For
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x € M (or M) we define the accessibility class of x
(2.11) AC(z) = {y € M : there is an su — path connecting x and y}.
We define a closed set A(f) by z € A(f) if AC(z) is not open. That is

C

(2.12) A(f) = U Ac@)| = () AC()r

AC(z) is open AC(z) is open

If f has 1—dimensional center direction, then A(f) is laminated by accessibil-
ity classes [51, Proposition A.3]. In particular, if f has 1—dimensional center
and A(f) = M then E® @ E" is jointly integrable to some continuous foliation
W% with smooth leaves (in fact, the foliation W** will be a C"—foliation if f is
r—bunching). In the other extreme, f is accessible if and only if A(f) =0 and in
this case f has a unique accessibility class.

2.2. Nilmanifolds and higher rank actions. Let G be a (simply connected)
Lie group with Lie algebra g. We define the lower central series of g inductively
as

If there is ¢ such that g = 0 then we say that g is nilpotent, and the minimal
¢ satisfying g = 0 is the step of g. We say that G is a {—step nilpotent Lie
group if g is {—step nilpotent. Given a discrete subgroup I' < G, we say that I’
is a lattice if the quotient space I' \ G carries a Haar measure ur (which it always
does for nilpotent groups, [11, Theorem 1.2.10]), and with respect to this measure
pur(T'\ G) < oo. Equivalently, for nilpotent groups [L1, Corollary 5.4.6], a discrete
subgroup I' < G is a lattice if the quotient I' \ G is compact.

If G is simply connected, nilpotent and I' < G is a lattice, then we define the
associated compact nilmanifold by

(2.14) Xr=T\G.
Denote by ur the normalized Haar measure on Xr. We write
(2.15) pr:G— Xp

for the natural projection map. If G is {—step then we obtain a natural sequence
of (normal) subgroups

(2.16) G=GV>GVr> . .G V>GY = GY =exp(g?).

The intersection I'V) = GU) N T defines a lattice in G, see [I1, Theorem 5.2.3].
For each 0 < j </, we define

(2.17) XY = xp/G9, 70 xp — x9
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where Xl(j )is a compact nilmanifold and 7@ : X — Xlgj ) is a fiber bundle. In
particular, if G is 2—step then we get one (non-trivial) projection map =¥ : Xy —
Xél). Since GV =[G, G], G/GY = G/[G,G] is abelian. So Xﬁl) is a torus. In
the case of 2—step nilpotent nilmanifolds, we will write

(2.18) 7 Xp — T¢

for the projection. The fibers of © are G /T’ which, since G?) = e, is also a
torus. So 7 : Xp — T? is a fiber bundle with base and fibers both tori, but Xy is
not a torus (if G is 2—step).

We define the automorphism and affine group of Xr by
(2.19) Aut(Xp) ={L € Aut(G) : LI' =T},
(2.20) Aff(XT) = {fo(z) = L(z)g~" : L € Aut(Xy), g € G}.

There is a natural map Aff(Xt) — Aut(Xr) defined by mapping fo(x) = L(x)g™*
to the automorphism L. Each projection 7¢) induce a map Aut(Xyp) — Aut(X%J )).

Fix a homomorphism
(2.21) p:7ZF — Aut(Xt), p*: Xt — Xpr, neZF,

We say that p has a rank—1 factor if there is a nilpotent group G, of positive
dimension less than or equal to the dimenison of G, a homomorphism ¢ : G — G
such that I' = ¢I" is a lattice in G’ and an automorphism L € Aut(X;) such
that for some finite index subgroup A C Z*F we have some n : A — Z satisfying
op* = L"™¢p n € A. That is, p has a rank—1 factor if there is a factor of
Xt where the projected action of Z* is a Z!'—action (up to finite index). More
generally, if ap : Z¥ — Aff(Xr) is a homomorphism then we say that ag has a
rank—1 factor if the induced map

(2.22) 7F 2% Aff(X1) — Aut(X7)
has a rank—1 factor.

Definition 2.3. A homomorphism aq : ZF — Aff(Xr) is higher rank if it has no
rank—1 factor.

Let ap : Z¥ — Aff(Xr) be a homomorphism. We say that xy : Z¥ — R is a
Lyapunov exponent of ag if there is v € g\ 0 such that

o1 n
(2.23) x(n) = ékrinoo 7 log Hozé W)||-

The Lyapunov exponents y are linear and extends uniquely to R¥, we will consider
Lyapunov exponents as linear maps on R¥. The Lyapunov space associated to ¥,
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E} < g, is the subspace where Equation 2.23 hold. For the 0—functional we write
E§. Note that

(2.24) 0=E o PEY.

X

Denote the set of Lyapunov exponents for aq by
(2.25) Lyap(ag) = {x # 0 : x is a Lyapunov exponent of «ay}.

For x € Lyap(ayp), define the associated coarse exponent and coarse space by

(2.26)  [x] = {X' € Lyap(ap) : X' = cx, for some ¢ > 0}, E([)>d = @ EY.
x"€lx]

If x(n) > 0 (or x(n) < 0) then x'(n) > 0 (or x(n) < 0) for every x’ € [x], we define

[x](n) as the sign of x(n) (or as 0 if x(n) = 0). We also define ker[y] = ker x.

Definition 2.4. Let {[x1],..., [xn]} be the coarse exponents of ay and

(2.27) U= (U ker[xj]) :

FEach connected component C of U is a Weyl chamber of o. The kernels ker|x]
are Weyl chamber walls. A wall ker[x] is a wall of C if dimC Nker[y] =k — 1.

Two coarse exponents, [x] and [n], are dependent if [x](n) = —[n](n), otherwise
the two exponents are independent. Given any two x’, x” € [x] it is immediate

(2.28) [ng E(’f] c BXH (With EX = 0if Y + X" ¢ Lyap(ao))
SO E([]X] is a subalgebra of g. We define the associated group
(2.20) GN <@, 6N =exp (Eé“) .

A useful fact, that we will use in Section [§, is that within stable group, G*, any
coarse group G have a transverse group that is normal. More precisely, if a2,
n € Z*, has stable space Ej, [x](n) < 0, and

(2.30) By = P EY

[n]#[x]
[n](n)<0

then E§® < Ej is an ideal in E§, [52] Lemma 3.1]. Equivalently, the subgroup
G** = exp(E§°) < G® = exp(E£y) is a normal subgroup.
The following two lemmas are well-known, we include proofs in Appendix [Al

Lemma 2.1. If ag : Z*¥ — Aff(Xy) is higher rank then there are at least two
independent coarse exponents.
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Lemma 2.2. If og : Z¥ — Aff(Xy) is higher rank and [x] is a coarse Lyapunov
exponent then the space
V- @

[n]#=x[x]

defines a minimal translation action on Xt (the translation action by V is the
translation action of the exponential of the Lie algebra generated by V).

Given a homomorphism « : ZF — Diff*(Xp), written a(n) = o, we obtain a
linearization p : ZF — Aut(m Xr) = Aut(Xt).

Definition 2.5. A smooth action o : ZF — Diff*(Xt) is higher rank if the
linearization p : ZF — Aut(Xr) is higher rank.

Fix n > 1, d = 2n and define H" := R® x R" x R. With ¢ = (¢,p,2) € G and
h=(¢,p,2) € G we define a multiplication

(2.31) gh=(q,p,2)(¢,p.7)=(qg+d,p+p, 2+ +q- D).

This makes H™ into a group, the (d 4+ 1)—dimensional Heisenberg group. Denote
by w the symplectic form on R? = R" @ R". The Lie bracket on g is

(2.32) (X, 2),(X",Z)] = (0,w(X,X"), X, X'eR?Z 7 cR.

Let I' ¢ H™ with nilmanifold Xt = I"\ H". For L € Aut(Xr) we obtain a map
Ly, € GL(d,Z) by projecting onto the base, one checks that this element Ly,
satisfy L, € Sp(d,Z). In particular, if [x] is a coarse exponent of ag : Z* —
Aff(Xr) then —[x] is also a coarse exponent. That is, the coarse exponents come
in negatively proportional pairs.

In the remainder, we will be interested in groups G of the form G = Rf x H"
for some ¢ > 0 and n > 0. These groups constitute all abelian simply con-
nected nilpotent groups and all 2—step, simply connected nilpotent Lie groups
with dim[G, G] = 1. Recall the Baker-Campbell-Hausdorff formula [11]

(2.33) eXe¥V = XHYHRYIZ Xy ey

Fix a left invariant metric, d, on G. Using the Baker-Campbell-Hausdorff for-
mula, it is immediate that for eZ = g. € [G, G], d(e, g.) < 4+/]|Z].

3. SOME PROPERTIES OF PARTIALLY HYPERBOLIC DIFFEOMORPHISMS WITH
QUASI ISOMETRIC LEAVES IN THE UNIVERSAL COVER

In this section, we prove Theorem [[LT. We begin by proving that ® from Theorem
[[.1l exists in Section [3.1l In section we show that f is accessible.
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Let G = H™ x R’ be the product of some Heisenberg group and some abelian
group, I' < G a lattice and Xt the associated compact nilmanifold. If n > 0 then
we write d = 2n + £ and let 7 : G — R? be the base projection. If n = 0 and
we have an automorphism L € Aut(Xr) with 1—dimensional center, then we let
d=/(—1and 7 : G — R? be the projection from G onto G/E¢ (note that if L has
1—dimensional center then the center direction Ef is a rational line). We assume
in the remainder of this section that f € Diff>*(Xr) satisfy all the assumptions of
Theorem [Tl Denote by L € Aut(Xr) the linearization of f and L,, € Aut(T%)
the induced map on the base.

3.1. Existence of Franks-Manning coordinates. We write f : X — Xr
(3.1) fr = L(z)e @

with v : Xt — g. Fix a lift F: G — G, Fr = L(z)e ™. For x € G, let
(3.2) F'e =12, neclL.

The splitting g = Ej ® £ © Ej, with respect to L, decompose v, v,, 0 =
s,c,u, cs, cu. Denote by 7 : G — G/G° = R? the projection, where G¢ = exp(E)
is the center of L (we do not know, a priori, that E§ has dimension 1). Write
A:RY — R? for the map induced by L, then A is hyperbolic (if dim ES # 1 then
A # Lg,). Recall the following well-known lemma.

Lemma 3.1. There ezists a unique Holder map ® : G — G/G° = R?
(3.3) O(x) = 7(2) + ¢(x), wa)=¢(r), y€T

such that ®(Fz) = A®(x). If dim(ES) = 1 then d = d, ® : G — R? descends to
a map ® : Xpr — T¢ homotopic to m and A = Ly,.

Proof. The lemma follows from a calculation showing that ¢ satisfy v, (z) =
o(fr)—A(e(x)), which has a unique solution since A is hyperbolic. If dim(E§) = 1
then E§ = [g,g] if G is non-abelian (since [g, g lie in the center of any automor-
phism) so G/G* is the natural quotient by [G,G]. The lemma follows since ¢ is
I'—invariant. If G is abelian, then E§ is some 1—dimensional rational line (since
we assume that Lg, have at least one rational eigenvalue) and the last conclusion
follows. n

Lemma 3.2. Ify € W"(:)s), o = s,u, then ®(y) = ®(x) if and only if x = y.
That is ® : W(x) — ®(x) + EJ is injective. Moreover, dim E7 = dim EJ for
s,c,u, so ® descends and A = Ly, 1is hyperbolic.

Remark 11. We prove the lemma when G is non-abelian. The proof when G is
abelian simplifies since all terms from brackets vanish.
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Proof. Assume that o = wu, for the other case we reverse time. Let y € W¥(x).
Write y,, = 2,7 where 4" € g. With respect to the decomposition g = Ej &
E§ & Ef, decompose 7" = I + 42 4+ 0. If &(x) = $(y) then (z,) = P(yn)
for all n > 0, so |[7(x,) — 7(yn)|| < 2|¢llce =: C independently of n. On the
other hand, ||7(z,) — 7(ya) || = [721I° + ]72]1>. So to show that ® is injective on
W (x), it suffices to show that 7 — 0o as n — oo if  # y.

Suppose for contradiction that x # y and ||| < K uniformly in n. From our
definitions

n+1

=UYn+1 = F(yn) = L(yn)e_v(yn) — L(xn)eL('y")e—v(yn) _
L(In)eL(“/”)—v(yn)—[L(»yn),v(yn)}/2 _

l’n—i-le’y

F(xn)ev(xn)JrL(v”)—v(yn)—([L(V”),v(yn)l— [v(@n ), L(y")]+[o(@n),0(yn)]) /2

or if we take logarithms

(3.4) 7 = v(@n) + L") = vlya) -

(3.5) (L"), v(yn)] = [v(xn),zL(v")] + [v(a), v(yn)]

Using [3.5] we estimate
(3.6) [ < ILAg )+ C,
(3.7) [ < el + O+ kel + el

with constants C, K, k that only depend on |[v]|o. Since L is contracting on £
there is 7 € (0,1) such that ||[y*™|| < 7 |4?|| + C, or

(3.8) 1 <

1—71

uniformly in n. We have ||| < K by assumption, so for some possibly larger C'
we obtain

(3.9) e < e+ el < Cn+ |12
After possibly enlarging C' again, we have
(3.10) A(w, yn) = d(e, ") < d(e, e ) 4 d(e, e7) < O(y/n + 1).

On the other hand, the assumption that W“(:cn) is quasi isometric implies that
there is some A\ > 1 and () > 1 such that

(3.11) d(zpn, yn) > %du(F":E, Fy) > %)\"du(x,y).

If dy(z,y) # 0, then EquationsB.I0land B.IT] gives a contradiction for n sufficiently
big, so x = y.



18 SVEN SANDFELDT

Since ® : W7(z) = ®(x) + EJ, 0 = s,u, is injective it follows by invariance of
domain that dim(E7) < dim(£g). On the other hand, we have

(3.12) dim(E?®) + dim(E") + 1 =d + 1 = dim(Ey) + dim(E§) + dim(Ey)

or 1 > dim(Ef), so dim(E§) = 1. This implies dim(£®) + dim(E") = dim(EY) +
dim(Eg), which only hold if dim(E?) = dim(Ef), 0 = s,u, since dim(E?) <
dim(EJ). That A = Ly, is hyperbolic follows by Lemma 311 |

Remark 12. We will make no notational distinction between the map ¢ : G —
R? and the induced map ® : Xy — T¢.

Lemma 3.3. For every x € G the map @, : W"(a:) — E§, defined by
(313) éa,x(y) = (I)(y) - (I)(ZL'),

is a homeomorphism. For any y € W(z), the map ®,, : Wg(y) — EJ is
uniformly bi-Hélder for fived R.

Proof. By Lemma ® : Wo(z) - ®(z) + EJ is injective so P, is injective.
Since W7 (z) and EZ have the same dimension, it follows by invariance of domain
that ®,, has an open image and is homeomorphic onto its image. In particular,
the image of ®, , contain some ball By (0) around 0 in £§ (to make 7, well-defined
we take the maximal possible 7). Given v € I' we have

(3.14)  P,..(vy) = () — P(yx) = P(y) + 7(v) — Y(z) — 7(7) = Pou(y)

from which it follows that x +— r, is '—invariant. Moreover, ®, . and Wwe (x) vary
continuously in x, so r, > 1y is open. Combined with ['—invariance and the fact
that Xt is compact, we find ro > 0 such that r, > rq for all x € G. Assume now
o = u, the other case follows by reversing time. We have

(I)u,:v(Wu(x)) :q)u,r(Fan(x—n)) = an)u,mfn(wu(x—n» > L"B;,(0)
and letting n — co, using that L expand E¢, we obtain &, ,(W*(z)) = EL.

So @, is a homeomorphism. Since ¢ is Holder, (x,y) — P, .(y) is Holder in z
and y. The set O} (Bf(())) is compact in W*(z), so we define K, as the minimal

radius such that the closure of W}éx (z) contain @ (Bf(O)). Since x — P, , vary

continuously the map =z — K, also vary continuosly in z. If K = sup, K, then
K is such that if z,w € W*(x) satisfy d,(z,w) > K then ||®(z) — ®(w)|| > 1.
Let p = ||L|ge|| > 1 and A > 1 such that d,(F"w, F"z) > cA"dy(z,w). Let
z,w € W(z) satisfy d,(z,w) < 1. There is n = n(z,w) > 0 such that n(z, w) <
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—rlogd,(z,w) + C, dy(zn, w,) > K and k only depends on A. We have
1Puo(2) = Pua(w)]| = [[®(2) — D(w)]| = [|L7" (®(20) — (wn))| >
P[P () = @(wp)|| > p > g losl ) =C =
1=Cdy (2, w)r s
Fix r > 0 such that ®,1(B2(0)) C Wi (z) for all 2. For v;,v, € B%(0) we obtain
(3.15) du( @ 5 (01), B 4 (v2)) < 180 oy — | /1050
so @1 : B(0) — W*(x) is uniformly Holder. Given y € W*(z) and vy € Ey
(3.16) Dy (P (v + o)) = B(Py (v +v0)) — D(y) = v+ vo + P(z) — D(y)
or if we choose ®(y) — ®(z) = vy, then
(3.17) P, (v+v) =D, (v)

which shows that ®_! is uniformly Holder on any ball of radius r. By covering

uU,x

any ball of radius R with balls of radius r, the lemma follows. [

Lemma 3.4. Ifv:[0,1] — G is a C'—curve that is tangent to E* (or E*) then
®(y(1)) € ©(7(0)) + Eg (or (7(1)) € 2(7(0)) + E5)-

Proof. Let « be tangent to E. Write H, = ®~(®(x)). For y € H,

(3.18) 17 (y — o)l < lle(y) — e@)| < 2[[@llco =C
so H, C 7' Bg(®(x)). In particular, for y € H, let y = 2", we estimate
(3.19) Ins()I* + ()1 < C2.

Let " : W*(z) — g be defined by v, = 2,e""®¥). Since
F'H, = F"® Y (®(x)) = & (®(F"z)) = H,,

we have ||n2(y)]|, || (y)|] < C uniformly in n € Z. As in the proof of Lemma 3.2
it follows that we also have ||n2(y)|| < C|n| for some (possibly larger) constant
C. Let v:[0,1] = G be a C'—curve tangent to E°, we denote the end-points
of v by 2 = 7(0) and y = (1). We find z € W*(y) and w € W*(z) such that
w € H, (this corresponds to choosing a two-legged su—path from ®(y) to ®(x)
in RY, which always exists). By the reverse triangle inequality

(3.20) d(zp, wy) > d(wp, 2n) — d(@n, Yn) — A(Yn, 20)-

Using that w and z lie in the same unstable leaf and that W* have quasi-isometric
leaves, d(wy, z,) > cA\"d(w, z) for some ¢ > 0 and A > 1. Since 7 is a C'—curve
along E° from x to y we have

(3.21) A(in, y) < / 1Dy Fn (1)) dt < €37 - |1
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where |v| is the length of v and A < \. Finally, d(Yn, z,) < C uniformly for n > 0
since y and z lie in the same stable leaf. Equation [3.20] implies

(322)  eX'd(w, 2) — CA"|y| — C < d(zy, wy) = d(e, " ™) < Cv/n, n>0

for some constant C'. If d(w, z) > 0, we obtain a contradiction for n large enough.
We conclude that d(w, z) = 0. That is, w = z so W*(y) N H, = {w} # 0, which

implies
(3.23) D(r) — By) = D(w) — D(y) = By, (w) € E}

proving the lemma for sc. The lemma is shown for cu by reversing time. ]
We can now prove the first five points of Theorem [L.T]

Proof of Theorem [11. Dynamical coherence of f follows from [7]. Any curve v
tangent to E° satisfies ®(v(1)) € ®(7(0)) + Ef by Lemma B so We(z) C
O 1(®(x) + E5) and &~ 1(®(x) + Ef) is a union of W —leaves. We claim that
&~ 1(®(x) + E3) is path-connected, which proves that ®~1(®(x) + ES) = W (x).
Given any y € G there is a unique intersection W*(y) N &~ (®(z) + Ef) = {w}
(since TW*(y) maps homeomorphically onto ®(y)+ E¢ under ®). Since &~ (d(z)+
E%) is tangent to E°, W* is tangent to E* the map G — &~ 1(®(x) + Ef), y —
W (y)N® (D () +Ef) is continuous. Since G — &~ (B(z)+E?) is surjective and
G is path-connected it follows that ®~!(®(z) + Ej) is path-connected. Properties
(i) and (i) follows. Using W*(z) = &~ H(®(z) 4+ Ef), We(z) = &1 (D(z) + EY)
and We(z) = W (2) N W (z) we obtain We(z) = &~ 1(®(z)). Since ® descends
to a map ® : Xt — T¢, the fibers W¢(x) = ®71(®(x)) are compact. Denote by

(3.24) I={yel: Ly=~}
where L € Aut(Xr) is the linearization of f. For v¢ € I'® we have
(3.25) YWe(x) = We(yx) = 27H(D(yx)) = @ (B(x)) = W*(x)

where we have used ®(vx) = 7(v)+ ®(z) and ker 7 = I'“. So, if we fix a generator
~v¢ of T then we can orient W¢(z) by letting v$z > x. This is a well-defined
orientation of Wc(sc) since x — 7§ have no fixed points. That W€ are circles
follows since they are compact 1—dimensional manifolds.

Let € > 0 be small and fix x € Xp. We denote by D = W2 (WX(x)), U = W¢(D)
and D' = ®(D) = ®(U). With ¢ small enough can define 7% : U — W¢(x) by the
unique holonomy first along W* then W* in U. We obtain a map U — D' x W*¢(x)
by y — (®(y), 7°%(y)), this map is smooth along W since the holonomies are C”
(where r depends on the bunching, if f is 2—bunching then the holonomies are C*
[47]). That ® semiconjugates (a finite index subgroup of) the centralizer Z°°(f)
onto its linearization is immediate since ® is (essentially) unique homotopic to
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7 (note that the uniqueness in Lemma B.I] implies that ® : Xt — T¢ is unique
modulo the fact that we could change ®(x) to ®(x) + py where Lg,po = po).
Indeed, for any g € Z*°(g) we let B € GL(d,Z) be the induced map on T¢ by its
linearization and let ®(z) = B~'®(gz). Then ® is homotopic to 7 and we still
have

(3.26) b(fr) = B~ ®(gfx) = B'®(fgr) = LB '®(g2) = Leu®(x)
so ®(z) = ®(x) + po where py is a fixed point for L,,. We define
(3.27) Zee(f) ={g € Z=(f) : gWe(x) = W) if fW*(x) = W(z)}.

Since ®(fz) = Ls,P(x) and Ly, has finitely many fixed points, Z3°(f) has finite
index in Z*°(f). For g € Zg2(f) and ®(xp) = 0 we have fWW(xg) = W(zo) so
gWe(xg) = W€(xo). It follows that

(3.28) po = ©(0) = B™'®(gay) = B~ ®(20) = 0
or B71®(gz) = ®(x). |

3.2. Proof of accessibility. In this section, we show the last point of Theorem
LIl For v €T, define T, : G — G by

(329)  T,(z) = W* |W*(yz) "W (z)| NW(z) = WY(W3(yz)) N W*(x)
which are well-defined by point (i) of Theorem [[LT. A calculation shows
FT () =Ty (Fx).

Recall that we denote by A(F) C G and A(f) C Xr the complement of open
accessibility classes. The set A(F') is closed and su—saturated. Since E° is
1—dimensional, the set A(F) is laminated by accessibility classes, denoted W**(z)
[51]. The union of open accessibility classes is I'—invariant, so A(F’) is I'—invariant.
Moreover, F' maps accessibility classes to accessibility classes so FA(F) = A(F).
Given 7,7 € I' and x € A(F') we have

T, (T () =W (7 Wy nwea)] ) nve ([ (y'e) nWre(a)] ) =
W (W= (y7'z) N We(a)) N We(a) =
WSU(WW/SC) N VAVC(“’) =Ty ()

so restricted to A(F) the map (v,z) +— T,(x) defines a group action of I', see
also [49, Lemma 6.1]. Before starting the proof we will need an elementary, but
important, auxiliary lemma on Z*—actions on the circle.

Lemma 3.5. Let f1,..., fr, g € Homeo, (T) be orientation preserving homeomor-
phisms on the circle and let K C T be a compact subset that is invariant by g
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and each f;. Moreover, assume that fif; = f;fi on K and that there is some
hyperbolic integer matriz (Al )1<i j<k such that

IR
(3.30) gfi=fi'.fr'g, on K.

Then the ZF —action generated by fi, ..., fr on K, B: ZF x K — K, has a periodic
point. That is, there is a point p € K and a finite index subgroup A < ZF such
that 8%p = p forn € A.

Remark 13. The condition in Equation B.30 says that 5 : Z¥ x K — K joint
with g form an Abelian-by-Cyclic (AbC) action on K.

In the proof, we will use the following two lemmas.

Lemma 3.6. If f € Homeo,(T) is an orientation preserving homeomorphism
on the circle with zero rotation number, w(f) = 0, and K C T is a compact
f—invariant set, then f have a fixed point in K.

Proof. If f has zero rotation number then for any p € T the sequence f"p con-
verges to a fixed point of f as n — oo. For any x € K the sequence f"z lie in K
since K is f—invariant. By compactness of K any limit point of f"z also lies in
K, so f has a fixed point in K. [ |

Lemma 3.7. Let f,g € Homeo (T) be orientation preserving homeomorphisms
of the circle and assume that there is a f and g—invariant probability measure v.
Then the rotation numbers satisfies w(fg) = w(f) + w(g).

Proof. The proof of this lemma is standard. We include it for completeness.

We write f(z) = x + u(z), g(z) = = + v(x) where u,v : T — R. Recall that if u
is a f—invariant measure then we obtain the rotation number of f as

(3.31) w(f) = /Tu(x)d,u(x) + Z.

Similarly, we can obtain the rotation number for g. Noting that the measure v
is fg—invariant and that f(gx) = x + u(gx) + v(x) we can write the rotation
number of fg as

o(9) = [ fulg) + o(a) dvlz) + 2 =

u(gx)dv(z) + / v(z)dv(z) + Z =

T

/
J

w(f) +wlg)

u(x)dv(x) + / v(z)dv(z) + Z =

T
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where the second to last equality use that v is g—invariant. ]

Proof of Lemmal[3.4. Since the f—action is abelian on K it has an invariant mea-
sure on K. By Lemma [3.7] the rotation numbers satisfy

(332) w( 1n1 ]?k) = nlw(fl) + ...+ nkw(fk)

for all integers nq,...,n; € Z. Since g preserves orientation, conjugacy invariance
of rotation number and Equation [3.30] implies

(3.33) W(fe) = () + o+ w0,

Or if we denote the map f{"...f;"* by 8", then we can write w(f®) = w(B4™).
Using Equation [3.32 we obtain

(3.34) w (BAI) =0

for all n € Z*. Since A is hyperbolic A — I is invertible over the rationals. So
there is a finite index subgroup A C Z* such that w(8™) = 0 for all n € A. Let
e1,...,ex € A be generators. By Lemma the map ' has a fixed point in K.
Since £ commute with ¢ within K it follows that 5°? preserve the compact set
Fix(8) N K # (. So, if we apply Lemma [B.6] once more we see that the set

(3.35) K N Fix(8%) N Fix(8%)

is non-empty. Proceeding by induction, we find a point p € K that is fixed
by B¢, ..., 3%, and therefore by A. Since A has a finite index in ZF the lemma
follows. |

Recall that L € Aut(Xr) is the linearization of f and we define the L—fixed part
of T by I'?, see Equation

Lemma 3.8. Assume that A(f) # (). There is a finite index subgroup I" < T and
x € A(F) such that T, (x) € 'z for y € I".

Proof. Fix generators 71,72, ...,74 € I'. Let g € G be such that ®(xg) = e. We
identify We(xo)/T¢ = W¢(pp(zo)) with T. Since I'® is central in I’ we can identify
T, : We(xo)/T¢ — We(x)/T¢ with circle diffeomorphisms. We also identify F
with a circle diffeomorphism (by our choice of zy and the fact that I'“ is L—fixed
we have FWe(x)/T° = We(x)/T¢). Let K = (A(F) N W¢(x))/I¢, which is
compact, T’ —invariant, F'—invariant and non-empty. Since any 7¢ € I'® act
trivially on T under T, (and therefore K), the action T, on K factor through
I'/I¢ = 79, Moreover, F satisfy F'T, = Tp,F so the assumptions of Lemma
are satisfied with 7', = f; and g = F'. So, there is a finite index subgroup of I'/T"*®
that admits a fixed point on T, which implies the lemma. |



24 SVEN SANDFELDT

An immediate corollary of Lemma is that there is a compact su—leaf.

Lemma 3.9. If A(f) # 0, or equivalently if f is not accessible, then there is a
compact su—leaf intersecting each center leaves ¢ < oo times.

Proof. For any x € A(F'), the map
(3.36) W (z) & R

is a homeomorphism by points (i) and (iv) in Theorem [T We choose x, as in
Lemma B.8 and obtain IV < I' of finite index such that yW*"(xy) C TW*"(x)
for all v € I'". Note that ®,I" = 7,I" = A C Z? has finite index in Z¢. We define

(3.37) A, ={y el : AW (zg) = W*(20)} C T

Since YW *(xq) C TCW**(x) for all v € I there is for each v € I some ¢ € T
such that y7¢ € A,. In particular, ®,A, = A. Since A is a lattice in R?, and
we obtain a homeomorphism W**(zq)/A, = R*/A it follows that W*“(z)/A, is
compact. The image ppW**(zo) = W*(pr(a)) is homeomorphic to W5 (zo)/A,,
proving the lemma. u

We can now prove the last claim of Theorem [I.1]

Proof of (vi) in Theorem[I1. If f is not accessible then we construct A, C I" as
in Equation B.37 Since 7, A, has finite index in Z¢ the group A, x ker 7, has finite
index in I'. Since A, x kerm, is abelian this implies that I' is virtually abelian,
which is a contradiction if G is a non-abelian nilpotent Lie group. ]

4. ACTION OF THE SU-PATH GROUP

In this section, we introduce and prove the basic properties of the su—path group,
P. The su—path group naturally acts on Xr (Definition [4.1]). The group P, its
various subgroups and its action on Xt will be the key object in the proofs in the
following sections.

4.1. The su-path group. Let o : Z* x X1 — Xr be some smooth action and let
p: ZF — GL(d,Z) be the action defined by p*® = ®a® from Theorem [T We
will assume that we have some f = o™ satisfying the assumptions of Theorem
[Al Let L be the linearization of f and let Ej, EY be the stable and unstable
distributions for L.

Definition 4.1. We define the su—path group P as the free product
(4.1) P = E;* Ej.
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If w € P is a word in P then we define II(w) = wy + ... + wy to be the sum of all
factors in w. We define the normal subgroup P¢ = I171(0).

Given any pair of negatively proportional course Lyapunov spaces, £, M, E([)X], of
p, we define the [x]—path group

(4.2) ,P[X} = EO_M * E([]X], P[CX] = ,P[X} N H_I(O)

with Fy M — 0 of —[x] is not a coarse exponent. We also define the complementary
[x]—path group

(4.3) Q[X} = @ E-W |« @ EI , Q[CX} = Q[X} N Pe.

[n]#x[x] [n]#E[x]
[7](no)>0 [n](no)>0

It is immediate that P}, Q) C P, P[CX], fx] C P¢. The following well-known
lemma on free products will be useful.

Lemma 4.1. Let V, W be vector spaces, G =V xU and 1l : G — V & W the map
defined by

(4.4) (v us...0U,) = V1 + oo + U + U + o+ Uy

Then I171(0) = ker Il = [G, G] and any w € G can be written w = wou withv € V,
weU andw € [G, 7).

Proof. For w = viuy...v,u, € G we have

V1UL... VpUy = [vlul(—vl)( )]
[v1ug (—v1)( )] - [wr (o1 + va) (—ur) (o1 — v2)] -

(’Ul + 'Ug)(ul + u2)vgu;),...vnun.

—uq)| ug (v + vo)ug... VU, =

Since vyug(—v1)(—uq), ur(vy + ve)(—uq)(—v1 — v2) € [G,G] and (v1 + ve)(uy +
Us)V3Ug...Ux Uy consists of n — 1 pairs, we find wy, ..., wy € [G, G] such that

(4.5) w=wy..wp- (V1 + .. + ) (U + .o+ uy).

This proves the last part. Since II(w;) = 0 for each j, we have II(w) = v; +
vee + Uy + uy + ... + u,. In particular, if w € kerII then v; + ... + v, = 0 and
Uy + ... +u, =0, 50 w=wy.. wy € [G,G]. [ ]

Definition 4.2. Given t € EJ we define . : G — G (ornt : Xr — Xr) by
ntx = ®;L(t), where @, is defined in Lemmal33

o,T

Remark 14. By the conclusion of Lemma [3.3], the map 7’ is well-defined.



26 SVEN SANDFELDT

Lemma 4.2. The map 1, : E§ x G — G, (t,x) — ntz, is a Holder E—action
that satisfies Fntx = nk«'Fx. The action n! naturally descend to Xr, and if g €
7Z°°(f), B is the automorphism defined by ®(gr) = B®(x), then gniz = nBlgx.
Finally, ®(ntz) =t + (), so ® semi-conjugates n’. to the standard translation
action along EJ on the base.

Proof. That 7! defines an action is immediate from the definition. Indeed, given
t,s € Ej we have
C(znyw) =0(0, ,(5)) = s + P(1px) = s + Pou(nfa) + O(z) =
s+t+o(x)

so if we subtract ®(z) then ®,,(n5n.x) = s+t. Applying ®, on both sides of the
equality we have nén’z = n3t'x. This also shows that ®(n'z) = ®(z) +t. Given

v € I' we have @, .. (vy) = ®(yy) — D(yz) = (y) — ®(x) = ,,(y) which implies
nt(vzx) = yntx, sont descend to Xr. For g € Z°°(f) we have ®(gz) = BP(x)+ po
for some py € T¢ (that is fixed by Ly,). It follows that

(4.6) Dy 40 (9y) = P(gy) — P(g92) = B (P(z) — (y)) = BPs.(y)
or with @, ,(y) =1
(4.7) 12t (gz) = gy = gny(x).

Next, we show that 7, is Holder. Let u = o, the other case is similar. Since ®,, ,
is a bi-Holder homeomorphism, Lemma 33} it is immediate that (¢,x) — nlz is
Hélder in ¢. The foliations W* and W< are uniformly transverse, so we find gg > 0
and K such that for 2,y € Xp with d(z,y) < g9 we have W% (z) "W (y) = {2},

(4.8) dy(z,2) < Kd(z,y), des(z,y) < Kd(z,y).
If y € We(x) then the proof of Theorem 1] shows ®(y) € ®(z) + ES, so

O(m,y) =(y) +t = (z) +t+[P(y) — B(x)] =

O(1,7) + [2(y) — ()] € ®(n,z) + Ej,
or nty € We(d(nkx)). That is, ', preserve the foliation W¢. Given t € EU
(4.9) d(mz, myy) < du(mia, n2) + des(my2, m0y)
so it suffices to show that 7’ is Holder along W* and We. For y € W*(z)
Qoo (1Y) =@(m,y) — (x) = Puy(my) + 2y) — B(x) =
t+ o(y) — P(x)

or Nty = @;7}6(15 + ®(y) — ®(x)). Since ® is Holder and @;7}0 is uniformly Holder

(4.10) d(ntz,nly) < Cll@(y) — (2)||” < C'd(z,y)”
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so 1 is Holder along W*. Given y € W(z) we have n'y € W (n.z) since
nt preserve We. On the other hand, nly € W*(y) by the definition of ®,,.
So nty = 7" . (y). The unstable Holonomy is (uniformly) Hoélder [47], so 7% is

x,nkx

Holder along Wes. |

Definition 4.3. We define an action of P (or P°, Py, QM,P[CX}, Q[CX}) on Xr
(and on G) by

(4.11) Npr = ngiw%"'w?vw%x = n;”fng%...n;”?vniﬂ%z

where 1, is defined in Definition [{.9 and shown to be an action in Lemma[{.3

Remark 15. We make no notational distinction between the action on Xr and
G. It is clear that the action on G covers the action on Xr in the sense that the
projection pr : G — X intertwines the two actions.

Lemma 4.3. We have the relationship ®(npz) = ®(x) + I(w). That is  semi-
conjugates the P—action onto the translation action on T? (and R?).

Proof. By induction, it suffices to consider v € EJ. The Lemma follows from
Lemma [£.2] |

Lemma 4.4. For any w € P the homeomorphism n} preserve the center foliation,
We. Moreover, if w = vyvy...vjv{ with v] € Ef, To = and

u oW s _ v _wu
Ty =n,' To, Xy =117,

u v}(, S s va u
IN =N Tn_1, TNy =T Ty

then npx = % and the map np : W(x) — We(npz) coincide with the composition

S

T Tl 2 “5; «Y Tt as,
c c U i C s ’ ’ C s
(4.12) We(zo) — W(zy) We (1) We(zy).
That is, we have

w _ s u s S u
(4.13) nplwe) = Tou a5, O s g OMas  gu  ©...0Mu e O qu.

If f is r—bunching then holonomies between center manifolds are C"—smooth, so
np 1s C" along W€ for all w € P.

Proof. By induction it suffices to consider w = v € EJ for ¢ = s,u. This was
shown in the proof of Lemma [£21 The regularity follows from [47]. |
Lemma 4.5. We have w € P° if and only if npzx € We(z) for every z € G.

Remark 16. When w € P¢ then Lemma [L.5] shows that npWe(z) = W¢(x) for
every x, so P¢ is the (homotopically trivial) center fizing part of P.
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Proof. Tt is immediate from the definition of P¢ and Lemma that if w € P°
then n%z € & 1(P(x)) = We(x) for every x € G. Conversely, if nsx € W¢(z)
then ®(z) + Il(w) = ®(ngz) = (z) so II(w) = 0. |

Lemma 4.6. If f is accessible, then the P°—action is transitive on Wc(x) for all
x € G, and the P¢—action is transitive on W¢(x) for all x € Xr.

Proof. Since f is accessible nhx D W¢(z) for every x € Xr, and nka € We(x)
if and only if Tl(w) € Z4¢, Lemma 3. Given n € Z¢ we write P, = {w €
P : II(w) = n}. Then P° = P,. It follows

Weé(x) = U np
neZd
and since W¢(z) is uncountable and Z? is countable there is at least one ng such
that #np(Pn,)x > 1. If we fix some w € P_y, then

w._ Pn WP,
#Hnpnp " x = F#np x> 1.

For any w' € Py, we have Il(ww') = II(w) + [I(w') = 0 so wPy, C P,
or #nh'xz > 1. Given any w = wiwl..wiwy € P° we define a path w, =
(twy) (twi)...(twy) (twk) € P, t € [0,1], from 0 to w. It follows that the image
I = nh’z is an interval in W¢(z), since it contains at least 2 distinct points and
is connected. We claim that x is an interior point in this interval. If z is not
an interior point, then I = [z,y), [z, y] or (y,x], [y, z] for some y € W¢(z). We
will assume that one of the first two cases holds the other two cases are similar.
Let © # z € I and let njfz = 2. Then the interval [z, 2] lie within I, [z, 2] C I.
Since w™' € P¢and n¥ ' preserves orientation we have I D 7% [z, 2] = 7%z, z]
which would imply 7]%7156 = z. After applying 7 on both sides of n%flx = we
obtain z = npr = z. This is a contradiction since we assumed z # z. The point
 is interior in 75 x and x was arbitrary, so the orbit of z under 1777;6 is open. This
holds for every x and W¢(x) is connected, so nh @ = W¢(z). The second part of
the lemma follows.

The first claim follows from the second part. Indeed the second part implies that
for any x € G the P—orbit of x is open in W¢(x). Connectedness of W¢(x)
implies the first part of the lemma. |

The following lemma is immediate from Lemma Recall that p : ZF —
GL(d,Z) is defined by ®a™ = p"d.
Lemma 4.7. Let p® : P — P be the map

P (wiwy..wywy) = (p"wi)(p"wy)... (P wi) (P wiy)

then o™n =1 “a™. Moreover, p™ preserve P°, Py, Qu, Pty and Qf,.
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5. AN INVARIANCE PRINCIPLE FOR HIGHER RANK ANOSOV ACTIONS

In this section we prove an invariance principle for cocycles over higher rank
Anosov actions. Before stating the invariance principle, we introduce cocycles.
Let Xr be a nilmanifold (where, in this section, G is any simply connected nilpo-
tent Lie group), and p : Z*¥ — Aut(Xt) a higher rank action. We will assume
that p is the restriction of some map @ : R¥ — Aut(G). Let ®x : X — Xr be a
Hoélder fiber bundle over Xt with fibers X, = ®3'(x) uniformly C" for some r > 1
(we allow r € (1,2)). We will assume throughout this section that X’ is compact,
and therefore have compact fibers.

Definition 5.1. We say that F : ZF x X — X, written F* : X — X, is a
cocycle over p if F is a ZF—action covering p. That is, F*™ = FR[™ gnd
Oy F™ = p"®y. Moreover, I is a C°—cocycle if F™ : X, — Xy is uniformly C°.

For each coarse exponent [y] of p we have a translation action Tj,; : GM x Xt —
Xr, T[i’d:c =g~ for g € GIX.

Definition 5.2. Let F' be a cocycle over p. The cocycle F' admit [x]|—translations
if there is a Holder action np : GN x X — X covering Tjy) such that

n_g _ .p'9rn
(5.1) Fompg =mig £

for any n € Z*.

Our interest in cocycles over algebraic actions comes from the following lemma.

Lemma 5.1. If a is as in Theorem[d], with Pa™ = p"®, then « is a C*—cocycle
over p that admit [x]—translations for every coarse [x] where 1y = np| -
0

Proof. The lemma is immediate from Theorem [T and Lemma 3] [

The main result of this section is a sufficient condition for the translation action
7y to preserve a F'—invariant measure.

Theorem 5.1. Let F' be a C*—cocycle, s > 1, over p. Let v be a F—invariant
probability measure projecting onto pr, (Px)wv = pr. Let X, ... A\f, : ZF = R
be the v— Lyapunov exponents of F' along the fibers of X. If

N
(5.2) [ker Xy, ¢ ker[x]
=1

then v is ) —invariant.
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Remark 17. In Theorem B.1] we assume that p is the restriction of some ho-
momorphism @ : R¥ — Aut(G). In practice this is not an issue, since if
7F — GL(d,Z) is a homomorphism then there is a finite index subgroup of Z*
that satisfies this assumption.

To apply results from [3] it will be convenient to reformulate 7, —invariance of
v into essential holonomy invariance. Let € Xr, g € G and y = T[i k2 Since
nf’x | cover T, [‘; » we define

(5.3) Whd X — &, D) = n?y (&),
We say that h% is the [x]—holonomy between X, and X,.

Definition 5.3. Let v be F—invariant such that (Px).v = pur and let {v,}rexr
be the disintegration of v over ®x. We say that v, or {v,}.ex,, is essentially
[X]|—holonomy invariant if there is a pur—full measure set Y C Xr such that

(h%)*% =y, forz,y €Y.

Lemma 5.2. Let v be F—invariant and projecting onto ur. If v is essentially
[x]—holonomy invariant then v is np)—invariant.

Proof. Let Y C Xr be a full measure subset such that (hLXL)*um =y, forz,yeY.

Let g € G and ?:Yﬂnﬁ;Y so that z,nf jw € Y for x € Y. If p € CO(X)

JECICE /Y £>dum<£>) dpr(z) =

AV
J
J ot

SO v is nfx}—invariant. [

Eflfg x)*Vm(§)> dur(z) =

[x]

( p(&)dvre o (&) | dpur(z) =
[X]
30

5.1. The suspension construction. Fix a higher rank action p : Z¥ — Aut(Xr)
and a cocycle F™ : X — X over p as in Theorem 5.1 We recall the definition of
the suspension of an action o : ZF x M — M.

Definition 5.4. Let 7 : ZF x (M x RF) — M x RF be defined by ™ (x,8) =
(a™z,s —n). We define the suspension S of o as

S:= (M xR¥) /7.
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Given (z,8) € M x R¥ we denote by [x,s] the equivalence class of (x,s) in S. We
also define a natural action on S by a%(x,s) = (x,s +t). Since
st (z,8) =ak(ar,s —n) = (a"z,t +s—n) =7"(2,t +5) =
™ak(x,s)
the action as descends to an action on 8. Moreover the map M x RF > (z,s) —

s+ 7ZF € T% descends to a map s : S — TF with fibers M. The map ws semi-
conjugates as to the natural translation action on TF.

Given any a—invariant measure p on M we define a measure pugs on S as follows.
For each € T* we choose some s € R such that s + Z* = , we then obtain
amap ts : M — 75" (z) C S defined by 1(y) = [y,s]. Define a measure y, on

ms' (@) by
(5.4) (b )ikt = Ho
Given any n € Z* we have 15,5 (y) = [y, s+n] = [a™y, s] = 1sa™y. So a—invariance
of p implies
(tsn)spt = (0s)0p = (ts)upt

showing that p, is well-defined. Define a suspended measure us by

(5.5) Us :/ pzdvolpr ().
Tk
One checks that ps is ag—invariant.

In the remainder of this section, we denote by Sy the suspension of p with action
ps, - RF x 8§ — Sy and by S the suspension of I with action Fs : R¥ x S — S.
We also denote by ps, the suspension of pr and vs the suspension of v. Note that
ps, is a volume on Sp. Let @ : RF — Aut(G) be a homomorphism such that

(5.6) Qlzr = p.
Suspend the actions T[“)’( | and nf’x | by

(5.7) 19, (2, s]) = [T[%*ng,s} i ([rs]) = [nfjd* Sgg;,s] .
For any n € Z* we have

5.8 79 ([pz,s —n]) = |TY 9 9z, s —n| = |p"T%, Yz,s —n
(x] (x]

SO T[X] is a well-defined action on Sy that acts in the fibers of 7s, : Sy — T*.
Similarly the action 7 is well-defined on S§. We define s : S — &y by
(5.9) Ps([€,8]) = [Px(E), s].

Since @y semi-conjugates p onto F, ®s is well-defined. The following lemma is
immediate from our definitions.
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Lemma 5.3. Let ®s, Fs, ps,, T[x] and 7 be as above. The following holds

(i) the map ®s : S — Sy is a Hélder fiber bundle with uniformly C" fibers.
In fact, for any s € T* the restriction (I>5|7T§1(S) coincides with ®x using
natural identifications of T5'(s) = X and 7y, (s) = Xr,

(ii) the map Fs is a C° cocycle over ps,,

(#ii) the Lyapunov exponents for ps, coincide with the Lyapunov exponents of
P,
(iv) the vs—Lyapunov exponents along the fibers of ®s for Fs coincide with
the Lyapunov exponents of F,
(v) the map ®s congugates My to Tiy.

Proof. Point (i) follows from the analogous properties of ®x since ®s is defined
in the fibers of s : S — T*. That ®s conjugates Fs to ps, is immediate from
its definition: ®g[é, s+ t] = [Px(£),s + t]. That Fs is C* along the fibers of ®g
is immediate since F' is C® along the fibers of ®» (note that the identifications
1s(&) = [€,8], X — m5'(s + ZF), defines a smooth structure on the fibers of ®g
in which Fjs is uniformly C?®). Points (iii) and (iv) holds for Z¥ C R¥, and any
functional is determined by its values on a lattice, proving (ii7) and (iv). Point (v)
is immediate from the definitions and the fact that ®» conjugate 7, to 7j,;. W

We define holonomies along the orbits of T[X] as in Equation5.3l That is, if z € Sy,
Yy = T[‘;’d:c then
(5.10) R (€)= 77, ().

We say that vs (or the disintegration {vs.}.es,) is essentially [x]—holonomy
invariant if there is a ugs, full measure set Y C Sy such that

(5.11) (hM)vs. =vsy, wzyeY.

The key fact about the suspension, is that holonomy invariance of vs implies ho-
lonomy invariance of v. So, by Lemma[5.2] Theorem 5.1l follows by [x]—holonomy
invariance of vs.

Lemma 5.4. The measure v is essentially [x|—holonomy invariant if and only if
vs is essentially [x]—holonomy invariant.

Lemma [5.4] is immediate from the following lemma.

Lemma 5.5. We have (®g).vs = ps,. For [x,s] € Sy we have

(5.12) VS,[:c,s} = (Ls)*Vm.
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Proof. By construction we have vs = (1)« ® ds, so

(Ds).vs :/Tk(@s)*(bs)*yds - /Tk((IDSLS)*I/dS — /Tk(LS@X)*yds —
/Tk(es)*uds = Usp-

If we define vs [, ¢ := (ts)sVa, then
(513> Vs, [ppz,s—m] = (Ls—n)*Vpnx = (Lsp_n)*ypnx = (Ls)*Vm = VS,[z,9]
where we have used tsin(x) = [z,8 + 1] = [p"p"z,s + n| = [p°x,s] = ws(p ).

S0 Vs, [z,¢) 1s well-defined. We calculate

/S s it (. 5) = / (te) vl [z, 8]) =

So

/m ULSXF(LS)*umd(LS)*MF([x’SD} 4 —
/w {(Ls)*/xF delul—x(x)] ds —

/ (1s)svds = vg
Tk

which proves that vg ;¢ is a disintegration of vs over ®g. |

Proof of Lemma[5.4). If v is essentially [x]—holonomy invariant, then we find Y C
Xt such that (h%)*ux =y, for z,y € Y. Letting Y C S be the image of ¥ x R*
in Sy, one direction in Lemma [5.4] follows from the formula in Lemma 5. For

the converse direction, let Y C &y be such that (h,,).vs, = vs, for x,y € Y.
Since j1s5,(Y) = 1 we have for ds—almost every s € T*

pr(s (Y Nrgl(s)) = 1

For any s € R*, g € G and 2 € X1 we have

T2 () = [ng(x),s] _ [T[g}*SQSg(x%S} — Iy o] = TO

g
[x] s ()

Similarly, LST]‘E]X} = ﬁgjges. Since s maps fibers of @y to fibers of ¥g, it follows
that 15 AN bs = R With Y = J1(Y N 75, (s)) and Lemma

[:(:,SHy,s
(h2))eve = (Ls_ lh{ﬁs],[y,s#s)* Vo = (Ls_ lh%?s},[y,so* Vs [es] =
(Ls_l)*VS,[yvs] = Uy,

for z,y € Y. Choosing s such that ,ur(f/) = 1, it follows that v is essentially
[x]—holonomy invariant. m
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5.2. Proof of Theorem [5.1l By Lemmas[5.21 and 5411t suffices to show that the
disintegration of the suspension of v is essentially [y]—holonomy invariant. We
use the following general criteria for obtaining holonomy invariance, proved in [3]
Proposition 4.2] (or [3, Corollary 4.3]).

Theorem 5.2. Let f : M — M be a volume preserving diffeomorphism on a
closed, smooth manifold with an invariant contracting smooth foliation W. Let
X — M be a Holder fiber bundle with uniformly C" fibers and F : X — X a
map covering [ such that F is uniformly C*® along the fibers of X — M. We
assume that W admits holonomies in X, that is for every y € W(x) there is a
map hY, - X, — X, and satisfying (shl), (sh2) and (sh3) in [3, Section 2.4].
Let v be a F—invariant measure on X projecting onto volume. If the v—exponent
of F' along the fibers of X — M 1is 0 then the disintegration of v is essentially
W —holonomy invariant. That s, there is a full volume set Y C M such that
(hy,)sve = vy for z,y €Y.

Proof. The theorem would follow immediately from [3| Proposition 4.2] if the
foliation W coincided with the stable foliation of f (in the sense of [3 Section
4.1]). However, following the proof, it suffices that W is contracting. In fact,
since W is a contracting foliation it is standard to produce a measurable partition
subordinate to W, see for example [44], which simplifies the proof. |

Proof of Theorem[5.1l. Let Fs be the suspension of F' and pg, the suspension of
p. By assumption we find t; C R*\ 0 such that F ;0 has zero exponents along the
fibers of ®s and [x](tg) < 0. If f = ,0:”9%, F = F% and W is the orbit foliation of
TM, then we apply Theorem to conclude that vs is essentially [y]—holonomy
invariant. The theorem follows from Lemmas and [5.4] |

6. INVARIANT STRUCTURE IN THE CENTER DIRECTION

Let o : ZF x X1 — Xr be a smooth action satisfying the assumptions of Theorem
[Al In this section, we prove Theorem [[.3] that is: f, and «, have a unique measure
of maximal entropy. Moreover, if 4 is the measure of maximal entropy then @, =
vol and the disintegration of p is invariant under stable and unstable holonomy.
Equivalently [3 53] we show that the p—center exponent vanish, Af = 0. The
proof of Theorem [[.3] is by contradiction, so we assume that A;(f) # 0. The
proof splits into two cases. First, we have a generic case when the kernel of
AL ZF — R does not coincide with the kernel of some exponent y : Z*¥ — R of p.
Second, we have an exceptional case when ker A7 = ker x for some exponent y of
p. The first case is dealt with by using Theorem .1l and Lemma 5.1l The second,
more technical, case is dealt with by studying the circle dynamics induced by the
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holonomy maps on the center leaves. Suppose that A7 has the same kernel as [x]-
We begin by showing that the P},j—action commute with the Q[ —action. This
implies that either P, or Qf; act transitively on center leaves (see Lemma [6.2]).
If Q‘fx} act transitively on center leaves then Theorem [5.1] can be applied, as in the
generic case. If P[CX] acts transitively on center leaves, then we show that Q[ acts
minimally on Xr. We use the minimality of the Q,j—action, and the fact that
Q[ commute with P[CX} to produce a continuous T—action preserving W€ that
commutes with o This shows that the exponent Aj; must vanish, a contradiction.

Denote by Mﬁol(Xp) the f—invariant measures projecting to volume

(6.1) ®,pu=vol, pe M/ (Xp).

Equivalently the measures Mﬁol(Xp) are precisely the measures of maximal en-
tropy for f [53]. From [53] the set Mf:ol(Xp) is finite so we may assume, after pos-
sibly dropping to a finite index subgroup, that M{OI(XF) consist of a—invariant
measures. We assume, for contradiction, that Af,(f) # 0 for some p € M (X)),

vol
which implies AS(f) # 0 for all v € M{_(X7) [53].

vol

Lemma 6.1. For any two i, v € M!_(Xr) we have ker A;, = ker Aj where \j,, A\
ZF — R. Moreover, there is a vol—full measure set Y C T% such that for any
y € Y we have zy,...,xxy € ®7Hx) with ¥y < x5 < ... < xN in the orientation

of 1 (y) such that (x;_1,x;+1) is the stable or unstable manifold for some V' €
Mot (Xr) in @ (y).

Proof. We sketch the construction of measures in [53]. Let u € M/ (X7) and
(1S ) zex, the disintegration of p with respect to the center foliation. The measures
ps, are atomic p—almost everywhere, since Aj,(f) # 0 and W¢ has 1—dimensional
leaves. Denote by F,, the f—invariant foliation in W*, the stable foliation if
Ao (f) < 0 and the unstable foliation if A% (f) > 0. Let Y C T¢ be such that g

exists and is atomic for each z € ®7!(y). For y € Y let

(6.2) My = (5p1(x) +...+ 5pk(9€))/k5-

We define ¢;(z) as the positively oriented end point of F,(p;(z)). Define a new
measure v by v, = 0g,(2) + ... + 0g(2) and v = v, ® dvol(y). Then ®,v = vol and
v is ergodic, so v € M!_(Xp). For any n € Z* such that An(m) <0, Fu(pj(z)) is
a stable manifold for a™. If \’(n) < 0, then any point in (p;(x), g;(z)) lie in the
stable manifold for both p;(z) and g;(x), which is a contradiction. It follows that
A (n) < 0 implies Aj(n) > 0, or A, = —cAj, for some ¢ > 0 (note that ¢ # 0 since
there are no measure v € MY _ (X1) with zero center exponent [53]). The first part
of the lemma follows for measures constructed as above. Since #Mq(Xr) < oo
[53] the construction of new invariant measures outlined above can only produce

new measures finitely many times. This proves the last part of the lemma, since
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if the invariant manifolds did not cover the center leaves, then we could proceed
the construction. This also proves the first part of the lemma since the measures
constructed above have invariant manifolds covering the entire center leaves for
vol—almost every ®~1(y). |

6.1. Generic case of Theorem [L3. Let € M/ (Xp). If ker A;, does not

vol

coincide with ker[y] for any coarse exponent of p, then np| ) preserve p for all
0

coarse [x] by Theorem 5.1l and Lemma 5.1l So, p is np—invariant. Accessibility
of f implies that np acts transitively, which implies that the disintegration of u,
p5, can not be atomic. This is a contradiction since we assumed that Af(f) # 0.

6.2. Exceptional case of Theorem [1.3l Now we deal with the exceptional
case of Theorem [I.3. We fix u € /\/lfol(Xp) and assume that A} = ry for some

Lyapunov exponent x of p". Denote by [x] the corresponding coarse Lyapunov
exponent. We will need two preliminary result on circle maps.

Lemma 6.2. If G,H C Homeo, (T) are two path-connected groups such that
GH.x=HG.x =T forall x € T then either Gx =T or Hx =T.

Proof. We have G.x = (a,b), G.x = (a,b], G.x = [a,b) or G.x = [a,b] since G is
path-connected. We write I = G.x. If I # T then we claim that a and b are fixed
by G. Indeed, if ¢ € G then g(I) = I and since g is an orientation preserving
homeomorphism, ¢ fix the endpoints of I. So, G.a =aand Gb=0b. If Hx C I
then T=GH.x=G.x=1#T,so Hx ¢ I. Since H is path-connected J = H.x
is an interval that contain x and J ¢ I, so a € H.x or b € H.x. Assume that
a € H.x. Since a is fixed by G we have T= HG.a=H.a C Hxso Hz=T. B

Lemma 6.3. Let K C T be compact such that

(i) there is a subgroup G C Homeo, (T) acting transitively, with subgroup
Gk = Stabg(G) = {g € Gk : gK = K},
(ii) if v € K, g € G satisfy gr € K then g € G,
(iii) if g € Gk satisfy gr = x for x € K then g|x = idk,
(iv) there is a compact subset Gy C G such that Gox =T for every x € T.

Then K =T or K is finite.

Proof. The group G act transitively and freely on K by (i), (i7) and (4i7). Com-
bining this with (iv) it follows that G is a compact group, so Gx preserves a
measure v on T. From Lemma [3.7]it follows that the rotation number w : Gx — T
is a homomorphism. If w(g) = 0 for g € Gk, then ¢ fix a point in K by Lemma
3.6l so by (iii) we have g|x = idg. It follows that, if we view Gx C Homeo(K),
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w: Gk — T is injective. The image T' = w(Gk) is compact, so either T'= T or
#T < oco. In the second case, since w|g, is injective, we have #K = #Gx < 0.
In the first case, w : Gx — T is injective and surjective, so a homeomorphism. It
follows that K is homeomorphic to a circle, so K < T is a local homeomorphism
by invariance of domain. In particular, K is both open and closed. Since T is
connected it follows that K = T. |

Lemma 6.4. The action of P}, commute with the action of Q.

Proof. By induction it suffices to consider v € Ex™ and w € E" for [n] indepen-

dent of [x]. Assume v € E[X] the other case is identical. Let g = npnpns"ns".
Fix

Cow = {n Y/ Zli)r&%log”p UH long wH — 0}

which is a non-empty cone since [ | and [n] are independent Let Y C T? be the
full measure set from Lemma 6.1l Given y € Y let x € ®7'(y). We have

m, v, _w

af "gr =« 77797773777D 7773 T =

pPw _fn

7773 7773 ?773 " el

The action np is Holder by Lemma L2} so from or choice of C,,, there is uniform
k > 0 such that for any n € C,,,

hrnsupglogd (a z, o "gr) <k min  (Y(n)+7(n)) <

{—00 [7)=[n],[xX]=[x]
K min
[7]= [n]n( )

where the last inequality is immediate since [x](n) < 0. In particular, gz lie in
the stable manifold of z for any n € C,,,. Assume for contradiction that gz # x.
Since gz, € W¢(z) lie in the same stable manifold, if z # gx then Lemma
implies
1
lim sup - log d.. (a z, o g:E) = \/(n)

{—00 14
for some v € M/ (X7). So, X(n) < K ming—, 7(n) for any n € C_,,. Since [x]
is independent of [n] we find n; € C;,, such that X(n;) — 0 for any [X] [x]- By
independence we may also choose n] such that

lim min 7(n;) = —oo.
J—ro0 [f]=[n]

Since ¢ has the same kernel as [x] we also have ¢ (n;) — 0. This is a contradic-
tion since

0= lim \%(n;) < lim £ min 7(n —00.
Jp Aulmy) < Ji g itmg) =
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We conclude that gz = x. Since gx = z holds on a dense set, and g is continuous,
we have g = idx,. [

By Lemmas and 6. either Py, or Qf ; must act transitively on every We(x).
We will prove that neither P[CX} or Qfx} can act transitively on W¢(z), which is a
contradiction.

Lemma 6.5. The group Qfx} can not act transitively on any W¢(x).

Proof. Let Y C Xr be the subset where Qfx] act transitively on W¢(y), y € Y.
Since Qfx} is normal in Qpy (it is the kernel of a homomorphism) it is immediate
that Y is Q[ —invariant. But, by Lemma the set Y is also Pj,)—invariant.
Using Lemma again, it follows that Y is P-invariant. Since f is accessible it
follows that, either Y = () or Y = X7

Assume for contradiction that Y # (), so Y = Xr. The remainder of the proof is
similar to the proof of the generic case of Theorem [[L3l Indeed, by Theorem [5.1]
and Lemma [5.1] the action Qfx] preserve p. Since Qfx] act transitively on every
We(x), then the disintegration of u, ¢, is not atomic. This is a contradiction, so
we conclude that Y = 0. |

Before proceeding, we define the space
(6.3) V=1Qy= P E
n#=£[x]
and the associated translation action on T¢ by R,(z) = z+v. By Lemma22 R,

is a minimal action.

Lemma 6.6. The group P[CX} can not act transitively on any We(xg).

As in the proof of Lemma we may assume that P[CX] act transitively on every
We(z), we will do this in the remainder. We split the proof of Lemma into
parts. We begin by proving that Qj,; act minimally.

Given x € Xr we define

(6.4) K, = {npz : we 9}

First, we show that K, is a minimal set for the Qp j—action for every z € Xr.

Lemma 6.7. For any y € K, we have
(6.5) K, = {ngy W e Q[X]}’

that is K, is a minimal set for the Qp —action. In particular, the set {K,}, form
a partition of Xr.
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Proof. DefineY C Xt as those x € Xt such that K is minimal for the Qj,j—action.
A standard application of Zorn’s lemma shows that there is some compact set
M C Xr such that M is minimal for the Qp —action. Since M C Y it fol-
lows that Y is non-empty. Given any w € Q) we have npK, C K,, so Y is
Q[ —invariant. By Lemma the action of Pp; commute with the action of
Q- So, given w € Py the map np : K, — npk, conjugates the 9 —action
on K, to the Qp —action on npK, = Kn%x. It follows that x € Y if and only if
npr € Y. Since Y is Pp —invariant and Qj,j—invariant, Lemma[6.4/implies that Y
is su—saturated. Accessibility and the fact that Y # () implies that Y = Xr. W

Lemma 6.8. The action of Qy) is minimal.

Proof. Since K, is Q},j—invariant, Lemma (4.3 implies
(6.6) B(K,) = BEK,) = B(K,) + T(w), we Q

so ®(K,) is compact and invariant by the translation action R, from Equation
6.3l The translation action by V is minimal, so ®(K,) = T¢. It follows that
K, NW<(y) # 0 for every y € Xr.

If we let G = 7777;[*] and K = K, N W¢(y) then the assumptions in Lemma are
satisfied (after identifying W¢(y) = T). Indeed, G act transitively by Lemma (.0l
Property (ii) and (#ii) follows from Lemmas [6.4] and To show property (iv),
we follow [2 Section 8.3]. For N € N, write

(6.7) Py = {w=vivavy € Pey - vy € BgN, oy <N, n < N}

That is P[cx}, n consist of those words in P[CX} with at most N letters, and each
letter has length of at most N. The following is immediate from the definition
(6.8) Piani1 2 Piyns Plg=J Pl

N>1
Let Ky = {np: w € Py} Let Ky = Kyzo = {k(zo) : k € Ky} for fixed
xg € W¢(y). Then Ky C Ky, is an ascending sequence of compact sets. If
Ky, = W¢(y) and € W¢(x) then xy € Kn,z so Kon,x D Knyzo = We(y). That
is, property (iv) of Lemma holds if Ky, = W¢(y) for some Nj. Since

(6.9) U Kn = {npao - w e Pyt = We(y),

N>1
Baire’s category theorem implies that there is Ny such that int(Ky) # 0 for N >
Ny (where int(Ky) is the interior in W¢(y)). Define Uy = int(Ky) and Cy = U
(where the complement is in W¢(y)). If N > Nj then xy € KyUy C Usy, so
Ky C KnUsn C Usy. From Equation we obtain

(6.10) We(y) = U Ky = U Ky C U Usy = U Un

N2>1 N>N; N>N; N>1
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or

(6.11) 0= () Cn.

N>1
Since Cy;1 C Cy is a descending sequence of compact sets it follows that there
is Ny such that Cy, = (0. Equivalently Uy, = Ky, = W¢(y), proving that
property (iv) of Lemma [6.3 holds. Lemma [6.3]implies that #K, NW*°(y) < oo or
K, NnW¢e(y) =W¢(y) for every z,y € Xr.

We claim that #K, N W¢(y) is independent of y. Indeed, as in the proof of
Lemma [6.7], for any w € P we have n K, = K. So given any z € K, N W¢(y)
we find, by accessibility, some w € P that satisfy npzr = 2z and in extension
npK, = K, = K, (since z € K,, and {K,},ex, is a partition, Lemma [6.7]). We
also have npWe(z) = W¢(y) (since z € W¢(y)) so np(K,NW(z)) = K, NW*(y).
It follows that

(6.12) # K NWey) = # K. N W(x)

for all y € Xp. If #K, N W¢x) = q¢ < oo, then the fibers of ® intersect K,
precisely ¢ times. Given zy € T¢ we define
: /
0= y#y' y,y’elggl(zo)ﬂKz d(y:y') > 0.

Let {y1,....,y,} = K, N ®(z) and § > 0 small. For z € Bj(z), we define
y;(2) as the element in ®~'(2) N K, that minimize d(y;(2),y;(20)) (if this does
not define a unique point, choose an arbitrary minimizer). If z, — 2z, then any
convergent subsequence of y;(z,) converges to an element of K, N ®~'(z). From
our choice of y;(z) it is clear that any convergent subsequence converge to y;(2o).
So, yj(zn) = y;(20) and y; is continuous at z,. Choose 6 > 0 small enough such
that d(y;(2),yj(20)) < €0/100 for all z € Bs(2) and j =1, ...,q. For 2, 2" € Bs(z)
and ¢ # j the reverse triangle inequality implies

d(yi(2), y;(2") Zd(yi(20), y;(2")) — d(yi(20), 9i(2)) =

d(yi(20), yj(20)) — d(y;(20), 4;(2')) — d(yi(20), yi(2)) >
o 4980
PR — > J—
0750 7 50
where the last inequality use the definition of €y. In particular, y;(z) # y;(2) for
every z € Bs(2g), so K, N ®71(2) = {y1(2), ..., y,(2) }. Moreover, we have

€

(6.13) d(yi(2), :(2) < d(wil2), yi(20)) + d(¥i(20), vi(2")) < 5—8-
Since £0/50 < 4920/50, y;(2') is the element y € K, N ®1(z') that minimize
d(yi(2),y). The same argument that showed continuity at zy, now show that y;
is continuous at any z € Bs(zp). So the functions yi,...,y, : Bs(z0) — K, are
continuous. Note that @ restricted to K, N ®~1(Bs(29)) N Be,(yj(20)) has inverse

> 0.
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given by y;. So, ® : K, — T¢ is a finite covering map. In particular, K, is
homeomorphic to T%. It follows that the map

(6.14) (P, )e : mT =74 - T =1 Xp
is injective with image of finite index. The map
(6.15) 74~ m Ky S5 o Xp =T

is injective since its injective after composition with ®, = m,. The group IV =
Im(ig, ). x ker ®, = Im(ig, ). x [I', '] has finite index in I and is abelian. Since I
is not virtually abelian, this is a contradiction. We conclude that K, N W¢(y) =
We(y) for every y which implies that K, = Xt for every x.

Lemma 6.9. The map r : Py — T, r : w = wnplwew) is a well-defined
surjective homomorphism. Moreover, r(w) = 0 if and only if nj = idx,..

Proof. We fix w € Pl 9 =mnp- Let ¢ T¢ — T be defined by

(6.16) p(y) == w(gle-1)-

The function ¢ is continuous since rotation numbers vary continuously in the
C%—topology [40, Proposition 11.1.6]. Given any w € Qy, we have gn = nig,
by Lemma [6.4], and ®np = Ry,,)® by Lemma .3l Let V' be the space defined in
Equation Given any v € V' let w € Q) be such that II(w) = v. We have

o(Ry(z)) :W(9|<1>71(Rv(x))) = w(g|ngq>fl(x)) =
w ’Ll)71
w(npgnp |777“;‘1>*1(m)> = w(glo1@)) = ()

where the second to last equality uses that the rotation number is conjugacy
invariant [40, Proposition 11.1.3]. Since ¢ is invariant of the translation action
of V and the translation action of V' is minimal, ¢ is constant. That is, g :
We(x) — W¢(x) has a rotation number independent of x € Xr. This shows that
r: Phy — T is well-defined. If r(w) = 0 then np fix some z, so Lemmas and
implies that 3 = idx,.

Since H = np|7>[cX] = Prg/{w € Py« mp = idx } act transitively and freely on
each W¢(x), it follows that H is homeomorphic to W¢(z) = T. So, G is a compact
topological group. Since H is compact the H—action preserve a measure. That r
is a homomorphism follows from Lemma [3.71 The image r(H) C T is a compact
subgroup, so it is either finite or T. If r(H) is finite then every orbit is finite since
r(w) = 0 implies that 7}y = idy,.. But H act transitively on every W¢(z), so the
H —orbits can not be finite. We conclude that r(H) = T. [

We can now prove Lemma [6.0l
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Proof of Lemmal6.8. Suppose that Pf,; act transitively on some We(xy). By
Lemma we can define an action 1, : T x Xr — Xt by niz = npx with w
chosen such that r(w) = s. The action 7. is free, and transitive on the center
leaves. Moreover, for n € Z*F and w € P[CX} we have

6.17 N e
Np Np

so by conjugacy invariance of the rotation number, r(p"w) = r(w) = s. It follows

(6.18) 0t = ngl“’ = a"npa™ = oo

which proves that o commute with 7.. This implies that a have vanishing Lya-
punov exponent along W€ which is a contradiction. We conclude that Ppyy can
not act transitively on W¢(xy). |

We finish the proof of Theorem in the exceptional case.

Proof of Theorem in exceptional case. By Lemma [6.4] the action of Pf; com-

mute with the action of Qf,. Since f is accessible 7777;[*]775[’(]:)3 = We(z) for all
x € Xr. By Lemma [6.2] either P, or Qf | act transitively on W¢(z). Lemma
shows that P, does not act transitively on We(z) so Q) must act transitively
on W¢(zx). This is a contradiction by Lemma |

7. COMPATIBLE ALGEBRAIC STRUCTURE

Let o : Z¥ x Xr — Xr and f : Xr — Xr be as in the previous section. From
Theorem there is a unique a—invariant measure p that projects to volume,
and this measure satisfies A\, = 0. We use this measure to construct an algebraic
structure on Xr that is compatible with f : Xt — Xp. This algebraic structure
is then used to produce a topological conjugacy between o and an affine action
o, Theorem [711

We begin by using the measure p to construct a circle action 7. : T x Xpr — X
that commutes with a and 7np, preserves center leaves and acts transitively and
freely on each center leaf. Moreover, if w € P¢ then 7% = n! for some ¢ € T.
This shows that the action of P on X factor through a nilpotent group with
base Ef @ Ej and center isomorphic to T. Lifting this action to G’ we obtain a
transitive free action of a 2—step nilpotent group, IV, on G.

Using that A, = 0, the following two lemma are proved as in Lemmas [6.4 and [6.9.
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Lemma 7.1. Given two independent course Lyapunov path groups Pp,) and Py
with wy € Py and wy € Py then

w2 W1

(7.1) Np'npS = Np e
Lemma 7.2. For any w € P¢ the rotation number of
(7.2) np : We(z) — W (x)

is independent of x. The map r(w) mapping w € P to the rotation number of
np is a homomorphism with kernel {w € P° : nf = idx.}.

Using Lemmas [.T] and [Tl we produce an N —action, with N nilpotent, on G.

Lemma 7.3. The action of P on G factor through a nilpotent Lie group N that
acts transitively and freely on G, the action of N descends to an action on Xr.

Proof. We denote by N the image of P in Homeo(G), and N the image of P in
Homeo(Xr). We begin by showing that the P¢—action on Xt factor through an
abelian group. As in the proof of Lemma [6.6] we define 1} : Xpr — Xt by i = np
for any w € P that satisfies w(np|we)) = s. By Lemma . is well-defined,
continuous and acts transitively and freely on each W¢(x).

As in the proof of Lemma [6.6] it follows that o commute with 7.. Let r be
from Lemma Given w € P and w, € P¢ we have r(ww.w™!) = r(w) since
nunpe(ns) ! has the same rotation number as n%. It follows that

w, r(we)

(7.3) e = e (np) ™ = mp e (np) !

which shows that 7. commute with np. We let 7 : P¢ — R be defined by 7(w) =
@(np) where (1) € R is the rotation number of ) with respect to the natural
lift to G from Definition[d.3l Lift n. to G, and note that n} = ni(“”. It is immediate
from the analogous properties of 1. : T x X — X that . : Tx G — G commute
with o and np.

Denote by N C Homeo(G) the image of P under np. We denote by N® C N the
image of P¢. Since 7, commute with 7p and since nf = n;(w) for w € P¢, it holds
that N¢is central in N. Moreover, Lemma [4.1] implies

(7.4) P =[P, P]

so N¢ = [N, N]. It follows that N is 2—step nilpotent. By Lemma [£.1] we can
write any w € P as w = w.vsv, with v, € Ef, 0 = s,u, and w, € P°. It
(wepospou 50 T 0 B3 x EY x R — N, T(vg, vy, 1) = qinlons is
surjective. If ninPnl = nf'nnt then we apply ® and obtain vy = v/, v, = v/,
Lemma @3 If v, = v/, v, = v/, then we can simplify and obtain 1 = 1% . Since 7,
is a free action this implies t = t'. So T : E§ x E§ x R — N is bijective. It is also

follows that np = ncf
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clear that T is continuous. Let (vg, v,,t) and (v),v),t') be such that T'(vg, vy, t) is

s Yu?

close to T'(v.,vl,t'). After applying ®, it is immediate that v is close to v, and

v, is close to v,. Writing h = T'(vs, vy, t)T (v}, 0!, t')~! we obtain

s Yu?

Vu—!, vl t—t! t—t/ —vy v,

ho= eyl gt = gy ey

so Nt~ is close to idg. Since 7, act freely, it follows that ¢ — #' is close to 0. It

follows that T" has a continuous inverse, so 1" is a homeomorphism. Since N is a
topological group, homeomorphic to £ x Ef x R, N has a unique structure as a
Lie group [46, 29]. |

Theorem 7.1. The diffeomorphism f : X — X is bi-Holder conjugate to some
affine map fo: X — X where fo(x) = L(x)zy with zg € G°.

Proof. Let N be the group from Lemma [Z.3 and F' alift of f. For w € P we have
FpgF~1 = 127%3““’ by Lemma BT Tt follows that L(n) = FnF~' € N for every

n€ N. So, L: N — N is an autormophism such that Fn = L(n)F for n € N.

Define A € N by A € Aif Me) € T for the identity element e € G. Since
any two A, X" € A are lifted from Xr we have some v € T" such that N(A(e)) =
N(v) =~N(e) € . Similarly if A € A then A7*(\(e)) = AMe)A7(e) so AL(e) =
(A(e))~t € . Tt follows that A is a subgroup of N. Moreover, I is closed in G so,
since the action of N is continuous, A C N is closed.

The map g : N © h — h(e) € G is a homeomorphism. Indeed, ¢ is bijective so it
is a homeomorphism by invariance of domain. Let h € N and A € A. Then

q(hA) = h(A(e)) = Ale)h(e) = Ale)q(h) = q(N)q(h)
so g descends to a map N/A — I'\ G = Xr. If g(h) = vq(K') for some h,h' € N
and v € I" then we find some A € A such that v = A(e) (since the action of N on
G is transitive). It follows that

q(h) = Me)q(h') = Ae)h'(e) = h'(A(e)) = q(A'A)

or h(e) = h'(\(e)). The action of N is free, so h = WA. That is, we have a
diagram

N———— @G

|

N/A ——— X

where both horizontal maps are homeomorphisms. The group N is a nilpotent
Lie group by Lemma [7.3] so N/A is a nilmanifold. It follows that N is isomorphic
to G as a Lie group and A is isomorphic to I" under this map N — G [4§].
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We claim that the induced map f : N/JA — N/A, f =qglofogqis z}ﬂine.
Equivalently, F': N — N, F = g 'oFoq s affine. From the relation Fn = (Ln)F,
n € N, we obtain

1 (F(n)) = Fla(n)) = F(n(e)) = Ln)(fe) = L(n) (no(e)) = g (L(n) - o)

where ng € N is chosen such that no(e) = Fe. It follows that F, and therefore
also f, is affine.

Denote by H : Xt — Xt the conjugacy such that H(fz) = fo(h(z)) = L(H(z))z0.
After conjugating with a translation, we may assume that zy € G¢ = [G,G]. To
finish the proof, we show that H : X — Xt is bi-Holder. By uniqueness of ¢ we
have ®(x) = m(H(x)) = H(x)G*. Since ® : Xp — T¢ is Holder and the inverse of
® restricted to stable and unstable leaves is Holder, Lemma [3.3 H is bi-Holder
along W* and W*. So, it suffices to show that H is Holder along W¢(x) and H~!
is Holder along W¢(x). Write

(75) H(l’) = l’e_h(x) = l.e—(hs(x)-l-hc(x)—i-hu(x))

with h: Xr — g and h, : Xr — EJ, 0 = s,c¢,u. Since m(H(x)) = ®(x) and & is
Holder, both hs and h, are Holder. The functional equation for H implies

H(fx) :(fl’)e_h(fx) _ L(x)e—v(m)e—h(fm) _ L(x)e—v(:c)—h(fm).;.w

L(H(x))zy = L(z)e L@+

or

(7.6) h(fx) — Lh(z) = [U(‘C)zﬂ (@) + Zo.

We obtain an equation for h.(z)

ho( f2) — ho(a) = Le@) hul )] : [va(@), hy(f)

where w : Xp — Ef is Holder. It follows that h.(z) is Holder [67], so H is Holder.
Next we show that H~! is Holder along W§(x). Fix X € ES, Y € EY such that
[X,Y] = Z # 0 with Z € E§. Given any ¢t > 0 the Baker—-Campbell-Hausdorff
formula implies X ety e=X e~ = ¢*[XY] We have

H-! <$et2z> —H Y (z) =H! (l,etXetYe—tXe—tY) _

tX 1Y —tX —tY) _

—v(x) + Zp = w(x)

reee -1 (xetxetye_tX)+

e
relXetY —tX) _ gl (:L,etXetY) i
X
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Using that H~! is Holder along W and W we have, for ¢ small, some exponent
0 and some constant C

d (H—l <xet2Z> JH! (x)) < Ot
Since d(ze*Z, z) > ct? for small ¢
d (H ! (zetQZ) H™! (93)) < Cd (:5, xet22)9/2.

For y € W§(x) close, it follows d(H (), H(y)) < Cd(z,y)"2. |

8. RIGIDITY: SMOOTHNESS OF THE BI-HOLDER CONJUGACY

In this section, we prove Theorem [[L2l Let o, ap and f = o™, fy = ap° be as in
Theorem [L.2. We prove Theorem under the assumption that f is accessible,
this is done for two reasons. First, the proof simplifies because we can apply [67]
to obtain regularity of the conjugacy along the center direction. In particular,
there is no loss of generality in assuming that the center of f; coincides with the
joint center of g, see Remark [[9 Second, if f is accessible then « naturally
preserves a volume form p and H,p = pr, see Lemma

If o is assumed to preserve a volume form p such that H,u = pr then a result
similar to Theorem still holds, without accessibility. We give a brief sketch of
the proof. Let H : G — G be a lift of the conjugacy. By the argument below,
H is uniformly C'* along W7 and D,H : E°(x) — E§, 0 = s,u, is invertible at
each z. Define

(8.1) H:65% 66— a/6e

then the fibers of H coincides with Wes. In particular, H is uniformly C* along
Wes. Moreover, since H is unlformly C along W*, H is uniformly C™ along
W, By Journé’s lemma [36] H is smooth. The map D, H | pu(z) is invertible, so
H is a submersion. It follows that the leaves of H form a C*>—foliation, so W<
is a C*°—foliation. Similarly, W is a C*°—foliation. Once we know that W€
is a C>°—foliation the argument in [52] 26] to obtain regularity of H along W*
and W*" can also be used along W€ (note that, a priori, the assumptions of [52]
Theorem A.1] are not satisfied for W°¢).

8.1. Dynamical coherence and regularity of center leaves. We begin by
proving that f is dynamically coherent with W W< and W¢ all uniquely inte-
grable. We use this without mention in the remainder.

Lemma 8.1. The map f is dynamically coherent with W, W and W€ all
uniquely integrable with uniformly C* leaves.
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Proof. Since f is conjugated to fy = ag°, and fj is uniformly subexponetial along
its center E§, f is also uniformly subexponential along its center E°. Indeed,
for any f—invariant measure v the stable Pesin manifold W;(x) maps into the
stable manifold, W (H (x)), of fo under H. Since H is invertible dim W;}(z) <
dim W§(H (x)). It follows that no v—exponents are negative along E°. By ex-
changing f for f~!, no v—exponent is positive along E°. By [55] f is uni-
formly subexponential along E°¢. We fix lifts F', Fy and H to G, such that
H(Fz) = Fo(H(z)). Ifv: I — G is a Cl—curve tangent to E° then, for
any € > 0, the length |F™ o 7| satisfies

(8.2) |F"ony| < C.e™™.

The conjugacy H : G — G can be written H(x) = zh(x)~! with h : G — G being
['—invariant. We estimate

d(H (), H(y)) =d(zh(z) ", yh(y) ") <
<d(z,zh(z)™") + d(y, yh(y)™") + d(z,y) =
d(e, h(x)™") +d(e, h(y)™") + d(z,y) < d(z,y) + C

for some uniform C'. With x = H~'(z) and y = H~'(w) we obtain

d(H Y(2), H Y(w)) > d(z,w) — C.
1 ((1))) < Cee™, so
0). F*(+(1))) = d(HHF*(5(0)), H- HF"((1))) >
7(0)), HE"(7(1))) = € = d(Fg H(7(0)), F5'(H (v(1)))) — C.

0
With e sufficiently small it follows that H(y(1)) € W (H(y(1))). We conclude
that £ is uniquely integrable with leaves given by

(8.3) W (x) = H- (W5 (H(x))).

Similarly, £ is uniquely integrable with W< (z) = H-Y(W¢“(H (x))). Since f is
uniformly subexponential along E¢ each foliation W W and W¢ = W W
have uniformly C'* leaves, see [20, Theorem 7] (or [35]). |

Now, d(F"(v(0)

)
)

8.2. Volume preservation and smoothness along the center direction.
To apply arguments using exponential mixing we need to show that o as in The-
orem [[.2] preserve a smooth volume form. Since we assume that the action « is
accessible, we show that H is C* along W€ without using the exponential mixing
argument from [26], and instead relying on results from [67].

Lemma 8.2. Let « be as in Theorem[1.2, then o preserve a smooth volume form
. Moreover, the conjugacy H : Xr — Xt s volume preserving in the sense that
H.p = pr where pr is the Haar measure on Xr.



48 SVEN SANDFELDT

Proof. Existence of an invariant Holder continuous volume form, u, follows from
[30, Theorem 1.5]. We assume accessibility, so smoothness of p follows from [67,
Theorem A, case (IV)]. As in |25, Proposition 2.4], H.u is a measure of maximal
entropy for the ap—action. From [61] it follows that H.pu = pr. [

Remark 18. By Moser’s trick, there is no loss of generality if we assume that
[ = fir.

We show that H is uniformly C'* along W following [67].
Lemma 8.3. The restriction H : W¢(x) — W§(H(x)) is uniformly C*.

Proof. Let M = W¢(x) x W§(H(x)) and let N C M be the graph
(8.4) N =A{(y, H(y)) - y € W(x)}.

Given any two z,w € W¢(z) we fix a su—path 7 from z to w, such a path always
exists by accessibility. Denote by h], : W¢x) — W¢(z) the composition of
holonomy maps along v (note that z,w € W¢(x) so W¢(z) = W¢w) = W¢(x)).
Since f is uniformly subexponential along W¢, f is co—bunching so A7, is C*
[47]. Since H map W7, 0 = s,u, onto W we have Hh] , = hgzz’())’H(w

hg'(yz’())’ Hw) - Wo(H(2)) — Wi (H(x)) is the composition of holonomy maps along
H~. We define

(8.5) Bt M= M, hen(p0) = (B0 (0), RIS 1 (@)

Since Hh],, = hgzz’())’H(w)H we have h, ,(N) = N. Moreover, h.,(z, H(z)) =
(w, H(w)). Since z and w were arbitrary, and h, , is smooth, it follows that N
is C*°—homogeneous. By [67, Corollary 1.3] N is a C*° submanifold. The graph
of H: W¢x) — WH(x)) is C*, so the map H : W¢z) — W§(H(x)) is also
C®°. Finally, H is uniformly C'*° along W€ since it intertwines the holonomies of
f with the holonomies of fj. |

) where

Remark 19. Using Lemma [R.3] we may assume, without loss of generality, that
the center Ef of f coincides with the joint center of a.

8.3. Smoothness of coarse components along the stable foliation. Let
g = E; ® E§ ® Ej be the splitting of g with respect to f;. Denote by G7,
o = s,c,u,cs, cu, the subgroup associated to £J. We have a C*°—diffeomorphism
G* x G° x G* — G defined by (g%, ¢¢, ¢%) = gsgcgu. Write H(x) = zh(z)~! with
h : Xr — G satisfying h(yzx) = h(x) for all v € I'. We decompose h(z) with
respect to the map G* x G° x G* — G
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It is immediate that each h, is a Holder map. Given a coarse exponent [y] we
denote by GIXI the subgroup associated to E([]X].

Let [x] be a coarse exponent along Ej. We decompose hg(x) further
(8.7) hs(x) = hss(x)hpy (2)

where hpyj(z) is the component of hy(z) along GN and hy(z) is the component
of hs(z) along the complementary group G**, see [52, Lemma 3.1]. The following
is proved in [52] Section 3.

Lemma 8.4. Let a be as in Theorem [ with o™ = f partially hyperbolic and
ker[x], [x](no) < 0, a wall of the chamber that contains ng. The map hp(x) in the
Equation [8.7 is C* along W?, with all derivatives along W* uniformly Holder.

Proof. The proof follows as in [52, Section 3] once we note that we do not need
f to be Anosov. Indeed, once restricted to the foliation W#, the argument only
requires the action o to be exponentially mixing with respect to volume, which
is proved in [30]. |

8.4. New partially hyperbolic elements: passing the chamber wall. Let
ny be in the Weyl chamber C and let ker[x] be a chamber wall for C. Now we
start the work of passing the Weyl chamber wall ker|x] by constructing a partially
hyperbolic element in the chamber C’ adjacent to C through ker[x]. We initially
follow [52], but change the argument from Section 4 in [52], by not relying on
smooth ergodic theory. If x € Xr then the map H : W*(x) — Wi (H(z)) =
H(x)G” is a homeomorphism. We define

(8:8) Hoo: W*(x) = G, H(y) = H(z) (Hya(y)) -
If af(z) = p™(z)n, " with p® € Aut(Xr) and 1, € G then H,, satisfy
Hy qns (0™y) = nap™ (Hoa () 115
We obtain a formula for H , in terms of h
yh(y)™" = H(y) = H(x)H,.(y) ™" = wh(z) " Hyu(y) ™"
or, using the decomposition h(z) = hy(x)he, (),
Yheu(y) " hs(y) ™ = heu () hs(2) T H 2 (y) 7

For y € W*(x) we write y = xg,(y) ™! where (z,y) — g.(y) is chosen continuously
and such that g,(z) =e. Then g, : W*(z) — G* is C*°. With this notation

2g:(y)""h(y) "t = yh(y) ' = H(y) = H(z)H,.(y)"" = ah(z) " Hy.(y) ™



50 SVEN SANDFELDT

He o (y) =h(y)g=(y)h(x) ™" =
Wheu(y) [(M@)g2(y) (@) go (1) Nea] " =
() [Peas) (r()32 ) )] (hi)cl) )

If we multiply both sides of the equality, on the left by h,(y)~' and on the right
by (h(z)g.(y))s, then the right-hand side of the equality lie in G, but the left-
hand side lies in G*. It follows that both sides of the equality are identity, so for
y € W*(x) we have

(8.9) heu(y) = (h(x)gx(y)_l)cu,

(8.10) Hyo(y) = hs(y) (h(2)ga(y)7"), -

Using the fact that the map a — a,, 0 = s, cu, and the map g, : W*(z) — G are
both smooth the following is immediate, see also [52, Corollary 3.14].

hs
hs

Lemma 8.5. The map he, is uniformly C* along W?.

Define H, ,(y) = (st(y))ssHs[X%(y) with HX(y) € GX. From our definitions it
is immediate

{yeW(2): HX(y) = e} = H (W (H(2))), W5*(y) = yG™.

So, if we prove that Hsbﬂ is a (local) C'* submersion for every z, then the fibers
of HY defines a smooth foliation (within W#). This shows that the, a priori only
Holder, foliation W*(x) = H-Y(W$*(H(z))) is a Holder foliation with uniformly
smooth leaves.

Lemma 8.6. The map HX : W*(z) — G™ is uniformly C.

Proof. Since G** is normal in G*, [52, Lemma 3.1], we have
-1

Hio(y) =hs(y) (h(2)g=(y) "), =
_1y-1 —1\—1
hee ()i (v) | (). ()7, } (o)), ]m -
-1
ans - i) [ ()0 () ™), ]
[X]

for some as, € G*°. That is, we obtain the formula
s11) 1) = by w) [(H@)gut) ™), ]
which is uniformly C'* along W* since hy, and g, are, Lemma B.4] . u

Lemma 8.7. The map D,HYX : B*(z) — EX is surjective at every x € Xp. In
particular, the foliation W** has uniformly C* leaves.
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Denote by K = {DmHs[Xgl : is not surjective}, then K is compact and a—invariant.
We wish to show that K = (). Since H : W¥(z) — W§(H(x)) is surjective, it
follows by Sard’s theorem that K # Xp. We will show that if K is non-empty
then K contains a W?* —leaf, which is a contradiction since every W?**—leaf is
dense (Lemma [A]).

Proof of Lemma[8.7. In the remainder, we fix some background metric (-, -), and
will calculate determinants with respect to the top form induced by (-,-). Assume
for contradiction that K # (). Fix n such that o™ contract W** and WX, with n
close to the kernel ker|x]| (we specify later how close). Fix y € W*(z) and some
subspace Vy C E*(y) of dimension dim(E([)’d). We also define V,, = D,a™V,. The

relation HX (@™y) = Np™ <Hs[xgl(y)) nml implies

s, oMz

) det(DannyHS[?d nny

«

(8.12) det(DyHS[fy”vO) = det(p™™"|

E([)X] Vn) det(Dyann|Vo)'

If x is a representative of [x] then the estimate det(Dp™™) < Ce™™™®™)  for
some uniform r > 0 depending on the dimension of E([)’d, is immediate. If
(= dim(E([)X}) and Gr,(£?) is the /—grassmannian bundle of E* then (V,x) —
det(D, HX|\), (V,z) € Gry(E*), is uniformly smooth along W*. For z € K we
have det(D,HY|y) = 0 since D,HY is not surjective. It follows that there is
some constant C' such that

(8.13) | det(Dy HYlv)| < Cdu(y, K)
for y € W*(K). Since y € W**(x), we have
(814) det(DannyHEgny\Vn) SCd(O&nny7 K) < Cd(anny,OénnI) < Cle—)\n

where A > 0 can be chosen independently of n if we let n be close to the kernel
of [x]. Equations B.12l and R4 implies

| det(Dy Hlvy)| < Ce ™™ det(Dya™|v,)].

Since af contract the foliations W** and WX o™ contracts W*, we have a uniform
bound |det(D,a™|y,)| < C. We obtain an estimate

‘ det(DyH[X]\VO)\ < Qe Atrx(m)

$Y
With n be sufficiently close to ker[x] we have A+ 7x(n) > 0 and finally if n — oo
then
det(D, HX ;) = 0.

The point y was arbitrary, so W*(x) C K for x € K. The foliation W** is
minimal, Lemma [A1l and K is closed, so K = Xr which contradicts Sard’s
theorem. m
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To show that EX exists as a continuous bundle we will apply a linear graph
transform argument. Denote by E**(x) the Da™—invariant, continuous subbundle
tangent to W**(x). Let F'(x) be any continuous bundle that is complementary to
E#% within E°. We can, for example, fix a metric and let F' be the complement
of B¢ within E*. Fix n € Z* such that [y](n) < 0 and o™ expands W** (that is,
we chose n such that —n have passed the chamber wall ker[y] from the chamber
that contains ng). Write g = o™. With respect to the splitting £* = F @ E** we
write

D.g(u,v) = (A(x)u, B(z)v + C(x)u)

where A(x)u is D,g(u) projected onto F(gx) and C(z) is D,g(u) projected onto
E*(gx).

Lemma 8.8. We have ||Al|0 < 1.

Proof. Note that D,HY.D,g = D.a2D,HY. There is 1 < 1, depending on our
choice of n € Z*, such that for any u € F(x) we have
(8.15) || Dy, (A@)u + B(z)u)|| = || Deag DoHX(w)|| < p|| Do HY(u)]| -

$,gx

Since B(z)u € E**(gx) and ker D, HX = E5(z) (the fibers of HX are the folia-
tion W**(x)) it follows that ngHS[?g}xB(:c) = 0. That is, Equation simplifies

(5.16) | Dy U, Al < ]| Do HE ()]

Since DxHEfgl : F(x) — E([)>d is an isomorphism (of vector bundles after identifying
EWY with the trivial bundle Xt x EM — X7) the lemma follows (after possibly
altering the norm used or exchanging n for Nn with N sufficiently large). ]

Lemma 8.9. The map T : T°(Hom(F, E**)) — I'Y(Hom(F, E£%%)) defined by
(TP)(z) = B(z)™" (P(gz)A(z) — C())

has a unique fized point.

Proof. Since || Ao, ||B7|co < 1 the lemma follows from Banach’s fixed point
theorem. m

Lemma 8.10. There exists an a—invariant continuous subbundle EX C E* such

that E° = EX @ Ess,

Proof. Let P € T°(Hom(F, E*%)) be the unique T—fixed point from Lemma B9
Define EM(z) := Graph(P(z)) = {(u, P(x)u) : u € F(x)}. It is immediate that



HIGHER RANK PARTTALLY HYPERBOLIC ACTIONS ON NILMANIFOLDS 53
EX @ Es = E*. Given u € F(x)

D.g(u, P(x)u) = (A(x)u, B(x)P(x)u + C(x)u) =
(A(z)u, P(gz)A(z)u — C(2)u + C(z)u) =
(A(z)u, P(g9z)A(z)u) € Graph(P(gz))

so D,gEX(z) ¢ EXl(gz). That D,gEX(x) = EX(gz) follows since D, g is invert-
ible. That EX(z) is a™—invariant for all m € Z* follows by applying the graph
transform of a™ on the element P € I'°(Hom(F, £*%)). This defines a T—fixed
point, since g commute with o™, and the T'—fixed point is unique, Lemma [8.9] so
the o™ —graph transform of P is P. Equivalently, EX is D,a™—invariant. |

Since D,HY : EM(z) — EXN conjugates Dya™ to Ad(n,)Dp® the following
lemma follows immediately by induction.

Lemma 8.11. Every element n € Z*\ 0 defines a partially hyperbolic o™ : Xr —
Xt where the center of o™ has the same dimension as the center of of.

Remark 20. Lemma BIT] passes the Weyl chamber containing ng, and produce
new partially hyperbolic element in adjacent chambers.

8.5. Finishing the proof of Theorem We finish the proof of Theorem
by showing that H is a C* diffeomorphism. We begin by proving that h,,
o =s,u, are C'*°.

Lemma 8.12. The maps h, : Xr — G, 0 = s,u, are C*.

Proof. Tt suffices to consider the case ¢ = s. By Lemma and Journé’s lemma
[36] it suffices to show that A is uniformly smooth along W#. Number all coarse
exponents along W* by [x1], ..., [xn]. The function hs can be decomposed with
respect to the map Gl x ... x Gvl — G* | see [52, Lemma 3.2], as

(8.17) hal) = hiyy) (@) gy ().

Using Lemmas BT and B4 it is immediate that hpy,)(z) is C*°. Moreover, we
use Lemmas RIT] and B4 to show that h&i}(x) = hyy,)(x)/GW is smooth for all
j =1,...,N. If we define h&)j](x) = hiy,)(z)/G" and assume that h&;}l)(z) is
smooth, then we can change the order of products i 1n m modulo a polynomial in
K~V Once more applying Lemmas BT and B4, h jis O foreach j=1,..,N.

[xs]
For i large enough, using that G is nilpotent, Ay, 1s C’°° along W?*. |

We are now ready to prove Theorem [L.2L
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Proof of Theorem [1.2. If we show that H is C* then H is automatically a dif-
feomorphism since the Jacobian can never vanish, this would contradict volume
preservation of a.

By Lemma[A.dlthe map H is uniformly C'*° along W¢. From equation 8.9 we have
H; . (y) = hs(y) (h(:v)gx(y)_l)s_1 and since g, (y) and hs(y) are both uniformly C'*
along W?*, by Lemma B.17 it follows that H,, is uniformly C* along W?. That
is H is uniformly C* along W#. Similarly, H is uniformly C* along W*. Using
Journé’s lemma along W¢ and W*, H is uniformly C'*° along W*. Using Journé’s
lemma once more along W* and W¢ it follows that H is C°. |

9. PROOF OF MAIN THEOREMS

We complete the proofs of Theorems [Al and Bl

Proof of Theorem[4l By Theorem [I.T] the action by « is bi-Holder conjugate to
some affine action «. Produce the conjugacy H for the special element f = o™,
but it then also conjugates the full action into an affine action. This is easily seen
to hold directly by the construction of H but also follows from an argument as in

[1]. Applying Theorem [[.2 proves Theorem [Al [ |

Proof of Theorem[B. Let fy € Aff(Xr) and f € Diff*(Xt) be C'—close to fo.
Write L, : T — T¢ for the induced hyperbolic automorphism. Note that f
satisfy assumptions () and (i) of Theorem [Alsince it is close to fy. In particular,
we obtain ® from Theorem [T We denote by Z*°(f) the C*°—centralizer of f
and let Z2°(f) C Z°°(f) be the center fixing, normal subgroup of Z*°(f) from
Equation [[4l Define the quotient

(9.1) Za(f) = Z=(f)]23(f)-

If g € Z2(f) then ®(gx) = ®(x) so if we consider the induced map on H; Xr for
g then ®,g, = ®, or since ®, : H; Xr — H,T¢ is an isomorphism, it follows that
g« = id. Conversely, if g, = id then, since ® semiconjugates g to g, Theorem [L1] it
holds that ®(gz) = ®(z) so g € Z°(f). It follows that each non-trivial g € Z2°( f)
represent an element of Z*°(f) that project onto a non-trivial automorphism on
T In particular, if rank(Z2(f)) > 1 then the image of Z°(f) in Zau(Lsy)
contains a subgroup isomorphic to Z2. Irreducibility of L,, implies that this
Z?—subgroup in Z°°(f) is higher rank. The action of Z°°(f) is C°°—conjugate
to some affine action by Theorem [Al If rank(Z2(f)) = 1 and #Z°(f) = o
then [21, Corollary 18] implies that case (i7) of Theorem [Bl holds. Finally, if
rank(Z2(f)) = 1 and #2°(f) < oo then Z*°(f) is virtually Z so case (i) of
Theorem [B] holds. |



HIGHER RANK PARTIALLY HYPERBOLIC ACTIONS ON NILMANIFOLDS 55

APPENDIX A. SOME ALGEBRAIC LEMMAS

In this appendix, we show some basic properties of higher rank, algebraic actions
on nilmanifolds. The first two lemmas, 2.1 and 2.2], are stated in Section [2Z.2]

Proof of Lemma[21l. If the conclusion does not hold then there is a decomposition
g = E;® E;® Ej so that every of is subexponential along £ and either contract
or expand £ and Ej. Consider the projected action on the base. If this is
rank—1, then the whole action is rank—1 (and has a rank—1 factor). Recall that
for any n € N there is some ¢, > 0 such that if L € GL(n,Z) satisfies that the
eigenvalues of L with modulus larger than one have a product bounded by 1+ ¢,
then L have no eigenvalues of modulus larger than 1.

Let W C R* be the kernel of the unique pair of negatively proportional exponents
of ag. For any n € ZF sufficiently close to W, all eigenvalues of af € GL(n, Z) will
be close to the unit circle, which implies that all eigenvalues of af lie on the unit
circle. It follows that any n € Z* sufficiently close to W lies in W. In particular

(A1) rank(ZF N W) = dim(W) = k — 1.

Elements in W have all eigenvalues on the unit circle, dropping to a finite index
subgroup of Z*, we may assume that all eigenvalues are 1. After taking a quotient
to remove Jordan blocks, the action of W is trivial. Since dim(W) = k — 1, the
action of Z* is rank—1. |

Proof of Lemma[22. The translation action of V' is minimal if and only if the
induced translation action on the base is minimal, so we assume without loss of
generality that Xp is a torus. Let W be the rational span of V, then V acts
minimally if and only if W = R% If W # R then T* = T¢/W with ¢ > 1,
and ag descend to T*. We have quotiened out all coarse exponents except for
one negatively proportional pair, so the factor T¢ has only one pair of negatively
proportional exponents. By Lemma 21 T is a rank—1 factor, which is a contra-
diction. We conclude that W = R? so V act minimally. |

We will need a lemma, like Lemma[2.2] but only considering coarse directions that
lie in the same stable direction for some element of the action ag°. The following
lemma is a consequence of Lemma [2.1]

Lemma A.1. Let ag : ZF — Aff(Xt) be higher rank. We say that n € Z* is
reqular if the center of of coincide with the joint center of oy. Let ng be regular
and E§ be the stable space associated to og°. Let [x] be a coarse exponent such
that ker[x| is a wall for the Weyl chamber that contains ny and E([)>d C Ej. Either
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E; = EX or the complementary subspace ES®, Es*@ EX = E3. defines a minimal
foliation in Xr.

Proof. After projecting to the base, we assume without loss of generality that Xr
is a torus T?. If EéX] = E§ for [x](ng) < 0, then there is nothing to prove, so
suppose that there is at least one coarse exponent [n] satisfying [n] # [x] and
[n](ng) < 0. Write E§° for the complementary subspace defined by

(A.2) Ey= P E
7] (n0)<0
[nl#[x]

Let W be the rational closure of Ej°, then W is oy—invariant and rational. Each
af|w preserves the lattice W N Z? so det(af|y) = +1. Given a coarse exponent
7], define 5" = (') for [] = [n] and djj; € [0,1] by

(A3 v Svery () dm(E 00
S ey () dim(EY)

From this definition it is immediate that

dW

(A.4) ‘det(a3|E([;,]mW)‘ = |det(ag] )| ", mezt

Our choice of W implies that dfg = 11if [n](ng) < 0 and [n] # [x]. Rewrite

dW
]
1 =[det(aglw)| = TT |det(ag] | ™ =
[n]

dW
[x] W
[] | det(ag] o) "det(a3|ngJ) ° [] |det(a3|Egn)|d["]

[nﬂ(ﬁg{)?o [](no)>0
nl#[x

Using |det(af)| =1

H |det(0‘g|E};ﬂ)| I
(7] (no) <0 ‘det(% |500)
[ml#[x]

and combining estimates

1 1

[1)(no)>0 )det(OéSIEgn)

"%
dfa~1 a1

(A.5) 1= }det(amEéX])

H | det(a3|E([)7,])

[7](1n0)>0

If n; € ZF is a sequence in the same Weyl chamber as ng such that n; — ker[x],
then

det(af? | 50)
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Each [n] # +[x] satisfies |det(ag’|m)
0

Jj — 00, dg;/] = 1 for [g](mg) > 0, [] # —[x]. It follows that E/ C W for
[n] # £[x]. If T¢/W is non-trivial, then the projected action on T?/W does not
have two independent coarse Lyapunov exponents. By Lemma 2.1, T¢/W is a

rank—1 factor of ap. This contradicts the assumption that aq is higher rank so
W = R? which proves the lemma. [ ]

> p > 1 for some uniform p. Letting

Lemma A.2. Let A C GL(n,Z) be a free abelian subgroup with Lyapunov expo-
nents Lyap(A). Let N be the mazimal number of linearly independent Lyapunov
exponents (that is, N = dim(span(Lyap(A)))). If the intersection of the kernels
of all x € Lyap(A) is trivial in A then rank(A) < N.

Proof. Let p(t) € Z[t] be of degree d, monic and with constant term +1. Let
A1, -, Ag be the roots of p(t) (possibly with multiplicity). There is a constant
ta > 1 such that either p(t) has only roots on the unit circle or

d
(A.6) M(p(t)) = [ [ max(1, [A]) > pa

j=1
see for example [22]. We number {x1,...,xn} = Lyap(A). Let d; be the di-
mension of the Lyapunov space associated to x;. Given a € A let p,(t) be the
corresponding characteristic polynomial. We obtain

(A.7) log M(pa(1)) = djx;(a).

x;j(a)>0
Suppose that rank(A) > N for contradiction. We let yi,..., xy be chosen such
that every x; lie in span(xi, ..., xn). If @, € A is such that xq(ay), ..., xn(an) =0
then y;(a,) — 0 for all j =1,...,n. The intersection

N
(A.8) Vi=(\kery; CA®R

j=1
is non-trivial since rank(A) > N. The set A is a lattice in A ® R, so we find a
sequence a, € A such that d(a,,V) — 0 as n — oo but a, /4 e (where e is the
identity in A C GL(n,Z)). It follows that

(A.9) log M(pa, (t)) = D x;lan)

x;j(a)>0
tends to 0 as n — oo. With n big enough log M (p,, (t)) < log pg which implies
that a,, has only roots on the unit circle. It follows that a,, lie in the kernel of all x;,
so a, = e by assumption. This implies that a,, — e which is a contradiction. W

Lemma A.3. Let A € Sp(d,Z) be hyperbolic with irreducible characteristic poly-
nomial. Ifri(A) denotes the number of real eigenvalues of A and ro(A) the number
of pairs of complex eigenvalues of A then rank(Zgpaz)(A)) = r1(A)/2 +1ra(A)/2.
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Proof. Fix A € Sp(d, Z) with irreducible characteristic polynomial. Let

(A.10) Ay(RY) = RYAR?

be the vector space of 2—vectors from R?. Consider the induced map A A A :
Ay(RY) — Ay(RY). Note that Ay(Z9) is a A A A—invariant lattice in Ay(R9).
Denote by W < Ay(R?) the subspace defined by A A Al = idw, that is W is

the eigenspace of 1 for A A A. We write I' := W N Ay(Z%), since W is a rational
subspace of Ay(R?) the subgroup I' < W is a lattice.

Given B € Zayaz)(A) the wedge B A B preserve W and stabilize I' in W. So,
after identifying W = R%? and T' = Z%? we obtain a map ¥ : Zaraz (A) —
GL(d/2,Z) defined by ¥(B) := (B A B)|w. It is immediate that ¥ is a homo-
morphism. Fix eigenvectors ey, ..., €4/2, €1, ..., €4/2 € C? such that Ae; = \je; and
Aé; = é;/N;. We can identify (the complexification of) W by W = span(e; A
€1, .er, €d/2 N éd/g), so for B € ZGL(d,Z) (A) we have

(A.11) B A B(ej Aéj) = i (B)i;(B)ej A é;

where Bej = ,uj(B)ej and Béj = ﬂj(B)éj If \I](B> = €, then /LJ(B),&)(B) =1
which implies that B preserve the symplectic form that A preserve (note that
€1, -+, €d/2, €1, ..., €¢/2 can be chosen such that the symplectic form can be written
el Nét+ . +e¥2 Ned?). Conversely, if B € Zspaz)(A) then ¥(B) = e. Equation
[A.17] also implies that the Lyapunov exponents of Im(¥) are given by

(A.12) Xj (¥(B)) = log|u;(B)| + log |fi;(B)].
It follows that Im(W) has 7 (A)/2 + r2(A)/2 Lyapunov exponents. Indeed, if
wi(B), fij(B) takes values in R then log |u;(B)|+1log |fi;(B)| defines one Lyapunov
exponent. If u;(B), ji;(B) takes values in C\R then p;(B) = pj(B) and fi;(B) =
fi:(B) are eigenvalues of Zqr4,z)(A), and
(A.13) Xj (B) = x;(B).
By Lemma [A.2] rank(Im(W¥)) < r1(A)/2 + r2(A)/2 — 1 since |det(¥(B))| = 1
implies that, at least, one Lyapunov exponent of Im(W¥) can be written as a
combination of the other Lyapunov exponents. By [41], the rank of Zgp,q,z)(A)
is 71 (A) + r2(A) — 1, so

rank(ker(¥)) =rank(Zapa,z)(A)) — rank(Im(¥)) >
r1(A) +72(4)

2

rl(A) + TQ(A) —1—-

r1(A) + r2(A)
2
or since ker(V) = Zgy(4,2)(A), rank(Zgpa,z)(A)) > (r1(A)+7r2(A))/2. The converse
inequality is clear from Lemmal[A 2since if x is a Lyapunov exponent of Zgp4,z)(A)
then so is —y. [ |

—1| =
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